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COALITIONAL EXTREME DESIRABILITY IN

FINITELY ADDITIVE ECONOMIES WITH

ASYMMETRIC INFORMATION

ANUJ BHOWMIK, FRANCESCA CENTRONE, AND ANNA MARTELLOTTI

Abstract. We prove a coalitional core-Walras equivalence theorem for an

asymmetric information exchange economy with a finitely additive measure
space of agents, finitely many states of nature, and an infinite dimensional

commodity space having the Radon-Nikodym property and whose positive
cone has possibly empty interior. The result is based on a new cone condition,
firstly developed in Centrone and Martellotti (2015), called coalitional extreme

desirability. As a consequence, we also derive a new individualistic core-Walras
equivalence result.

1. Introduction

Since the seminal paper of Radner (1968) a huge literature has grown in the
area of Equilibrium Theory under Asymmetric Information, which allows for the
possibility of having differently informed agents. From the mathematical point of
view, the classical Arrow-Debreu exchange economy representation is thus enriched
to take into account the informational aspects; namely, if Ω is a set of states of
the world, each agent is endowed with a probability measure on Ω representing
the agent’s prior beliefs, an ex-ante utility function which depends on the possible
states of the world, an initial endowment which specifies the agent’s resources in
each state, and a partition of Ω which represents the agent’s initial information.
The notion of Walras equilibrium, called Walras expectation equilibrium, is adapted
to include the aforesaid informational aspects. The second notion of our paper, the
core, allows for the possibility of cooperation among agents and is usually associated
with Edgeworth. It is well recognized that the asymmetric context gives rise to
different possibilities of sharing information among members of coalitions and thus,
accordingly, different notions of core have been developed ([29, 30]).

In individual models, both the cases of a finite and an infinite dimensional com-
modity space have been treated, with various degrees of generality; most of these
models assume anyway a countably additive measure space of agents, and a fi-
nite dimensional commodity space or a commodity space whose positive cone has
nonempty interior, in order to apply classical separation theorems to support opti-
mal allocations with nonnegative prices, refer to [4, 17, 20]. Only recently, Bhowmik

JEL classification: D41; D51; D82.

Keywords. and Phrases: Asymmetric information; Coalitional economies; Core-Walras equiva-
lence; Extremely desirable commodity; Finitely additive measure; Walrasian expectation equilib-
ria; Private core; Radon-Nikodym property.

1



2 A. BHOWMIK, F. CENTRONE, AND A. MARTELLOTTI

([12]) has adapted Rustichini and Yannelis’s ([27]) additivity condition and ex-
tremely desirable commodity assumption (which is very well known in the litera-
ture, together with Mas Colell’s properness ([24]) and Chichilnisky and Kalman’s
cone condition ([14]), and is a widely used condition which allows a separation argu-
ment; see also [1] for a complete survey) to the asymmetric information framework,
in a way to obtain a countably additive individualistic core-Walras equivalence the-
orem with an infinite dimensional commodity space, without assumptions on the
positive cone.

Anyway, at this point, we must note that, also for the asymmetric information
framework, Vind’s ([28]) motivations to the use of coalitional models instead of
individualistic ones, and Armstrong and Richter’s ([5]) ones to the extension to
a finitely additive context, are very applicable (for a complete overview, refer to
[7, 13]). Given these frameworks, Forges et al. ([19]) criticised on the intrinsical
coalitional nature of various core notions under asymmetry of information system,
which then lead Basile et al. [7] to develop a notion of the core for coalitional
economies, based on Yannelis’s ([30]) private information sharing rule. As pointed
out by these authors themselves, the just mentioned criticism can be overcome when
private information of the coalitions is defined regardless of individuals contribution.

Despite these facts, to our knowledge, up to now there are no results in the
framework of coalitional models with asymmetric information, to cover both the
cases of a finitely additive space of agents and an infinite dimensional commodity
space whose positive cone has possibly empty interior. Indeed, Basile et al. [7] work
with a finitely additive Boolean algebra of agents, but with an Euclidean space of
commodities. The aim of this work is to try to fill this gap, by introducing in
the asymmetric context with a Banach lattice as the commodity space, the notion
of coalitional extremely desirable commodity, which is the extension of that in [13]
given for complete information. We obtain a coalitional asymmetric core-Walras
equivalence result in a framework whose commodity space is X+, the positive cone
of a Banach lattice X having the Radon-Nikodym property (see [16]) and feasibil-
ity is defined as free disposal; note that this allows for a great variety of infinite
dimensional commodity spaces interesting in economics and finance, for example,
all the Lp spaces for p > 1. Since we are in asymmetric information framework,
this result cannot be considered as a core-Walras equivalence theorem in a finitely
additive asymmetric information economy with exact feasibility condition. In fact,
the result in the exact feasibility case becomes more difficult to be obtained and it
requires a new properness-like assumption. Consequently, this result and the cor-
responding individualistic result are the first infinite dimensional extensions to an
asymmetric information framework with exact feasibility. We also point out that
our results are not mere adaptations of the original definitions and results in [13],
as the introduction of asymmetry and informational constraints makes it necessary
to adopt new assumptions and techniques.

The rest of the paper is organized as follows: Section 2 deals with the description
of our model, some assumptions and the necessary concepts. In Section 3, we in-
troduce the notion of coalitional extremely desirable commodity in the asymmetric
information framework and prove some technical lemmas that play central roles in
the proofs of our main results. In Section 4, we present two alternative core-Walras
equivalence theorems in coalitional models under the free disposal feasibility condi-
tion. Section 5 is devoted to some asymmetric individualistic results, deriving from
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our coalitional ones in the spirit of comprehensiveness of Armstrong and Richter
([5]). Lastly, we summarize and compare our results in Section 6. Along with this,
all of our results in the case of exact feasibility are also studied in this section.

2. Description of the coalitional model

A coalitional model of pure exchange economy EC with asymmetric information
is presented. The exogenous uncertainty is described by a measurable space (Ω,F ),
where Ω = {ω1, · · · , ωn} is the set of states of nature containing n elements and F

denotes the power set of Ω. The economy extends over two time periods τ = 0, 1.
Consumption takes place at τ = 1. At τ = 0, there is uncertainty over the states
and agents make contracts that are contingent on the realized state at τ = 1. Let
X be a Banach lattice having the Radon-Nikodym property (RNP) and a quasi-
interior point. The partial order on X is denoted by ≪ and the positive cone of
X, given by X+ = {x ∈ X : 0≪x}, represents the commodity space of EC . The
symbol 0 ≪ x (resp. 0 < x) means that x is a quasi-interior (resp. non-zero) point
of X+. Put X++ = {x ∈ X+ : 0 ≪ x}.

Let the space of agents be a space (I,Σ,P), where I is the set of agents with Σ
an the algebra on I and P a strongly non-atomic finitely additive (f.a.) probability
measure on Σ, that is, for every A ∈ Σ and ε ∈ (0, 1) there is some B ∈ Σ such that
B ⊆ A and P(B) = εP(A). Each element in Σ with positive probability is termed
as a coalition, whose economic weight on the market is given by P. If E and F are
two coalitions, and E ⊆ F then E is called a sub-coalition of F .

