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Abstract

This paper proposes a class of models that jointly model returns and ex-post variance
measures under a Markov switching framework. Both univariate and multivariate re-
turn versions of the model are introduced. Bayesian estimation can be conducted under
a fixed dimension state space or an infinite one. The proposed models can be seen as
nonlinear common factor models subject to Markov switching and are able to exploit
the information content in both returns and ex-post volatility measures. Applications
to U.S. equity returns and foreign exchange rates compare the proposed models to
existing alternatives. The empirical results show that the joint models improve den-
sity forecasts for returns and point predictions of return variance. The joint Markov
switching models can increase the precision of parameter estimates and sharpen the
inference of the latent state variable.
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1 Introduction

This paper proposes a new way of jointly modelling return and ex-post volatility measures
under a Markov switching framework. Both parametric and nonparametric versions of the
proposed joint models are introduced in both univariate and multivariate settings. The
proposed models exploit the information content in both return and ex-post volatility series.
Compared to existing models, the proposed models improve density forecasts of returns and
point predictions of realized variance.

Since the pioneering work by Hamilton (1989) the Markov switching model has became
one of the standard econometric tools in studying various financial and economic data se-
ries. The basic model postulates a discrete latent variable governed by a first-order Markov
chain that directs an observable data series. This modelling approach has been fruitfully
applied in many applications. For instance, Markov switching models have been used to iden-
tify bull and bear markets in aggregate stock returns (Maheu & McCurdy 2000, Lunde &
Timmermann 2004, Maheu et al. 2012), to capture the risk and return relationship (Pastor
& Stambaugh 2001, Kim et al. 2004), portfolio choice (Guidolin & Timmermann 2008),
interest rates (Ang & Bekaert 2002, Guidolin & Timmermann 2009) and foreign exchange
rates (Engel & Hamilton 1990, Dueker & Neely 2007). Recent work has extended the Markov
switching model to an infinite dimension. The infinite hidden Markov model (IHMM), which
is a Bayesian nonparametric model, allows for a very flexible conditional distribution that
can change over time. Applications of IHMM include Jochmann (2015), Dufays (2012), Song
(2014), Carpantier & Dufays (2014) and Maheu & Yang (2015).

Realized variance (RV), constructed from intraperiod returns, is an accurate measure of
ex-post volatility. Andersen et al. (2001) and Barndorff-Nielsen & Shephard (2002) formal-
ized the idea of using higher frequency data to measure the volatility of lower frequency
data and show RV is a consistent estimate of quadratic variation under ideal conditions.
Barndorff-Nielsen & Shephard (2004b) generalized the idea of RV and introduced a set of
variance estimators called realized power variations (RPV). Furthermore, RV has been ex-
tended to realized covariance (RCOV), which is an ex-post nonparametric measure of the
covariance of multivariate returns, by Barndorff-Nielsen & Shephard (2004a). A good survey
of RV and related volatility proxies is Andersen & Benzoni (2009).

This paper is not the first to exploit the information content of RV to improve model
estimation. Takahashi et al. (2009) propose a stochastic volatility model in which unobserved
log-volatility affect both RV and the variance of returns. They find improved fixed parameter
and latent volatility estimates but do not investigate forecast performance. Similarly, we
develop joint Markov switching models in which the latent state variable enters both returns
and RV. Finite as well as infinite Markov switching models are considered. Our focus is on
the gains to forecasts this approach can provide. In addition, there is no reason to confine
attention to RV, and therefore we investigate the use of other volatility measure and in the
multivariate setting realized covariance.

Four versions of the univariate return models are proposed. We consider RV, log(RV),
realized absolute variation (RAV), or log(RAV) as ex-post volatility measures coupled with
returns to construct joint models. We then extend the MS-RV specification to its multivariate
version with RCOV.

It is more flexible to drop the finite state assumption and let the data determine the
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number of states needed to fit the data. Using Bayesian nonparametric techniques, we
extend the finite state joint MS models to nonparametric versions. These models allow
the conditional distribution to change more flexibly and accommodate any nonparametric
relationship between returns and ex post volatility.

The proposed joint MS and joint IHMM models are compared to existing models in
empirical applications to equity and foreign exchange data. The univariate return models
are applied to monthly U.S. stock market returns and monthly foreign exchange exchange
rates. Based on the log-predictive Bayes factors, the proposed joint models strongly dominate
the models that only use returns. Moreover, we find the gains from joint modelling are
particularly large during high volatility episodes. The empirical results also show that the
joint models reduce the error in predicting realized variance. With the help of additional
information offered by RV, RAV and RCOV, the parameters have shorter posterior density
intervals and the inference on the unobservable state variables are potentially improved.

This paper is organized as follows. In section 2, we show how to incorporate ex post
measures of volatility into Markov switching models. The joint MS models are extended to
the nonparametric versions in section 3. Benchmark models used for comparison are found
in Section 4. Section 5 illustrates the Bayesian estimation steps and model comparison. Uni-
variate return applications are in Section 6 while multivariate applications are in Section 7.
The next section concludes followed by an appendix that gives detailed steps of posterior
simulation.

2 Joint Markov Switching Models

In this section, we will focus on simple specifications of the conditional mean but dynamic
models with lags of the dependent variables could be used. We will first discuss the four
versions of univariate return joint models, then introduce the multivariate version.

Higher frequency data is used to construct ex post volatility measures. Let rt,i denotes
the ith intraperiod continuously compounded return in period t, i = 1, . . . , nt, where nt is
the number of intraperiod returns. Then the return and realized variance from t− 1 to t is

rt =
nt∑

i=1

rt,i, (1)

RVt =
nt∑

i=1

r2t,i. (2)

Andersen et al. (2001) and Barndorff-Nielsen & Shephard (2002) formalized the idea of using
higher frequency data to measure the volatility of rt. They show that RVt is a consistent
estimate of quadratic variation under ideal conditions.1 Similarly, for multivariate returns
Rt,i is the i

th intraperiod d×1 return vector at time t and the time t return is Rt =
∑nt

i=1 Rt,i.
RCOVt denotes the associated realized covariance (RCOV) matrix which is computed as

1We have not made adjustments for market microstructure dynamics since our high-frequency data con-
sists of daily returns and are relatively clean. Nevertheless, any of the existing approaches that correct for
microstructure dynamics in computing ex post volatility measures could be used.
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follows,

RCOVt =
nt∑

i=1

Rt,iR
′

t,i. (3)

For notation, let r1:t = {r1, . . . , rt}, RV1:t = {RV1, . . . , RVt}, y1:t = {y1, . . . , yt} where
yt = {rt, RVt}. We further define R1:T = {R1, . . . , RT}, RCOV1:T = {RCOV1, . . . , RCOVT}
and Y1:t = {Y1, . . . , Yt} where Yt = {Rt, RCOVt}.

2.1 MS-RV Model

We first use RV as the proxy for ex-post volatility to build a joint MS-RV model. The
proposed K-state MS-RV model is given as follows.

rt
∣∣st ∼ N(µst , σ

2
st
), (4)

RVt

∣∣st ∼ IG(ν + 1, νσ2
st
), (5)

Pi,j = p(st+1 = j|st = i), (6)

where st ∈ {1, . . . , K}. Conditional on state st, RVt is assumed to follow an inverse Gamma
distribution2 IG(ν + 1, νσ2

st
), where ν + 1 is the shape parameter and νσ2

st
is the scale

parameter.
The basic assumption of this model is that RVt is subject to the same regime changes

as rt and share the same parameter σ2
st
.3 Note, that RVt and the other volatility measures

used in this paper, are assumed to be a noisy measure of the state dependent variance σ2
st
.

Conditional on the latent state, the mean and variance of RVt are

E(RVt|st) =
νσ2

st

(ν + 1)− 1
= σ2

st
, (7)

Var(RVt|st) =
(σ2

st
)2

(ν − 1)
. (8)

Therefore RVt is centered around σ2
st
, but in general, not equal to it. The variance of the

distribution of RVt is positively correlated with the realized variance itself. During high
volatility periods, the movements of realized variances are more volatile. Both the return
process and realized variance process are governed by a same underlying Markov chain with
transition matrix P .

Since σ2
st
influences both the return process and RVt process, the model can be seen as a

nonlinear factor model. Exploiting the information content of RVt for σ
2
st
may lead to more

precise estimates of model parameters, state variables and forecasts.

