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Abstract

In spatial econometrics, it is customary to specify a weighting matrix, the so-called W matrix,

by choosing one matrix from a finite set of matrices. The decision is extremely important because,

if the W matrix is misspecified, the estimates are likely to be biased and inconsistent. However,

the procedure to select W is not well defined and, usually, it reflects the judgments of the user.

In this paper, we revise the literature looking for criteria to help with this problem. Also, a new

nonparametric procedure is introduced. Our proposal is based on a measure of the information,

conditional entropy. We compare these alternatives by means of a Monte Carlo experiment.

1 Introduction

The weighting matrix is an ever-present topic in spatial econometrics, probably reflecting the great

influence of the time series literature, where a collection of temporal lags is needed to build dynamic

models. The principles of causation and of temporal precedence allow us to specify parsimonious

time series models. However, the situation is more complicated in space, where the relations are

multidirectional. This is the purpose of the weighting matrix, W , namely measuring the strength of

interaction between the spatial units. However, the solution is not inmediate. Paelinck (1979, p.20)

points to an identification problem which is evident in the following simple interdependent specifications

with three different spatial units, i, j and k.
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1Corresponding author: Department of Economic Analysis, University of Zaragoza. Gran Via 2-4 (50005). Zaragoza

(Spain).
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yi = αijyj + αikyk + xiβ + εi

yj = αjiyi + αjkyk + xjβ + εj

yk = αkiyi + αkjyj + xkβ + εk

εi; εj ; εk ∼ N
(

0; σ2
)























(1)

yl is the response variable in region l; {l = i, j, k}, x is an exogenous variable and {αrs; r, s = i, j, k}

and β are unknown parameters. In terms of Lesage and Pace (2009, p.8), this unrestricted spatial

autoregressive process:“would be of little practical usefulness since it would result in a system with

many more parameters than observations. The solution to the over-parametrization problem that arises

when we allow each dependence relation to have relation-specific parameters is to impose structure on

the spatial dependence parameters”. The parameterization procedure is, in fact, the way prefered in

the applied literature

Formally, for a georeferenced spatial sample of size N , W is a square (N × N) matrix, whose

diagonal elements are all zero and the off-diagonal elements are, usually, nonnegative:

W =





























0 w1,2 · · · w1,j · · · w1,N

w2,1 0 · · · w2,j · · · w2,N

...
...

. . . · · · · · · · · ·

wi,1 wi,2

... 0 · · · wi,N

...
...

...
...

. . . · · ·

wN,1 wN,2

... wN,j

... 0





























, (2)

The terms wij are called the spatial weights. According to Kapoor et al. (2007), the spatial matrix

should be uniformly bounded in absolute value (which means that max1≤j≤N

∑N
i=1 |wij | < c < ∞ and

max1≤i≤N

∑N
j=1 |wij | < c < ∞). Benjanuvatra (2012), in order to avoid cases of isolation, adds the

restriction that the row sums are uniformly bounded away from zero min1≤j≤N

∑N
i=1 |wij | > 0. It is

typical to row-standardize the matrix before being used in the model.

As said previously, the weight matrix is associated to the interaction among the spatial units in a

spatial model. If the agents interact between themselves, if they are dispersed over the space and if the

space is divided in regions, then is reasonable to find spatial interaction between the regions. W is a

simple and intuitive way to create spatial lags of the variables: spatial dependence results from lags of

the endogenous variable and spillover effects from lags of the exogenous variables. A different problem

is the real meaning of these terms that, very often, conceal misspecification errors of a different nature

(McMillen, 2003, Kelejian and Robinson, 2004)

In general terms, we agree with the necessity of using a W matrix in connection to a spatial model.

Then, according to Haining (2003, p.74) the next step for quantifying the spatial dependence in a data

set is “(...) is to define for any set of points or area objects the spatial relationships that exist between

them”. Now we are in another stage of the discussion: how this matrix is specified? Roughly speaking,

we may distinguish three different approaches to the problem of building a W matrix:

(i) Specifying the matrix exogenously;

(ii) Specifying the matrix from the data;
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(iii) Estimating the matrix from the data.

