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ABSTRACT   While estimating regional inequality, many economists use inequality indices 

weighted by regions’ shares in the national population. Despite this approach is widespread, 

its adequacy has not received attention in the regional science literature. This paper proves 

that such approach is conceptually inconsistent, yielding an estimate of interpersonal 

inequality among the whole population of the country rather than an estimate of regional 

inequality. Moreover, the population-weighted inequality indices do not meet requirements to 

an adequate inequality measure.  
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1. Introduction 

Studying economic inequality in a country, one may consider distribution of, say, income 

between individuals or between country’s regions. Not only does the latter introduce spatial 

dimension in studies of inequality, but it can also reveal important links remaining overlooked 

with treating the country as a whole. For example, while the literature on civil war has found 

little support for a link between individual-level economic inequality and civil war, Deiwiks et 

al. (2012) find strong evidence that regional inequality affects the risk of secessionist conflict. 

In both cases, the same statistical methodology and inequality indices (which amount to a few 

tens) are applied, with the difference that regions rather than individuals are taken as 

observations while estimating regional inequality. However, there is a modification of the 

inequality indices that is used to measure regional inequality.    

Apparently, Williamson (1965) was the first who put forward the idea of weighting 

indices that measure inequality between regions of a country by regions’ shares in the national 

population. Since then such an approach became fairly widespread in regional studies. 

Publications that apply it number in hundreds. Therefore I am able to cite only a small part of 

them, using a dozen of recent journal articles as a ‘sample’. Table 1 tabulates them, reporting 

inequality indices applied as well as geographical and temporal coverage of respective studies. 

In this table, CV = coefficient of variation, G = Gini index, Th = Theil index, MLD = mean 

logarithmic deviation,  = standard deviation of logarithms and RMD = relative mean 

deviation. Subscript w indicates that the index is a population-weighted one.   

Most studies from Table 1 use regional GDP – elsewhere called gross regional product – 

per capita as a well-being indicator. An exception is Doran & Jordan (2013) who exploit 

regional gross value added per capita; a few studies consider some additional indicators. The 

table shows that the application of the population-weighted inequality indices is greatly varied 

both in geographical terms and time spans (note that if different countries are involved in a 

study, the case at hand is not international inequality; the study deals with regional inequalities 

in relevant countries or in a set of countries). Inequality indices used are also manifold. The 

most popular ones are the coefficient of variation, Gini and Theil indices (many other, ‘out of 

sample’, papers confirm this). Therefore only these three indices will be dealt with in what 

follows. It should be noted that the population-weighted indices are present not only in the 

literature on economic inequality; they find use in studies of inequality in the areas of health 

care, education, energy policy, etc.  

 



 3

Table 1. Selected recent studies that use population-weighted inequality indices.  
 

Author(s) Index(es) used Geographical 
coverage 

Time span 

Doran & Jordan (2013) Thw 14 EU countries 
(NUTS 2 regions) 

1980–2009 

Enflo &  Rosés (2015) MLDw Sweden 1860–2000
Ezcurra & Rodríguez-Pose 
(2014) 

Thw,  CVw, MLDw, w 22 emerging 
countries 

1990–2006

Kyriacou & Roca-Sagalés (2014) CVw, MLDw, w 22 OECD countries 1990–2005

Lessmann (2014) CVw 56 countries 1980–2009
Li & Gibson (2013) Gw, CVw, Thw China 1990–2010
Martínez-Galarraga et al. (2015) Thw Spain 1860–2000
Mussini (2015) Gw 28 EU countries 

(NUTS 3 regions) 
2003–2011

Petrakos & Psycharis (2016) CVw Greece 2000–2012
Sacchi & Salotti (2014) CVw, w 21 OECD countries 1981–2005

Wijerathna et al. (2014) Gw, CVw, RMDw Sri Lanka 1996–2011
Zubarevich & Safronov (2011) Gw, CVw Russia, Ukraine, 

Kazakhstan 
1998–2009

 

Williamson did not provide a more or less detailed substantiation of his idea, merely 

noted that an unweighted inequality index ‘will be determined in part by the somewhat 

arbitrary political definition of regional units’ and ‘[t]he preference for an unweighted index 

over a weighted one, we think, is indefensible’ (Williamson, 1965, pp. 11, 34). Nor such 

substantiations appeared in the next 50 years. Even a handbook chapter on measuring regional 

divides only asserts that the use of unweighted inequality indices ‘may lead to unrealistic 

results in certain cases, affecting our perception of convergence or divergence trends’ (Ezcurra 

& Rodríguez-Pose, 2009, p. 332), providing no proof or example. The only attempt to explore 

properties of the population-weighted indices is due to Portnov & Felsenstein (2010); it will be 

discussed in Section 4. 

It seems that more often than not relevant studies apply Williamson’s idea mechanically, 

not considering the benefit of weighting and its sense. A number of them (including some of 

the cited studies) estimate both population-weighted and unweighted indices without 

discussing distinctions between these. It appears that the authors of such studies believe 

weighted and unweighted versions of an index to be interchangeable or complementary (like, 

say, the coefficient of variation and Theil index). Yet even Williamson’s brief notes cited 

above are open to question.  