2If x ∼ IG(α, β), α > 0, β > 0 then it has density function:

g(x
∣∣α, β) = βα

Γ(α)
x−α−1 exp

(
−β

x

)

The mean of x is E(x) = β
α−1

for α > 1.
3Formally, the high frequency data generating process is assumed to be rt,i = µst/nt + (σst/

√
nt)zt,i,

with zt,i ∼ NID(0, 1). Then E[
∑nt

i=1
r2t,i
∣∣st] = (µst/nt)

2 + σ2
st

≈ σ2
st

when the term (µst/nt)
2 is small due to

n2
t being large.
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2.2 MS-logRV Model

Another possibility is to model the logarithm of RV as normally distributed. The MS-logRV
model is shown as follows,

rt
∣∣st ∼ N(µst , exp(ζst)) , (9)

log(RVt)
∣∣st ∼ N

(
ζst −

1

2
δ2st , δ

2
st

)
, (10)

Pi,j = p(st+1 = j|st = i), (11)

where st ∈ {1, . . . , K}. In this model there are three state-dependent parameters: µst , ζst
and δ2st , which enable both the mean and variance of returns and log(RVt) to be state-
dependent. ζst − 1

2
δ2st is the mean of log(RVt) and exp(ζst) is the variance of returns. Since

RVt is log-normal, E[RVt|st] = exp(ζst) which is assumed to be the variance of returns.

2.3 MS-RAV Model

Now we consider using realized absolute variation (RAV), instead of RV in the joint MS
model. Calculated using the absolute values of intraperiod returns, RAV is robust to jumps
and may be less sensitive to outliers (Barndorff-Nielsen & Shephard 2004b). RAVt is com-
puted using intraperiod returns as

RAVt =

√
π

2

√
1

nt

nt∑

i=1

|rt,i|, (12)

where rt,i denotes the ith intraperiod log-return in period t, i = 1, . . . , nt. It can be shown
that RAVt provides estimate of the standard deviation of rt.

4

Consistent with the inverse gamma distribution to model the variance or its proxy, we as-
sume RAV follows a square-root inverse gamma distribution (sqrt-IG). The density function
of sqrt-IG(α, β) is given by

f(x) =
2βα

Γ(α)
x−2α−1 exp

(
− β

x2

)
, x > 0, (13)

and the first and second moments of sqrt-IG(α, β) are given as follows

E[x] =
√
β · Γ(α− 1

2
)

Γ(α)
and E[x2] =

β

α− 1
. (14)

These results can be found in Zellner (1971).
We define the joint MS model of return and RAV as,

rt
∣∣st ∼ N(µst , σ

2
st
), (15)

RAVt

∣∣st ∼ sqrt-IG

(
ν, σ2

st

[
Γ(ν)

Γ(ν − 1
2
)

]2)
, (16)

Pi,j = p(st+1 = j|st = i), (17)

4As before, if rt,i = µst/nt + (σst/
√
nt)zt,i, with zt,i ∼ NID(0, 1) and µst/nt is small, then we have

E

[√
π
2

√
1

nt

nt∑
i=1

|rt,i|
∣∣∣∣st
]
≈ σst .
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where st ∈ {1, . . . , K}. As in the MS-RV model, the mean and variance of both rt and
RAVt are state-dependent. In each state, the return follows a normal distribution with mean
µst and variance σ2

st
. The mean and variance of RAVt conditional on state st are given as

follows.

E(RAVt

∣∣st) = σst , (18)

Var(RAVt

∣∣st) =
σ2
st

ν − 1

[
Γ(ν)

Γ(ν − 1
2
)

]2
− σ2

st
. (19)

2.4 MS-logRAV Model

Similar to the MS-logRV model discussed in Section 2.2, the logarithm of RAV can be
modelled as opposed to RAV. The MS-logRAV specification is

rt
∣∣st ∼ N(µst , exp(2ζst)) , (20)

log(RAVt)
∣∣st ∼ N

(
ζst −

1

2
δ2st , δ

2
st

)
, (21)

Pi,j = p(st+1 = j|st = i), (22)

where st ∈ {1, . . . , K}. The model is close to the MS-logRV parametrization, but now
ζst − 1

2
δ2st is the mean of log(RAVt) and exp(2ζst) is the state-dependent variance of returns.

Since RAVt is log-normal, E(RAVt|st) = exp(ζst) which is the standard deviation of returns.

2.5 MS-RCOV Model

The univariate return models can be extended to the multivariate setting by including real-
ized covariance matrices. The multivariate MS-RCOV model we consider is

Rt

∣∣st ∼ N(Mst ,Σst) , (23)

RCOVt

∣∣st ∼ IW (Σst(ν − d− 1), ν) , ν > d+ 1, (24)

Pi,j = p(st+1 = j|st = i). (25)

where st ∈ {1, . . . , K}. Mst is a d × 1 state-dependent mean vector and Σst is the d × d

covariance matrix. RCOVt is assumed to follow an inverse Wishart distribution5 IW(Σst(ν−
d− 1), ν), where Σst(ν − d− 1) is the scale matrix and ν is the degree of freedom.

Σst is the covariance of returns as well as the mean of RCOVt since

E[RCOVt

∣∣st] =
1

ν − d− 1
Σst(ν − d− 1) = Σst , (26)

assuming ν > d + 1. The parameter ν controls the variation of the inverse Wishart distri-
bution and the smaller ν is, the larger spread the distribution has. Both Rt and RCOVt are
governed by the same Markov chain with transition matrix P .

5If a d-dimension positive definite matrix X ∼ IW(Ψ, ν), its density is

g(X
∣∣Ψ, ν) =

|Ψ| ν2
2

νd

2 Γd(
ν
2
)
|X|− ν+d+1

2 exp

(
−1

2
tr
(
ΨX−1

))
, ν > d− 1.
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3 Joint Infinite Hidden Markov Model

3.1 Dirichlet Process and Hierarchical Dirichlet Process

All of the Markov switching models we have discussed require the econometrician to set the
number of states. An alternative is to incorporate the state dimension into estimation. The
Bayesian nonparametric version of the Markov switching model is the infinite hidden Markov
model, which can be seen as a Markov switching model with infinitely many states. Given a
finite dataset, the model selects a finite number of states for the system. Since the number
of states is no longer a fixed value, the Dirichlet process, an infinite dimensional version of
Dirichlet distribution, is used as a prior for the transition probabilities.

The Dirichlet process DP(α,H), was formally introduced by Ferguson (1973) and is a
distribution of distributions. A draw from a DP(α,H) is a distribution and is almost surely
discrete and centered around the base distribution H. α > 0 is the concentration parameter
that governs how close the draw is to H.

We follow Teh et al. (2006) and build an infinite hidden Markov model (IHMM) using a
hierarchical Dirichlet process (HDP). This consists of two linked Dirichlet processes. A single
draw of a distribution is taken from the top level Dirichlet processes with base measureH and
precision parameter η. Subsequent to this, each row of the transition matrix is distributed
according to a Dirichlet processes with base measure taken from the top level draw. This
ensures that each row of the transition matrix governs the moves among a common set of
model parameters. In addition, each row of the transition matrix is centered around the top
level draw but any particular draw will differ. If Γ denotes the top level draw and Pj the j

th

row of the transition matrix P then the previous discussion can be summarized as

Γ
∣∣η ∼ DP(η,H), (27)

Pj

∣∣α,Γ iid∼ DP(α,Γ), j = 1, 2, .... (28)

Combining the HDP with the state indicator st and the data density, forms the infinite
hidden Markov model,

Γ
∣∣η ∼ DP(η,H), (29)

Pj

∣∣α,Γ iid∼ DP(α,Γ), j = 1, 2, ..., (30)

st
∣∣st−1, P ∼ Pst−1, (31)

θj
iid∼ H, j = 1, 2, ..., (32)

yt
∣∣st, θ ∼ F (yt

∣∣θst), (33)

where θ = {θ1, θ2, ...} and F (·|·) is the data distribution. The two concentration parameters η
and α control the number of active states in the model. Larger values favour more states while
small values promote a parsimonious state space. Rather than set these hyperparameters
they can be treated as parameters and estimated from the data. In this case, the hierarchical
prior for η and α are

η ∼ G(aη, bη), (34)

α ∼ G(aα, bα), (35)
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where G(a, b) stands for the gamma distribution6 with shape parameter a and rate parameter
b. The models can be estimated with MCMC methods. We discuss the specific details below
for each model.

3.2 IHMM with RV and RAV

RV or RAV can be jointly modelled in the IHMM model as we did in the finite Markov
switching models. The joint IHMM is constructed by replacing the Dirichlet distributed
prior of the MS model by a hierarchical Dirichlet process. Hierarchical priors are used for
concentration parameter α and η and allow the data to influence the state dimension. For
example, the IHMM-RV model is given as follows.