The exogenous approach is by far the most popular among researchers, and it is based on a prior

judgement concerning the geographical structure of the spatial observational units or some other

relevant characteristic of the data. Examples of this approach are well known, such as, for example,

the binary contiguity criterion, the m-nearest neighbours, the great circle distance criterion, kernel

functions based on the distance between centroids, etc. All these examples imply a prior knowledge

about the true data generating process “that we often do not possess in practice” as indicated by

Gibbons and Overman (2012, p. 177).

The second approach takes into consideration both the topology of the space and the nature of

the data being modelled. Examples of this mixed approach are numerous after the pionering works

of Bodson and Peeters (1975), Kooijman (1976) and Openshaw (1977). We may cite, for example,

the more recent works of Getis and Aldstadt (2004), the AMOEBA procedure of Aldstadt and Getis

(2006), the spatial filtering technique of Tiefelsdorf and Griffith (2007), the general maximum entropy

(GME) procedure of Fernández et al (2009) or the complete correlation coefficient (CCC) criteria of

Mur and Paelinck (2011). In all these cases, there is some kind of feed back between prior knowledge

and evidence obtained from the data.

The third category includes the direct estimation of the weight matrix from the data and the

model being built. This is a complex problem because of the large amount of parameters that need

to be estimated (of order N2 depending on the restrictions assumed). Bhattacharjee and Jensen-

Butler (2006) and Beenstock et al. (2010) tackle this problem in a panel data framework, whereas

Benjanuvatra (2012) remains in a pure cross-section, using a slightly more parameterized approach.

Other proposals to construct weight matrices based on non-geographical criteria can be consulted in

Autant-Bernard and LeSage (2011), Basile et al. (2012), Frenken et al. (2010), Maggioni et al. (2007),

Mora and Moreno, (2010), and Ponds et al. (2007).

It is clear that current practice related to the building of W is heterogeneous. These practices

covers a wide sprectrum ranging from the suggestions of Corrado and Fingleton (2012) of improving

the content of the cells of the W matrix by adding real economic information, to the other extreme, as

in Stakhovych and Bijmolt (2008), who seem to advocate for a plain, simple binary W matrix. Bavaud

(1998, p.153) insists in the difficulties: “there is no such thing as ‘true’, ‘universal’ spatial weights,

optimal in all situations; in fact, the weighting matrix must reflect the properties of the particular

phenomena, properties which are bound to differ from field to field”. This sentence can be intrepreted

as an invitation to empicism and data mining which is not in the spirit of the discussion.

Given this situation of heterogeneity and great uncertainty, we think that it would be interesting

to be guided by some criteria in choosing the most adequate specification. Our impression is that, in

the end, this is a problem of model selection: different weighting matrices result in different spatial

lags of the endogenous or the exogenous variables included in the right hand side of the equation; so

that they entail choice among different models.

Section 2 continues with a revision of the techniques of model selection that seem to fit better

into our problem. We present our own non-parametric procedure in Section 3. Section 4 discusses a

large Monte Carlo experiment in which we compare the small sample behavior of the most promising

techniques. Section 5 concludes summarizing the most interesting results of our work.

3



2 Selecting a Weighting Matrix

The model of equation (2) can be written in matrix form:

y = Γy + xβ + ε, (3)

where y and ε are (n × 1) vectors, x is a (n × k) matrix, β is a (k × 1) vector of parameters and Γ is

a (n × n) matrix of interaction coefficients. The model is underidentified and a common solution to

achieve identification consists in introducing some structure in the matrix Γ. This means to impose

restrictions on the spatial interaction coefficients as, for example: Γ = ρW , where ρ is a parameter and

W is a matrix of weights. The term yW = Wy that appears on the right hand side of the equation is

one spatial lag of the endogenous variable. It is worth highlighting a couple of questions:

(i) The weighting matrix can be constructed in different ways using different interaction hypothesis.

Each hypothesis results in a different weighting matrix and in a different spatial lag. In conclusion,

different weighting matrices means different models containing different variables.