Analogously to Radner [26], we assume that assignment of resources are state-
contingent. By an assignment, we mean a function α : Σ×Ω → X+ such that α(·, ω)
is a f.a. measure on Σ, for each ω ∈ Ω. Moreover, each assignment α can be associ-
ated with the function ᾱ : Σ → (X+)

n by letting ᾱ(E) = (α(E,ω1), · · · , α(E,ωn)),
where (X+)

n is the positive cone of the Banach lattice Xn, which is endowed with
the point-wise algebraic operations, the point-wise order and the product norm.
We denote by ≪n the point-wise order on Xn. The only admissible assignments
in our model are connected with some absolute continuity property. Recall that,
given a Banach lattice Y and two vector measures µ : Σ → Xk and ν : Σ → Y , µ is
called absolutely continuous with respect to ν if for every ε > 0 there is some δ > 0
such that each F ∈ Σ with ‖ν(F )‖Y < δ implies ‖µ(F )‖Xk < ε. Let

M = {α : Σ× Ω → X+ : α is an assignment and ᾱ≪ P}.

Thus, an allocation is defined to be an element of M . The initial endowment
allocation, denoted by e : Σ × Ω → X+, is an element of M such that e(F, ω) is
the initial endowment of the coalition F if the state of nature ω occurs. Similarly
to Basile et al. [7], a preference relation ≻F is defined on M for any coalition F .
Intuitively, α ≻F β expresses the idea that the members of the coalition F prefer
what they get from α to what they get from β. Each coalition F is also associated
with some private information, which is described by a F -measurable partition PF

of Ω. The interpretation is that, if ω is the true state of nature, then coalition F
can not discriminate the states in the unique element PF (ω) of PF containing ω.
Let FF be the σ-algebra generated by PF . The triple (FF ,≻F , e(F, ·)) is called
the characteristics of the coalition F . Thus, the economy can be described by

EC = {(I,Σ,P);X+; (Ω,F ); (FF ,≻F , e(F, ·))F∈Σ} .
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To relate the weight of coalitions to the commodities that they can trade on the
market, we assume that e is equivalent to P, that is, e and P are absolutely contin-
uous with respect to each other. We now impose some restriction on the class of
preferences. To this end, given an allocation α ∈ M and a coalition F , define a vec-
tor measure ᾱ|F : Σ → (X+)

n by letting ᾱ|F (E) = ᾱ(E∩F ) for all E ∈ Σ. A simple

allocation is any allocation s such that, for every ω ∈ Ω, s(·, ω) =

q
∑

i=1

yiP|Hi
(·, ω),

where {Hi}i is a decomposition of I. The following assumptions on preferences will
be assumed implicitly throughout the rest of the paper:

[P.1] ≻F is irreflexive and transitive, for every F ∈ Σ;

[P.2] For any coalition F and α1, α2 ∈ M with α1 ≻F α2, we must have α1 ≻G α2

for all sub-coalitions G of F ;

[P.3] If α1 ≻F α2 and α1 ≻G α2 for two coalitions F and G, then α1 ≻F∪G α2;

[P.4] For any α ∈ M and any element x ∈ (X+)
n \{0}, we have α+xP ≻I α, where

the allocation xP : Σ× Ω → X+ is defined by xP(F, ω) = x(ω)P(F );

[P.5] If α1, α2, α3 ∈ M and F is a coalition satisfying ᾱ1|F
= ᾱ2|F

, then the
following double implications hold:

[α1 ≻F α3 ⇐⇒ α2 ≻F α3] and [α3 ≻F α1 ⇐⇒ α3 ≻F α2].

Remark 2.1. Note that the transitivity assumption is very standard in coalitional
models, refer to [15, 21]. Assumption [P.2] claims that as almost all member of
F prefer what they get from α than what they get from β (refer to [15] for a
deterministic economy), they do the same under G. Assumption [P.3] is similar to
Assumption (VI) in [15]. The monotonicity assumption is discussed in [P.4], which
is analogous to the assumption (WM) in [13]. It is worth pointing out that our
monotonicity assumption is weaker than the one in [5] for a deterministic economy.
Lastly, Assumption [P.5] is termed as selfish property in the literature, and can be
found in [5, 6, 7].

Let P denote the family of partitions of Ω such that for each Q ∈ P there is some
non-empty set F ⊆ I satisfying PF = Q. Put, IQ =

⋃

{F : F ⊆ I and PF = Q}
for all Q ∈ P. Thus, I is decomposed in the sets IQ, Q ∈ P, and for every Q ∈ P

and F ⊆ IQ, we have PF = Q.

[A.1] IQ ∈ Σ for all Q ∈ P.

The following assumption is referred to as nested condition in the literature for
information sharing rules in individualistic economies, refer to [2, 11, 22]. It also
appeared in a coalitional model of Basile et al. [7], representing the intuitive idea
that the state of information can never decrease if coalitions share their private
information.

[A.2] For each coalition F and for each sub-coalition E of F , FE ⊆ FF .

Remark 2.2. To support [A.2], we assume that the information FF of a coalition F
is given by a rule that depends on the private information of each of its members.
It is well known that the information of an agent can be different for different
coalitions and it is captured by an information sharing rule, refer to [2, 11, 22].
Thus, the information of an agent t in F may be different from their initial private
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information. We can now define FF to be the σ-algebra generated by common
refinement of information partitions of members of F given by any information
sharing rule. If the information sharing rule is nested (see, for example, Definition
5.3 in [2] or the assumption (P2) in [11]) then [A.2] is trivially satisfied. For various
information sharing rules satisfying the nested property, we refer to Table 1 in [11,
p. 481].

Similarly to Basile et al. [7], we now restrict the set of consumption bundles
that are informationally attainable for any coalition F , that is, the coalition F can
not consume different amounts on events that it can not distinguish. Thus, the
consumption set of a coalition F is the set of such restricted consumption bundles,
which can be formally defined as

XF =
{

x ∈ Xn
+ : x is FF -measurable

}

.

An allocation α is said to be privately feasible for a coalition F whenever α(E, ·) ∈
XE for each coalition E ⊆ F . It means that any privately feasible allocation for
a coalition F requires not only that the coalition F is able to distinguish what it
consumes but also requires all sub-coalitions of it do the same thing. We denote
the set of privately feasible allocations for a coalition F by MF . In the case when
F = I, then we simply say MI as the set of privately feasible allocations. We
assume that e is privately feasible. An allocation α is termed as physically feasible

for a coalition F if α(F, ω)≪e(F, ω) for all ω ∈ Ω. In particular, physically feasible
allocations for I are simply referred to as physically feasible allocations. Finally,
we say that an allocation is feasible for a coalition F if it is privately as well as
physically feasible for F, and the set of such allocations is denoted by YF . Without
any confusion, feasibility for I will be termed as feasibility.

Definition 2.3. An allocation α is privately blocked by a coalition F if there is an
allocation β ∈ YF such that β ≻F α. The private core of EC , denoted by PC (EC),
is the set of feasible allocations which are not privately blocked by any coalition.

A price system is a non-zero function π : Ω → X∗
+, where X

∗
+ is the positive

cone of the norm-dual X∗ of X. The budget set of a coalition F with respect to a
price system π is defined by

B(F, π) =

{

α ∈ MF :

n
∑

i=1

π(ωi)α(F, ωi) ≤
n
∑

i=1

π(ωi)e(F, ωi)

}

.