Γ
∣∣η ∼ DP(η,H), (36)

Pj

∣∣α,Γ iid∼ DP(α,Γ), j = 1, 2, ..., (37)

st
∣∣st−1, P ∼ Pst−1 , (38)

θj = {µj, σ
2
j}

iid∼ H, j = 1, 2, ..., (39)

rt
∣∣st, θ ∼ N(µst , σ

2
st
), (40)

RVt

∣∣st ∼ IG(ν + 1, νσ2
st
), (41)

η ∼ G(aη, bη), (42)

α ∼ G(aα, bα). (43)

The base distribution is H(µ) ≡ N(m, v2), H(σ2) ≡ IG(v0, s0). The parameter σ2
st
is common

to the distribution of rt and RVt.
The IHMM-logRV and IHMM-logRAV models are formed similarly by replacing the

fixed dimension transition matrix with infinite dimensional versions with a HDP prior. For
instance, the IHMM-logRV specification replaces (39)-(41) with

θj = {µj, ζj, δ
2
j}

iid∼ H, j = 1, 2, ..., (44)

rt
∣∣st, θ ∼ N(µst , exp(ζst)) , (45)

log(RVt)
∣∣st ∼ N

(
ζst −

1

2
δ2st , δ

2
st

)
. (46)

The base distribution is H(µ) ≡ N(mµ, v
2
µ), H(ζ) ≡ N(mζ , v

2
ζ ) and H(δ) ∼ IG(v0, s0). The

parameter ζst is common to the distribution of rt and log(RVt). Similarly, the IHMM-logRAV
model, replaces (39)-(41) with

θj = {µj, ζj, δ
2
j}

iid∼ H, j = 1, 2, ..., (47)

rt
∣∣st, θ ∼ N(µst , exp(2ζst)) , (48)

log(RAVt)
∣∣st ∼ N

(
ζst −

1

2
δ2st , δ

2
st

)
. (49)

6If x ∼ G(α, β), α > 0, β > 0 then it has density function:

g(x
∣∣α, β) = βα

Γ(α)
xα−1 exp (−βx) .
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The base distribution is H(µ) ≡ N(mµ, v
2
µ), H(ζ) ≡ N(mζ , v

2
ζ ) and H(δ) ∼ IG(v0, s0). Now,

ζst affects both rt and log(RAVt).

3.3 Multivariate IHMM with RCOV

The multivariate MS-RCOV model can be extended to its nonparametric version, labelled
IHMM-RCOV as follows.

Γ
∣∣η ∼ DP(η,H), (50)

Pj

∣∣α,Γ iid∼ DP(α,Γ), j = 1, 2, ..., (51)

st
∣∣st−1, P ∼ Pst−1, (52)

θj = {Mj,Σj} iid∼ H, j = 1, 2, ..., (53)

Rt

∣∣st, θ ∼ N(Mst ,Σst), (54)

RCOVt

∣∣st ∼ IW(Σst(ν − d− 1), ν), (55)

η ∼ G(aη, bη), (56)

α ∼ G(aα, bα). (57)

The base distribution isH(M) ≡ N(m,V ), H(Σ) ≡ W(Ψ, τ), where W(Ψ, τ) denotes Wishart
distribution7, Ψ are d×d positive definite matrices and ν > d+1 being the degree of freedom.
Σst is a common parameter affecting the distributions of Rt and RCOVt.

4 Benchmark Models

Each of the new models are compared to benchmark models that do not use ex-post vari-
ance measures. The benchmark specifications are essentially the same model with RVt or
RAVt omitted. For example, in the univariate application we compare to the following MS
specification.

rt
∣∣st ∼ N(µst , σ

2
st
), (58)

Pi,j = p(st+1 = j|st = i), (59)

7If a d-dimension positive definite matrix X ∼ W(Ψ, ν), its density is

g(X
∣∣Ψ, ν) =

1

2
νd

2 |Ψ| ν2 Γd(
ν
2
)
|X| ν−d−1

2 exp

(
−1

2
tr
(
Ψ−1X

))
, ν > d− 1.
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where st ∈ {1, . . . , K}. The IHMM comparison model is given as follows.

Γ
∣∣η ∼ DP(η,H), (60)

Pj

∣∣α,Γ iid∼ DP(α,Γ), j = 1, 2, ..., (61)

st
∣∣st−1, P ∼ Pst−1 , (62)

θj = {µj, σ
2
j}

iid∼ H, j = 1, 2, ..., (63)

rt
∣∣st, θ ∼ N(µst , σ

2
st
), (64)

η ∼ G(aη, bη), (65)

α ∼ G(aα, bα). (66)

The benchmark model for multivariate application are similarly derived by omitting RCOVt.

5 Estimation and Model Comparison

5.1 Estimation of Joint Finite MS Models

The joint finite MS models are estimated using Bayesian inference. Taking the MS-RV model
as an example, model parameters include θ = {µj, σ

2
j}Kj=1, φ = {ν} and transition matrix

P . By augmenting the latent state variable s1:T = {s1, s2, · · · , sT}, MCMC methods can
be used to simulate from the conditional posterior distributions. The prior distributions are
listed in Table 1. One MCMC iteration contains the following steps.

1. s1:T
∣∣y1:T , θ

2. θj
∣∣y1:T , s1:T , φ, for j = 1, 2, . . . , K

3. φ
∣∣y1:T , s1:T , θ

4. P
∣∣s1:T

The first MCMC step is to sample the latent state variable s1:T from the conditional
posterior distribution s1:T

∣∣y1:T , θ, P . We follow Chib (1996) and use forward filter backward
smoother. In the second step, µj is sampled using the Gibbs sampling for the linear regres-
sion model. The conditional posterior of σ2

j is of unknown form and a Metropolis-Hasting
step is used. The proposal density follows a gamma distribution formed by combining the
likelihood for RV1:T and the prior. ν

∣∣y1:T , {σ2
j}Kj=1 is sampled using the Metropolis-Hasting

algorithm with a random walk proposal. Finally, the rows of P follow a Dirichlet distribution.
Additional details of posterior sampling are collected in the appendix.

After an initial burn-in of iterations are discarded we collect N additional MCMC itera-
tions for posterior inference. Simulation consistent estimates of posterior quantities can be
formed. For example, the posterior mean of θj is estimated as,

E[θj|y1:T ] ≈
1

N

N∑

i=1

θ
(i)
j , (67)
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where θ
(i)
j is the ith iteration from posterior sampling of parameter θj. The smoothed prob-

ability of st can be estimated as follows.

p(st = k|y1:T ) ≈
1

N

N∑

i=1

1(s
(i)
t = k), (68)

where 1(A) = 1 if A is true and otherwise 0.
The estimation of MS-RAV, MS-logRV, MS-logRAV and MS-RCOV models are done in

a similar fashion. Detailed estimation steps of the model are in the appendix.

5.2 Estimation of Joint IHMM Models

In the IHMM-RV model, the estimations of unknown terms θ = {µj, σ
2
j}∞j=1, φ = {ν, α, η}, P ,

Γ and s1:T are different given the unbounded nature of the state space. The beam sampler,
introduced by Gael et al. (2008), is an extension of the slice sampler by Walker (2007), and
is an elegant solution to estimation challenges that an infinite parameter model present. An
auxiliary variable u1:T = {u1, u2, · · · uT} is introduced that randomly truncates the state
space to a finite one at each MCMC iteration. Conditional on u1:T the number of states is
finite and the forward filter backward sampler previously discussed can be used to sample
s1:T .

The key idea behind the beam sampling is to introduce the auxiliary variable ut that
preserves the target distributions, and has the following conditional density

p(ut|st−1, st, P ) =
1(0 < ut < Pst−1,st)

Pst−1,st

(69)

where Pi,j denotes element (i, j) of P . The forward filtering step becomes

p(st|y1:t, u1:t, P ) ∝ p(yt|y1:t−1, st)
∞∑

st−1=1

1(0 < ut < Pst−1,st)p(st−1|y1:t−1, u1:t−1, P ) (70)

∝ p(yt|y1:t−1, st)
∑

st−1:ut<Pst−1,st

p(st−1|y1:t−1, u1:t−1, P ) (71)

which renders an infinite summation into a finite one. Conditional on ut, only states satisfying
ut < Pst−1,st are considered and the number of states become a finite number, say K. The
same considerations hold for the backward sampling step.

Each MCMC iteration loop contains the following steps.

1. u1:T

∣∣s1:T , P,Γ

2. s1:T
∣∣y1:T , u1:T , θ, φ, P,Γ

3. Γ
∣∣s1:T , η, α

4. P
∣∣s1:T ,Γ, α

5. θj
∣∣y1:T , s1:T , φ for j = 1, 2, . . . ,
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6. φ
∣∣y1:T , s1:T , θ

u1:T is sampled from its conditional densities ut

∣∣s1:T , P ∼ U(0, Pst−1,st) for t = 1, · · · , T .
Following the discussion above, conditional on u1:T the effective state space is finite of di-
mension K and s1:T is sampled using the forward filter backward sampler. Γ and each row
of transition matrix follow a Dirichlet distribution after additional latent variables are in-
troduced. The sampling of µj, σ

2
j and ν are the same as in the joint finite MS models.

Posterior sampling of the IHMM-logRV, IHMM-logRAV and IHMM-RCOV models can be
done following similar steps. The appendix provides the detailed steps.