(ii) There are general guidelines about specifying a weighting matrix. For example: nearness,

accessibility, influence, etc. However, it will be difficult to say which of these general principles

would be better. The problem is clearly dominated by uncertainty.

Corrado and Fingleton (2011) discuss the construction of a weighting matrix from a theoretical

perspective (they are worried, for example, about the information that the weights of a weighting

matrix should contain). We prefer to focus on the statistical treatment of such uncertainty.

Let us assume that we have a set of N linearly independent weighting matrices, Υ =

{W1; W2; . . . ; WN }. Usually N corresponds to a small number of different competing matrices but

in some cases this number may be quite large, reflecting a situation of great uncertainty. For instance,

each matrix generates a different spatial lag and a different spatial model.

We might find several proposals in the literature. Anselin (1984) provides the appropriate Cox-

statistic for the case of:

H0 : y = ρ1W1y + x1β1 + ε1

HA : y = ρ2W2y + x2β2 + ε2

}

, (4)

that Leenders (2002) converts into the J-test using an augmented regression like the following:

y = (1 − α) [ρ1W1y + x1β1] + α
[

ρ̂2W2y + x2β̂2

]

+ ν, (5)

being ρ̂2 and β̂2 the corresponding maximum-likelihood estimates (ML from now on) of the respective

parameters on a separate estimation of the model of HA. Leenders shows that the J-test can be

extended to the comparison of a null model against N different models. Kelejian (2008) maintains the

approach of Leenders in a SARAR framework, which requires GMM estimators:

y = ρiWiy + xiβi + ui = Ziγi + ui, (6)

ui = λiMiui + vi,
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with i = 1, 2, ...., N , Zi = (Wiy, xi) and γi = (ρi, β) . The J-test for selecting a weighting matrix

corresponds to the case where xi = x; Wi = Mi but Wi 6= Wj . In order to obtain the test, we need

the estimation of an augmented regression, similar to that of (5):

y(λ̂) = S(λ̂)η + ε, (7)

where S(λ̂) =
[

Z(λ̂), F
]

, Z(λ) = (I − λW ) Z (the same for y(λ̂)), being λ̂ the estimate of λ for

the model of the null. Moreover F = [Z1γ̂1, Z2γ̂2, . . . , ZN γ̂N , W1Z1γ̂1, W2Z2γ̂2, . . . , WN ZN γ̂N ]. The

equation of (7) can be estimated by 2SLS using a matrix of instruments: Ŝ =
[

Ẑ(λ̂), F̂
]

, where

F̂ = PF (similar for Z(λ̂)) with P = H (H ′H)−1
H and H =

[

x, Wx, W 2x
]

. Under the null that, for

example, model 0 is correct and the 2SLS estimate of η is asymptotically normal:

η̂ ∼ N

[

η0; σ2
ǫ

(

Ŝ′Ŝ
)−1

]

, (8)

where η0 = [γ′; 0]. The J-test checks that the last 2N parameters of vector η are zero. Define δ̂ = Aη̂

where A is a 2N × (k + 1 + 2N) matrix corresponding to the null hypothesis: H0 : Aη = 0, then the

J-test can be formulated as a Wald statistic:

δ̂′V̂ −1δ̂ ∼ χ2(2N), (9)

being V̂ the estimated sample covariance of δ̂.

Burridge and Fingleton (2010) show that the asymptotic Chi-square distribution can be a poor

approximation. They advocate for a bootstrap resampling procedure that appears to improve both

the size and the power of the J-test. There, remains implementation problems related to the use of

consistent estimates for the parameters of (6) in the corresponding augmented regression. Kelejian

(2008) proposes to construct the test using GMM-type estimators and Burridge (2011) suggests a

mixture between GMM and likelihood-based moment conditions which controls more effectively the

size of the test. Piras and Lozano (2010) present new evidence on the use of the J-test that relates the

power of the test to a wise selection of the instruments.

