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Abstract

Variance estimation is central to many questions in finance and economics. Until
now ex-post variance estimation has been based on infill asymptotic assumptions that
exploit high-frequency data. This paper offers a new exact finite sample approach to
estimating ex-post variance using Bayesian nonparametric methods. In contrast to the
classical counterpart, the proposed method exploits pooling over high-frequency obser-
vations with similar variances. Bayesian nonparametric variance estimators under no
noise, heteroskedastic and serially correlated microstructure noise are introduced and
discussed. Monte Carlo simulation results show that the proposed approach can in-
crease the accuracy of variance estimation. Applications to equity data and comparison
with realized variance and realized kernel estimators are included.
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1 Introduction

This paper introduces a new method of estimating ex-post volatility from high-frequency
data using a Bayesian nonparametric model. The proposed method allows the data to
cluster under a flexible framework. In contrast to existing classical estimation methods, it
delivers an exact finite sample distribution for the ex-post variance or transformations of the
variance. Bayesian nonparametric variance estimators under no noise, heteroskedastic and
serially correlated microstructure noise are proposed.

Volatility is an indispensable quantity in finance and is a key input into asset pricing,
risk management and portfolio management. In the last two decades, researchers have taken
advantage of high-frequency data to estimate ex-post variance using intraperiod returns.
Barndorff-Nielsen & Shephard (2002) and Andersen et al. (2003) formalized the idea of using
high frequency data to measure the volatility of lower frequency returns. They show that
realized variance (RV) is a consistent estimator of quadratic variation under ideal conditions.
Unlike parametric models of volatility in which the model specification is important, RV is
a model free estimate of quadratic variation in that it is valid under a wide range of spot
volatility dynamics.1

RV provides an accurate measure of ex-post variance if there is no market microstructure
noise. However, observed prices at high-frequency are inevitably contaminated by noise in
reality and returns are no longer uncorrelated. In this case, RV is a biased and inconsistent
estimator (Hansen & Lunde 2006, Aı̈t-Sahalia et al. 2011). The impact of market microstruc-
ture noise on forecasting is explored in Aı̈t-Sahalia & Mancini (2008) and Andersen et al.
(2011).

Several different approaches have been proposed to estimating ex-post variance under
microstructure noise. Zhou (1996) first introduced the idea of using a kernel-based method
to estimate ex-post variance. Barndorff-Nielsen et al. (2008) formally discussed the real-
ized kernel and showed how to use it in practice in a later paper (Barndorff-Nielsen et al.
(2009)). Another approach is the subsampling method of Zhang et al. (2005). Hansen et al.
(2008) showed how a time-series model can be used to filter out market microstructure to
obtain corrected estimates of ex-post variance. A robust version of the predictive density of
integrated volatility is derived in Corradi et al. (2009). Although bootstrap refinements are
explored in Goncalves & Meddahi (2009) all distributional results from this literature rely
on in-fill asymptotics.

Our Bayesian approach introduces a new concept to this problem, pooling. The existing
ex-post variance estimators treat the information on variance from all intraperiod returns
independently. However, the variance of intraperiod returns may be the same at different
time periods. Pooling observations with common variance level may be beneficial to daily
variance estimation.

We model intraperiod returns according to a Dirichlet process mixture (DPM) model.
This is a countably infinite mixture of distributions which facilitates the clustering of return
observations into distinct groups sharing the same variance parameter. The DPM model be-
came popular for density estimation following the introduction of Markov chain Monte Carlo

1For a good survey of the key concepts see Andersen & Benzoni (2008), for an in-depth treatment see
Aı̈t-Sahalia & Jacod (2014).
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(MCMC) techniques by Escobar & West (1994). Estimation of these models is now standard
with several alternatives available, see Neal (2000) and Kalli et al. (2011). Our proposed
method benefits variance estimation in at least three aspects. First, the common values of
intraperiod variance can be pooled into the same group leading to a more precise estimate.
The pooling is done endogenously along with estimation of other model parameters. Second,
the Bayesian nonparametric model delivers exact finite inference regarding ex-post variance
or transformations such as the logarithm. As such, uncertainty around the estimate of ex-
post volatility is readily available from the predictive density. Unlike the existing asymptotic
theory which may give confidence intervals that contain negative values for variance, density
intervals are always on the positive real line and can accommodate asymmetry.

By extending key results in Hansen et al. (2008) we adapt the DPM mixture models to
deal with returns contaminated with heteroskedastic noise and serially correlated noise.

Monte Carlo simulation results show the Bayesian approach to be a very competitive
alternative. Overall, pooling can lead to more precise estimates of ex-post variance and better
coverage frequencies. We show that the new variance estimators can be used with confidence
and effectively recover both the average statistical features of daily ex-post variance as well as
the time-series properties. Two applications to real world data with comparison to realized
variance and kernel-based estimators are included.

This paper is organized as follows. In section 2, we provide a brief review of some existing
variance estimators which serve as the benchmarks for later comparison. The Bayesian non-
parametric model, daily variance estimator and model estimation methods are discussed in
Section 3. Section 4 extends the Bayesian nonparametric model to deal with heteroskedastic
and serially correlated microstructure noise. Section 5 provides an extensive simulation and
comparison of the estimators. Applications to IBM and Disney data are found in Section 6.
Section 7 concludes followed by an appendix.

2 Existing Ex-post Volatility Estimation

2.1 Realized Variance

Realized variance (RV), which equals the summation of squared intraperiod returns, is the
most commonly used ex-post volatility measurement. Andersen et al. (2003) and Barndorff-
Nielsen & Shephard (2002) formally studied the properties of RV and show it is a consistent
estimator of quadratic variation under no microstructure noise. We will focus on variance
estimation over a day t but all of the papers results apply to other time intervals.

Under the assumption of frictionless market and semimartingle, considering the following
log-price diffusion,

dp(t) = µ(t) dt+ σ(t) dW (t), (1)

where p(t) denotes the log-price at time t, µ(t) is the drift term, σ2(t) is the spot variance
and W (t) a standard Brownian motion. If the price process contains no jump, the variation
of the return over t− 1 to t is measured by IVt,

IVt =

∫ t

t−1

σ2(τ)dτ. (2)
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Let rt,i denotes the i
th intraday return on day t, i = 1, . . . , nt, where nt is the number of

intraday returns on day t. Realized variance is defined as

RVt =
nt∑

i=1

r2t,i, (3)

and RVt
p−→ IVt, as nt → ∞ (Andersen, Bollerslev, Diebold & Labys 2001).

Barndorff-Nielsen & Shephard (2002) derive the asymptotic distribution of RVt as

√
nt

1√
2IQt

(RVt − IVt)
d−→ N(0, 1), as nt → ∞, (4)

where IQt stands for the integrated quarticity, which can be estimated by realized quarticity
(RQt) defined as

RQt =
nt

3

nt∑

i=1

r4t,i
p−→ IQt, as nt → ∞. (5)

2.1.1 Flat-top Realized Kernel

If returns are contaminated with microstructure noise, RVt will be biased and inconsistent
(Zhang et al. 2005, Hansen & Lunde 2006, Bandi & Russell 2008). The observed log-price
p̃t,i, is assumed to follow

p̃t,i = pt,i + ǫt,i, (6)

where pt,i is the true but latent log-price and ǫt,i is a noise term which is independent of the
price.

Barndorff-Nielsen et al. (2008) introduced the flat-top realized kernel (RKF
t ), which is

the optimal estimator if the microstructure error is a white noise process2.

RKF
t =

nt∑

i=1

r̃2t,i +
H∑

h=1

k

(
h− 1

H

)
(γ−h + γh), γh =

nt∑

i=1

r̃t,ir̃t,i−h, (7)

where H is the bandwidth, k(x) is a kernel weight function.
The preferred kernel function is the second order Tukey-Hanning kernel3 and the preferred

bandwidth is H∗ = cξ
√
nt, where ξ

2 = ω2/
√
IQt denotes the noise-to-signal ratio. ω

2 stands
for the variance of microstructure noise and can be estimated by RVt/(2nt) by Bandi &
Russell (2008). RVt based on 10-minute returns is less sensitive to microstructure noise and
can be used as a proxy of

√
IQt. c = 5.74 given Tukey-Hanning kernel of order 2.