Given N MCMC iterations collected after a burn-in period are discarded, posterior statis-
tics can be estimated as usual. The estimation of state-dependent parameters suffer from a
label-switching problem and therefore we focus on label invariant quantities. For example,
the posterior mean of θst is computed as

E[θst |y1:T ] ≈
1

N

N∑

i=1

θ
(i)

s
(i)
t

. (72)

5.3 Density Forecasts

The predictive density is the distribution governing a future observation given a model M,
prior and data. It is computed by integrating out parameter uncertainty. The predictive like-
lihood is the key quantity used in model comparison and is the predictive density evaluated
at next period’s return

p(rt+1

∣∣y1:t,M) =

∫
p(rt+1

∣∣y1:t,Λ,M)p(Λ
∣∣y1:t,M) dΛ, (73)

where p(rt+1

∣∣y1:t,Λ,M) is the data density given y1:t and parameter Λ and p(Λ
∣∣y1:t,M) is

the posterior distribution of Λ.
To focus on model performance and comparison it is convenient to consider the log-

predictive likelihood and use the sum of log-predictive likelihoods from time t + 1 to t + s

given as
t+s∑

l=t+1

log p(rl
∣∣y1:l−1,M). (74)

The log predictive Bayes factor between M1 and model M2 is defined as

t+s∑

l=t+1

log p(rl
∣∣y1:l−1,M1)−

t+s∑

l=t+1

log p(rl
∣∣y1:l−1,M2). (75)

A log-predictive Bayes factor greater than 5 provides strong support for M1.

5.3.1 Predictive Likelihood of MS Models

Both parameter uncertainty and state uncertainty need to be integrated out in order to
calculate the predictive likelihood. The predictive likelihood of a K-state joint MS model

12



can be estimated as follows

p(rt+1

∣∣y1:t) ≈
1

N

N∑

i=1

K∑

st+1=1

N(rt+1

∣∣µ(i)
st+1

, σ2(i)
st+1

)P
(i)

st+1,s
(i)
t

, (76)

where µ
(i)
st+1 and σ

2(i)
st+1 are the ith draw of µst+1 and σ2

st+1
respectively, and P

(i)
j1,j2 denotes

element (j1, j2) of P (i) all based on the posterior distribution given data y1:t.
The calculation of the predictive likelihood for the multivariate MS models follows the

same method,

p(Rt+1

∣∣Y1:t) ≈
1

N

N∑

i=1

K∑

st+1=1

N(Rt+1

∣∣M (i)
st+1

,Σ(i)
st+1

)P
(i)

st+1,s
(i)
t

. (77)

5.3.2 Predictive Likelihood of IHMM

For the IHMM models the state next period may be a recurring one or it may be new, the
calculation of predictive likelihood is sightly different and is estimated as follows,

p(rt+1

∣∣y1:t) ≈
1

N

N∑

i=1

N(rt+1

∣∣µi, σ
2
i ) (78)

where the parameter values µi and σ2
i are determined using the following steps. Given s

(i)
t ,

draw st+1 ∼ Multinomial(P
(i)

s
(i)
t

, K(i) + 1).

1. If st+1 <= K(i), set µi = µ
(i)
st+1 , σ

2
i = σ

2(i)
st+1 .

2. If st+1 = K(i) + 1, draw a set of parameter values from the prior: µi ∼ N(m, v2) and
σ2
i ∼ IG(v0, s0).

In multivariate IHMM models, the predictive likelihood is calculated exactly the same way
except that the base measure draw is from a multivariate normal and an inverse-Wishart
distribution.

5.4 Point Predictions for Returns and Volatility

In addition to density forecasts we evaluate the predictive mean of returns and the predictive
variance (covariance) of returns. For the finite state MS models, conditional on the MCMC
output, the predictive mean for rt+1 is estimated as

E[rt+1|y1:t] ≈
1

N

N∑

i=1

K∑

j=1

µ
(i)
j P

(i)

s
(i)
t ,j

. (79)

The second moment of the predictive distribution can be estimated as follows.

E[r2t+1|y1:t] ≈
1

N

N∑

i=1

K∑

j=1

(µ
(i)2
j + σ

2(i)
j )P

(i)

s
(i)
t ,j

, (80)
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so that the variance can be estimated from

Var(rt+1|y1:t) = E[r2t+1|y1:t]− (E[rt+1|y1:t])2. (81)

For the multivariate model we have

E[Rt+1|Y1:t] ≈
1

N

N∑

i=1

K∑

j=1

M
(i)
j P

(i)

s
(i)
t ,j

, (82)

E[Rt+1R
′

t+1|Y1:t] ≈
1

N

N∑

i=1

K∑

j=1

(Σ
(i)
j +M

(i)
j M

(i)′

j )P
(i)

s
(i)
t ,j

(83)

which can be used to estimate

Cov(Rt+1|Y1:t) = E[Rt+1R
′

t+1|Y1:t]− E[Rt+1|Y1:t]E[Rt+1|Y1:t]
′

. (84)

For the IHMM models, the predictive mean and variance are derived from the following.

E[rt+1|y1:t] ≈ 1

N

N∑

i=1

µi, (85)

E[r2t+1|y1:t] ≈ 1

N

N∑

i=1

(σ2
i + µ2

i ). (86)

The parameters µi, σ
2
i are selected following the steps in Section 5.3.2. Similar results hold

for the multivariate versions.
Finally, estimation and forecasting for the benchmark model follow along the same lines

as discussed for the joint models with minor simplifications.

6 Univariate Return Applications

Four versions of joint MS models (MS-RV, MS-logRV, MS-RAV and MS-logRAV) and the
benchmark alternatives are considered with 2–4 state assumptions. Table 1 lists the priors
for the various models. The priors provide a wide range of empirically realistic parameter
values. The benchmark models have the same prior. Results are based on 5000 MCMC
iterations after dropping the first 5000 draws.

6.1 Equity

We first consider a univariate application of modelling monthly U.S. stock market returns
from March 1885 to December 2013 (1542 observations). The data from March 1885 to
December 1925 are the daily capital gain returns provided by Bill Schwert, see Schwert
(1990). The rest of returns are from the value-weighted S&P 500 index excluding dividends,
from CRSP. The daily simple returns are converted to continuous compounded returns and
are scaled by 12. The monthly return rt is the sum of the daily returns. RVt and other
ex post volatility measures are computed according to the definitions previously stated.
Table 2 reports the summary statistics of monthly returns along with the summary statistics
of monthly RVt, log(RVt), RAVt and log(RAVt).

14



6.1.1 Out-of-Sample Forecasts

Table 3 reports the sum of log-predictive likelihoods of 1 month ahead returns for the out-
of-sample period from January 1951 to December 2013 (756 observations). At each point in
the out-of-sample period the models are estimated and forecasts computed and then this is
repeated after adding the next observation until the end of the sample is reached.

In each case of a finite state assumption, the joint MS specifications outperform the
benchmark model that do not use ex post volatility measures. The log-predictive Bayes
factors between the best finite joint MS model and the benchmark model are greater than 15,
which provide strong evidence that exploiting higher frequency data leads to more accurate
density forecasts. Using ex post volatility data offer little to no gains in forecasting the mean
of returns, however, it does lead to better variance forecasts as measured against realized
variance.

The lower panel of Table 3 report the same results for the infinite hidden Markov models
with and without higher frequency data. The overall best model according to the predictive
likelihood is the IHMM-RV specification. This model has a log-predictive Bayes factor of 20.8
against the best finite state model that does not use high-frequency data. It has about the
same log-predictive Bayes factor against the IHHM. The IHMM-RV has the lowest RMSE
for RVt forecasts. It is 10.6% lower than the best MS model that uses returns only.

All of the joint models that include some form of ex post volatility lead to improved
forecasts but generally the best performance comes from using RVt.

Table 4 provides a check on these results over the shorter sample period from January
1984 to December 2013 (360 observations). The general results are the same as the longer
sample, high-frequency data offer significant improvements to density forecasts of returns
and gains on forecasts of RVt.

Figures 1 gives a breakdown of the period-by-period difference in the predictive likelihood
values. Positive values are in favour of the model with RVt. The overall sum of the log-
predictive likelihoods is not due to a few outliers or any one period but represent ongoing
improvements in accuracy. The joint models do a better job in forecasting return densities
when the market is in a high volatility period, such as the period of 1973-1974 crash, the
period before and after the internet bubble and the 2008 financial crisis.

6.1.2 Parameter Estimates and State Inference

Table 5 reports the posterior summary of parameters of the 2 state MS, MS-RV and MS-RAV
models based on the full sample. To avoid label switching issues, we use informative priors
µ1 ∼ N(-1, 1), µ2 ∼ N(1, 1), P1 ∼ Dir(4, 1), P2 ∼ Dir(1, 4) and σ2

j ∼ IG(5, 5) for j = 1, 2 and
restrict µ1 < 0 and µ2 > 0.8 The results show that all three models are able to sort stock
returns into two regimes. One regime has a negative mean and high volatility, the other
regime has positive mean return mean along with lower variance. This is consistent with the
results of Maheu et al. (2012) and several other studies.