The problem of model selection has been often treated, very successfully, from a Bayesian

perspective (Leamer, 1978); this also includes the case of selecting a weight matrix in a spatial model

by Hepple (1985a, b). The Bayesian approach, although highly demanding in terms of information,

is appealing and powerful (Lesage and Pace, 2009). The same as the J-test, the starting point is a

finite set of alternative models, M = {M1; M2; . . . ; MN }. The specification of each model coincides

(regressors, structure of dependence, etc.) but not for the spatial weighting matrix. Denote by θ

the vector of k parameters. Then, the joint probability of the set of N models, k parameters and n

observations corresponds to:

p (M, θ, y) = π (M) π (θ| M) L (y| θ, M) , (10)

where π (M) refers to the priors of the models, usually π (M) = 1/N ; π (θ| M) reflects the priors of the

vector of conditional parameters to the model and L (y| θ, M) is the likelihood of the data conditioned

on the parameters and models. Using the Bayes’ rule:
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p (M, θ|y) =
p (M, θ, y)

p (y)
=

π (M) π (θ| M) L (y| θ, M)
p (y)

. (11)

The posterior probability of the models, conditioned to the data, results from the integration of

(11) over the parameter vector θ:

p (M |y) =
ˆ

p (M, θ|y) dθ. (12)

This is the measure of probability needed in order to compare different weighting matrices. Lesage

and Pace (2009) discuss the case of a Gaussian SAR model:

y = ρiWiy + Xiβi + εi

εi ∼ i.i.d.N (0; σ2
ǫ )

}

, (13)

The log-marginal likelihood of (10) is:

p (M |y) =
ˆ

πβ

(

β| σ2
)

πσ

(

σ2
)

πρ (ρ) L (y| θ, M) dβdσ2dρ. (14)

They assume independence between the priors assigned to β and σ2, Normal-Inverse-Gamma

conjugate priors, and that for ρ, a Beta(d, d) distribution. The calculations are not simple and, finally,

“we must rely on univariate numerical integration over the parameter ρ to convert this (expression 14)

to the scalar expression necessary to calculate p (M |Y ) needed for model comparison purposes” (Lesage

and Pace, 2009, p 172). The SEM case is solved in Lesage and Parent (2007); to our knowledge, the

SARAR model of (6) remains still unsolved.

Model selection techniques may also have a role in this problem, specially if we have any preference

for any weighting matrix. In other words, we are not considering the idea of a null hypothesis. There

is a huge literature on model selection for nested and non-nested models with different purposes

and criteria. In our case, we are looking for the most appropriate weighting matrix for the data.

We consider that the Kullback-Leibler information criterion might be a good measure. Apart from

Kullback-Leibler criterion, we can use the Akaike information criterion which is simple to obtain.

This criterion assures a balance between fit and parsimony (Akaike, 1974). The expression of Akaike

criterion is very well-known:

AICi = −2L
(

θ̂; y
)

+ q(k), (15)

being L
(

θ̂; y
)

the log-likelihood of the model at the maximum-likelihood estimates, θ̂, and q(k) a

penalty function that depends on the number of unknown parameters. Usually, the penalty function

is simply equal to q(k) = 2k. The decision rule is to select the model, weighting matrix in our case,

that produces the lowest AIC.

Recently Hansen (2007) introduced another perspective to the problem of model selection, which

tries to reflect the confidence of the practitioner in the different alternatives. In general, the selection

criteria that minimize the mean-square estimation error achieve a good balance between bias, due

to misspecification errors, and variance due to parameter estimation. The optimal criterion would

select the estimator with the lowest risk. This is what happens with the Bayesian concept of posterior
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probability, which combines prior with sampling information to select the best model; also with the

selection criteria as, for example, the AIC or the SBIC statistics. The procedure of the J-test is a

classical decision problem solved using only sampling information, with the purpose of minimizing the

type II error and assuring a given type I error.