Analogously to the private core, the definition of Walras equilibrium also takes into
account the information structure.

Definition 2.4. A Walrasian expectations equilibrium of EC is a pair (α, π) where
α is a feasible allocation and π is a price system such that

(i) α ∈ B(F, π) for each coalition F ∈ Σ;

(ii)

n
∑

i=1

π(ωi)α(I, ωi) =

n
∑

i=1

π(ωi)e(I, ωi).

(iii) for every coalition F and β ∈ MF , β ≻F α =⇒ β 6∈ B(F, π);

In this case, α is termed as Walrasian expectations allocation and the set of such
allocations is denoted by W (EC).
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3. Some technical results

In this section, we establish some technical lemmas for the later use.

Lemma 3.1. Under assumptions [A.1]-[A.2], if α ∈ MF for some coalition F , then
for each ε > 0 there exists a simple allocation s ∈ MF such that ‖ᾱ− s̄‖ < ε.

Proof. Choose the element A1 ∈ PF such that ω1 ∈ A1. Suppose that i2 is the
smallest element in {1, · · · , n} such that ωi2 /∈ A1. Let A2 be the element in
PF containing ωi2 . Assume that i3 is the smallest element in {1, · · · , n} such that
ωi3 /∈ A1∪A2. Applying this argument for finitely many times, we obtain a set Ω0 :=
{ωi1 , · · · , ωim}, where 1 = i1 < i2 < · · · < im, such that PF = {A1, · · · , Am}.
Consequently, we have a bijective mapping ϕ : Ω0 → PF defined by ϕ(ωij ) = Aj ,
for all 1 ≤ j ≤ m. Consider an information partition Q = {B1, · · · , Bl} such
that PF is a refinement of Q. Thus, for each Bj ∈ Q there is some Ak ∈ PF

such that Ak ⊆ Bj and thus, ωik ∈ Ω0 ∩ Bj . Furthermore, l ≤ m and it is
possible that two different elements of Ω0 belong to the same element of Q. Define
a partition Q̄ = {B̄1, · · · , B̄l} of Ω0 by letting B̄i = Bi ∩ Ω0, for all 1 ≤ i ≤ l.
Conversely, for every partition R̄ = {C̄1, · · · , C̄s} of Ω0, we can associate a partition
R = {C1, · · · , Cs} of Ω by letting

Ck =
⋃

{Aj : ωij ∈ C̄k}.

Let {Q1, · · · ,Qr} ⊆ P be the set of all information partitions such that P(F ∩ IQk
) > 0

for all 1 ≤ k ≤ r. Analogous to above, we can again obtain a subset Ωk :=
{ω1k , · · · , ωlk} ⊆ Ω0 with 1 = 1k < 2k < · · · < lk and a bijective mapping
ψk : Ωk → Q̄k, for all 1 ≤ k ≤ r. According to the approximate Radon-Nikodym
Theorem [16], we can choose a set {s1, · · · , sn} of n simple functions such that

|α(·, ωi)− si| <
ε

2nr
,

for all 1 ≤ i ≤ n. Define s1k : Σ× Ωk → X+ and s2k : Σ× Ω → X+ by letting

s1k(E,ω) = sik(ωik) if ω ∈ ψk(ωik)

and

s2k(E,ω) = s1k(E,ω
′) if ω ∈ ϕ(ω′).

Consider an allocation s : Σ× Ω → X+ defined by

s(E,ωi) =

r
∑

k=1

s2k(E ∩ F ∩ IQi
, ωi) + si(E ∩ (I \ F )).

Using ‖ᾱ− s̄‖ =
∑n

i=1 ‖α(·, ωi)− s(·, ωi)‖, we obtain

‖ᾱ− s̄‖ ≤
n
∑

i=1

r
∑

k=1

|α(·, ωi)|F∩IQi
− s(·, ωi)|F∩IQi

|+ n
ε

2nr

≤
n
∑

i=1

r
ε

2nr
+

ε

2r

< ε,

which completes the proof. �



COALITIONAL EXTREME DESIRABILITY IN FINITELY ADDITIVE ECONOMIES · · · 7

For a fixed allocation α ∈ MF and a coalition F , let

K =
⋃

F∈Σ, P(F )>0

{γ̄(F )− ē(F ) : γ ∈ MF , γ ≻F α} .

Our next technical results and main theorems require some continuity-like assump-
tions. Here, we employ assumptions similar to those in [13]. Given these assump-
tions, our proof for the next lemma exactly follows analogous arguments of the final
step of Lemma 3.3 in [13], taking into account Lemma 3.1. Thus, we plan to skip
the formal proof for this result.

[A.3] For every choice of a coalition F , a number τ > 0 and allocations α, β ∈ MF

with β ≻F α, there exists a coalition F0 ⊆ F with P(F \ F0) < τ , and a number
ρ(τ) > 0 such that s ≻F0

α for every simple allocation s ∈ MF satisfying ‖s̄− β̄‖ <
ρ(τ).

[A*.3] Let F be a coalition and α, β ∈ MF be such that β ≻F α. For every τ > 0,

(i) we can find some ρ(τ) > 0 such that for every simple allocation s ∈ MF with
‖s̄− β̄‖ < ρ there exists a coalition F0 = F0(s, τ) ⊆ F with P(F \ F0) < τ
and s ≻F0

α;
(ii) there exist an ε ∈ (0, 1) and a coalition F0 = F0(τ) ⊂ F such that P(F \

Fo) < τ and εβ ≻F0
α.

Lemma 3.2. Suppose that EC satisfies [A.1] and [A.3]. Then the set K is convex,

where K denotes the norm-closure of K in Xn.

It is well-known that an affirmative answer to the classical core-Walras equiva
lence result in a framework of a Banach lattice as the commodity space can not
be obtained without any “properness-like”assumption (refer to [27]). In our model,
we suitably extend the extremely desirable commodity assumption of [13]. To this
aim, consider the auxiliary economy (compare with [20])

E
n = {(I,Σ,P); (X+)

n, (≻n
F , ē(F ))F∈Σ}

where, for each coalition F , the preference relation ≻n
F is defined as ᾱ ≻n

F β̄ ⇐⇒
α ≻F β for α, β ∈ M . Thus, we are ready to give an extended version of extremely
desirable commodity assumption.

[A.4] There exist some u ∈ (X+)
n and an open, convex, solid neighborhood U of 0

in Xn such that the following two conditions are satisfied: (i) U c∩(X+)
n is convex,

where U c is the complement of U in Xn; and (ii) If y ∈ Xn
+ and z ∈ (y + Cu)∩X

n
+,

then zP ≻n
I yP, where

Cu =
⋃

{t(u+ U) : t > 0}.

In other words, we are requiring that u is an extremely desirable commodity for
the coalitional preferences in the economy E n, in the sense of [13]. In the rest
of the paper, we shall refer to (u, U) as a properness pair. To prove our next
result, given (u, U) is a properness pair, we now find other possible properness
pairs (w,W ). Observe first that, if û≫nu then (û, U) is a properness pair as well.