Compared with the benchmark MS model, the joint models specify the return distribution
more precisely in each state, as can be seen the smaller estimated values σ2

st
. For instance,

in the first state the innovation variance is 1.6127 for the MS model, while the estimates

8Dir(a) denotes the Dirichlet distribution with parameter vector a.

15



of variance are 0.5633 and 0.6581 in the MS-RV and MS-RAV models, respectively. The
variance estimates in the positive mean regimes drop from 0.2187 to 0.1556 and 0.1460 after
joint modelling RV and RAV. We would expect this reduction in the innovation variance to
result in better forecasts which is what we found in the previous section.

Another interesting result is that MS-RV and MS-RAV models provide more precise
estimates of all the model parameters. As shown in Table 5, all the parameter estimators
have smaller posterior standard deviations and shorter 0.95 density intervals. For example,
the length of the density interval of µ1 from the benchmark model is 0.437, while the values
are 0.187 and 0.167 from the MS-RV and MS-RAV models, respectively.

Figure 2 plots E
[
σ2
st

∣∣y1:T
]
for the IHMM-RV and IHMM models. Volatility estimates

vary over a larger range from the IHMM-RV model. For example, it appears that the IHMM
overestimates the return variance during calm market periods and underestimates the return
variance in several high volatile periods, such as the October 1987 crush and the financial
crisis in 2008. In contrast, the return variance from the IHMM-RV model is closer to RV
during these times. The differences between the models is due to the additional information
from ex post volatility.

Figure 3 plots of smoothed probability of the high return state from the 2 state MS, MS-
RV and MS-RAV models. The benchmark MS model does a fairly good job in identifying
the primary downward market trends, such as the big crash of 1929, 1973-1974 bear market
and the 2008 market crash, but it ignores a series of panic periods before and after 1900,
the internet bubble crash and several other relatively smaller downward periods. The joint
MS-RV and MS-RAV models not only identify the primary market trends but also are able
to capture a number of short lived market drops. The main difference is that the joint model
appears to have more frequent state switches and state identification is more precise. One
obvious example is the joint models identify the dot-com collapse from 2000 to 2002 and the
market crash of 2008-2009.

In summary, the joint models lead to better density forecasts, better forecasts of realized
variance, improved parameter precision and minor differences in latent state estimates.

6.2 Foreign Exchange

The second example is using exchange rates between Canadian dollar (CAD) and U.S. dollar
(USD). The exchange rate is in the unit of U.S. dollar and span from September 1971 to
December 2013 (518 observations). The data source is Pacific Exchange Rate Service.9

The daily exchange rates Pt are first converted into continuous compound percentage
returns by rt = 100× (logPt − logPt−1) from which monthly returns and monthly volatility
measures are derived. Table 6 report summary statistics for monthly rt, RVt, log(RVt), RAVt

and log(RAVt) for CAD/USD rates.

6.2.1 Out-of-Sample Forecasts

Table 7 displays the model comparisons results. The model priors are all relatively uninfor-
mative and same as in the previous application. The out-of-sample period is from January

9http://fx.sauder.ubc.ca/data.html.
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1991 to December 2013 (276 observations). According to the sum of log-predictive likeli-
hoods, the proposed joint MS and infinite hidden Markov models outperform the benchmark
models. Moving from the benchmark model to the joint specification can result in a sub-
stantial gain. For instance, the log-predictive likelihood increases by 15.77 in moving from
MS to MS-RV for the 3 state specification. The IHMM-RV model has the highest predictive
likelihood among all other models. In addition, all the joint models produce better forecasts
of realized variance. The improvements in the RMSE of RVt are often better than 5%.

7 Multivariate Return Applications

Two examples of the joint MS-RCOV models are considered. The prior specification is found
in Table 8.

7.1 Equity

The data are constructed from daily continuously compounded returns on IBM, XOM and
GE obtained from CRSP. The monthly RCOV is computed using daily values following
equation (3). The summary statistics of monthly returns Rt and RCOVt are found in Table 9.
The data range from January 1926 to December 2013 (1056 observations)

7.1.1 Out-of-Sample Forecasts

Table 10 reports the results of density forecasts and the root mean squared error of predictions
based on 756 out-of-sample observations. We found the larger finite state models are the
most competitive and therefore do not include results for small dimension models. The 8
and 12 state models that exploit RCOV are all superior to the models that do not according
to log-predictive values. The improvement in the log-predictive likelihood is 30 or more.
Further improvements are found on moving to the Bayesian nonparametric models. The
IHMM-RCOV model is the best over the alternative models.

As for point predictions of return and realized covariance, the results is similar to the
univariate return applications. The proposed joint models improve predictions of RCOVt

but offer no gains for return predictions.
Figure 4 displays the posterior average of active states in both IHMM and IHMM-RCOV

models at each point in the out-of-sample period. It shows that more states are used in the
joint return-RCOV model in order to better capture the dynamics of returns and volatility.

7.2 Foreign Exchange

The data are the exchange rates between U.S. dollar (USD) and 3 currencies (Canadian
dollar (CAD), British pounds (GBP) and Japanese Yen (JPY)). The monthly RCOVt is
computed using daily exchange rates following equation (3). The summary statistics of
monthly returns and RCOVt are found in Table 11. The data range from October 1971 to
December 2013 (508 observations).
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7.2.1 Out of Sample Forecasts

The out-of-sample period is January 1991 to December 2013 (276 observations). Results
are found in Table 12. A bivariate and trivariate example are considered. Once again the
joint models that use RCOV uniformly improve on density forecasts, and generally but not
always, reduce the RSME for RCOVt forecasts. The overall best model according to the
predictive likelihood is the IHMM-RCOV specification. Predictive Bayes factors against any
of the alternatives is substantial.

8 Conclusion

This paper shows how to incorporate ex post measures of volatility with returns to improve
forecasts, parameter and state estimation under a Markov switching assumption. We show
how to build and estimate joint nonlinear factor models. Markov switching can be specified
as fixed and finite or countably infinite. In several empirical applications the new models give
dramatic improvements in density forecasts for returns and forecasts of realized variance.
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9 Appendix

9.1 MS-RV

(1) s1:T
∣∣y1:T , θ, φ, P

The latent state variable s1:T is sampled using the forward filter backward sampler (FFBS)
in Chib (1996). The forward filter part contains the following steps.

i. Set the initial value of filter p(s1 = j
∣∣y1, θ, φ, P ) = πj, for j = 1, . . . , K, where π is the

stationary distribution, which can be computed by solving π = P ⊺π.

ii. Prediction step: p(st
∣∣y1:t−1, θ, φ, P ) ∝∑K

j=1 Pj,st · p(st−1 = j
∣∣y1:t−1, θ, φ, P ).

iii. Update step:

p(st
∣∣y1:t, θ, φ, P ) ∝ f(rt

∣∣µst , σ
2
st
) · g(RVt

∣∣ν + 1, νσ2
st
) · p(st

∣∣y1:t−1, θ, φ, P ),

where f(·) and g(·) denote normal density and inverse gamma density, respectively.

The underlying states are drawn using backward sampler as follows.

i. For t = T , draw sT from p(sT
∣∣y1:T , θ, φ, P ).

ii. For t = T − 1, . . . , 1, draw st from Pst,st+1 · p(st
∣∣y1:t, θ, φ, P ).

Let nj =
∑T

t=1 1(st = j) denotes the number of observations belong to state j.

(2) µj

∣∣r1:T , s1:T , σ2
j for j = 1, . . . , K

µj is sampled using Gibbs sampling for the linear regression model. Given prior µj ∼
N(mj, v

2
j ), µj is sampled from conditional posterior N(mj, vj

2), where

mj =
v2j
∑

st=j rt +mjσ
2
j

σ2
j + njv

2
j

, and vj
2 =

σ2
j v

2
j

σ2
j + njv

2
j

.

(3) σ2
j

∣∣y1:T , µj, ν, s1:T for j = 1, . . . , K
The prior of σ2

j is assumed to be σ2
j ∼ G(v0, s0). The conditional posterior of σ

2
j is given

as follows,

p(σ2
j

∣∣y1:T , µj, ν, s1:T ) ∝
∏

st=j

{
1

σj

exp

[
−(rt − µj)

2

2σ2
j

]
· (νσ2

j )
(ν+1) exp

(
−
νσ2

j

RVt

)}

·(σ2
j )

v0−1 exp
(
−s0σ

2
j

)
.

The conditional posterior of σ2
j is not of any known form, therefore Metropolis-Hasting

algorithm is applied to sample σ2
j . Combining the RV likelihood function and prior provides

the following good proposal density

σ2
j ∼ G

(
nj(ν + 1) + v0, ν

∑

st=j

1

RVt

+ s0

)
.
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(4) ν
∣∣y1:T , {σ2

j}Kj=1, s1:T
The prior of ν is assumed to be ν ∼ IG(a, b). The posterior of ν is given as follows.

p(ν
∣∣y1:T , σ2

st
, s1:T ) ∝

T∏

t=1

{
(νσ2

st
)(ν+1)

Γ(ν + 1)
RV −ν−2

t exp

(
−νσ2

st

RVt

)}
· (ν)−a−1 exp

(
− b

ν

)

and ν is drawn from a random walk proposal with negative draws being rejected.