Expressed in another way, given our collection of weighting matrices W = {W1; W2; . . . ; WN }, all

of which are referred to the same spatial model, the purpose is to select the matrix Wn. This matrix

combines with the other terms of the model produces a vector of estimates, θ̂n(Wn), which minimizes

the risk. Hansen (2007) shows that further reductions in the mean-squared error can be attained by

averaging across estimators. The averaging estimator for θ is:

θ̂(W ) =
N

∑

n=1

̟nθ̂n(Wn). (16)

As stated by Hansen and Racine (2010), the collection of weights, {̟n; n = 1, 2, ..., N} should be

non-negative and linked on the unit simplex of RN;
N

∑

n=1

̟n = 1.

Subsequently, these weights ̟n can be used to compare the adjustment of each model (W matrix)

with respect to the data.

3 A Non-Parametric Proposal for Selecting a Weighting

Matrix

This section presents a new non-parametric procedure for selecting a weighting matrix. The selection

criterion is based on the idea that the most adequate matrix should produce more information with

respect to the variables that we are trying to relate. The measure of information is a reformulation of

the traditional entropy index in terms of what is called symbolic entropy, and it does not depend on

judgments of the user.

As explained in Matilla and Ruiz (2008), the procedure implies, first, transforming the series into

a sequence of symbols which should capture all of the relevant information. Then we translate the

inference to the space of symbols using appropriate techniques.

Beginning with the symbolization process, assuming that {xs}s∈S and {ys}s∈S are two spatial

processes, where S is a set of locations in space. Denoted by Γl = {σ1, σ2, . . . , σl} the set of symbols

defined by the practitioner; σi, for i = 1, 2, . . . , l, is a symbol. Symbolizing a process is defining a map

f : {xs}s∈S → Γl, (17)

such that each element xs is associated to a single symbol f (xs) = σis
with is ∈ {1, 2, . . . , l}. We say

that location s ∈ S is of the σi − type, relative to the series {xs}s∈S , if and only if f(xs) = σis
. We

call f the symbolization map. The same procedure can be followed for a second series {ys}s∈S .

Denoted by {Zs}s∈S a bivariate process as:

Zs = {xs, ys} . (18)
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For this case, we define the set of symbols Ωl as the direct product of the two sets Γl, that is, Ω2
l = Γl×Γl

whose elements are the form ηij =
(

σx
i , σy

j

)

. The symbolization function of the bivariate process would

be

g : {Zs}s∈S → Ω2
l = Γl × Γl, (19)

defined by

g (Zs = (xs, ys)) = (f (xs) , f (ys)) = ηij =
(

σx
i , σy

j

)

. (20)

We say that s is ηij − type for Z = (x, y) if and only if s is σx
i − type for x and σy

j − type for y.

In the following, we are going to use a simple symbolization function f . Let Mx
e be the median of

the univariate spatial process {xs}s∈S and define an indicator function

τs =

{

1 if xs ≥ Mx
e

0 otherwise
. (21)

Let m ≥ 2 be the embedding dimension; this is a parameter defined by the practitioner. For each

s ∈ S, let Ns be the set formed by the (m − 1) neighbours of s. We use the term m − surrounding to

denote the set formed by each s and Ns, such that m − surrounding of xm (s) =
(

xs, xs1
, . . . , xsm−1

)

.

Let us define another indicator function for each si ∈ Ns:

ιssi
=

{

0 if τs 6= τsi

1 otherwise
. (22)

Finally, we have a symbolization map for the spatial process {xs}s∈S as f : {xs}s∈S → Γm:

f (xs) =
m−1
∑

i=1

ιssi
, (23)

where Γm = {0, 1, . . . , m − 1}. The cardinality of Γm is equal to m.

Let us introduce some fundamental definitions:

Definition 1: The Shannon entropy, h (x), of a discrete random variable x is: h (x) =

−
n

∑

i=1

p (xi) ln (p (xi)).

Definition 2: The entropy h (x, y) of a pair of discrete random variables (x, y) with joint distribution

p (x, y) is: h (x, y) = −
∑

x

∑

y
p (x, y) ln (p (x, y)).

Definition 3: Conditional entropy h (x|y) with distribution p (x, y) is defined as: h (x|y) =

−
∑

x

∑

y
p (x, y) ln (p (x|y)).

The last index, h (x|y), is the entropy of x that remains when y has been observed.