Given the Tukey-Hanning kernel and H∗ = cξ
√
nt, Barndorff-Nielsen et al. (2008) show

that the asymptotic distribution of RKF
t is

n
1/4
t

(
RKF

t − IVt
) d−→ MN

{
0, 4IQ

3/4
t ω

(
ck0,0• + 2c−1k1,1•

IVt√
IQt

+ c−3k2,2•

)}
, (8)

2Another popular approach to dealing with noise is subsampling. See Zhang et al. (2005), Aı̈t-Sahalia &
Mancini (2008) for the Two Scales Realized Volatility (TSRV) estimator.

3Tukey-Hanning kernel with order 2: k(x) = sin2
[
π
2 (1− x)2

]
.
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where MN is mixture of normal distribution, k0,0• = 0.219, k1,1• = 1.71 and k2,2• = 41.7 for
second order Tukey-Hanning kernel.

Even though ω2 can be estimated using RVt/(2nt), a better and less biased estimator
suggested by Barndorff-Nielsen et al. (2008) is

ω̌2 = exp
[
log(ω̂2)−RKt/RVt

]
. (9)

The estimation of IQt is more sensitive to the microstructure noise. The tri-power quar-
ticity (TPQt) developed by Barndorff-Nielsen & Shephard (2006) can be used to estimate
IQt,

TPQt = ntµ
−3
4/3

nt−2∑

i=1

|r̃t,i|4/3|r̃t,i+1|4/3|r̃t,i+2|4/3, (10)

where µ4/3 = 22/3Γ(7/6)/Γ(1/2). Replacing IVt, ω
2 and IQt with RKF

t , ω̌
2 and TPQt in

equation (8), the asymptotic variance of RKF
t can be calculated.

2.1.2 Non-negative Realized Kernel

The flat-top realized kernel discussed in previous subsection is based on the assumption that
error term is white noise. However, the white noise assumption is restrictive and error term
can be serial dependent or dependent with returns in reality. Another drawback of the RKF

t

is that it may provide negative volatility estimates, all be it very rarely. Barndorff-Nielsen
et al. (2011) further introduced the non-negative realized kernel (RKN

t ) which is more robust
to these assumptions of error term and is calculated as

RKN
t =

H∑

h=−H

k

(
h

H + 1

)
γh, γh =

nt∑

i=|h|+1

r̃t,ir̃t,i−|h|. (11)

The optimal choice of H is H∗ = cξ4/5n
3/5
t and the preferred kernel weight function is

the Parzen kernel4, which implies c = 3.5134. ξ2 can be estimated using the same method
as in the calculation of RKF

t .
Barndorff-Nielsen et al. (2011) show the asymptotic distribution of RKN

t based on H∗ =

cξ4/5n
3/5
t is given by

n
1/5
t

(
RKN

t − IVt
) d−→ MN(κ, 4κ2), (12)

where κ = κ0(IQtω)
2/5, κ0 = 0.97 for Parzen kernel function, ω and IQt can be estimated

using equation (9) and (10).
Note that RKN

t is no longer a consistent estimator of IVt and the rate of convergence is
slower than that of RKF

t . If the error term is white noise, RKF
t is superior to RKN

t , but
RKN

t is more robust to deviations from independent noise and is always positive.

4Parzen kernel function:

k(x) =





1− 6x2 + 6x3, 0 ≤ x ≤ 1/2

2(1− x)3, 1/2 < x ≤ 1

0, x > 1
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3 Bayesian Nonparametric Ex-post Variance Estima-

tion

In this section, we introduce a Bayesian nonparametric ex-post volatility estimator. After
defining the daily variance, conditional on the data, the discussion moves to the DPM model
which provides the model framework of the proposed estimator. The approach discussed in
this section deals with returns without microstructure noise and an estimator suitable for
returns with microstructure noise is found in Section 4.

3.1 Model of High-frequency Returns

First we consider the case with no market microstructure noise. The model for log-returns
is

rt,i = µt + σt,izt,i, zt,i
iid∼ N(0, 1), i = 1, . . . , nt, (13)

where µt is constant in day t. The daily return is

rt =
nt∑

i=1

rt,i (14)

and it follows, conditional on the unknown realized volatility path Ft ≡ {σ2
t,i}nt

i=1, the ex-post
variance is

Vt ≡ Var(rt|Ft) =
nt∑

i=1

σ2
t,i. (15)

In our Bayesian setting Vt is the target to estimate conditional on the data {rt,i}nt

i=1. Note,
that we make no assumptions on the stochastic process generating σ2

t,i.

3.2 A Bayesian Model with Pooling

In this section we discuss a nonparametric prior for the model of (13) that allows for pooling
over common values of σ2

t,i. The Dirichlet process mixture model (DPM) is a Bayesian
nonparametric mixture model that has been used in density estimation and for modeling
unknown hierarchical effects among many other applications. A key advantage of the model
is that it naturally incorporates parameter pooling.

Our nonparametric model has the following hierarchical form

rt,i
∣∣µt, σt,i

iid∼ N(µt, σ
2
t,i), i = 1, . . . , nt, (16)

σ2
t,i

∣∣Gt
iid∼ Gt, (17)

Gt

∣∣G0,t, αt ∼ DP(αt, G0,t), (18)

G0,t(σ
2
t,i) ≡ IG(v0,t, s0,t), (19)

where the base measure is the inverse-gamma distribution denoted as IG(v, s), which has a
mean of (s/v − 1) for v > 1. The return mean µt is assumed to be a constant over i.
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The Dirichlet process was formally introduced by Ferguson (1973) and is a distribution
over distributions. A draw from a DP(αt, G0,t) is an almost surely discrete distribution which
is centered around the base distribution G0,t. Therefore, a sample from σ2

t,i

∣∣Gt ∼ Gt has a
positive probability of repeated values. The concentration parameter αt > 0 governs how
closely a draw Gt resembles G0,t. Larger values of αt lead to Gt having the more unique
atoms with significant weights. As αt → ∞, Gt → G0,t which implies that every rt,i has a
unique σ2

t,i drawn from the inverse-gamma distribution. In this case there is no pooling and
we have a setting very close to the classical counterpart discussed above. However, for finite
αt, pooling can take place. The other extreme is complete pooling for αt → 0 in which there
is one common variance shared by all observations such that σ2

t,i = σ2
t,1, ∀i. Since αt plays an

important role in pooling we place a prior on it and estimate it along with the other model
parameters for each day.

A stick breaking representation (Sethuraman (1994)) of the DPM in (17) is given as
follows.

p(rt,i
∣∣µt,Ψt, wt) =

∞∑

j=1

wt,jN(rt,i|µt, ψ
2
t,j), (20)

wt,j = vt,j

j−1∏

l=1

(1− wt,l), (21)

vt,j
iid∼ Beta(1, αt), (22)

where N(·|·, ·) denotes the density of the normal distribution, Ψt = {ψ2
t,1, ψ

2
t,2. . . . , } is the set

of unique values of σ2
t,i, wt = {wt,1, wt,2, . . . , } and wt,j is the weight associated with the jth

component. This formulation of the model facilitates posterior sampling which is discussed
in the next section.

Since our focus is on intraday returns and the number of observations in a day can be
small, especially for lower frequencies such as 5-minute. Therefore, the prior should be chosen
carefully. It is straightforward to show that the prior predictive distribution of σ2

t,i is G0,t.
For σ2

t,i ∼ IG(v0,t, s0,t), the mean and variance of σ2
t,i are

E(σ2
t,i) =

s0,t
v0,t − 1

and var(σ2
t,i) =

s20,t
(v0,t − 1)2(v0,t − 2)

. (23)

Solving the two equations, the values of v0,t and s0,t are given by

v0,t =

[
E(σ2

t,i)
]2

var(σ2
t,i)

+ 2 and s0,t = E(σ2
t,i)(v0,t − 1). (24)

We use sample statistics v̂ar(rt,i) and v̂ar(r2t,i) calculated with three days intraday returns
(day t−1, day t, and day t+1) to set the values of E(σ2

t,i) and var(σ2
t,i), then use equation (24)

to find v0,t and s0,t. A shrinkage prior N(0, v2) is used for µt since µt is expected to be close to
zero. v2 is small and adjusted according to the data frequency. Finally, αt ∼ Gamma(a, b).

For a finite dataset i = 1, . . . , nt our target is the following posterior moment

E[Vt|{rt,i}nt

i=1] = E

[
nt∑

i=1

σ2
t,i

∣∣∣∣{rt,i}
nt

i=1

]
. (25)
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Note that the posterior mean of Vt can also be considered as the posterior mean of realized
variance, RVt =

∑nt

i=1 r
2
t,i assuming µt is small. As such, RVt treats each σ

2
t,i as separate and

corresponds to no pooling. We discuss estimation of the model next.