First, the political division of a country is the reality which regional researchers should 
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deal with, irrespective of whether they believe it to be ‘somewhat arbitrary’ or ‘natural’. 

Certainly, they may discuss its shortcomings and find ways of improvement, but it is a quite 

different story unrelated to the issue of regional inequality. Therefore the desire for 

‘adjustment’ of existing political division through weighting regional disparities seems 

strange. 

Second, why do we need taking into account differences in regional population at all? 

But we can estimate inequality among groups in country’s population without regard for sizes 

of these groups. For instance, while estimating wage inequality between industrial workers, 

builders, teachers, lawyers and so on, we do not care what shares of these occupational groups 

in the total population (or employees) are. What is a fundamental difference between this and 

the case when each population group consists of inhabitants of one region?   

Third, on closer inspection results of estimating inequality with the use of population-

weighted indices look striking; they may prove to be evidently unrealistic. The next section 

provides a glowing example. 

The purpose of this paper is to show that application of the population-weighted indices 

for measuring regional inequality is nothing but a fallacy. The main point is that they measure 

not inequality between regions but something else and therefore yield distorted estimates of 

regional inequality. Albeit Williamson’s approach has received some criticism in the literature 

(which will be discussed in Section 4), it has overlooked this point. Moreover, this paper 

proves that these indices do not meet requirements to an adequate inequality measure. 

The rest of the paper is organized as follows. Section 2 reveals the true sense of 

estimations of inequality obtained with the use of the population-weighted indices. Section 3 

analyzes properties of the population-weighted indices, providing proofs that they violate two 

important axioms. Section 4 discusses arguments against and in favour of the population 

weighting that are found in the literature. Section 5 summarizes conclusions drawn in the 

paper.   

 

2. What Do Population-Weighted Indices Measure? 

Consider cross-region income distribution y = (yi), i = 1, …, m; yi = per capita income in 

region i and y  = the arithmetic average of regional per capita incomes ( myyy m /)...( 1  ). 

Then the coefficient of variation measuring regional inequality has the form 
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Their population-weighted counterparts take the forms 
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Sometimes, the weighting by population is present in the Theil index implicitly. For 

example, Doran & Jordan (2013, p. 25–26) construct the index from regions’ shares of total 

income, Yi/Y, and regions’ shares of total population, Ni/N. Martínez-Galarraga et al. (2015, p. 

510) use a similar way. It is easily seen that such index is equivalent to that represented by 

Formula (6): 
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Let us apply the population-weighted indices to estimate regional inequality in a simple 

two-region case. Consider two Chinese regions, mainland China as a whole and Macao, the 

Special Administrative Region of the People’s Republic of China (and the richest territory of 
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the world). In hoary antiquity, when the Portuguese occupied as large part of the Chinese 

territory as they could (or needed), Macao might be deemed a ‘somewhat arbitrary’ regional 

unit. Nowadays, it is quite natural, as Macao has its own currency, and citizens of China from 

other regions need visa to get there. Table 2 reports data on these regions. 

 

Table 2. Per capita income and population in mainland China and Macao in 2014.  
 

Region PPP-adjusted GDP per 
capita (yi), current 

international dollars* 

Population (Ni), 
million people** 

Region’s weight (ni)

Mainland China 13,217 1,376.049 0.999573 
Macao 139,767 0.588 0.000427 

* World Bank (2015) 
** United Nations (2015, p. 13) 

 

Estimating income inequality between mainland China and Macao, we get results listed 

in Table 3. It reports values of the population-weighted coefficient of variation and Gini and 

Theil indices defined by Formulae (2), (5) and (6) as well as values of the unweighted indices 

according to Formulae (1), (3) and (4). For comparability sake, the table also reports these 

indices standardized so that they take on values in the range of [0, 1]. That is, an index is 

divided by its maximum corresponding to perfect inequality. For our case of two observations, 

the maxima of CV, G and Th are respectively 1, 0.5 and log(2). The maxima of CVw, Gw and 

Thw approximately equal 1, 48.4 and 7.8; the way of computing these maxima will be 

explained in Section 3 and summarized in its Table 7. 

 

Table 3. Estimates of income inequality between mainland China and Macao.  
 

Index Population-weighted Unweighted  

 Raw Standardized Raw Standardized

Coefficient of variation 0.197 0.004 0.827 0.827 
Gini index 0.004 0.004 0.414 0.827 
Theil index 0.007 0.001 0.399 0.576 
Average income 

)(wy = 13,721 y = 76,492 

 

While the unweighted indices indicate a high degree of inequality, the population-

weighted ones yield the reverse pattern. The standardized values of CVw and Gw (coinciding 

up to the sixth decimal digit) have the value of 0.004, or 0.4% in percentage terms; and 

standardized Thw is even less than 0.1%. This suggests that there is (almost) no income 
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inequality between the average mainland Chinese and average inhabitant of Macao. Indeed, 

our perception of spatial inequality is greatly distorted, but in the sense that is opposite to the 

view of Ezcurra & Rodríguez-Pose (2009, p. 332): it is the population weighting that gives 

rise to distortions. In the two-region case, the result evidently contradicts common sense. 