Indeed, let y ∈ Xn
+ and z ∈ (y + Cû) ∩ Xn

+. Pick an ε > 0. It follows that
B(z, ε) ∩ (y + t(û+ U)) 6= ∅ for some t > 0, where B(z, ε) denotes the open ball in
Xn centered at z with radius ε. Thus,

B(z, ε) ∩ (y + t(û− u) + t(u+ U)) 6= ∅.
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Consequently, z ∈ (y + t(û− u) + Cu) ∩X
n
+. So, zP ≻n

I (y + t(û − u))P. By [P.1]
and [P.4], we conclude zP ≻n

I yP. As a result, we can replace the original extremely
desirable commodity u = (u1, · · · , un) with w = (wo, · · · , wo), where

wo =
(

∨

{ui : 1 ≤ i ≤ n}
)

∨
(

∨

{|P|e(IQ, ωi) : Q ∈ P, 1 ≤ i ≤ n}
)

,

so that the allocation wP ∈ MI . Henceforth, the vector w will be used instead of
u in the extreme desirability assumption. Define

K =
⋃

{

t

(

w +
1

n
U

)

: t > 0

}

.

As
1

n
U ⊆ U , we must have K ⊆ Cw. Let y ∈ Xn

+ and z ∈ (y +K)∩Xn
+. It follows

that z ∈ (y + Cw) ∩X
n
+. Consequently, zP ≻n

I yP.

Lemma 3.3. Assume that [A.1]-[A.4] hold. If α is a private core allocation, then

K ∩ (−K) = ∅.

Proof. Since −K is open, it is enough to prove that K ∩ (−K) is empty. Assume
K ∩ (−K) 6= ∅ and that

ζ = γ̄(F )− ē(F ) ∈ −K

for some coalition F . Pick an ε > 0 such that ζ + B(0, ε) ⊂ −K, where B(0, ε) is
the open ball in Xn centered at the origin and radius ε. By the absolute continuity
of γ and e with respect to P, there exists some δ > 0 such that for all E ∈ Σ,

‖γ(E)‖, ‖e(E)‖ <
ε

7
whenever P(E) < δ. In the light of [A.3], we can find some

coalition F0 ⊆ F and a number ρ > 0 such that P(F \F0) < δ, and s ≻F0
α for every

simple allocation s ∈ MF satisfying ‖s̄ − γ̄‖ < ρ. By Lemma 3.1, there exists a
simple allocation s̄0 =

∑m

i=1 yiP|Fi
whose values lie in Xn, where {Fi : 1 ≤ i ≤ m}

is a decomposition of F0, such that

(i) s̄0 ∈ MF0
;

(ii) ‖γ̄ − s̄0‖ < min
{ε

7
, ρ
}

;

(iii) for each 1 ≤ i ≤ m, there is some Q ∈ P such that Fi ⊆ IQ.

Hence, s̄0 ≻n
F0
ᾱ. Put ζ0 = s̄0(F0)− ē(F0), then

‖ζ0 − ζ‖ < ‖s̄0(F0)− γ̄(F0)‖+ ‖γ̄(F \ F0)‖+ ‖ē(F \ F0)‖

<
3ε

7
.

We assume that P(Fi) = ξ for all 1 ≤ i ≤ m1. Since ζ0 ∈ −K, there exists some
t > 0 such that

s̄0(F0)− ē(F0) ∈ −t

(

w +
1

n
U

)

,

1Otherwise, it follows from Lemma 3.1 in [13] that there are a subset E0 ⊆ F0 with
P(F0 \ E0) < δ and a decomposition {E1, · · · , Ek} of E0 with P(Ei) = ξ for all 1 ≤ i ≤ k. If

ζ′ = s̄0(E0)− ē(E0), then

‖ζ − ζ′‖ < ‖ζ − ζ0‖+ ‖ζ0 − ζ′‖

<
3ε

7
+ ‖s̄0(F0)− γ̄(F0)‖+ ‖γ̄(F0 \ E0)‖+ ‖s̄0(E0)− γ̄(E0)‖+ ‖ē(F0 \ E0)‖

< ε.

As a result, ζ′ = s̄0(E0)− ē(E0) ∈ −K with s̄0 ≻n

E0
ᾱ.
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whence s̄0(F0) − ē(F0) = −t(w + v0) for some v0 ∈
1

n
U . By setting z =

t

ξ
w and

v = −
t

ξ
vo ∈

t

ξn
U , we have

m
∑

i=1

yi + z − v =
ē(F0)

ξ
∈ Xn

+.

Since
∑m

i=1 yi+z≫
n0 and

t

ξn
U is solid, we have v+ ∈

t

ξn
U and

∑m

i=1 yi+z≫
nv+.

For any m-tuple σ = (σ1, · · · , σm) of positive real numbers with
∑m

i=1 σi = 1, we
have

v+≪n

m
∑

i=1

(yi + σiz).

By the Riesz decomposition property, we obtain a finite set {vσ1 , · · · , v
σ
m} ⊆ Xn

+

such that

v+ =

m
∑

i=1

vσi and vσi ≪
nyi + σiz

for all 1 ≤ i ≤ m. Define ΛQ = {i : Fi ⊆ IQ} for all Q ∈ P. Thus, yi + σiz is
Q-measurable if i ∈ ΛQ. For i ∈ ΛQ, define the function dσi : Ω → X+ by letting

dσi (ω) = max{vi(ω
′) : ω′ ∈ Q(ω)},

for all ω ∈ Ω. So, dσi is Q-measurable and dσi ≪yi + σiz for all i ∈ ΛQ.
Given any 1 ≤ i ≤ m, put

δσi = dist
(

yi + σiz − dσi , (yi + Cw) ∩X
n
+

)

,

and consider the continuous function f : ∆m → ∆m defined by

f(σ) =

(

σ1 + δσ1
1 +

∑m

j=1 δ
σ
j

, · · · ,
σm + δσm

1 +
∑m

j=1 δ
σ
j

)

,

where ∆m denotes the (m − 1)-dimensional simplex. By Brouwer’s fixed point
theorem, one obtains a σ∗ = (σ∗

1 , · · · , σ
∗
m) ∈ ∆m satisfying δσ

∗

i = σ∗
i

∑m

j=1 δ
σ∗

j for
all 1 ≤ i ≤ m. The rest of the proof is decomposed into two sub-cases.

Sub-case 1. δσ
∗

i = 0 for all 1 ≤ i ≤ m. In this sub-case,

yi + σ∗
i z − dσ

∗

i ∈ (yi + Cw) ∩Xn
+ ⊆ (yi + Cw) ∩X

n
+

for all 1 ≤ i ≤ m. By (ii) of [A.4], we obtain (yi + σ∗
i z − dσ

∗

i )P ≻n
I yiP for all

1 ≤ i ≤ m. Thus, it follows from [P.2] that (yi + σ∗
i z − dσ

∗

i )P ≻n
Fi

yiP for all
1 ≤ i ≤ m. Consequently, applying [P.3], we have

m
∑

i=1

(yi + σ∗
i z − dσ

∗

i )P|Fi
≻n

F0

m
∑

i=1

yiP|Fi
= s̄0 ≻n

F0
ᾱ.

In other words, setting s̄1 =
∑m

i=1(yi + σ∗
i z − dσ

∗

i )P|Fi
+ ᾱ|I\F0

, then s̄1 ≻n
F0
ᾱ and

s̄1(F0)≪
nξ

(

m
∑

i=1

yi + z − v+

)

≪nξ

(

m
∑

i=1

yi + z − v

)

= ē(F0).