3.3 Model Estimation

Estimation relies on Markov chain Monte Carlo (MCMC) techniques. We apply the slice
sampler of Kalli et al. (2011), along with Gibbs sampling to estimate the DPM model. The
slice sampler provides an elegant way to deal with the infinite states in (20). It introduces
an auxiliary variable ut,1:nt

= {ut,1, . . . , ut,nt
} that randomly truncates the state space to a

finite set at each MCMC iteration but marginally delivers draws from the desired posterior.
The joint distribution of rt,i and the auxiliary variable ut,i is given by

f (rt,i, ut,i|wt, µt,Ψt) =
∞∑

j=1

1 (ut,i < wt,j) N
(
rt,i|µt, ψ

2
t,j

)
, (26)

and integrating out ut,i recovers (20).
It is convenient to rewrite the model in terms of a latent state variable st,i ∈ {1, 2, . . . }

that maps each observation to an associated component and parameter σ2
t,i = ψ2

t,st,i
. Ob-

servations with a common state share the same variance parameter. For finite dataset the
number of states (clusters) is finite and ordered from 1, . . . , K. Note that the number of
clusters K, is not a fixed value over the MCMC iterations. A new cluster with variance
ψ2
t,K+1 ∼ G0,t can be created if existing clusters do not fit that observation well and clusters

sharing a similar variance can be merged into one.
The joint posterior is

p(µt)
K∏

j=1

[
p(ψ2

t,j)
]
p(αt)

nt∏

i=1

1(ut,i < wt,st,i)N(rt,i|µt, ψ
2
t,st,i

). (27)

Each MCMC iteration contains the following sampling steps.

1. π
(
µt|rt,1:nt

, {ψ2
t,j}Kj=1, st,1:nt

)
∝ p (µt)

∏nt

i=1 p
(
rt,i
∣∣µt, ψ

2
t,st,i

)
.

2. π
(
ψ2
t,j|rt,1:nt

, st,1:nt
, µt

)
∝ p

(
ψ2
t,j

)∏
t:st,i=j p

(
rt,i
∣∣µt, ψ

2
t,j

)
for j = 1, . . . , K.

3. π (vt,j|st,1:nt
) ∝ Beta (vt,j|at,j, bt,j) with at,j = 1 +

∑nt

i=1 1 (st,i = j) and bt,j = αt +∑nt

i=1 1 (st,i > j) and update wt,j = vt,j
∏

l<j (1− vt,l) for j = 1, . . . , K.

4. π (ut,i|wt,i, st,1:nt
) ∝ 1

(
0 < ut,i < wt,st,i

)
.

5. Find the smallest K such that
∑K

j=1wt,j > 1−min (ut,1:nt
).

6. π
(
st,i|r1:nt

, st,1:nt
, µt, {ψ2

t,j}Kj=1, ut,1:nt
, K
)
∝ ∑K

j=1 1 (ut,i < wt,j) p
(
rt,i, |µt, ψ

2
t,j

)
for i =

1, . . . , nt.

7. π (αt|K) ∝ p (αt) p (K|αt).
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In the first step µt is common to all returns and this is a standard Gibbs step given the
conjugate prior. Step 2 is a standard Gibbs step for each variance parameter ψ2

t,j based on
the data assigned to cluster j. The remaining steps are standard for slice sampling of DPM
models. In 7, αt is sampled based on Escobar & West (1994).

Steps 1-7 give one iteration of the posterior sampler. After dropping a suitable burn-in
amount,M additional samples are collected, {θ(m)}Mm=1, where θ = {µt, ψ

2
t,1, . . . , ψ

2
t,K , st,1:nt

, αt}.
Posterior moments of interest can be estimated from sample averages of the MCMC output.

3.4 Ex-post Variance Estimator

Conditional on the parameter vector θ the estimate of Vt is

E[Vt|θ] =
nt∑

i=1

σ2
t,si
. (28)

The posterior mean of Vt is obtained by integrating out all parameter and distributional
uncertainty. E [Vt|{rt,i}nt

i=1] is estimated as

V̂t =
1

M

M∑

m=1

nt∑

i=1

σ
2(m)
t,i , (29)

where σ
2(m)
t,i = ψ

2(m)

t,s
(m)
t,i

. Similarly other features of the posterior distribution of Vt can be ob-

tained. For instance, a (1-α) probability density interval for Vt is the quantiles of
∑nt

i=1 σ
2
t,st,i

associated with probabilities α/2 and (1 − α/2). Conditional on the model and prior these
are exact finite sample estimates, in contrast to the classical estimator which relies on infill
asymptotics to derived confidence intervals.

If log(Vt) is the quantity of interest, the estimator of E [log(Vt)|{rt,i}nt

i=1] is given as

̂log(Vt) =
1

M

M∑

m=1

log

(
nt∑

i=1

σ
2(m)
t,i

)
. (30)

As before, quantile estimates of the posterior of log(Vt) can be estimated from the MCMC
output.

4 Bayesian Estimator Under Microstructure Error

An early approach to deal with market microstructure noise was to prefilter with a time-series
model (Andersen, Bollerslev, Diebold & Ebens 2001, Bollen & Inder 2002, Maheu &McCurdy
2002). Hansen et al. (2008) shows that prefiltering results in a bias to realized variance
that can be easily corrected. We employ these insights into moving average specifications
to account for noisy high-frequency returns. A significant difference is that we allow for
heteroskedasticity in the noise process.
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4.1 DPM-MA(1) Model

The existence of microstructure noise turns the intraday return process into an autocorrelated
process. First consider the case in which the error is white noise:

p̃t,i = pt,i + ǫt,i, ǫt,i ∼ N(0, ω2
t,i), (31)

where p̃t,i denotes the observed log-price with error, pt,i is the unobserved fundamental log-
price and ω2

t,i is the heteroskedastic noise variance.
Given this structure it can be shown that the returns series r̃t,i = p̃t+1,i− p̃t,i has non-zero

first order autocorrelation but zero higher order autocorrelation. That is cov(r̃t,i+1, r̃t,i) =
−ω2

t,i and cov(r̃t,i+j, r̃t,i) = 0 for j ≥ 2. This suggest a moving average model of order one.
Combining MA(1) parameterization with our Bayesian nonparametric framework yields

the DPM-MA(1) models.

r̃t,i|µt, θt, δ
2
t,i = µt + θtηt,i−1 + ηt,i, ηt,i ∼ N(0, δ2t,i) (32)

δ2t,i|Gt ∼ Gt, (33)

Gt|G0,t, αt ∼ DP(αt, G0,t), (34)

G0,t(δ
2
t,i) ≡ IG(v0,t, s0,t). (35)

The noise terms are heteroskedastic. Note that the mean of rt,i is not a constant term but
a moving average term. The MA parameter θt is constant for i but will change with the
day t. The prior is θt ∼ N(mθ, v

2
θ)1{|θt|<1} in order to make the MA model invertible. The

error term ηt,0 is assumed to be zero. Other model settings remain the same as the DPM
illustrated in Section 3. Later we show how estimates from this specification can be be used
to recover an estimate of the ex-post variance Vt of the true return process.

4.2 DPM-MA(q) Model

For lower sampling frequencies, such as 1 minute or more, first order autocorrelation is
the main effect from market microstructure. As such, the MA(1) model will be sufficient
for many applications. However, at higher sampling frequencies, the dependence may be
stronger. To allow for a more complex effect on returns from the noise process consider the
MA(q-1) noise affecting returns,

p̃t,i = pt,i + ǫt,i − ρ1ǫt,i−1 − · · · − ρq−1ǫt,i−q+1, ǫt,i ∼ N(0, ω2
t,i). (36)

For returns, this leads to the following DPM-MA(q) model,

r̃t,i|µt, {θt,j}qj=1, δ
2
t,i = µt +

q∑

j=1

θt,jηt,i−j + ηt,i, ηt,i ∼ N(0, δ2t,i) (37)

δ2t,i|Gt ∼ Gt, (38)

Gt|G0,t, αt ∼ DP(αt, G0,t), (39)

G0,t(δ
2
t,i) ≡ IG(v0,t, s0,t). (40)

The joint prior of (θt,1, . . . , θt,q) is N(MΘ, VΘ)1{Θ}
5 and (ηt,0, . . . , ηt,−(q−1)) = (0, . . . , 0).