These entropy measures can be easily adapted to the empirical distribution of the symbols. Once

the series have been symbolized, for a embedding dimension m ≥ 2, we can calculate the absolute and

relative frequency of the collections of symbols σx
is

∈ Γl and σy
js

∈ Γl.

The absolute frequency of symbol σx
i is:

nσx
i

= # {s ∈ S|s is σx
i − type for x} . (24)
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Similarly, for series {ys}s∈S , the absolute frequency of symbol σy
j is:

nσy

j
= #

{

s ∈ S|s is σy
j − type for y

}

. (25)

Next, the relative frequencies can also be estimated:

p (σx
i ) ≡ pσx

i
=

# {s ∈ S|s is σx
i − type for x}

|S|
=

nσx
i

|S|
, (26)

p
(

σy
j

)

≡ pσy

j
=

#
{

s ∈ S|s is σy
j − type for y

}

|S|
=

nσy

j

|S|
, (27)

where |S| denotes the cardinal of set S; in general |S| = N .

Similarly, we calculate the relative frequency for ηij ∈ Ω2
l :

p (ηij) ≡ pηij
=

# {s ∈ S|s is ηij − type}

|S|
=

nηij

|S|
. (28)

Finally, the symbolic entropy for the two − dimensional spatial series {Zs}s∈S is:

hZ (m) = −
∑

η∈Ω2
m

p (η) ln (p (η)) . (29)

We can obtain the marginal symbolic entropies as

hx (m) = −
∑

σx∈Γm

p (σx) ln (p (σx)) , (30)

hy (m) = −
∑

σy∈Γm

p (σy) ln (p (σy)) . (31)

In turn(tern), we can obtain the symbolic entropy of y, conditioned by the occurrence of symbol

σx in x as:

hy|σx (m) = −
∑

σy∈Γm

p (σy|σx) ln (p (σy|σx)) . (32)

We can also estimate the conditional symbolic entropy of ys given xs:

hy|x (m) =
∑

σx∈Γm

p (σx) hy|σx (m) . (33)

Let us move to the problem of choosing a weighting matrix for the relationship between the variables

x and y. This selection will be made from among a finite set of relevant weighting matrices. Denoted

by W (x, y) = {W| ∈ J } this set of matrices, where J is a set of index. We refer to W (x, y) as the

spatial-dependence structure set between x and y.

Denoted by K a subset of Γm, the space of symbols, and let W ∈ W (x, y) be a member of the set

of matrices. We can define

Kx
W = {σx ∈ K|σx is admissible for Wx} , (34)

9



where admissible indicates that the probability of symbol occurrence is positive.

By Γx
m we denote the set of symbols which are admissible for {xs}s∈S . Let W0 ∈ W (x, y) be the

most informative weighting matrix for the relationship between x and y. Given the spatial process

{ys}s∈S , there is a subset K ⊆ Γm such that p
(

Kx
W0

|σy
)

> p (K∗x
W |σy) for all K∗ ⊆ Γm, W ∈

W (x, y) \ {W0} and σy ∈ Γy
m. Then

hW0x|y (m) = −
∑

σy∈Γy

p (σy)





∑

σx∈Kx
Wo

p (σx|σy) ln (p (σx|σy))



 (35)

≤ −
∑

σy∈Γy

pσy





∑

σx∈K∗x
W

p (σx|σy) ln (p (σx|σy))



 = hW x|y (m) .

In this way, we have proved the following theorem.

Theorem 1: Let {xs}s∈S and {ys}s∈S two spatial processes. For a fixed embedding dimension

m ≥ 2, with m ∈ N, if the most important weighting matrix that reveals the spatial-dependence

structure between x and y is W0 ∈ W (x, y) then

hW0x|y (m) = min
W ∈W(x,y)

{

hW x|y (m)
}

. (36)

Given the Theorem 1 and using the following property: hW x|y ≤ hW x, we propose the following

criterion for selecting between different matrices:

pseudo − R2 = 1 − hW x|y(m)/hW x(m).

The selection of the matrix is made using the highest value of pseudo − R2.