Hence, α /∈ PC (EC), which is a contradiction.
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Sub-case 2.
∑m

j=1 δ
σ∗

j > 0. In this sub-case, δσ
∗

i = 0 if and only if σ∗
i = 0. Define

J = {i : δσ
∗

i = 0}. Pick an i ∈ J , then

yi − dσ
∗

i ∈ (yi + Cw) ∩X
n
+.

From (ii) of [A.4], we conclude

(yi − dσ
∗

i )P ≻n
I yiP.

If dσ
∗

i >n 0, then (yi − dσ
∗

i )P ≻n
I yiP yields a contradiction. Thus, dσ

∗

i = 0 for all
i ∈ J . Pick an i /∈ J , then

yi + σ∗
i z − dσ

∗

i /∈ (yi + Cw) ∩X
n
+.

Consequently,

yi +
σ∗
i t

ξ
w − dσ

∗

i /∈ yi + Cw,

which further implies that dσ
∗

i /∈
σ∗
i t

ξ
U and so, by (i) of [A.4],

∑m

i=1 d
σ∗

i /∈
t

ξ
U .

Note that dσ
∗

i ≪n
∑

ω∈Ω v
σ∗

i (ω)1Ω, where 1Ω = (1, · · · , 1), and so, by (i) of [A.4],

m
∑

i=1

dσ
∗

i ≪n
∑

ω∈Ω

v+(ω)1Ω.

Since
∑

ω∈Ω v
+(ω)1Ω ∈

t

ξ
U and

t

ξ
U is solid, we must have

∑m

i=1 d
σ∗

i ∈
t

ξ
U , which

is a contradiction. �

Remark 3.4. It can be easily checked that assumption [A.3] can be replaced with
(i) of [A*.3] in Lemma 3.2 and Lemma 3.3.

4. Coalitional core-Walras equivalence

In this section, we provide core-Walras equivalence theorems for the model de-
scribed in Section 2. To obtain the first main result, we use the following assumption
on the initial endowment.

[A.5] e(IQ, ω) ≫ 0 for all Q ∈ P and ω ∈ Ω.

We are now ready to state our first core-Walras equivalence Theorem.

Theorem 4.1. Suppose that EC satisfies [A.1]-[A.5], and let α be a private core

allocation. Then there exists an equilibrium price for α.

Proof. Applying Lemma 3.2 and Lemma 3.3 together with the separation theorem,
we can find an n-tuple p = (p1, · · · , pn) ∈ (X∗

+)
n that separates K and −K. As

usual, this would yield that px ≥ 0 for every x ∈ K . Define π : Ω → X∗
+ by letting

π(ωi) = pi for all 1 ≤ i ≤ n. To show that (α, π) is a competitive equilibrium of
EC , we need to verify conditions (i)-(iii) of Definition 2.4. By invoking arguments
similar to those of [7], items (i) and (ii) of Definition 2.4 can be proved. Thus,
we now turn to prove assertion (iii). Observe first that (i) and (ii) together imply
pᾱ = pē on Σ. Suppose (iii) is not true and that there are a coalition E and an
allocation β ∈ ME such that β ≻E α and p[β̄(E)] = p[ē(E)]. The rest of the proof
is decomposed in the following two cases:

Case 1. p[β̄(E)] > 0. Then there exists some τ > 0 such that for each sub-
coalition F of E with P(E \F ) < τ , we have p[β̄(F )] > 0. It follows from [P.2] that
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β ≻F α. Moreover, [A.3] suggests that there exist some coalition F0 ⊆ E and a
number ρ > 0 such that P(F \ F0) < τ , and s0 ≻F0

α for every simple allocation

s0 ∈ ME satisfying ‖s̄0 − β̄‖ <
ρ

3
. Let s be a simple allocation such that

s̄ =

ℓ
∑

i=1

xiP|Fi
and ‖s̄− β̄‖ <

ρ

3
,

where {Fi : 1 ≤ i ≤ ℓ} is a decomposition of F0 such that for every 1 ≤ i ≤ ℓ
there is some Q ∈ P with Fi ⊆ IQ. As P(F0) > 0, at least one of the Fi’s has
strictly positive pβ̄-measure. For the sake of simplicity, let it be F1. Without loss
of generality, we assume that 0 < P(F1) < 12. As the range of the two-dimensional
f.a. measure (P, pβ̄) has convex closure, or else its closure is a zonoid in R

2
+, we

can choose a sub-coalition G1 of F1 (for a complete explanation see the Appendix
in [13]) such that

P(G1)‖x1‖ ≤
ρ

3
and

p[β̄(G1)]

P(G1)
≥
p[β̄(F1)]

P(F1)
.

Recall that F1 ⊆ IQ0
for some Q0 ∈ P, and define

s̄∗ = β̄(F1)1G1
+
ds̄

dP
1I\G1

and σ̄ =

∫

s̄∗dP.

Since PG = Q0 for any sub-coalition G of F1, we must have σ ∈ MF1
. Using

‖s− σ̄‖ = ‖β̄(F1)− x1‖P(G1) and P(G1) < 1, we derive

‖s̄− σ̄‖ < ‖β̄(F1)− x1P(F1)‖+ ‖x1‖ (1− P(F1))P(G1)

<
ρ

3
+ ‖x1‖(1− P(F1))P(G1) <

2

3
ρ.

This implies that ‖σ̄ − β̄‖ < ρ and hence, σ ≻F0
α. Consider an allocation γ

defined by γ̄ = σ̄|G1
+ β̄|I\G1

. It follows that γ ∈ ME . Since γ ≻E α, we obtain
γ̄(E)− ē(E) ∈ K . Consequently, p[ē(E)] ≤ p[γ̄(E)]. Hence,

p[ē(E)] ≤ p[σ̄(G1)] + p[β̄(E \G1)]

= p[β̄(F1)]P(G1) + p[β̄(E)]− p[β̄(G1)]

= p[β̄(E)] + p[β̄(F1)P(G1)− β̄(G1)].

Furtherly, P(F1) < 1 yields

p[β̄(G1)]

P(G1)
≥
p[β̄(F1)]

P(F1)
> p[β̄(F1)],

and thus,

p[ē(E)] < p[β̄(E)] = p[ē(E)],

which is impossible.

Case 2. p[β̄(E)] = 0. In this case, p[ē(E)] = 0. As P(E) > 0, we must have
P(E ∩ IQ0

) > 0 for some Q0 ∈ P. Let F = E ∩ IQ0
and define γ = α + ē(F )P.

Since e and P are equivalent, ē(F ) ∈ (X+)
n \ {0}. It then follows from [P.4] that

2Otherwise, by the nonatomicity of P, we can split F1 into F 1

1
and F 2

1
with

P(F 1

1 ) = P(F 2

1 ) =
1

2
P(F1),

and substitute x11F1
with x11F1

1

+ x11F2

1

.
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γ ≻I α, and γ ∈ MF . Furthermore, 0 ≤ p[ē(F )] ≤ p[ē(E)] = 0. Hence, p[ē(F )] = 0.
Finally,

p[γ̄(IQ0
)] = p[ᾱ(IQ0

)] + P(IQ0
) · 0 = p[ē(IQ0

)] > 0,

since we have already noticed that pᾱ and pē coincide on Σ. Hence, by Case 1, we
can again reach a contradiction. The proof is thus completed. �

We now formulate some alternative versions of Theorem 4.1 assuming different
form of availability assumption and [A*.3]. In fact, we introduce irreducibility of
the economy along with a very mild form of availability, to replace the strong
availability condition, refer to [4, 7, 17].