However, a sufficiently great number of regions in empirical studies masks such absurdities, 

creating an impression that estimates of inequality with the use of the population weighting are 

reasonable. 

Then what is the reason for that low inequality suggested by the population-weighted 

inequality indices?  What is the sense of the estimates obtained? To understand what the 

weighted indices measure, let us estimate inequality among all citizens of a country, basing on 

cross-region income distribution. The ‘national’ coefficient of variation (CVnat) with yl 

standing for personal income of l-th citizen of the country looks like 

y
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Obviously, the population-average income in this formula – national per capita income, 
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Thus, the population-weighted coefficient of variation is not a measure of inequality 

between regions; instead, it measures national inequality, i.e. interpersonal inequality in the whole 

population of the country. In doing so, it does not (and cannot) take into account intra-regional 

inequalities. Certainly, this relates not only to the coefficient of variation but to any other 

inequality index (maybe, except for those based on partial information from cross-region income 

distributions, e.g. the relative range of disparities, i
i

i
i

yyR min/max , interquartile range, and the 

like; however, it seems that the weighting is hardly applicable to them). 
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This explains the sense of results obtained with the population-weighted indices in Table 3. 

These measure inequality between inhabitants of the united mainland China and Macao. Provided 

that inequality within mainland China is zero (as all its inhabitants are supposed to have the same 

income), adding less than one million people – even with extremely high income – to its 1.4-

billion population can increase the degree of the overall inequality only slightly.   

It is seen that there is a conceptual distinction between the unweighted and population-

weighted estimates of inequality. In the former case, all regions enjoy equal rights in the sense that 

all yi are equiprobable (i.e. the probability of finding income yi in a randomly chosen region is the 

same for all i and equals 1/m). Albeit speaking of regions, we actually deal with individuals, 

representative (or ‘average’, i.e. having the region-average income) inhabitants of each region. 

While estimating regional inequality, we compare their incomes without regard for how many 

people live in respective regions (like we do while comparing wages across occupations). Indeed, 

the fact that the average inhabitant of Macao is almost 11 times richer than the average mainland 

Chinese in no way changes because of the fact that the population of Macao is 2,340 times smaller 

than the population of mainland China. 

Introducing regional weights implies that a region is represented by all its inhabitants rather 

than by one ‘average’ inhabitant. That is, we consider region i as a group of Ni people, each 

individual within the group having income yi. Then the probability of yi differs across regions, 

becoming proportional to their populations, ni. Thus, (ni) is in fact a proxy of the personal-income 

distribution in the country. In other words, it is a grouping of the whole country’s population into 

income classes (yi) of different sizes (Ni). The regional division matters no more; the impression 

that the case at hand is inequality between regions is but an illusion owing to that the grouping 

proceeds from the data by region. Actually we get an estimate of interpersonal inequality in the 

country. As such it is very crude, since it neglects inequality within regions and – what is much 

more important – the income classes yi (constructed from cross-region data) in fact heavily overlap 

because of overlapping intra-regional income distributions.  

It follows herefrom that a population-weighted estimate of inequality is biased with regard 

to estimates of both regional inequality (as it measures a different value) and interpersonal 

inequality (as it does not take account of within-region income disparities). In both cases, the result 

can be misleading as the example of two Chinese regions demonstrates.  

The bias can have either direction depending on a particular combination of regional per 

capita incomes and populations. Williamson (1965, p. 12) reports values of both weighted and 

unweighted coefficients of variation estimated on regional data from 24 countries. Regional 
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inequality estimated by CVw proves to be overstated in about a half of countries, and understated in 

another half. The biases (relative to the unweighted estimates) range from –52.6% (in India) to 

+37.6% (in Puerto Fico). The case of India is an example of quite misleading result in an 

actual study (covering 18 regions): the population-weighted index understates the extent of 

regional inequality there by more than a half. 

One more evidence is due to Petrakos & Psycharis (2016). They estimate the evolution 

of regional inequality in Greece across its NUTS 2 and NUTS 3 regions over 2000–2012, 

using both population-weighted and unweighted coefficient of variation. The trend of CVw is 

upward, while CV has either a downward trend (in the case of NUTS 3 regions) or is stable 

(for NUTS 2 regions). Thus, if one considered the weighted estimates, the conclusion would 

be that regional inequality rises, whereas actually it remains unchanged or even decreases. 

Mussini (2015) estimates inequality between NUTS 3 regions in the EU-28 over 2003–

2011 (applying Gw) and decomposes its changes into those caused by population change, re-

ranking of regions and growth of regional per capita incomes. In the light of the above 

considerations the intuitive sense of the first component becomes absolutely obscure. As it has 

been shown above, the population-weighted index measures national inequality. Imagine that 

the cross-individual income distribution in a country remains invariant while the cross-region 

population distribution changes. Then the effect of population change in the decomposition of 

inequality change reflects nothing but a result of replacing one improper division of the 

population into income classes by another (also improper) one.  