(5) P
∣∣s1:T

Using conjugate prior for rows of the transition matrix P : Pj ∼ Dir(αj1, · · · , αjK), the
posterior is given by Dir(αj1+mj1, · · · , αjK+mjK), where vector (mj1,mj2, · · · ,mjK) records
the numbers of switches from state j to the other states.

9.2 MS-logRV

Forward filter backward filter is used to sample s1:T . The sampling of P is the same as step
(5) in MS-RV model estimation. The sampling of µj is same as step (2) in MS-RV model
except replacing σ2

j with exp(ζj).
Assuming the prior ζj ∼ N(mζ,j, v

2
ζ,j), the conditional posterior of ζj is given as follows,

p(ζj
∣∣y1:T , µj, δ

2
j , s1:T ) ∝

∏

st=j

{
exp

[
−ζj

2
− (rt − µj)

2

2 exp(ζj)

]
· exp

[
−
(logRVt − ζj +

1
2
δ2j )

2

2δ2j

]}

· exp
[
−(ζj −mζj)

2

2v2ζ,j

]

Metropolis-Hasting algorithm is applied to sample ζj. The proposal density is based on a
Gaussian approximation, so that ζj ∼ N(µ∗∗

j , σ∗2
j ) where

µ∗

j =
v2ζ,j
∑

st=j log(RVt) +
1
2
njv

2
ζδ

2
j + δ2jmζ,j

njv
2
ζ,j + δ2j

, σ∗2
j =

δ2j v
2
ζ,j

njv
2
ζ,j + δ2j

,

µ∗∗

j = µ∗ +
1

2
σ∗2

[∑

st=j

(rt − µj)
2 exp(−µ∗)− nj

]
.

Using conjugate prior δ2j ∼ IG(v0, s0), the posterior density of δ2j is given by

p(δ2j
∣∣y1:T , µj, σ

2
j ) ∝

∏

st=j

{
1

δj
exp

[
−
(logRVt − ζj +

1
2
δ2j )

2

2δ2j

]}

· δ−v0−1
j exp

(
−s0

δ2j

)

A Metropolis-Hasting step is used to sample δj with the following proposal

δ2j ∼ IG

(
nj

2
+ v0,

∑
st=j (logRVt − ζj)

2

2
+ s0

)
.
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9.3 MS-RAV

The sampling step of s1:T , {µj}Kj=1 and P are same as in MS-RV model estimation. {σj}Kj=1

and ν are sampled as follows. With the prior σ2
j ∼ G(v0, s0) the conditional posterior of σ2

j

is,

p(σ2
j

∣∣y1:T , µj, ν, s1:T ) ∝
∏

st=j

{
1

σj

exp

[
−(rt − µj)

2

2σ2
j

]
· σ2ν

j exp

[
−
(

σjΓ(ν)

Γ(ν − 1
2
)

)2
1

RAV 2
t

]}

·(σ2
j )

v0−1 exp
(
−s0σ

2
j

)

The proposal distribution as a random walk.
Given ν ∼ IG(a, b) the posterior of ν is given as follows,

p(ν
∣∣RAV1:T , {σ2

j}Kj=1, s1:T ) ∝
T∏

t=1

{[
σjΓ(ν)

Γ(ν − 1
2
)

]2ν
RAV −2ν−1

t

Γ(ν)
exp

[
−
(

σjΓ(ν)

Γ(ν − 1
2
)

)2
1

RAV 2
t

]}

·ν−a−1 exp

(
b

ν

)

A random walk proposal is used to sample ν and negative values are rejected.

9.4 MS-logRAV

The estimation of MS-logRAV model is very similar to that of MS-logRV model except
changing the return variance exp(ζst) to exp(2ζst).

9.5 MMS-RCOV

See steps (1) and (5) in Section 9.1 for the sampling of s1:T and P .
Given conjugate prior Mj ∼ N(Gj, Vj), the posterior density of Mj is given by

Mj

∣∣R1:T , s1:T ,Σj ∼ N(M,V ), where

V =
(
Σ−1

j nj + V −1
j

)
−1

, M = V

(
Σ−1

j

∑

st=j

Rt +GjV
−1
j

)
.

The prior of Σj is assumed to be Σj ∼ W(Ψ, τ). The conditional posterior of Σj is given as
follows,

p(Σj

∣∣Y1:T ,Mj, ν, s1:T ) ∝
∏

st=j

{
|Σj|−

1
2 exp

[
−1

2
(Rt −Mj)

⊺Σ−1
j (Rt −Mj)

]}

·
∏

st=j

{
|Σj|

ν
2 |RCOVt|−

ν+d+1
2 exp

[
−1

2
tr(ΣjRCOV −1

t )

]}

·|Σj|
τ−d−1

2 exp

[
−1

2
tr(Ψ−1Σj)

]
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A Metropolis-Hasting algorithm is applied to sample Σj with proposal distribution

Σj ∼ W



[
(ν − 1− d)

∑

st=j

RCOV −1
t +Ψ−1

]
−1

, njν + τ


 .

Assuming prior of ν ∼ G(a, b), the posterior density of ν is given as follows,

p(ν
∣∣Y1:T ,Mst ,Σst , S) ∝

T∏

t=1

{ |Σst(ν − d− 1)| ν2
2

νd
2 Γ(ν

2
)

|RCOVt|−
ν+d+1

2

· exp
[
−1

2
tr
(
(ν − d− 1)ΣstRCOV −1

t

)]}
· νa−1 exp(−bν)

from which a random walk proposal is used to sample ν.

9.6 IHMM-RV

In the following if there are K active states (at least one observation is assigned to a
state) then we keep track of the following truncated parameters: Γ = (γ1, . . . , γK , γ

r
K+1),

Pj = (Pj,1, . . . , Pj,K , P
r
j,K+1) for j = 1, . . . , K. The terms γr

K+1 and P r
j,K+1 are residual prob-

ability terms that ensure the probability sums to one but are otherwise unused. Similarly
we keep track of θ = (θ1, . . . , θK). Each of these vectors/matrix will expand or shrink as K
changes each iteration. In addition, define C = (c1, . . . , cK) and the K×K matrix A, which
will be used in sampling Γ and η. Several estimation steps are based on Maheu & Yang
(2015) and Song (2014).

(1) u1:T

∣∣s1:T ,Γ, P
Draw u1 ∼ Uniform(0, γs1) and draw ut ∼ Uniform(0, Pst−1,st) for t = 2, . . . , T .

(2) Adjust the number of states K

i. Check if max{P r
1,K+1, · · · , P r

K,K+1} > min{u1:T}. If yes, expand the number of clusters
by making the following adjustments (ii) - (vi), otherwise, move to step (3).

ii. Set K = K + 1.

iii. Draw uβ ∼ Beta(1, η), set γK = uβγ
r
K and the new residual probability equals to

γr
K+1 = (1− uβ)γ

r
K .

iv. For j = 1, · · · , K, draw uβ ∼ Beta(γK , γK+1), set Pj,K = uβP
r
j,K and P r

j,K+1 = (1 −
uβ)P

r
j,K . Add an additional row to transition matrix P . PK+1 ∼ Dir(αγ1, · · · , αγK).

v. Expand the parameter θ by one element by drawing µK+1 ∼ N(m, v2) and σ2
K+1 ∼

IG(v0, s0).

vi. Go back to step(i.).
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(3) s1:T |y1:T , u1:T , θ, φ, P,Γ
In this step, the latent state variable is sampled using the forward filter backward sampler

(Chib 1996). The forward filter part contains the following steps:

i. Set the initial value of filter p(st = j
∣∣y1, u1, θ, φ, P ) = 1(u0 < γj) and normalize it.

ii. Prediction step:

p(st
∣∣y1:t−1, u1:t−1, θ, φ, P ) ∝

K∑

j=1

1(ut < Pj,st) · p(st−1 = j
∣∣y1:t−1, u1:t−1, θ, φ, P ).

iii. Update step:

p(st
∣∣y1:t, u1:t, θ, φ, P ) ∝ f(rt

∣∣µj, σ
2
j ) · g(RVt

∣∣ν + 1, νσ2
j ) · p(st

∣∣y1:t−1, u1:t−1, θ, φ, P ).

The underlying states are drawn using backward sampler as follows.

i. For t = T , draw sT from p(sT
∣∣y1:T , u1:T , θ, φ, P ).

ii. For t = T − 1, · · · , 1, draw st from 1(ut < Pj,st+1) · p(st
∣∣y1:t, u1:t, P, θ, φ).