[A*.5] The following two conditions are satisfied for the initial endowment alloca-
tion:

(i) e(I, ω) ≫ 0 for all ω ∈ Ω;
(ii) For every privately feasible allocation α and every partition {F1, F2} of

I, where F1 and F2 are coalitions, there exists some β ∈ MF2
such that

β ≻F2
α and

e(F1, ω) + α(F2, ω)≫β(F2, ω)

for all ω ∈ Ω.

The second condition is known as irreducibility assumption of [7]. Moreover, avail-
ability assumption in (i) of [A*.5] is weaker than that in [A.5], which is again weaker
than the strong availability assumption, that is, e(F, ω) ≫ 0 for all F ∈ Σ+ and
ω ∈ Ω.

Theorem 4.2. Assume that [A.1], [A.2], [A*.3], [A.4], [A*.5] are satisfied for EC .

If α is a private core allocation, then there exists an equilibrium price for α.

Proof. Note that (ii) of [A*.3] replaces [A.3] in the final part of the proof of Theorem
4.1. We now turn to the alternative formulation [A*.5] and see how [A.5] can be
replaced with [A*.5]. Note first that [A.5] is only used in Case 2 of the proof of
Theorem 4.1. Thus, our aim is to show that Case 2 in the proof of Theorem 4.1
is also true in the light of [A*.5]. So, we assume that p[ē(E)] = 0. The rest of the
proof of Case 2 is decomposed into following two sub-cases:

Sub-case 1. There exists an allocation γ such that γ ∈ MI\E, γ ≻I\E α and

p[γ̄(I \ E)] = p[ē(I \ E)]. Applying (i) of [A*.5], we have p[ē(I \ E)] = p[ē(I)] > 0.
Thus, we would again fall in the contradiction determined by occurrence of Case 1

in Theorem 4.1 with I \ E in the role of E.

Sub-case 2. There does not exist any allocation γ such that γ ∈ MI\E, γ ≻I\E α
and p[γ̄(I \ E)] = p[ē(I \ E)]. In this sub-case, setting F1 = E,F2 = I \ E, by (ii)
of [A*.5], there should be some γ∗ ∈ MF2

with γ∗ ≻F2
α and

ē(F1) + ᾱ(F2)≫
nγ̄∗(F2).

This, along with the fact that px ≥ 0 for all x ∈ K , yields p[ē(F1)] + p[ᾱ(F2)] ≥
p[γ̄∗(F2)] and p[γ̄∗(F2)] > p[ē(F2)]. But, p[ē(F2)] = p[ᾱ(F2)]. Thus,

p[ē(F1)] + p[ē(F2)] = p[ē(F1)] + p[ᾱ(F2)] ≥ p[γ̄∗(F2)] > p[ē(F2)]

whence p[ē(F1)] = p[ē(E)] > 0, which leads to a contradiction. �
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5. Individual core-Walras results

In this section, we derive individualistic core-Walras results in an economy with
asymmetric information, from the equivalences stated in Theorem 4.1 and Theorem
4.2. We can express an individualistic economic model as follows

EI = {(I,Σ,P);X+; (Ω,F ); (Ft, Ut, η(t, ·),Pt)t∈I} ,

where

- (I,Σ,P) is a measure space of agents where P is a non-atomic countably additive
measure on the σ-algebra Σ.

- X+ and (Ω,F ) are the same as in EC .

- Ft is the σ-algebra generated by a partition Pt ⊆ F of Ω representing the private
information of agent t. It is interpreted as follows: if ω ∈ Ω is the state of nature
that is going to be realized, agent t observes Pt(ω), the unique element of Pt that
contains ω.

- Ut : Ω ×X+ → R is the state-dependent utility function of agent t, representing
their (ex post) preference.

- η(t, ·) : Ω → X+ is the initial endowment density of agent t.

- Pt is a probability measure on F , representing the prior belief of agent t.

The ex ante expected utility of an agent t for x : Ω → X+ is defined by

E
Pt(Ut(·, x(·))) =

∑

ω∈Ω

Ut(ω, x(ω))Pt(ω).

As in Radner [26], the consumption set of an agent t is defined by

Xt =
{

x ∈ Xn
+ : x is Ft-measurable

}

.

An allocation in EI is a function f : I × Ω → X+ such that f(·, ω) is Bochner
integrable for all ω ∈ Ω. It is said to privately feasible whenever f(t, ·) ∈ Xt P-a.e.,
and physically feasible if

∫

I

f(·, ω)dP≪

∫

I

η(·, ω)dP

for all ω ∈ Ω. Furthermore, we say that an allocation is feasible if it is privately
as well as physically feasible. An element of Σ of positive measure is termed as a
coalition of EI . An allocation α is privately blocked by a coalition F if there is an
allocation g such that g(t, ·) ∈ Xt and E

Pt(Ut(·, g(t, ·))) > E
Pt(Ut(·, f(t, ·))) for all

t ∈ S, and
∫

S

f(·, ω)dP≪

∫

S

η(·, ω)dP

for all ω ∈ Ω. The private core of EI , denoted by PC (EI), is the set of feasible
allocations which are not privately blocked by any coalition. Similar to Section 2,
a price system is a non-zero function π : Ω → X∗

+. Given a price system π, the
budget set of an agent t is defined by

B(t, π) =

{

x ∈ Xt :

n
∑

i=1

π(ωi)x(ωi) ≤
n
∑

i=1

π(ωi)η(t, ωi)

}

.
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A Walrasian expectations equilibrium of EI is a pair (f, π) where f is a feasible
allocation and π is a price system such that f(t, ·) maximizes B(t, π) P-a.e. and

n
∑

i=1

π(ωi)

∫

I

f(·, ωi)dP =

n
∑

i=1

π(ωi)

∫

I

η(·, ωi)dP.

We assume that X is separable. Suppose now that the collection {P1, · · · ,Pk}
of partitions of Ω such that Ii = {t ∈ I : Pt = Pi} is measurable and P(Ii) > 0
is non empty. We assume that I =

⋃

{Ii : 1 ≤ i ≤ k}. For any m ≥ 1, the
(m− 1)-simplex of Rm is defined as

∆m =

{

x = (x1, · · · , xm) ∈ R
m
+ :

m
∑

i=1

xi = 1

}

.

Consider a function ϕ : (I,Σ,P) → ∆n defined by ϕ(t) = Pt for all t ∈ I. For each
ω ∈ Ω, define a function ψω : I ×X+ → R by ψω(t, x) = Ut(ω, x). We now impose
the following classical assumptions on the factors of this economy:

[B.1] The function ϕ is measurable, where ∆n is endowed with the Borel structure.

[B.2] For each ω ∈ Ω, the function ψω is Carathéodory, that is, ψω(·, x) is measurable
for all x ∈ X+ and ψω(t, ·) is norm-continuous for all t ∈ I.

[B.3] For all (t, ω) ∈ I × Ω, Ut(ω, x+ y) > Ut(ω, x) for all x, y ∈ X+ with y > 0.