 

3. Some Properties of the Population-Weighted Indices 

An adequate inequality index should satisfy a number of axioms, i.e. desirable properties of an 

inequality measure (see, e.g. Cowell, 2000). Ezcurra & Rodríguez-Pose (2009, pp. 332–333) 

argue – with no proof – that a number of the population-weighted inequality indices, including 

the coefficient of variation and Gini and Theil indices, fulfil the basic axioms, namely, scale 

invariance, population principle, anonymity and principle of transfers (the Pigou-Dalton 

principle). Some other papers, a few above-cited ones among them, contain similar assertions.  

Indeed, these indices are scale-invariant; the check is easy and straightforward. The 

fulfilment of the population principle (or replication invariance) seems questionable, since it 

would hold under a replication of not only the income distribution, but the population 

distribution as well, which is beyond the axiom conditions. As for the anonymity (symmetry) 

principle and principle of transfers, the population-weighted inequality indices violate them 
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(while their unweighted counterparts do satisfy). This fact will be proved below regarding the 

population-weighted coefficient of variation. Such proofs for the population-weighted Gini 

and Theil indices need more cumbersome mathematics; therefore only numerical examples 

will illustrate violations of these axioms by them. 

Adjusting Jenkins & van Kerm’s (2009, p. 52) definition to the case of regions, the 

anonymity principle requires the inequality index to depend only on per capita income values 

used to construct it and not additional information such as what the region is with a particular 

per capita income or what regional populations are. In other words, the index must be 

invariant to any permutation of income observations.  

Consider a cross-region income distribution y = (y1,…, yN) and its permutation y*, i.e. y = 

(…, yi, …, yk, …) and y* = (…, yk, …, yi, …); the rest elements in y* remain the same as in y; 

hereafter yk > yi. One can expect the value of the population-weighted inequality index to 

change under such a transformation if for no other reason than it changes the weighted 

average: 

))(()()*()( ikkiwww yynnyyy  .           (7) 

It is seen that the weighted average remains intact only in the trivial case of ni = nk.  

The change in the population-weighted coefficient of variation is characterized by the 

following equation: 
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and )(wy  determine the sign of 2
wCV , hence the direction of change in the inequality 

measure: )sgn()1)(sgn()sgn( )(

2

ww yFCV  . Table 4 shows different possible cases. 
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Table 4. Permutation-induced changes in the population-weighted coefficient of variation. 
 

 ni > nk ( 0)(  wy ) ni < nk ( 0)(  wy ) 

F() > 1 CVw increases CVw decreases 

F() < 1 CVw decreases CVw increases 

 

Given too many variables in F(), its behaviour is not amenable to more or less 

comprehensive formal analysis. It is possible for some particular cases only. For instance, if both yi 

and yk are less than the weighted average and ni > nk, then F() < 1 knowingly holds and CVw 

diminishes.  

In principle, the case of 02  wCV  is possible as well. Let all regions except i and k have 

the same per capita income yr. Then we can aggregate them into a single ‘region’ r with 

income yr and weight nr = 1 – (ni + nk). (Such a ‘region’ will be used elsewhere below.) In this 

instance F() = F(yi, yk, ni, nk; yr). Keeping all variables except yr constant, we can find the 

value of yr such that F(yr) = 1. Equation F(yr) = 1 is a cubic one with respect to yr; its closed-

form solution is very cumbersome and therefore is not reported. (In fact, we can dispense with 

it, solving the equation numerically.) This equation may have a real positive root, albeit not 

always. However, no significance should be attached to this fact. First, probability of finding 

an actual cross-region income distribution (along with the population distribution) that 

satisfies F() = 1 even for some single pair of i and k seems to be close to zero. Second, 

particular cases of satisfying the anonymity principle do not matter at all, while the only (non-

degenerate) case – even a single numerical example – of its violation would evidence that the 

inequality index under consideration does have this unpleasant property. 

Table 5 provides numerical examples that illustrate four cases listed in Table 4 and the 

case of no change in the population-weighted coefficient of variation. It tabulates three income 

distributions and their permutations – (A), (B) and (C), the population distribution n = (nj) 

being uniform across these. Therefore, 0)(  wy  holds for all three cases of transition from y 

to y*. However, we can also consider reverse transitions from y* to y, exchanging indices i and 

k; in these transitions, 0)(  wy . Along with the coefficient of variation, the table reports the 

population-weighted Gini and Theil indices. Besides, for comparison sake, it also reports 

values of unweighted inequality indices. 

 



 12

 

Table 5. Permutation-induced changes in the population-weighted inequality indices. 
 