5Restrictions on MA coefficients: all the roots of 1 + θ1B + θ2B
2 + · · ·+ θqB

q = 0 are outside of the unit
circle.
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4.3 Model Estimation

We discuss the estimation of DPM-MA(1) model and the approach can be easily extended to
the DPM-MA(q). The main difference in this model is that the conditional mean parameters
µt and θt require a Metropolis-Hasting (MH) step to sample their conditional posteriors. The
remaining MCMC steps are essentially the same. As before, let ψ2

t,i denote the unique values
of δ2t,j then each MCMC iteration samples from the following conditional distributions.

1. π
(
µt|r̃t,1:nt

, {ψ2
t,j}Kj=1, θt, st,1:nt

)
∝ p (µt)

∏nt

i=1 N
(
r̃t,i|µt + θtηt,i−1, ψ

2
t,st,i

)
.

2. π
(
θt|r̃t,1:nt

, µt, {ψ2
t,j}Kj=1, s

t
1:nt

)
∝ p (θt)

∏nt

i=1 p
(
r̃t,i|µt + θtηt,i−1, ψ

2
t,st,i

)
.

3. π
(
ψ2
t,j|r̃t,1:nt

, µt, θt, st,1:nt

)
∝ p

(
ψ2
t,j

)∏
t:st=j p

(
r̃t,i|µt + θtεt,i−1, ψ

2
t,j

)
for j = 1, . . . , K.

4. π (vt,j|st,1:nt
) ∝ Beta (vt,j|at,j, bt,j) with at,j = 1 +

∑nt

i=1 1(st,i = j) and bt,j = αt +∑nt

i=1 1(st,i > j) and update wt,j = vt,j
∏

l<j(1− vt,l) for j = 1, . . . , K.

5. π (ut,i|wt,i, st,1:nt
) ∝ 1(0 < ut,i < wt,st,i) for i = 1, . . . , nt.

6. Find the smallest K such that
∑K

j=1wt,j > 1−min(ut,1:nt
).

7. π
(
st,i|r̃1:nt

, st,1:nt
, µt, θt, {ψ2

t,j}Kj=1, ut,1:nt
, K
)
∝
∑K

j=1 1(ut,i < wt,j)N(r̃t,i|µt+θtηt,i−1, ψ
2
t,j)

for i = 1, . . . , nt.

8. π(αt|K) ∝ p(αt)p(K|αt).

In steps 1 and 2 the likelihood requires the sequential calculation of the lagged error as
ηt,i−1 = r̃t,i−1 −µt − θtηt,i−2 which precludes a Gibbs sampling step. Therefore, µt and θt are
sampled using a MH with a random walk proposal. The proposal is calibrated to achieve an
acceptance rate between 0.3 and 0.5.

4.4 Ex-post Variance Estimator under Microstructure Error

Hansen et al. (2008) showed that prefiltering with an MA model results in a bias in the RV
estimator.6 In the Appendix it is shown that the Hansen et al. (2008) bias correction provides
an accurate adjustment to our Bayesian estimator in the context of heteroskedastic noise.
From the DPM-MA(1) model the posterior mean of Vt under independent microstructure
error is

V̂t,MA(1) =
1

M

M∑

m=1

(1 + θ
(m)
t )2

nt∑

i=1

δ
2(m)
t,i , (41)

where δ
2(m)
t,i = ψ

2(m)

t,s
(m)
t,i

The log of Vt, square-root of Vt and density intervals can be estimated

as the Bayesian nonparametric ex-post variance estimator without microstructure error.

6If r̃t = θ1ηt−1 + · · ·+ θqηt−q+1 + ηt, then under their assumptions the bias corrected estimate of ex-post

variance is RVMAq = (1 + θ1 + · · ·+ θq)
2

nt∑
i=1

η̂2i , where η̂i denotes a fitted residual.
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In the case of higher autocorrelation the DPM-MA(q) model adjusted posterior estimate
of Vt is

V̂t,MA(q) =
1

M

M∑

m=1

(
1 +

q∑

j=1

θ
(m)
t,j

)2 nt∑

i=1

δ
2(m)
t,i . (42)

Next we consider simulation evidence on these estimators.

5 Simulation Results

5.1 Data Generating Process

We consider four commonly used data generating processes (DGPs) in the literature. The
first one is the GARCH(1,1) diffusion, introduced by Andersen & Bollerslev (1998). The
log-price follows

dp(t) = µdt+ σ(t)dWp(t), (43)

dσ2(t) = α(β − σ2(t))dt+ γσ2(t)dWσ(t). (44)

where Wp(t) and Wσ(t) are two independent Wiener processes. The values of parameters
follow Andersen & Bollerslev (1998) and are µ = 0.03, α = 0.035, β = 0.636 and γ = 0.144,
which were estimated using foreign exchange data.

Following Huang & Tauchen (2005), the second and third DGP are a one factor stochastic
volatility diffusion (SV1F) and one factor stochastic volatility diffusion with jumps (SV1FJ).
SV1F is given by

dp(t) = µdt+ exp (β0 + β1v(t)) dWp(t), (45)

dv(t) = αv(t)dt+ dWv(t) (46)

and the process for SV1FJ is

dp(t) = µdt+ exp (β0 + β1v(t)) dWp(t) + dJ(t) , (47)

dv(t) = αv(t)dt+ dWv(t), (48)

where corr(dWp(t), dWv(t)) = ρ, and J(t) is a Poisson process with jump intensity λ and
jump size δ ∼ N(0, σ2

J). We adopt the parameter settings from Huang & Tauchen (2005)
and set µ = 0.03, β0 = 0.0, β1 = 0.125, α = −0.1, ρ = −0.62, λ = 0.014 and σ2

J = 0.5.
The final DGP is the two factor stochastic volatility diffusion (SV2F) from Chernov et al.

(2003) and Huang & Tauchen (2005).7

dp(t) = µdt+ s- exp (β0 + β1v1(t) + β2v2(t)) dWp(t), (49)

dv1(t) = α1v1(t)dt+ dWv1(t), (50)

dv2(t) = α2v2(t)dt+ (1 + ψv2(t)) dWv2(t), (51)

7The function s- exp is defined as s- exp(x) = exp(x) if x ≤ x0 and s- exp(x) = exp(x0)√
x0

√
x0 − x2

0 + x2 if

x > x0, with x0 = log(1.5).
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where corr(dWp(t), dWv1(t)) = ρ1 and corr(dWp(t), dWv2(t)) = ρ2. The parameter values in
SV2F are µ = 0.03, β0 = −1.2, β1 = 0.04, β2 = 1.5, α1 = −0.00137, α2 = −1.386, ψ = 0.25
and ρ1 = ρ2 = −0.3, which are from Huang & Tauchen (2005).

Data is simulated using a basic Euler discretization at 1-second frequency for the four
DGPs. Assuming the length of daily trading time is 6.5 hours (23400 seconds), we first
simulate the log price level every second. After this we compute the 5-minute, 1-minute,
30-second and 10-second intraday returns by taking the difference every 300, 60, 30, 10
steps, respectively. The initial volatility level, such as v1t and v2t in SV2F, at day t is set
equal to the last volatility value at previous day, t − 1. T = 5000 days of intraday returns
are simulated using the four DGPs and used to report sampling properties of the volatility
estimators. In each case, to remove dependence on the startup conditions 500 initial days
are dropped from the simulation.

5.1.1 Independent Noise

Following Barndorff-Nielsen et al. (2008), log-prices with independent noise are simulated as
follows

p̃t,i = pt,i−1 + ǫt,i,

ǫt,i ∼ N(0, σ2
ω),

σ2
ω = ξ2var(rt).

(52)

The error term is added to the log-prices simulated from the 4 DGPs every second. The
variance of microstructure error is proportional to the daily variance calculated using the
pure daily returns. We set the noise-to-signal ratio ξ2 = 0.001, which is the same value used
in Barndorff-Nielsen et al. (2008) and close to the value in Bandi & Russell (2008).

5.1.2 Dependent Noise

Following Hansen et al. (2008), we consider the simulation of log-prices with dependent noise
as follows,

p̃t,i = pt,i−1 + ǫt,i,

ǫt,i ∼ N
(
µǫt,i , σ

2
ω

)
,

µǫt,i =

φ∑

l=1

(1− l/φ) (pt,i−l − pt,i−1−l) ,

σ2
ω = ξ2var(rt),

(53)

where φ = 20, which makes the error term correlated with returns in the past 20 seconds
(steps). If past returns are positive (negative) the noise term tends to be positive (negative).
All other settings, such as σ2

ω and ξ2, are the same as in the independent error case.