[B.4] There exist some u ∈ (X+)
n and an open, convex, solid neighbourhood U

of 0 in Xn such that (i) U c ∩ (X+)
n is convex; and (ii) y ∈ (X+)

n and z ∈

(y + Cu) ∩ (X+)
n implies

E
Pt(Ut(·, z(·))) > E

Pt(Ut(·, y(·)))

P-a.e., where

C =
⋃

{t(u+ U) : t > 0}.

[B.5] η is a privately feasible allocation and
⋂

{t ∈ Ij : η(t, ωi) ≫ 0, 1 ≤ i ≤ n} ∈ Σ+

for each 1 ≤ j ≤ k.

[B*.5] η is a privately feasible allocation such that

(i)

∫

I

η(·, ω)dP ≫ 0 for all ω ∈ Ω;

(ii) for every privately feasible allocation f and every partition {F1, F2} of I,
with Fi ∈ Σ+, there exists a private allocation g such that g(t, ·) ∈ Xt and

E
Pt(Ut(·, g(t, ·))) > E

Pt(Ut(·, f(·)))

P-a.e. on F2, and
∫

F1

η(·, ω)dP+

∫

F2

f(·, ω)dP≫

∫

F2

g(·, ω)dP

for all ω ∈ Ω.

Remark 5.1. The first three assumptions are similar to those in [9, 10, 18]. Under
[B.1] and [B.2], t 7→ E

Pt(Ut(·, x(·))) is Σ-measurable for all x : Ω → X+. Continu-
ity and monotonicity of EPt(Ut(·, x(·))) follows from [B.2] and [B.3], respectively.
Assumptions [B.4] is a properness-like assumption, which is similar to [A.4]. The
assumption [B.5] is weaker than the assumption a(t, ωi) ≫ 0 for all t ∈ I and
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1 ≤ i ≤ n. Lastly, the assumption [B*.5] is the combination of irreducibility with a
mild availability condition and it will be used to replace [B.5] to obtain an alterna-
tive core-Walras equivalence theorem. Since allocations take values in the positive
cone of the commodity space, the condition (ii) in [B*.5] is implied by the following
condition from [4]:

[C] For every privately feasible allocation f and every partition {F1, F2} of I, with
Fi ∈ Σ+ for i = 1, 2, there exist two allocations g, h such that g(t, ·), h(t, ·) ∈ Xt

and

E
Pt(Ut(·, g(t, ·))) > E

Pt(Ut(·, f(t, ·)))

P-a.e. on F2, and
∫

F1

η(·, ω)dP+

∫

F2

f(·, ω)dP =

∫

F1

h(·, ω)dP+

∫

F2

g(·, ω)dP

for all ω ∈ Ω. �

For each allocation f in EI , we are associating an allocation Ξ[f ] in EC by
letting Ξ[f ](E,ω) =

∫

E
f(·, ω)dP. For each F ∈ Σ, we define PF to be the smallest

partition that refines each Pt for all t ∈ F . Thus, the individualistic economy EI

corresponds to the coalitional economy EC given by

EC = {(I,Σ,P);X+; (Ω,F ); (FF ,≻F , e(F, ·))F∈Σ} ,

where e(F, ·) = Ξ[η](F, ·); FF is the σ-algebra generated by PF ; and the coalitional
preference ≻F is defined by letting α ≻F β if and only if

E
Pt(Ut(·, a(·))) > E

Pt(Ut(·, b(·)))

P-a.e. on F , where a(·, ω) and b(·, ω) are Radon-Nikodym derivatives of α(·, ω) and
β(·, ω), respectively, for each ω ∈ Ω with respect to P.

Remark 5.2. It follows from the above definition of≻F that [P.1]-[P.3] and [P.5] are
satisfied. Assumption [P.4] is implied by [B.3]. Given the structure of information
{P1, · · · ,Pk}, [A.1] is verified trivially. Obviously, the above definition of FF

for all F ∈ Σ yields [A.2]. By [B.2], EPt(Ut(·, x(·))) is continuous with respect to
x : Ω → X+. Since t 7→ E

Pt(Ut(·, x(·))) is also Σ-measurable, by Propostion 4.1 in
[13], [A*.3] is satisfied. Clearly, [B.4] implies [A.4]. Lastly, [A.5] and [A*.5] can be
easily derived from [B.5] and [B*.5], respectively.

Since Proposition 4.2 of [7] can be easily extended to this new framework, we
have the following core-Walras equivalence theorem.

Theorem 5.3. Let [B.1]-[B.5] hold for the economy EI . A feasible private allocation

f belongs to the private core of EI if and only if it is a Walrasian expectations

allocation of EI .

The first alternative version of the core-Walras equivalence (that is, Theorem 4.2)
provides also an individualistic result where availability condition [B.5] is replaced
by [B*.5], which is given below.

Theorem 5.4. Suppose that EI satisfies [B.1]-[B.4] and [B*.5]. A feasible pri-

vate allocation f belongs to the private core of EI if and only if it is a Walrasian

expectations allocation of EI .
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6. Concluding remarks

In this section, we discuss the core-Walras equivalence theorem in the case of
exact feasibility and compare our main results with some existing results in the
literature.

The physical feasibility of an allocation for any coalition in most of asymmetric
information frameworks in the literature (also in our model) is expressed in terms
of an inequality while the feasibility of an allocation in a complete information
economy is expressed by means of an equality. Towards this direction, the question
has been raised by some authors (for instance, [4, 17]) whether free disposal is
necessary in the definition of physical feasibility in order to obtain core-Walras
equivalence theorems. We now show that a core-Walras equivalence theorem can
be established under the exact feasibility condition in the presence of an additional
assumption. To introduce this assumption, we first recall Proposition 3.1 in [23].

Proposition 6.1. If (i) of [A.4] holds, then there exist a positive functional

x∗ ∈ (X∗
+)

n and c > 0 such that U ∩Xn
+ = G−(x∗, c) ∩Xn

+ and U c∩Xn
+ = F+(x∗, c)∩

Xn
+, where G

−(x∗, c) (respectively F+(x∗, c)) denotes the open lower (resp. closed
upper) half space determined by the hyperplane {x ∈ Xn : x∗(x) = c}.

Since (w,U) is a properness pair, w /∈ U . As a consequence of Proposition
6.1, we have x∗(w) ≥ c. In the light of this, we state the following additional
properness-like assumption:

[A*.4] The pair

(

w,
x∗(w)

c
U

)

is a properness pair in the sense of [A.4].

Remark 6.2. As the extremely desirable commodity bundle w is larger than the
extremely desirable bundle u, the assumption [A*.4] says that w is extremely de-
sirable bundle in the sense that it remains desirable when added to a bundle y
even if one subtracts something relatively “large”, namely almost at the level of
hyperplane. This assumption is employed to demonstrate that our results can be
obtained in a framework without free disposal assumption. However, in the ab-
sence of this assumption, a slightly different approach has been used to establish
the core-Walras equivalence theorem under free disposal assumption. Note that
such an approach is not applicable for the case when feasibility is defined to be
exact (without free disposal).

Let λ =
x∗(w)

c
. It follows from Proposition 6.1 that z ∈ λU ∩ Xn

+ implies

x∗(z) < λc = x∗(w). Define

C =
⋃

{t(w + λU) : t > 0}.