(A) (B) (C) Region 
index 

n 

y y* y y* y y* 

i 0.15 150 300 150 300 150 300 
k 0.05 300 150 300 150 300 150 
r 0.80 400 400 100 100 218.9 218.9 

)(wy   357.5 372.5 117.5 132.5 212.62 227.62 

CVw  0.251 0.167 0.387 0.537 0.149 0.149 
Gw  0.098 0.062 0.129 0.205 0.059 0.060 
Thw  0.039 0.017 0.057 0.115 0.011 0.011 
CV  0.363 0.464 0.275 
G  0.196 0.242 0.149 
Th  0.070 0.104 0.038 

 

Case (A) is that of diminishing values of the population-weighted inequality measures 

caused by the exchange of incomes between two regions; F() < 1 here. The decrease is fairly 

sizeable, equalling more than one third for CVw and more than a half for Thw. Considering the 

reverse transition, we have 0)(  wy  and F() > 1; the permutation of regional incomes causes 

the weighted inequality indices to rise. In case (B), the effect of permutation in y is an increase 

in the weighted indices, as F() > 1; the reverse permutation has the adverse effect. At last, the 

weighted coefficient of variation does not change under the permutation in case (C). 

Interestingly, the weighted Gini and Theil indices are also near-invariant in this case: Gw = 

3.710–4 and Thw = 5.510–4. Comparing values of the respective weighted and unweighted 

indices in Table 3, we can see that the weighting leads to significant undervaluation of 

inequality, except for Thw(y*) and CVw(y*) in case (B).  

Let us turn to the principle of transfers which ‘is usually taken to be indispensable in 

most of the inequality literature’ (Cowell, 2000, p. 98). Let cross-region income distribution y 

= (…, yi, …, yk, …) be transformed into y* = (…,y*i = yi + , …, y*k = yk – ,  …), where y*j = 

yj for j  i, k, and 0 <  < max = (yk – yi)/2, thus keeping region k still richer than i. The 

principle of transfers requires the inequality index to decrease under such a transformation. 

This requirement for the weighted coefficient of variation (denoting CVw*  CVw(y*)) can be 

represented as 

0)))(1((
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Condition (10) unambiguously holds only if niy*i < nky*k and ni > nk, as both summands 

in the right-hand side of the equation have negative sign. However, as   rises, y*i and y*k 

become progressively closer to each other, which inevitably causes niy*i – nky*k  to change its 

sign to positive. When the signs of summands in the right-hand side of Equation (10) are 

different (in the case of ni < nk they always are), the resulting sign of their sum depends on 

particular combination of y, n and the value of . Then it is not inconceivable that the 

derivative of CVw* is positive somewhere in the definitional domain of , so violating the 

principle of transfers. 

 To show that dCVw*/d > 0 is possible, consider the case when the transfer is close to 

the right bound of its domain,    (yk – yi)/2. Then y*i  y*k  (yk + yi)/2. In this instance, 

provided that ni > nk, dCVw*/d > 0 if )*(

2

* )1(2/)( wwki yCVyy  . Let )*()1( wi yy   and 

)*()1( wk yy  (note that  may be negative), then the latter inequality looks like 

2

*2/)( wCV  . Such a relationship is fairly realistic. Usually CVw* < 1, therefore  and  

should not be too great. For example, if CVw* = 0.7, the principle of transfers will be violated 

with, say, )*(2.1 wi yy   and )*(8.1 wk yy   in the neighbourhood of )(*3.0 wy , or with 

)*(9.0 wi yy   and )*(1.2 wk yy   near )(*6.0 wy . Note that with ni > nk, a necessary condition 

for dCVw*/d > 0 is exceedance of the weighted average by yk, 

)()()*( )( wkiwwk ynnyyy   . 

Provided that ni < nk, dCVw*/d > 0 if )*(

2

* )1(2/)( wwki yCVyy  . This inequality 

obviously holds when both yi and yk are below the weighted average )*(wy , or when   –. It 

also may be true if both variables are above )*(wy , e.g. with )*(1.1 wi yy   and )*(8.1 wk yy   

near )(*35.0 wy , given that CVw* = 0.7. 

Considering CVw* as a function of transfer, CVw(y*) = CVw() (then CVw(y) = CVw(0)), 

we can distinguish four types of its behaviour (depending on particular y and n). They are 

depicted in Figure 1, with CVw() normalized to CVw(0) and  normalized to max.  

Type 1 is a monotonic rise in the weighted coefficient of variation everywhere in the 

definitional domain of . In type 2, CVw() decreases at first and then begins to rise (i.e 

dCVw*/d changes its sign from negative to positive). Starting with some , it reaches the 

initial value, CVw(0), and then exceeds it more and more. Type 3 is qualitatively similar to 
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type 2, except for CVw() does not reach the initial value by the end of the domain of . At 

last, type 4 is a monotonely decreasing CVw(). 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 max

CV w ( )/CV w (0) 1
2

3

4

1

 

Figure 1. Different types of behaviour of CVw(). 

Note: for all curves, n = (0.15, 0.05, 0,8), yi = 100 and yk = 300; yr = 420 for curve 1, yr = 350 

for curve 2, yr = 300 for curve 3, and yr = 30 for curve 4. 