5.2 True Volatility and Comparison Criteria

We assess the ability of several ex-post variance estimators to estimate the daily quadratic
variation (QVt) from the four data generating processes. QVt is estimated as the summation
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of the squared intraday pure returns at the highest frequency (1 second)

σ2
t ≡

23400∑

i=1

r2t,i. (54)

The competing ex-post daily variance estimators, generically labeled σ̂2
t , are compared

based on the root mean squared errors (RMSE), and bias defined as

RMSE(σ̂2
t ) =

√√√√ 1

T

T∑

t=1

(
σ̂2
t − σ2

t

)2
, (55)

Bias(σ̂2
t ) =

1

T

T∑

t=1

(
σ̂2
t − σ2

t

)
. (56)

The coverage probability estimates report the frequency that the confidence intervals
or density intervals from the Bayesian nonparametric estimators contain the true ex-post
variance, σ2

t . The 95% confidence intervals of RVt, RK
F
t and RKN

t reply on the asymptotic
distribution, which are provided in equation (4), (8) and (12). We take the bias into account
to compute the 95% confidence interval using RKN

t .
The estimation of integrated quarticity is crucial in determining the confidence interval for

the realized kernels. We consider two versions of quarticity, one is to use the true (infeasible)
IQt which is calculated as

IQtrue
t = 23400

23400∑

i=1

σ4
t,i, (57)

where σ2
t,i refers to spot variance simulated at the highest frequency. The other method is

to estimate IQt using the tri-power quarticity estimator, see formula (10). The confidence
interval based on IQtrue

t is the infeasible case and the confidence interval calculated using
TPQt is the feasible case.

For each day 5000 MCMC draws are collected after 1000 burn-in to compute the Bayesian
posterior quantities. A 0.95 density interval is the 0.025 and 0.975 sample quantiles of MCMC
draws of

∑nt

i=1 σ
2
t,i, respectively.

5.3 No Microstructure Noise

Figure 1 plots 500 days of σ2
t and estimates RVt and V̂t based on returns simulated from

the GARCH(1,1) DGP at 5-minute, 1-minute, 30-second and 10-second. Both estimators
become more accurate as the data frequency increases.

In Table 2, V̂t has slightly smaller RMSE in 12 out of the 16 categories. For example, for
the 5-minute data V̂t reduces the RMSE by over 5% for the SV2F data. This is remarkable
given that RVt is the gold standard in the no noise setting. Figure 2 plots the difference
between RMSE of RVt and V̂t in 100 subsamples for GARCH(1,1) and SV1F returns at
different frequencies. V̂t is superior to RVt in most of the subsamples, especially for low
frequency returns.
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Table 3 shows the bias to be small for both estimators. The Bayesian estimator reduces
the bias for data simulated from GARCH and SV1F diffusion, while RVt has smaller bias in
the other cases.

Table 4 shows that coverage probabilities for 95% confidence intervals of RVt and 0.95
density intervals of V̂t. The Bayesian nonparametric estimator produces fairly good coverage
probabilities for both low and high frequency data, except for the SV2F data. For RVt, data
frequencies higher than 5-minutes are needed to obtain good finite sample coverage when
the asymptotic distribution is used.

In summary, under no microstructure noise, the Bayesian nonparametric estimator is
very competitive with the classical counterpart RVt. V̂t offers smaller estimation error and
better finite sample results than RVt when the data frequency is low. Performance of RVt
and V̂t both improve as the sampling frequency increases.

5.4 Independent Microstructure Noise

In this section we compare RVt, RK
F
t , V̂t and V̂t,MA(1). Figure 3 displays the time-series of

RKF
t , V̂t,MA(1) along with the true variance for several sampling frequencies for data from

the SV1F DGP. Both estimators become more accurate as the sampling frequency increases.
Table 5 shows the RMSE of the various estimators for different sampling frequencies

and DGPs. RVt and V̂t produce smaller errors in estimating σ2
t than RKF

t and V̂t,MA(1) for
5-minute data. However, increasing the sampling frequency results in a larger bias from the
microstructure noise. As such, RKF

t and V̂t,MA(1) are more accurate as the data frequency

increases. Compared to RKF
t , V̂t,MA(1) has a smaller RMSE in all cases, except for 30-second

and 10-second SV2F return. Figure 4 shows that V̂t,MA(1) outperforms RKF
t in most of the

subsamples.
The bias of the estimators is found in Table 6. Again, RVt and V̂t overestimate the

ex-post variance by a significant amount unless the data frequency is low. Both RKF
t and

V̂t,MA(1) produce better results as more data is used. The bias of RKF
t is smaller than that

of V̂t,MA(1), but the differences are minor.

As can be seen in Table 7, V̂t,MA(1) has the best finite sample coverage among all the
alternatives except for the SV2F data. For example, the coverage probabilities of 0.95 density
intervals are always within 0.5% from the truth. Note that the density intervals are trivial
to obtain from the MCMC output and do not require the calculation IQt. The coverage
probabilities of either infeasible and feasible confidence intervals of realized kernels are not
as good as those of V̂t,MA(1). Moreover, RKF

t requires larger samples for good coverage, while

density intervals of V̂t,MA(1) perform well for either low or high frequency returns.

5.5 Dependent Microstructure Noise

The last experiment considers the performances of the estimators under dependent noise.
RKN

t , RVt, V̂t, V̂t,MA(1) and V̂t,MA(2) are compared. Figure 5 plots the estimators for different
sampling frequencies. It is clear that estimation is less precise in this setting.

The RMSE of estimators can be found in Table 8. Again, RVt and V̂t provide poor results
if high frequency data is used. Except for one entry in the table, a version of the Bayesian
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estimator has the smallest RMSE in each case. The V̂t,MA(1) estimator is ranked the best

if return frequency is 30 seconds, followed by V̂t,MA(2) and RKN
t . For 10 seconds returns,

V̂MA(2) provides the smallest error. Compared to RKN
t the V̂t,MA(1) and V̂t,MA(2) can provide

significant improvements for 30 and 10 second returns. For instance, at 30 seconds, reductions
in the RMSE of 10% or more are common while at the 10 second frequency reductions in the
RMSE are 25% or more. The subsample analysis shown in Figure 6 supports these findings.

Table 9 shows V̂t,MA(1) and V̂t,MA(2) have smaller bias if return frequency is one minute or
higher.

Table 10 shows the coverage probabilities of all the five estimators. The finite sample
results of V̂t,MA(2) are all very close to the optimal level, no matter the data frequency.

5.6 Evidence of Pooling

Figure 7-9 display the histograms of the posterior mean of the number of clusters in three
different settings. There are: the DPM for 5-minute SV1F returns (no noise), the DPM-
MA(1) for 1-minute SV1FJ returns (independent noise) and the DPM-MA(2) for 30-second
SV2F returns (dependent noise). The figures show significant pooling. For example, in the
1-minute SV1FJ return case, most of the daily variance estimates of Vt are formed by using
1 to 5 pooled groups of data, instead of 390 observations (separate groups) which is what
the realized kernel uses. This level of pooling can lead to significant improvements for the
Bayesian estimator.

In summary, these simulations show the Bayesian estimate of ex-post variance to be very
competitive with existing classical alternatives.

6 Empirical Applications

For each day, 5000 MCMC draws are taken after 10000 burn-in draws are discarded, to
estimate posterior moments. All prior setting are the same as in the simulations.

6.1 Application to IBM Return

We first consider estimating and forecasting volatility using a long calendar span of IBM
equity returns. The 1-minute IBM price records from 1998/01/03 to 2016/02/16 were down-
loaded from Kibot website8. We choose the sample starting from 2001/01/03 as the relatively
small number of transactions before year 2000 yields many zero intraday returns. The days
with less than 5 hours of trading are removed, which leaves 3764 days in the sample.

Log-prices are placed on a 1-minute grid using the price associated with closest time
stamp that is less than or equal to the grid time. The 5-minute and 1-minute percentage log
returns from 9:30 to 16:00(EST) are constructed by taking the log price difference between
two close prices in time grid and scaling by 100. The overnight returns are ignored so the first
intraday return is formed using the daily opening price instead of the close price in previous
day. The procedure generates 293,520 5-minute returns and 1,467,848 1-minute returns.