Then we count the number of active clusters and remove inactive states by making following
adjustments.

i. Calculate the number of active states (denoted by L). If L < K, remove the inactive
states and relabel states from 1 to L.

ii. Adjust the order of state-dependent parameters µ, σ2 and Γ according to the adjusted
state s1:T .

iii. Set K = L. Recalculate the residual probabilities of Γr
K+1 for j = 1, · · · , K. Then set

the values of parameter µj, σ
2
j and γj, to be zero for j > K.

(4) Γ
∣∣s1:T , η, α

i. Let nj,i denotes the number of state moves from state j to i. Calculate nj,i for i =
1, · · · , K and j = 1, · · · , K.

ii. For i = 1, · · · , K and j = 1, · · · , K, if nj,i > 0, then for l = 1, · · · , nj,i, draw xl ∼
Bernoulli( αγi

l−1+αγi
). If xl = 1, set Aj,i = Aj,i + 1.

iii. Draw Γ ∼ Dir(c1, . . . , cK , η), where ci =
∑K

j=1 Aji.

(5) P
∣∣s1:T ,Γ, α

For j = 1, · · ·K, draw Pj ∼ Dir(αγ1 + nj,1, · · · , αγk + nj,K , αγ
r
K+1).

(6) θ
∣∣y1:T , s1:T , ν
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See the step (2) and step (3) in Appendix 9.1. for the estimation of state-dependent
parameters µj, σ

2
j , for j = 1, . . . , K.

(7) ν
∣∣y1:T , s1:T , {σ2

j}Kj=1, ν

Same as the step (4) in Appendix 9.1.

(8) η
∣∣s1:T ,Γ, α

Recompute C following step (4) and define ν and λ, where ν ∼ Bernoulli(
∑K

i=1 ci∑K
i=1 ci+η

) and

λ ∼ Beta(η + 1,
∑K

i=1 ci). Then draw a new value of η ∼ G(a1 +K − ν, b1 − log(λ)).

(9) α
∣∣s1:T , C

Define ν ′

j, λ
′

j, for j = 1, · · · , K, where ν ′

j ∼ Bernoulli(
∑K

i=1 nj,i
∑K

i=1 nj,i+α
) and λ′

j ∼ Beta(α +

1,
∑K

i=1 nj,i). Then draw α ∼ G(a2 +
∑K

j=1 cj −
∑K

j=1 ν
′

j, b2 −
∑K

j=1 log(λ
′

j)).

9.7 IHMM-logRV and IHMM-logRAV

See step (1) - (5), (8) and (9) in Appendix 9.6 for the sampling of the auxiliary variable
u1:T , latent state variable s1:T , Γ, transition matrix P , DP concentration parameter η and α.
The sampling of θ = {µj, ζj, δ

2
j}∞j=1 in IHMM-logRV are same as the MS-logRV model, see

Appendix 9.3. The posterior sampling for the IHMM-logRAV model can be done similarly.

9.8 IHMM-RCOV

See step (1) - (5), (8) and (9) in Appendix 9.6 for the sampling of u1:T , s1:T , Γ, P , η and
α. The sampling of θ = {Mj,Σj}∞j=1 and ν are same as in the MS-RCOV model, see section
9.5.
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Table 1: Prior Specifications of Univariate Return Models

Panel A: Priors for MS and Joint MS Models

Model µst σ2
st

ν δ2st Pj

MS N(0, 1) IG(2, v̂ar(rt)) - Dir(1, . . . , 1)

MS-RV N(0, 1) G(RVt, 1) IG(2, 1) Dir(1, . . . , 1)

MS-RAV N(0, 1) G(RVt, 1) IG(2, 1) Dir(1, . . . , 1)

MS-logRV N(0, 1) N(log(RVt), 5) - IG(2, 0.5) Dir(1, . . . , 1)

MS-logRAV N(0, 1) N(log(RAVt), 5) - IG(2, 0.5) Dir(1, . . . , 1)

Panel B: Priors for IHMM and Joint IHMM Models

Model µst σ2
st

ν δ2st η α

IHMM N(0, 1) IG(2, v̂ar(rt)) - - G(1, 4) G(1, 4)

IHMM-RV N(0, 1) G(RVt, 1) IG(2, 1) - G(1, 4) G(1, 4)

IHMM-logRV N(0, 1) N(log(RVt), 5) - IG(2, 0.5) G(1, 4) G(1, 4)

IHMM-logRAV N(0, 1) N(log(RAVt), 5) - IG(2, 0.5) G(1, 4) G(1, 4)

v̂ar(rt) is the sample variance, RVt, log(RVt) and log(RAVt) are the sample means. All are computed using
in-sample data.

Table 2: Summary Statistics for Monthly Equity Returns and Volatility Measures

Data Mean Median Stdev Skewness Kurtosis Min Max

rt 0.047 0.097 0.612 -0.539 9.123 -4.154 3.884

RVt 0.328 0.156 0.621 6.853 68.499 0.010 8.580

RAVt 0.470 0.394 0.287 2.807 14.358 0.103 2.747

log(RVt) -1.720 -1.856 0.964 0.714 3.992 -4.608 2.149

log(RAVt) -0.882 -0.931 0.476 0.682 3.869 -2.274 1.010

This table reports the summary statistics for monthly returns and various ex post proxies of
volatility. See the text for definitions. The sample period is from March 1885 to December
2013 and the number of observations is 1542. (Note: Market closed between July 1914 and
December 1914 due to World War I).
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Table 3: Equity Forecasts: 1951-2013

No. of States Models Log-predicitive Likelihoods RMSE[rt+1] RMSE[RVt+1]

2 States

MS -548.409 0.5268 0.5285

MS-RV -535.003 0.5242* 0.5338

MS-logRV -534.914 0.5276 0.5229

MS-RAV -533.370* 0.5263 0.5263

MS-logRAV -534.256 0.5269 0.5199*

3 States

MS -538.437 0.5244* 0.5240

MS-RV -523.000* 0.5290 0.5070

MS-logRV -524.754 0.5286 0.5087

MS-RAV -523.171 0.5276 0.5032*

MS-logRAV -525.353 0.5283 0.5048

4 States

MS -535.454 0.5232* 0.5193

MS-RV -520.363* 0.5273 0.5029

MS-logRV -528.631 0.5284 0.4902*

MS-RAV -527.708 0.5277 0.4976

MS-logRAV -530.697 0.5290 0.4920

-

IHMM -535.165 0.5229 0.5348

IHMM-RV -514.662 0.5216 0.4724

IHMM-logRV -516.643 0.5228 0.4647

IHMM-logRAV -517.148 0.5244 0.4775

This table reports the sum of 1-period ahead log-predictive likelihoods of return∑T

j=t+1
log(p(rj |y1:j−1,Model)), root mean squared error for return and realized variance

predictions over period from Jan 1951 to Dec 2013 (756 observations).
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Table 4: Equity Forecasts: 1984-2013

No. of States Models Log-Predictive Likelihoods RMSE[rt+1] RMSE[RVt+1]

2 States

MS -300.019 0.5542 0.6863

MS-RV -293.311 0.5512* 0.7130

MS-logRV -291.794 0.5563 0.6938*

MS-RAV -290.353* 0.5543 0.7050

MS-logRAV -290.709 0.5553 0.6968

3 States

MS -294.914 0.5522* 0.6817

MS-RV -283.877 0.5570 0.6794

MS-logRV -284.135 0.5568 0.6781

MS-RAV -281.126* 0.5556 0.6764*

MS-logRAV -282.150 0.5561 0.6772

4 States

MS -292.397 0.5506* 0.6755

MS-RV -281.211* 0.5553 0.6749

MS-logRV -285.383 0.5570 0.6564*

MS-RAV -282.523 0.5559 0.6696

MS-logRAV -284.563 0.5580 0.6614

-

IHMM -291.091 0.5529 0.7002

IHMM-RV -279.504 0.5475 0.6344

IHMM-logRV -281.344 0.5503 0.6209

IHMM-logRAV -280.019 0.5529 0.6434

This table reports the sum of 1-period ahead log-predictive likelihoods of return∑T

j=t+1
log(p(rj |y1:j−1,Model)), root mean squared error for return and realized variance

predictions over period from Jan 1984 to Dec 2013 (360 observations).
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Table 5: Estimates for Stock Market Returns

MS MS-RV MS-RAV
Parameter Mean Stdev Mean Stdev Mean Stdev

µ1
-0.2995

0.1104
-0.0840

0.0354
-0.1372

0.0445
(-0.528, -0.089) (-0.159, -0.020) (-0.229, -0.050)

µ2
0.0875

0.0140
0.1224

0.0139
0.1130

0.0125
(0.060, 0.116) (0.096, 0.149) (0.089, 0.138)

σ2
1

1.6127
0.2630

0.5633
0.0486

0.6581
0.0394

(1.191, 2.217) (0.481, 0.678) (0.597, 0.748)

σ2
2

0.2187
0.0115

0.1556
0.0049

0.1460
0.0044

(0.196, 0.241) (0.143, 0.171) (0.138, 0.154)

ν - -
1.3431

0.0824
2.1529

0.0758
(1.183, 1.501) (2.009, 2.316)

P1,1
0.8775

0.0396
0.9023

0.0193
0.8716

0.0210
(0.793, 0.943) (0.862, 0.937) (0.828, 0.910)

P2,2
0.9849

0.0058
0.9442

0.0099
0.9538

0.0083
(0.972, 0.994) (0.924, 0.962) (0.937, 0.969)

This table reports the posterior mean, standard deviation and 0.95 density intervals (values in
brackets) of parameters of selected 2 state models. The prior restriction µ1 < 0 and µ2 > 0 is
imposed. The sample period is from March 1885 to December 2013 (1542 observations).