4 The Monte Carlo Experiment

In this section, we generate a large number of samples from different data generation process (D.G.P.) to

study the performance of different proposals: J-test, Bayesian approach, averaging estimator (Racine-

Hansen) and conditional symbolic entropy.

Our major interest is to detect the weighting matrix more informative between different alternatives.

For this, we have an unique explanatory variable x, the same in all models. But the D.G.P. uses different

spatial structures, that is W = Wi, where i is the matrix for the i − th alternative model.

Each experiment starts by obtaining a random map in a hypothetical two-dimensional space. This

irregular map is reflected on the corresponding normalized W matrix. In the first case, W is based

on a matrix of 1s and 0s denoting contiguous and non-contiguous regions, respectively. Afterward, we

normalize the W matrix so that the sum of each row is equal to 1.

The following global parameters are involved in the D.G.P.:
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N ∈ {400, 700, 1000} , k ∈ {4, 5, 7} , (37)

where N is the sample size and k is the number of neighbors for each observation. The number of

replications is equal 1,000.

In the cases of binary matrices, we use the following:

• W4 = 4 − nearest − neighbors

• W5 = 5 − nearest − neighbors

• W7 = 7 − nearest − neighbors

where W7 contains W5 matrix and W5 contains W4 matrix, before the standardization.

In the first case, linearity, we control the relationship between variables using the expected coefficient

of determination (R2
y/x) based on a specification like this:

y = βx + θWx + ε. (38)

Under equation (38), the expected coefficient of determination between the variables is equal to

(assuming an unit variance of x and in ε as well as incorrelation between the two variables):

R2
y/x =

β2 +
(

θ2

/m−1
)

β2 +
(

θ2

/m−1
)

+ 1

We have considered different values for this coefficient:

R2
y/x ∈ {0.4; 0.6; 0.8} (39)

For simplicity, in all cases we maintain β = 0.5. The spatial lag parameter of x, θ, is obtained by

deduction: θ =
√

(1−m)(β2(1−R2)−R2)
1−R2 .

Having defined the values of the parameters involved in the simulation, we can present the different

processes used in the analysis.

DGP1: Linear

y = βx + θWx + ε (40)

DGP2: Non-linear

y = 1/(βx+θW x+ε)2 (41)

In all cases: x ∼ N (0, 1) , ε ∼ N (0, 1) and Cov (x, ε) = 0.

Results

The performance of Hansen-Racine, Bayesian, J-test and Entropy for the nested models are presented

in Tables 1-9 . When the process is linear, Table 1, the selection made by criteria of Hansen-Racine

11



and Bayesian is near to 100%, in almost all situations. The behavior of J-test has results that exceed

85% of correct selection in almost all cases (Table 2).

To the Conditional Entropy, we apply the following rule to select the embedding dimension m:

m2 ·5 ≈ N . That is, on average, each symbol should have an expected frequency closed to 5. Therefore,

we use for nested models m = 8 for all cases because contain W7, W5 and W4. Due to this rule, the

minimum sample size is 400. For the linear process, Entropy does not make a good selection in

comparison to the other criteria.

Table 1: DGP1: Linear Process. Nested Models

Criterion Hansen-Racine Bayesian

Matrices W4 W5 W7 W4 W5 W7

N R
2 % Select % Select % Select % Select % Select % Select

0.4 100.0 98.9 99.6 100.0 99.3 99.4

N = 400 0.6 100.0 100.0 100.0 100.0 100.0 100.0

0.8 100.0 100.0 100.0 100.0 100.0 100.0

0.4 100.0 100.0 100.0 100.0 100.0 100.0

N = 700 0.6 100.0 100.0 100.0 100.0 100.0 100.0

0.8 100.0 100.0 100.0 100.0 100.0 100.0

0.4 100.0 100.0 100.0 100.0 100.0 100.0

N = 1000 0.6 100.0 100.0 100.0 100.0 100.0 100.0

0.8 100.0 100.0 100.0 100.0 100.0 100.0

Note: % Select is the number of times that each W is selected correctly. Replications: 1000.