8http://www.kibot.com
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We use a filter to remove errors and outliers caused by abnormal price records. We would
like to filter out the situation in which the price jumps up or down but quickly moves back
to original price range. This suggest an error in the record. If |rt,i| + |rt,i+1| > 8

√
vart(rt,i)

and |rt,i + rt,i+1| < 0.05%, we replace rt,i and rt,i+1 by r′t,i = r′t,i+1 = 0.5× (rt,i + rt,i+1). The
filter adjusts 0 and 70 (70/1,467,848 = 0.00477%) returns for 5-minute and 1-minute case,
respectively.

From these data several version of daily V̂t, RVt and RKt are computed. Daily returns
are the open-to-close return and match the time interval for the variance estimates. For each
of the estimators we follow exactly the methods used in the simulation section.

6.1.1 Ex-post Variance Estimation

Table 11 reports summary statistics for several estimators. Overall the Bayesian and classical
estimators are very close. Both the realized kernel and the moving average DPM estimators
reduce the average level of daily variance and indicate the presence of significant market
microstructure noise. Based on this and an analysis of the ACF of the high-frequency returns
we suggest the V̂t,MA(1) for the 5-minute data and the V̂t,MA(4) for the 1-minute data in the
remainder of the analysis. Comparison with the kernel estimators is found in Figures 10 and
11. Except for the extreme values they are very similar.

Interval estimates for two sub-periods are shown in Figures 12 and 13. A clear disadvan-
tage of the kernel based confidence interval in that it includes negative values for ex-post
variance. The Bayesian version by construction does not and tends to be significantly shorter
in volatile days. The results of log variance9 are also provided with some differences remain-
ing.

The degree of pooling from the Bayesian estimators is found in Figure 14 and 15. As
expected, we see more groups in the higher 1-minute frequency. In this case, on average,
there are about 3 to 7 distinct groups of intraday variance parameters.

6.1.2 Ex-post Variance Modeling and Forecasting

Does the Bayesian estimator correctly recover the time-series dynamics of volatility? To
investigate this we estimate several versions of the Heterogeneous Auto-Regressive (HAR)
model introduced by Corsi (2009). This is a popular model that captures the strong depen-
dence in ex-post daily variance. For V̂t the HAR model is

V̂t = β0 + β1V̂t−1 + β2V̂t−1|t−5 + β3V̂t−1|t−22 + ǫt, (58)

where V̂t−1|t−h = 1
h

∑h
l=1 V̂t−l and ǫt is the error term. V̂t−1, V̂t−1|t−5 and V̂t−1|t−22 correspond

to the daily, weekly and monthly variance measures up to time t− 1. Similar specifications
are obtained by replacing V̂t with RVt or RKt.

Bollerslev et al. (2016) extend the HAR model to the HARQ model by taking the asymp-
totic theory of RVt into account. The HARQ model for RVt is given by

RVt = β0 +
(
β1 + β1QRQ

1/2
t−1

)
RVt−1 + β2RVt−1|t−5 + β3RVt−1|t−22 + ǫt (59)

995% confidence intervals using log(RVt), log(RKF
t ) and log(RKN

t ) are based on the asymptotic distri-
butions in Barndorff-Nielsen & Shephard (2002), Barndorff-Nielsen et al. (2008) and Barndorff-Nielsen et al.
(2011).
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The loading on RVt−1 is no longer a constant, but varying with measurement error, which is
captured by RQt−1. The model responds more to RVt−1 if measurement error is low and has
a lower response if error is high. Bollerslev et al. (2016) provide evidence that the HARQ
model outperforms HAR model in forecasting.10

An advantage of our Bayesian approach is that we have the full finite sample posterior
distribution for Vt. In the Bayesian nonparametric framework, there is no need to estimate
IQt with RQt, instead the variance, standard deviation or other features of Vt can be easily
estimated using the MCMC output. Replacing RQt−1 with v̂ar(Vt−1), the modified HARQ
model for V̂t is defined as

V̂t = β0 +
(
β1 + β1Qv̂ar(Vt−1)

1/2
)
V̂t−1 + β2V̂t−1|t−5 + β3V̂t−1|t−22 + ǫt, (60)

where v̂ar(Vt−1)
1/2 is an MCMC estimate of the posterior standard deviation of Vt.

Table 12 displays the OLS estimates and the R2 for several model specifications. Coef-
ficient estimates are comparable across each class of model. Clearly the Bayesian variance
estimates display the same type of time-series dynamics found in the realized kernel esti-
mates.

Finally, out-of-sample root-mean squared forecast errors (RMSFE) of HAR and HARQ
models using both classical estimators and Bayesian estimators are found in Table 13. The
out-of-sample period is from 2005/01/03 to 2016/02/16 (2773 observations) and model pa-
rameters are re-estimated as new data arrives. Note, that to mimic a real-time forecast
setting the prior hyperparameters ν0,t and s0,t are set based on intraday data from day t and
t− 1.11

The first column of Table 13 reports the data frequency and the dependent variable
used in the HAR/HARQ model. The second column records the data used to construct the
right-hand side regressors. In this manner we consider all the possible combinations of how
RKN

t is forecast by lags of RKN
t or V̂t,MA and similarly for forecasting V̂t,MA. All of the

specifications produce similar RMSFE. In 7 out of 8 cases the Bayesian variance measure
forecasts itself and the realized kernel better.

6.2 Applications to Disney Returns

The second application considers ex-post variance estimation of Disney returns. Transaction
and quote data for Disney was supplied by Tickdata. The quote data is NBBO (National
Best bid/ask Offer). We follow the same method of Barndorff-Nielsen et al. (2011) to clean
both transaction and quote datasets and form grid returns at 5-minute, 1-minute, 30-second
and 10-second frequencies using transaction prices. The sample period is from January 2,
2015 to December 30, 2015 and does not include days with less than 6 trading hours. The
final dataset has 247 daily observations.

We found weaker evidence of serial correlations in Disney returns and therefore focus
on lower order moving average specifications. Our recommendation would be to use V̂t for
5-minute and 1 minute data and V̂t,MA(1) for 30-second data.

10A drawback of this specification is that it is possible for the coefficient on RVt−1 to be negative and

produce a negative forecast for next period’s variance. To avoid this when β1 + β1QRQ
1/2
t−1 < 0 it is set to 0.

11Data from day t + 1 would not be available in a real-time scenario. Using only data from day t to set
ν0,t and s0,t gives very similar results.
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Table 14 displays the summary statistics of daily variance estimators of Disney returns.
The sample average of the different variance estimators is quite different than the sample
variance of daily returns. This is more of a small sample issue than anything else. We do see
that both the kernel and the Bayesian models with MA terms generally reduce the average
variance level compared to the unadjusted versions (RVt and V̂t).

Figure 16 and 17 display box plots of the daily variance estimates for the classical and
Bayesian estimators for the 5-minute and 30-second data. There are several important
points to make. First, both estimators recover the same general pattern of volatility in this
period. Second, the Bayesian density interval is often shorter and asymmetric compare to
the classical counterpart. Although there is general agreement, the high variance days of
December 15,21 and 22 indicate some differences particularly in Figure 17. Finally, both
estimates become more accurate with the higher frequency 30-second data and also make a
significant downward revision to the variance estimates on December 21 and 22.