Table 6: Summary Statistics of CAD/USD Rate and ex-post Volatility Measures

Data Mean Median Stdev Skewness Kurtosis Min Max

rt -0.018 0.000 1.840 -0.669 10.485 -13.780 8.555

RVt 3.299 1.610 6.272 7.336 76.883 0.032 80.301

log(RVt) 0.436 0.476 1.239 -0.089 3.153 -3.442 4.386

RAVt 1.476 1.233 0.998 2.339 12.654 0.174 8.962

log(RAVt) 0.200 0.209 0.621 -0.110 3.202 -1.751 2.193

This table reports the summary statistics for monthly CAD/USD percent log-differences
and various ex post proxies of volatility. See the text for definitions. The sample period is
from Jan 1971 to December 2013 (518 observations).
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Table 7: CAD/USD Forecasts

No. of States Models Log-Predictive Likelihoods RMSE[rt+1] RMSE[RVt+1]

3 States

MS -610.836 2.2475* 7.8459

MS-RV -595.066 2.2528 7.5441

MS-logRV -593.358* 2.2515 7.4586*

MS-RAV -603.318 2.2510 7.6179

MS-logRAV -598.427 2.2528 7.5262

4 States

MS -612.228 2.2431 7.9947

MS-RV -593.145 2.2539 7.5243

MS-logRV -590.109* 2.2583 7.2245*

MS-RAV -596.065 2.2580 7.4700

MS-logRAV -596.698 2.2612 7.3397

-

IHMM -603.772 2.2695 7.7002

IHMM-RV -586.815 2.2580* 7.2399

IHMM-logRV -585.591 2.2646 7.4938

IHMM-logRAV -590.079 2.2702 7.1122

This table summarizes the sum of 1-period ahead log predictive likelihoods of CAD/USD rate∑T

j=t+1
log(p(rj |y1:j−1,Model)), root mean squared errors of mean and variance prediction of

CAD/USD rates over period from Jan 1991 to Dec 2013 (276 observations).

Table 8: Prior Specification of Multivariate Models

Panel A: Priors for Multivariate MS Models

Model Mst Σst ν Pj

MS N(0, 5I) IW(Ĉov(Rt), 5) - Dir(1, . . . , 1)

MS-RCOV N(0, 5I) W(1
3
RCOVt, 3) G(20, 1)1ν>4 Dir(1, . . . , 1)

Panel B: Priors for Multivariate IHMM Models

Model Mst Σst ν η α

IHMM N(0, 5I) IW(Ĉov(Rt), 5) - G(1, 4) G(1, 4)

IHMM-RCOV N(0, 5I) W(1
3
RCOVt, 3) G(20, 1)1ν>4 G(1, 4) G(1, 4)

0 denotes zero vector, I is the identity matrix. Ĉov(Rt), and RCOVt are computed using in sample
data.
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Table 9: Summary Statistics of Returns (IBM, XOM, GE)

Panel A: Summary of Returns

Data Mean Median St. Dev Skewness Kurtosis Min Max

IBM 0.134 0.135 0.824 -0.192 5.169 -3.644 3.635

XOM 0.116 0.096 0.707 -0.152 6.942 -3.930 3.773

GE 0.103 0.088 0.940 -0.324 7.755 -5.265 5.336

Panel B: Return Covariance and RCOV mean

Covariance of Return Average of RCOV

Data IBM XOM GE IBM XOM GE

IBM 0.678 0.236 0.411 0.742 0.250 0.370

XOM 0.236 0.500 0.338 0.250 0.641 0.394

GE 0.411 0.338 0.882 0.370 0.394 0.970

The panel A of above table reports the summary statistics of the monthly return of IBM,
XOM and GE. The reported data are annualized values after scaling the raw returns by
12. The panel B reports the covariance matrix calculated from monthly return vectors and
the averaged RCOV matrix, which are calculated using daily returns. The sample period is
from Jan 1926 to Dec 2013 (1056 observations).

Table 10: Multivariate Equity Forecasts

No. of States Models Log Predictive Likelihoods ||RMSE(Rt+1)|| ||RMSE(RCOVt+1)||

8 States
MS -2294.571 1.2843 2.4230

MS-RCOV -2264.490* 1.2857 2.2049*

12 States
MS -2315.345 1.2849* 2.4979

MS-RCOV -2270.969* 1.2856 2.2320*

-
IHMM -2274.063 1.2877 2.3651

IHMM-RCOV -2262.383 1.2873* 2.1956

This table summarizes the sum of 1 month log predictive likelihoods of return,
∑T

j=t+1
log(p(Rj |y1:j−1,Model)),

root mean squared errors of mean and covariance prediction over Jan 1951 to Dec 2013 (totally 756 predictions),
when the models are applied to analyze IBM, XOM, GE jointly. The root mean squared errors provided in

this table are matrix norms. ||A|| =
√∑

i

∑
j a

2
ij .
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Table 11: Summary Statistics of Foreign Exchange Rates (CAD/USD, GBP/USD,
JPY/USD)

Panel A: Summary of Foreign Exchange Rates

Currency Mean Median St. Dev Skewness Kurtosis Min Max

CAD/USD -0.009 0.000 1.847 -0.661 10.492 -13.780 8.555

GBP/USD -0.077 -0.002 2.928 -0.230 4.914 -13.055 13.599

JPY/USD 0.231 0.034 3.229 0.425 4.711 -10.358 15.844

Panel B: Return Covariance and RCOV mean

Covariance of Return Average of RCOV

Currency CAD/USD GBP/USD JPY/USD CAD/USD GBP/USD JPY/USD

CAD/USD 3.402 1.538 0.280 3.341 1.467 0.130

GBP/USD 1.538 8.558 3.481 1.467 7.550 2.665

JPY/USD 0.280 3.481 10.407 0.130 2.665 9.015

Panel A reports the summary statistics of three exchange rates (CAD/USD, GDP/USD and
JPY/USD). The data are converted to percentage values by scaling 100. Panel B reports the co-
variance matrix calculated from monthly return vectors and the averaged RCOV matrix, which are
calculated using daily returns. The sample period is from Oct 1971 to Dec 2013 (508 observations).
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Table 12: Multivariate Foreign Exchange Forecasts

2 Assets Case: CAD/USD and GBP/USD

No. of States Models Log Predictive Likelihoods ||RMSE(Rt+1)|| ||RMSE(RCOVt+1)||

4 States
MS -1257.766 3.5184 13.4125*

MS-RCOV -1249.800* 3.5184* 13.8117

8 States
MS -1265.918 3.5180 13.7968

MS-RCOV -1235.374* 3.5346 13.2523*

-
IHMM -1250.196 3.5294* 13.0182

IHMM-RCOV -1222.628 3.5394 12.8453

3 Assets Case: CAD/USD, GBP/USD and JPY/USD

No. of States Models Log Predictive Likelihoods ||RMSE(Rt+1)|| ||RMSE(RCOVt+1)||

8 States
MS -1974.365 4.7122* 19.4322

MS-RCOV -1961.890* 4.7213 19.0318*

12 States
MS -1974.229 4.7125* 19.6424

MS-RCOV -1963.540* 4.7167 18.9910*

-
IHMM -1973.906 4.7152 18.8065

IHMM-RCOV -1938.815 4.7060 18.8146

This table summarizes the sum of 1 month log predictive likelihoods of return
∑T

j=t+1
log(p(Rj |y1:j−1,Model)),

root mean squared errors of return and covariance prediction over Jan 1991 to Dec 2013 (276 predictions). The

root mean squared errors provided in this table are matrix norms. ||A|| =
√∑

i

∑
j a

2
ij .
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Figure 1: The top panel shows log (p(rt+1|y1:t,MS-RV))− log (p(rt+1|y1:t,MS)) over Jan 1984
to Dec 2013. The second panel plots the cumulative log-predictive likelihood difference. The
final two panels are the time series plots of monthly U.S. equity returns and realized variance.
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Figure 3: Smoothed Probability of High Return State
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Figure 4: Number of Active Clusters: IHMM and IHMM-RCOV Models
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