Table 2: DGP1: Linear Process. Nested Models

Criterion J-test Entropy

Matrices W4 W5 W7 W4 W5 W7

N R
2 % Select % Select % Select % Select % Select % Select

0.4 89.5 88.7 88.5 15.8 23.8 88.9

N = 400 0.6 87.8 85.3 87.7 43.5 46.6 92.4

0.8 89.9 86.2 88.0 86.3 83.1 98.1

0.4 87.4 87.4 89.2 21.5 31.2 91.4

N = 700 0.6 89.1 85.2 87.1 63.7 62.7 96.2

0.8 91.0 86.8 87.4 96.4 94.1 99.3

0.4 88.4 86.6 89.5 27.5 34.5 91.4

N = 1000 0.6 90.6 87.8 90.5 74.6 70.1 96.5

0.8 87.8 86.2 89.6 99.4 97.5 99.6

Note: % Select is the number of times that each W is selected correctly. Replications: 1000.

When the non-linearity is incremented, DGP2, there is no criterion that provides adequate

information about the genuine generating process. In the case of DGP2, the percentage of correct

selection of the matrix using Entropy is higher than the other criteria in most cases.
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Table 3: DGP2: Non-Linear Process. Nested Models

Criterion Hansen-Racine Bayesian

Matrices W4 W5 W7 W4 W5 W7

N R
2 % Select % Select % Select % Select % Select % Select

0.4 40.6 23.3 36.2 34.9 24.2 29.3

N = 400 0.6 40.7 26.8 38.7 30.1 23.1 28.2

0.8 44.9 32.5 44.3 29.2 23.1 28.2

0.4 39.3 25.1 33.1 35.2 22.5 32.3

N = 700 0.6 41.4 26.9 38.8 33.4 21.6 29.7

0.8 46.7 33.1 43.2 29.9 21.1 27.6

0.4 37.7 22.6 33.9 31.5 24.4 31.9

N = 1000 0.6 42.6 26.5 36.4 33.0 21.5 28.3

0.8 43.2 30.9 42.0 33.0 22.4 29.5

Note: % Select is the number of times that each W is selected correctly. Replications: 1000.

Table 4: DGP2: Non-Linear Process. Nested Models

Criterion J-test Entropy

Matrices W4 W5 W7 W4 W5 W7

N R
2 % Select % Select % Select % Select % Select % Select

0.4 0.4 0.0 0.2 6.2 14.9 90.8

N = 400 0.6 0.3 0.1 0.3 15.5 27.6 92.7

0.8 0.2 0.0 0.1 37.4 41.0 95.2

0.4 0.4 0.2 0.4 11.1 20.2 91.9

N = 700 0.6 0.1 0.0 0.0 29.2 35.2 93.6

0.8 0.1 0.0 0.3 57.6 58.2 96.8

0.4 0.7 0.0 0.4 12.2 22.9 92.6

N = 1000 0.6 0.4 0.0 0.0 40.1 42.7 94.2

0.8 0.4 0.1 0.3 76.5 72.5 98.4

Note: % Select is the number of times that each W is selected correctly. Replications: 1000.

5 Conclusions

The paper shows a collection of criteria to select the spatial weighting matrix. Our point of view is

that the problem of selecting a weighting matrix is a problem of model selection. In fact, different

weighting matrices result in different spatial lags of endogenous or exogenous variables included in the

model. This is the direction that we explored in the present paper as an alternative way to deal with

the uncertainty of specifying the spatial weighting matrix.

Generally speaking, among the different criteria that we have presented, the Bayesian criterion is

the most stable under linear and weak non-linear conditions. The J-test, considered as an important

tool to select spatial models, is not adequate in most situations.

Our Conditional Entropy criterion has two advantages: simplicity and good behavior under non-

linear processes. In this criterion, it is not necessary any specification. The only assumption is that

there is a spatial structure that links the variables under analysis. In previous revised methods we need
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to assume linearity, correct specification, normality in some cases, and further adequate estimation of

parameters.

For future research agenda, we will explore the behavior of these criteria for spatial dynamic models

and misspecified models.
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