7 Conclusion

This paper offers a new exact finite sample approach to estimate ex-post variance using
Bayesian nonparametric methods. The proposed approach benefits ex-post variance estima-
tion in three aspects. First, the observations with similar variance levels can be pooled to-
gether to increase accuracy. Second, exact finite sample inference is available directly without
replying on additional assumptions about a higher frequency DGP. Bayesian nonparametric
variance estimators under no noise, heteroskedastic and serially correlated microstructure
noise cases are introduced. Monte Carlo simulation results show that the proposed approach
can increase the accuracy of ex-post variance estimation and provide reliable finite sample
inference. Applications to real equity returns show the new estimators conform closely the
realized variance and kernel estimators in terms of average statistic properties as well as
time-series characteristics. The Bayesian estimators can be used with confidence and have
several benefit relative to existing methods. The Bayesian estimator can capture asymmetric
density intervals, always remains positive and does not rely on the estimation of integrated
quarticity.
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8 Appendix

8.1 Adjustment to DPM-MA(1) Estimator

Let pt,i denotes the latent intraday price and ǫt,i is the microstructure noise which is inde-
pendently distributed and heteroskedastic. The observed intraday price p̃t,i is

p̃t,i = pt,i + ǫt,i, E(ǫt,i) = 0 and var(ǫt,i) = ω2
t,i. (61)

The log return process is constructed as follows,

r̃t,i = p̃t,i − p̃t,i−1 = pt,i − pt,i−1 + ǫt,i − ǫt,i−1 = rt,i + ǫt,i − ǫt,i−1, (62)

where r̃t,i and rt,i are the observed return and pure return. The variance and first autoco-
variance of {rt,i}nt

i=1 are

var(r̃t,i) = σ2
t,i + ω2

t,i + ω2
t,i−1, (63)

cov(r̃t,i, r̃t,i−1) = −ω2
t,i−1. (64)

Consider the following heteroskedastic MA(1) model for the observed r̃t,i,

r̃t,i = µt + θtηt,i−1 + ηt,i, ηt,i ∼ N(0, δ2t,i), (65)

which will be used to recover an estimate of ex-post variance for the pure return process,
Vt =

∑nt

i=1 σ
2
t,i. The corresponding moments of this process are

var(r̃t,i) = θ2t δ
2
t,i−1 + δ2t,i, (66)

cov(r̃t,i, r̃t,i−1) = θtδ
2
t,i−1. (67)

Equating (63) and (66), we have

σ2
t,i + ω2

t,i + ω2
t,i−1 = θ2t δ

2
t,i−1 + δ2t,i (68)

Equating (64) and (67), we have

−ω2
t,i−1 = θtδ

2
t,i−1 and − ω2

t,i = θtδ
2
t,i. (69)

Based on the result in (69), the summation of δ2t,i, over i = 1, . . . , nt, equals

nt∑

i=1

δ2t,i = − 1

θt

nt∑

i=1

w2
t,i. (70)

Plugging both terms in (69) into (68), yields

σ2
t,i + ω2

t,i + ω2
t,i−1 = −θtω2

t,i−1 −
ω2
t,i

θt
(71)

σ2
t,i +

(
1 +

1

θt

)
ω2
t,i + (1 + θt)ω

2
t,i−1 = 0. (72)
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Using the results in (72), the summation of σ2
t,i, over i = 1, . . . , nt, equals

nt∑

i=1

σ2
t,i +

(
1 +

1

θt

) nt∑

i=1

ω2
t,i + (1 + θt)

nt∑

i=1

ω2
t,i−1 = 0 (73)

Vt = −
(
1 +

1

θt

) nt∑

i=1

ω2
t,i − (1 + θt)

nt∑

i=1

ω2
t,i−1. (74)

The ratio between (70) and (74) is

Vt
nt∑
i=1

δ2t,i

=

−
(
1 +

1

θt

)
nt∑
i=1

ω2
t,i − (1 + θt)

nt∑
i=1

ω2
t,i−1

− 1

θt

nt∑
i=1

ω2
t,i

(75)

=

(1 + θt)
nt∑
i=1

ω2
t,i + (θt + θ2t )

nt∑
i=1

ω2
t,i−1

nt∑
i=1

ω2
t,i

(76)

=

(1 + θt)
2
nt−1∑
i=1

ω2
t,i + (1 + θt)ω

2
t,nt

+ (θt + θ2t )ω
2
t,0

nt−1∑
i=1

ω2
t,i + ω2

t,nt

(77)

= (1 + θt)
2 , if ωt,nt

= ωt,0. (78)

Finally, we have

(1 + θt)
2

nt∑

i=1

δ2t,i = Vt, if ωt,nt
= ωt,0. (79)

8.2 Adjustment to DPM-MA(2) Estimator

If the observed intraday price p̃t,i is

p̃t,i = pt,i + ǫt,i − ρǫt,i−1, E(ǫt,i) = 0 and var(ǫt,i) = ω2
t,i. (80)

Then log return process is constructed as follows.

r̃t,i = p̃t,i − p̃t,i−1

= pt,i − pt,i−1 + ǫt,i − ρǫt,i−1 − ǫt,i−1 + ρǫt,i−2

= rt,i + ǫt,i − (1 + ρ)ǫt,i−1 + ρǫt,i−2.

(81)

Using the following heteroskedastic MA(2) model for r̃t,i,

r̃t,i = µt + θ1tηt,i−1 + θ2tηt,i−2 + ηt,i, ηt,i ∼ N(0, δ2t,i) (82)

it can be shown the adjustment term is

(1 + θ1t + θ2t)
2

nt∑

i=1

δ2t,i = Vt, if ωt,nt−1 = ωt,0 and ωt,nt
= ωt,−1. (83)

Similar results hold for higher order MA models.
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Table 1: Prior Specifications of Models

Model µt σ2
t,i Θt αt

DPM N(0, v2) IG(v0,t, s0,t) - Gamma(2, 8)

DPM-MA(q) N(0, v2) IG(v0,t, s0,t) N(0, I)1{|Θt|} Gamma(2, 8)

1. v0,t and s0,t are calculated using equation (24).
2.

1{|Θt|} denotes the invertibility condition for the MA(q) model.
3. v2 is adjusted according to data frequency: v =
0.001, 0.0002, 0.0001, 0.00002 for 5-minute, 1-minute, 30-second and
10-second returns.

Table 2: RMSE of RVt and V̂t (No Microstructure Noise Case)

Data Freq. Estimator GARCH SV1F SV1FJ SV2F

5-minute
RMSE(RVt) 0.12352 0.21226 0.21471 0.45601

RMSE(V̂t) 0.12010 0.20608 0.20981 0.43154

1-minute
RMSE(RVt) 0.05368 0.09283 0.09771 0.23296

RMSE(V̂t) 0.05330 0.09228 0.10104 0.22675

30-second
RMSE(RVt) 0.03886 0.06530 0.06741 0.14178

RMSE(V̂t) 0.03867 0.06503 0.07321 0.14021

10-second
RMSE(RVt) 0.02177 0.03601 0.03662 0.09535

RMSE(V̂t) 0.02175 0.03594 0.04747 0.09645

This table reports the root mean squared error (RMSE) of estimating 5000
daily ex-post variances using RVt and Bayesian nonparametric estimator V̂t

under different frequencies and DGPs. Microstructure noise is not consid-
ered.
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Table 3: Bias of RVt and V̂t (No Microstructure Noise Case)

Data Freq. Estimator GARCH SV1F SV1FJ SV2F

5-minute
Bias(RVt) -0.00258 -0.00315 -0.00348 -0.00187

Bias(V̂t) -0.00223 -0.00256 -0.00414 -0.01841

1-minute
Bias(RVt) -0.00170 -0.00120 -0.00152 0.00097

Bias(V̂t) -0.00125 -0.00043 -0.00229 -0.00294

30-second
Bias(RVt) -0.00105 -0.00086 -0.00105 0.00159

Bias(V̂t) -0.00051 0.00010 -0.00166 -0.00031

10-second
Bias(RVt) -0.00028 -0.00049 -0.00001 -0.00103

Bias(V̂t) 0.00017 0.00031 -0.00105 -0.00161

This table reports bias estimates using 5000 daily ex-post variances using
RVt and Bayesian nonparametric estimator V̂t under different frequencies and
DGPs. Microstructure noise is not considered.