Lemma 6.3. Suppose that [A.1]-[A.3] and [A*.4] are satisfied for EC . If α is a

private core allocation, then K ∩ (−C) = ∅.

Proof. Similarly to Lemma 3.3, it is enough to prove that K ∩ (−C) is empty. For
each Q ∈ P, let

KQ =
⋃

F∈Σ, P(F )>0

{γ̄(F ∩ IQ)− ē(F ∩ IQ) : γ ∈ MF , γ ≻F α}.
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Case 1. KQ ∩ (−C) = ∅ for all Q ∈ P implies K ∩ (−C) = ∅. The claim can
be done if we show that γ̄(E)− ē(E) ∈ K ∩ (−C) for some coalition E implies

γ̄(E ∩ IQ0
)− ē(E ∩ IQ0

) ∈ −C

for at least one partition Q0 ∈ P. Thus, we assume that γ̄(E)− ē(E) = −t(w+ v)

for some v ∈W, t > 0. By putting β̄ = γ̄ +
tv+

P(E)
P, we have

β̄(E)− ē(E) + tw = tv−,

which is equivalent to

β̄(E)− ē(E) + w = tv− + (1− t)w.

Clearly, β̄(E) − ē(E) ∈ K and v− ∈ λU . Note that tv− + (1 − t)w ∈ Xn
+ and

x∗(tv−+(1−t)w) < λc. As a result, β̄(E)− ē(E)+w ∈ λU∩Xn
+. If KQ∩(−C) = ∅

for all Q ∈ P, then we have

β̄(E ∩ IQ)− ē(E ∩ IQ) +
1

|P|
w ∈

(

λU

|P|

)c

∩Xn
+.

It follows from the convexity of

(

λU

|P|

)c

∩Xn
+ that

β̄(E)− ē(E) + w =
∑

Q∈P

[

β̄(E ∩ IQ)− ē(E ∩ IQ) +
1

|P|
w

]

/∈ λU,

which is a contradiction.

Case 2. KQ ∩ (−C) = ∅ for all Q ∈ P. By invoking the arguments of the proof
of Lemma 3.3 and monotonicity of ≻n

I , we can verify the Claim 23. �

We now state a properness assumption for the individualistic model.

[B*.4] The pair

(

w,
x∗(w)

c
U

)

is a properness pair in the sense of [B.4].

In the light of the above lemma, all main results in Section 4 can be easily ex-
tended to the case of exact feasibility. As a consequence of [B*.4], analogously
to Theorem 5.3 and Theorem 5.4, one can obtain similar individual core-Walras
equivalence theorems without free disposal, in the sense of [4]. The first one would
then contain Theorem 5.1 in [4] as a corollary when preferences are represented
by continuous and monotone utilities. Indeed, all the hypotheses of Theorem 5.3
are either explicitly assumed, or stated as part of the standard definition for the
economy in [4] in a framework of an Euclidean space as the commodity space. Note
that our core-Walras equivalence theorems for the case of exact feasibility and an
infinite dimensional commodity space are the first attempts in the literature for
coalitional as well as individualistic models.

We conclude this section with the following two remarks.

3The monotonicity assumption will be used to obtain exact physically feasible allocation from
s̄1 to block a private core allocation.



18 A. BHOWMIK, F. CENTRONE, AND A. MARTELLOTTI

Remark 6.4. Our next concern will be that of comparing Theorem 5.3 with some
of the core-Walras equivalence result for economies with asymmetric information
already existing in the literature. Most of the results are given under the assumption
that the commodity space coincides with the Euclidean space Rℓ for any given ℓ ≥ 1.
In this case, clearly X is a separable Banach lattice having the RNP, and [B.4] is
default. We begin our overview with [7], where the commodity space is R

ℓ. The
coalitional results in [7] (i.e. Theorem 3.2 and Theorem 3.7) can not be derived from
our coalitional equivalences for two main reasons: (a) we are assuming a different
form of continuity, and (b) we need assumption [A.1]. Nevertheless, when one turns
to the individual formulation, Theorem 4.3 in [7] can be proven via Theorem 4.2. In
fact, the private feasibility of η in [B.5], although not explicitly stated, is mentioned
as an implicit assumption (and needed to have condition (A.4) of [7] fulfilled). All
the other conditions in Theorem 4.3 of the aforementioned paper either coincide
or imply those of Theorem 5.3. Our individualistic results (i.e. Theorem 5.3 and
Theorem 5.4) are not the direct extensions of the core-Walras equivalence results
in [12, 18] as the commodity spaces in [12, 18] are not necessarily satisfying the
RNP. �

Remark 6.5. We conclude this paper with a list of possible directions of further
investigations, and problems where the setting that we propose here (X has the
RNP and preferences satisfies the properness-like assumption) could enlarge the
class of economies in which previous results can be extended:

- Different types of core are considered by several authors, both in the finite dimen-
sional ([2, 17]) and in infinite dimensional ([11, 20]) commodity spaces; it would
be interesting to investigate whether the results obtained for these cores in the
mentioned papers can be extended under properness-like assumption to a Banach
lattice X having the RNP.

- A huge variety of papers focus on the existence results in the framework of differ-
ential information ([3, 17, 25]). Do the assumptions proposed in our model provide
extra tools to prove existence of an equilibrium?

- A final problem to mention is the necessity of assumption [A.1] in the coalitional
setting. We have not been able to provide a counterexample in this direction so far;
and it could be in fact true that one could move from an economy where [A.1] does
not hold to the finer economy where the σ-algebra of coalitions is enlarged somehow
to the one generated by Σ and {IQ : Q ∈ P}. Perhaps a suitable extension of the
probability P would provide a way to derive equivalence results in more general
situations than those proved in this paper.
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[22] C. Hervés-Beloso, C. Meo, E. Moreno-Garćıa, Information and size of coalitions, Econ. Thoery

55 (2014), 545-563.
[23] A. Martellotti, Finitely additive economies with free extremely desirable commodities, J.

Math. Econ. 44 (2007) 535-549.
[24] A. Mas-Colell, The equilibrium existence problem in topological vector lattices, Econometrica

54 (1986), 1039-1053.
[25] K. Podczek, N. Yannelis, Equilibrium theory with asymmetric information and with infinitely

many commodities, J. Econ. Theory 1414 (2008), 152-183.
[26] R. Radner, Competitive equilibrium under uncertainty, Econometrica 36 (1968), 31–58.
[27] A. Rustichini, N.C. Yannelis, Edgeworth’s conjecture in economies with a continuum of agents

and commodities, J. Math. Econ. 20 (1991), 307–326.

[28] K. Vind, Edgeworth allocations in an exchange economy with many traders, Internat. Econ.
Review 5 (1964) 165-177.

[29] R. Wilson, Information, efficiency, and the core of an economy, Econometrica 46 (1978),
807–816.

[30] N. C. Yannelis, The core of an economy with asymmetric information, Econ Theory 1, 183–
197 (1991)

Corresponding Author, Economic Research Unit, Indian Statistical Institute, 203

Barackpore Trunk Road, Kolkata 700108, India, Tel.: ++64 33 2575 2620

E-mail address: anuj.bhowmik@isical.ac.in

Dipartimento di Studi per l’Economia e l’Impresa, Università del Piemonte Orientale,
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