 

The weighted Gini and Theil indices have the same four types of behaviour. A 

peculiarity of the Gini index is a break on curve Gw() in some point (instead of a smooth 

inflection) in the case of behaviour of types 2 and 3. However, given the same y and n, Gw() 

and Thw() may differ from CVw() in the type of behaviour. For instance, curves of the 

weighted Gini index corresponding to curves 1, 2 and 3 in Figure 1 behave according to type 

1; the behaviour is similar only in the case of curve 4. Curves of the weighted Theil index 

corresponding to curves 2, 3 and 4 in Figure 1 have the same type of behaviour, while 

behaviour of type 2 corresponds to curve 1of CVw.     

The violations of the principle of transfers have serious implications for empirical 

studies. Let we study the evolution of income inequality in some country (assume that the 

population distribution remains invariant). Provided that the behaviour of the population-

weighted inequality measure is of type 1, we would observe increasing inequality with income 

gaps between regions of the country becoming progressively smaller over time. In the case of 

behaviour of types 2 and 3, the results will appear even more striking and unaccountable. At 
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first, inequality falls with decreasing income gaps, as could be expected; but then from some 

point on, further decrease in the income gaps leads to rise in inequality. 

Certainly, the situation is much more involved in actual empirical studies. For example, 

the population-weighted inequality measure may have varied types of behaviour for different 

region pairs (i, k); besides, an increase in per capita income in the poorer region of a pair is not 

equal, as a rule, to decrease in the richer region. But the above results evidence that in any case 

these features of the population-weighted inequality measures will produce (unpredictable) 

distortions in the pattern of the evolution of inequality. 

Usually (albeit not always), dynamics of inequality obtained with the use of different 

unweighted inequality measures, say, the coefficient of variation, Gini and Theil indices, is 

qualitatively similar, having the same directions of change in inequality and their turning 

points. Since different population-weighted indices computed on the same data may have 

different types of behaviour, they can provide quite diverse patterns of the evolution of 

inequality in a country, depending on a particular index applied.        

Table 6 gives numerical examples of violating the transfer principle for cases (A) ni < nk 

and (B) ni > nk. It tabulates results for the baseline distribution y and its transformations y*() 

with  = 10 and  = 90 (max = 100).  

 

Table 6. Transfer-induced changes in the population-weighted inequality indices. 
 

(A) (B) Region 
index n y y*(10) y*(90) n y y*(10) y*(90) 

i 0.05 100 110 190 0.18 100 110 190 
k 0.15 300 290 210 0.02 300 290 210 
r 0.80 370 370 370 0.80 110 110 110 

)(wy   346.0 345.0 337.0  112.0 120.0 126.4 

CVw  0.178 0.177 0.196  0.242 0.222 0.260 
Gw  0.060 0.062 0.079  0.046 0.031 0.104 
Thw  0.021 0.020 0.022  0.020 0.017 0.030 
CV  0.446 0.424 0.314  0.541 0.499 0.254 
G  0.234 0.225 0.156  0.261 0.235 0.131 
Th  0.114 0.101 0.047  0.136 0.116 0.035 

 

  In case (A), the population-weighted coefficient of variation and Theil index have 

behaviour of type 2. Their values decrease with the small transfer  = 10 and increase with the 

greater transfer  = 90. The weighted Gini index behaves according to type 1, its value rising 

with both transfers. In case (B), all three weighted indices have behaviour of type 2, falling 
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with  = 10 and rising with  = 90. Figure 2 illustrates this case graphically for the whole 

domain of . 
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Figure 2. Population-weighted indices as functions of transfer. 

Note: the dashed lines correspond to initial levels (with  = 0) of the indices.  

 

An inequality index has a maximum in the case of perfect inequality, when the only 

region has a nonzero income. While the Gini coefficient has the upper bound of this 

maximum, some other inequality indices (the coefficient of variation and Theil index among 

them) have not. To judge how great inequality is from an estimate obtained, we should know 

how far it is from perfect inequality. Therefore it would be desirable to normalize inequality 

indices to their maxima (the Gini coefficient needs such normalization only in cases of a small 

number of regions, say, less than 20). In fact, Williamson’s (1965) results are not comparable 

across countries, as the number of regions varies in his sample from 6 to 75; thus, the perfect-

inequality values of the unweighted coefficient of variation differ between these extreme cases 

by the factor of more than 3.8. If the unweighted Theil index were applied, this ratio would 

equal 2.4. However, Theil (1967, p. 92) objects to normalization, giving an example of two 

situations. The first society consists of two individuals, only one of them having nonzero 

income; in the second society, all income belongs to the only of two million persons. The 

second society is evidently much more unequal. Nonetheless, considerations of cross-country 

comparability and uniform ‘benchmark’ of perfect inequality seem more important than 

Theil’s argument (the more so as the number of regions does not differ that dramatically 
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across countries). 

A consequence of violating the anonymity principle by the population-weighted 

inequality indices is a striking and unpleasant feature: they have no unambiguous maxima. 

Now the value taken on by an index in the case of perfect inequality depends on which 

particular region possesses all country’s income (or to which region the only person having 

nonzero income is placed). Denote such region by k. Table 7 summarizes differences between 

the maxima of inequality indices without and with the population weighting.  

 

Table 7. Maxima of unweighted and weighted inequality indices. 
 

Index Unweighted Population-
weighted 

Coefficient of variation 1m  1/1 kn  

Gini index (m – 1)/m 1 – nk 

Theil index log(m) log(1/nk) 

 

We could take the ‘maximum of maxima’, assigning k to the least populated region. (It 

is such maxima that have been used to compute standardized values of the population-

weighted indices in Table 3.) All the same, this ‘global maximum’ would depend on the cross-

region distribution of country’s population. Then the values of a weighted inequality index are 

not comparable even between countries with an equal number of regions. Moreover, such 

‘benchmark’ of perfect inequality may vary over time in the same country with varying nk (or 

even k, if some other region becomes the least populated one).  

 

4. Contras and Pros 

Williamson’s approach to measuring regional inequality did receive some criticism in the 

literature. Metwally & Jensen (1973) point out:   

Williamson’s coefficient […] fails to take into account either the dispersion of incomes 

nationally, or what is more important in a spatial context, the dispersion of incomes within 

regions. […] It is possible for this coefficient to decrease over time, suggesting a convergence in 

regional mean incomes, while dispersion in actual incomes could show an opposite trend. 

(Metwally & Jensen, 1973, p. 135) 

As it is seen, the authors mean measuring national (interpersonal) inequality; therefore their 

criticism is beside the point. But Williamson (1965) in no way intended to estimate inequality 
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among countries’ populations. There is not a grain of evidence of such purpose in his paper; 

quite the contrary, he highlights throughout the paper that he deals with regional inequality.  

Fisch (1984) raises a similar objection:  

Williamson’s coefficients of variations ignore a […] critical issue in relation to spatial inequality: 

the unequal regional distribution of population by income class. (Fisch, 1984, p. 91) 

Again, the case in point is inability of the population-weighted coefficient of variation to 

adequately approximate interpersonal income inequality in the whole country. 

In fact, objections due to Metwally & Jensen (1973) and Fisch (1984) are not those to the 

population weighting. The essence is in that they believe the national inequality rather than 

regional one to be more proper for Williamson’s (1965) research.   

Parr (1974) considers a different aspect; he notes:  

[T]he value of the [Williamson] index is likely to be influenced by the regionalization scheme 

employed, and there will be a tendency for the value of the index to be high when the 

regionalization involves a relatively large number of regions. (Parr, 1974, p. 84) 

This is so indeed concerning the unweighted coefficient of variation with its maximum rising 

as the square root of the number of regions, but it is not true for the population-weighted index 

in the general case (as it has been shown in the previous section). The further Parr’s note is 

connected with the weighted index though:  

[T]here is no way of knowing whether the official statistical regions on which the index is based 

reflect the extent of spatial income differentiation, given the particular number of regions 

involved. (Parr, 1974, p. 84) 

To manage with this problem, the author suggests a bootstrap procedure of placing a number 

of points, corresponding to the number of official regions, at random over the territory of the 

country, thus obtaining a standard of spatial income differentiation against which the original 

index could be compared. It is not entirely clear what is meant, but it seems that this procedure 

would yield something like an approximation of the maximum of 1/1 in .  

Thus, the above considerations do not concern the main sin of the population-weighted 

indices, their failure in providing unbiased estimates of regional inequality (as well as their 

unpleasant properties as inequality measures at all). It is not inconceivable that such criticism 

exists somewhere in the literature; however, I failed in finding it. 

Let us turn to arguments in favour of weighting inequality indices by population. 



 19

Portnov & Felsenstein (2010) explore the sensitivity of four unweighted and four population-

weighted inequality measures to changes in the ranking, size and number of regions into 

which a country is divided, explicitly treating regions as groups of people. One of their tests 

consists in comparison between two situations that differ in the cross-region population 

distribution and national per capita income, keeping the cross-region income distribution 

invariant. Surprisingly, the values of the unweighted indices change across the situations, 

although they should not, being independent of the population distribution. A closer look 

shows that this is due to the mistaken use of )(wy  instead of y  in calculation of these indices. 

In one more test, the population distribution randomly changes, the cross-region income 

distribution and national per capita income being kept constant. As one would expect, the 

weighted inequality indices react to these changes, while the unweighted ones remain 

constant. The authors believe the latter to be a shortcoming. They conclude: 

These [unweighted] indices may thus lead to spurious results when used for small countries, 

which are often characterized by rapid changes in population patterns. (Portnov & Felsenstein, 

2010, p. 217) 

They also conclude that the population-weighted indices – the Williamson coefficient of 

variation, Gini index and Coulter coefficient – may be considered as more or less reliable 

regional inequality measures (Portnov & Felsenstein, 2010, pp. 217–218). Both conclusions 

are fallacious. Explicitly treating regions as groups of people, the authors implicitly deal with 

the estimation of interpersonal inequality in the country, misinterpreting it as the estimation of 

regional inequality. Therefore, their results in no way can be deemed a proof of the use of 

weighting. 

Studies on international inequality also widely use the population-weighted indices. 

From all appearances, economists engaged in studies of international inequality ‘reinvented’ 

Williamson’s approach. In contrast to regional researchers, they are aware of the conceptual 

distinction between unweighted and population-weighted inequality indices, explicitly 

interpreting the latter as approximate measures of inequality among the world population, and 

not between nations. The surprising thing is that as if there were a barrier between the 

literature on regional inequality and that on international inequality. The former almost never 

references to the latter (Akita et al., 2011, can be mentioned as one of extremely rare 

examples). The conversance with the literature on international inequality would surely 

prevent regional researchers from misinterpreting the population-weighted indices as measures 
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of regional inequality. 

While the literature on regional inequality does not discuss the need for the population 

weighting in inequality indices, getting by short notes like those cited in Introduction, the 

literature on international inequality widely debates the question ‘To weight or not to 

weight?’. Both viewpoints are considered in detail by e.g. Firebaugh (2003) and Ravallion 

(2005). Under interpretation of the population-weighted estimates as proxies of inequality 

among the world population, the arguments in favour of weighting look reasonable; at least, 

they are seriously substantiated.  

However, the results of applying the population-weighted indices for estimation of 

global inequality are disappointing. As Milanovic (2005, p. 10) notices, population-weighted 

inequality ‘deals neither only with nations nor individuals but falls somewhere in between’. 

Moreover, it may be misleading (Milanovic, 2012, p. 8). The reason for the use of these rough 

and possibly misleading estimates is the lack of data on relevant within-country income 

distributions needed to estimate world inequality. Milanovic (2012) estimates income 

inequality in the world as a whole over 1952–2006, applying the Gini coefficient weighted by 

populations of the countries. He also reports estimates of global inequality for 1988–2005 

based on household survey data (i.e. taking into account income distributions within countries). 

These prove to be, first, much higher that the population-weighted estimates, and, second, 

sliding upward, while the trend of the population-weighted estimates over the respective time 

span is downward. Thus, estimates obtained with the use of the weighted Gini index turn out, 

indeed, quite misleading.   

The debate regarding the population weighting in the literature on international 

inequality focuses on the issue of what an adequate characterization of inequality in the world 

is, either inter-country inequality or interpersonal inequality among the world population. In 

my view, this debate is fairly pointless. It must be agreed with Firebaugh (2003), who notes 

that the answer depends on the goal: 

[T]he issue of unweighted versus weighted between-nation inequality reduces to this question: 

are we interested in between-nation income inequality because of what it tells us about the 

average difference between nations’ income ratios, or because of what it tells us about the 

average difference between individuals’ income ratios? (Firebaugh, 2003, p. 129) 

Assume that a regional research correctly interprets the population-weighted inequality 

indices as approximate estimates of national inequality rather than regional inequality. Is it 
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reasonable to apply them? It is the lack of relevant data that forces to use these indices in 

studies on international inequality. However, such roundabout way in relation to a single 

country does not make sense. Nowadays, many (if not most) national statistical agencies 

report data on personal-income distributions in their countries. Estimating national inequality 

even on so rough distribution as consisting of quintile income classes, we obtain much more 

exact results than those based on the cross-region income distribution.        

 

5. Conclusions 

Following Williamson (1965), many economists estimate regional inequality with the use of 

indices weighted by regions’ shares in the national population. A simple analysis in this paper 

shows that this approach is conceptually inconsistent. Instead of an estimate of regional 

inequality, we get an estimate of interpersonal inequality among the whole population of the 

country. Therefore the population-weighted estimates of inequality are biased with regard to 

estimates of both regional inequality (as they measure a different value) and interpersonal 

inequality (as they do not and cannot take account of within-region income disparities). In both 

cases, the result may be not only distorted, but also quite misleading. 

Moreover, the population-weighted inequality indices do not satisfy requirements for an 

adequate inequality measure. They violate two important axioms, the anonymity principle and 

principle of transfers. This may lead to estimates of inequality evolution that contradict common 

sense. One more consequence is the absence of unambiguous maxima of the population-weighted 

inequality indices. This makes it impossible to standardize estimates of inequality with the aim of 

cross-time or cross-country comparability.   

It is worth noting that even the interpretation of a population-weighted inequality index 

as an approximate measure of interpersonal inequality of the whole country’s population is not 

always true. It holds only regarding indicators which can be applied to an individual, e.g. 

personal income, wage, housing, education, etc. Otherwise, the meaning of the population-

weighted index is obscure. Estimating regional income inequality, many authors use regional 

GDP per capita to characterize incomes in regions. However, there is no inequality in the 

national GDP (as the total of regional GRPs) per capita between country’s citizens. There are 

many other indicators that characterize situation of a region, but cannot be applied to its 

certain inhabitant, e.g. unemployment rate, crime rate, investment per capita, etc. Zubarevich 

& Safronov (2011) estimate, in addition to income inequality, regional inequality in 

investment per capita, unemployment rate and poverty rate. Again, there is no, e.g., 
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unemployment inequality between country’s inhabitants; only the national average 

unemployment rate exists. In such cases, the population-weighted inequality indices have no 

intuitive interpretation at all; it is totally incomprehensible what they measure.  
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