Table 4: Coverage Probability (No Microstructure Noise Case)

Data Freq. Interval Estimator GARCH SV1F SV1FJ SV2F

5-minute
RVt 93.00% 92.90% 92.84% 89.66%

V̂t 94.88% 95.04% 95.10% 87.32%

1-minute
RVt 94.64% 94.42% 94.28% 93.70%

V̂t 95.44% 95.14% 95.22% 91.72%

30-second
RVt 95.20% 95.24% 94.86% 94.72%

V̂t 95.86% 95.76% 95.46% 92.30%

10-second
RVt 95.96% 96.14% 95.84% 95.56%

V̂t 96.42% 96.44% 96.28% 92.80%

This table reports the coverage probabilities of 95% confidence intervals using
RVt and 0.95 density intervals using V̂t based on 5000 days results for different
data generating processes. Microstructure noise is not considered.
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Table 5: RMSE of RVt, RK
F
t , V̂t and V̂t,MA(1) (Independent Microstructure Error Case)

Data Freq. Estimator GARCH SV1F SV1FJ SV2F

5-minute

RMSE(RVt) 0.16003 0.29182 0.30651 0.47509

RMSE(RKF
t ) 0.22988 0.42318 0.43993 0.84092

RMSE(V̂t) 0.15724 0.28671 0.30132 0.46281

RMSE(V̂t,MA(1)) 0.21529 0.38812 0.40768 0.74354

1-minute

RMSE(RVt) 0.48607 0.85374 0.94598 0.59132

RMSE(RKF
t ) 0.11157 0.20184 0.20822 0.46638

RMSE(V̂t) 0.48678 0.85495 0.94626 0.58876

RMSE(V̂t,MA(1)) 0.10530 0.18777 0.19456 0.41457

30-second

RMSE(RVt) 0.95855 1.69544 1.87445 1.10124

RMSE(RKF
t ) 0.08483 0.15200 0.15743 0.26357

RMSE(V̂t) 0.95990 1.69788 1.87556 1.10106

RMSE(V̂t,MA(1)) 0.07882 0.14016 0.15151 0.27695

10-second

RMSE(RVt) 2.86639 5.06382 5.60527 3.26388

RMSE(RKF
t ) 0.05575 0.10097 0.10683 0.16911

RMSE(V̂t) 2.86891 5.06833 5.60855 3.26612

RMSE(V̂t,MA(1)) 0.05374 0.09600 0.10539 0.20980

This table reports the root mean squared error (RMSE) of estimating 5000 daily
ex-post variances using RVt, RKF

t and Bayesian nonparametric estimators V̂t and
V̂t,MA(1) based on returns at different frequencies and simulated from 4 DGPs.
The price is contaminated with white noise.
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Table 6: Bias of RVt, RK
F
t , V̂t and V̂t,MA(1) (Independent Microstructure Error Case)

Data Freq. Estimator GARCH SV1F SV1FJ SV2F

5-minute

Bias(RVt) 0.09390 0.16795 0.18381 0.11193

Bias(RKF
t ) 0.00075 -0.00355 -0.00621 -0.00011

Bias(V̂t) 0.09427 0.16859 0.18348 0.10298

Bias(V̂t,MA(1)) 0.01784 0.03396 0.03391 -0.00022

1-minute

Bias(RVt) 0.47833 0.83981 0.93104 0.54949

Bias(RKF
t ) 0.00277 0.00509 0.00671 0.00162

Bias(V̂t) 0.47915 0.84124 0.93114 0.54769

Bias(V̂t,MA(1)) 0.00743 0.01270 0.01027 -0.01415

30-second

Bias(RVt) 0.95446 1.68793 1.86666 1.08855

Bias(RKF
t ) 0.00145 0.00240 0.00490 -0.00352

Bias(V̂t) 0.95990 1.69045 1.86771 1.08861

Bias(V̂t,MA(1)) 0.00542 0.00970 0.00662 -0.01960

10-second

Bias(RVt) 2.86404 5.05938 5.60035 3.26016

Bias(RKF
t ) 0.00040 -0.00079 0.00146 -0.00229

Bias(V̂t) 2.86891 5.06392 5.60360 3.26243

Bias(V̂t,MA(1)) 0.00367 0.00763 0.00407 -0.02415

This table reports bias estimates from 5000 daily ex-post variances using RVt,
RKF

t and Bayesian nonparametric estimators V̂t and V̂t,MA(1) based on returns
at different frequencies and simulated from 4 DGPs. The price is contaminated
with white noise.
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Table 7: Coverage Probability (Independent Microstructure Error Case)

Data Freq. Interval Estimator GARCH SV1F SV1FJ SV2F

5-minute

RVt 87.60% 85.00% 84.42% 22.52%

RKF
t - Infeasible 87.84% 87.66% 87.94% 93.48%

RKF
t - Feasible 84.28% 96.20% 83.68% 97.72%

V̂t 81.18% 78.06% 76.68% 18.80%

V̂t,MA(1) 94.24% 94.48% 94.24% 89.84%

1-minute

RVt 0.46% 0.82% 0.78% 5.64%

RKF
t - Infeasible 88.50% 89.78% 89.02% 93.32%

RKF
t - Feasible 99.30% 97.76% 95.26% 97.86%

V̂t 0.42% 0.07% 0.52% 4.92%

V̂t,MA(1) 94.90% 95.06% 95.00% 86.54%

30-second

RVt 0.00% 0.00% 0.02% 1.86%

RKF
t - Infeasible 89.80% 90.46% 90.74% 92.80%

RKF
t - Feasible 77.44% 99.48% 99.52% 97.94%

V̂t 0.00% 0.00% 0.00% 1.66%

V̂t,MA(1) 94.92% 95.34% 94.88% 85.76%

10-second

RVt 0.00% 0.00% 0.00% 0.04%

RKF
t - Infeasible 92.08% 92.68% 92.90% 92.10%

RKF
t - Feasible 99.98% 99.98% 99.98% 98.62%

V̂t 0.00% 0.00% 0.00% 0.04%

V̂t,MA(1) 94.90% 95.42% 95.12% 82.22%

This table reports the coverage probabilities of 95% confidence intervals using
RVt, RKF

t and 0.95 density intervals using V̂t and V̂MA(1) based on 5000 days
results for different data generating processes. The price is contaminated with
white noise.
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Table 8: RMSE of RVt, RK
N
t , V̂t, V̂t,MA(1) and V̂t,MA(2) (Dependent Microstructure Error

Case)

Data Freq. Estimator GARCH SV1F SV1FJ SV2F

5-minute

RMSE(RVt) 0.21825 0.39266 0.41585 0.58520

RMSE(RKN
t ) 0.23575 0.44343 0.45080 0.89975

RMSE(V̂t) 0.21593 0.38823 0.41013 0.54514

RMSE(V̂t,MA(1)) 0.22309 0.40177 0.42160 0.84072

RMSE(V̂t,MA(2)) 0.29148 0.53858 0.57819 1.17410

1-minute

RMSE(RVt) 0.84121 1.48399 1.60189 1.6954

RMSE(RKN
t ) 0.14158 0.25780 0.26987 0.52030

RMSE(V̂t) 0.84222 1.48565 1.60134 1.67811

RMSE(V̂t,MA(1)) 0.11496 0.20471 0.21227 0.52199

RMSE(V̂t,MA(2)) 0.13738 0.24860 0.26145 0.62091

30-second

RMSE(RVt) 1.66229 2.95397 3.19560 3.37090

RMSE(RKN
t ) 0.11918 0.21559 0.22306 0.42729

RMSE(V̂t) 1.66431 2.95754 3.19640 3.35928

RMSE(V̂t,MA(1)) 0.08864 0.15827 0.16826 0.34777

RMSE(V̂t,MA(2)) 0.10526 0.18883 0.19355 0.39105

10-second

RMSE(RVt) 4.40694 7.81961 8.49852 7.85934

RMSE(RKN
t ) 0.09850 0.18004 0.18376 0.34594

RMSE(V̂t) 4.41064 7.82610 8.50079 7.85264

RMSE(V̂t,MA(1)) 0.16416 0.30819 0.30435 0.89896

RMSE(V̂t,MA(2)) 0.06928 0.12831 0.13609 0.25218

This table reports the root mean squared error (RMSE) of estimating 5000 daily
ex-post variances using RVt, RKN

t and Bayesian nonparametric estimators V̂t,
V̂t,MA(1) and V̂t,MA(2) based on returns at different frequencies and simulated from
4 DGPs. The observed prices contains microstructure noise that is dependent
with returns.
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Table 9: Bias of RVt, RK
N
t , V̂t, V̂t,MA(1) and V̂t,MA(2) (Dependent Microstructure Error Case)

Data Freq. Estimator GARCH SV1F SV1FJ SV2F

5-minute

Bias(RVt) 0.16032 0.28455 0.30733 0.17262

Bias(RKN
t ) 0.01349 0.02985 0.03232 0.00733

Bias(V̂t) 0.16078 0.28532 0.30711 0.16238

Bias(V̂t,MA(1)) 0.02134 0.03879 0.04075 0.00062

Bias(V̂t,MA(2)) 0.05647 0.10334 0.11660 0.04083

1-minute

Bias(RVt) 0.81057 1.42504 1.54563 0.87166

Bias(RKN
t ) 0.02421 0.04351 0.04360 0.01839

Bias(V̂t) 0.81167 1.42695 1.54552 0.86862

Bias(V̂t,MA(1)) 0.00909 0.01674 0.01661 -0.01113

Bias(V̂t,MA(2)) 0.01724 0.03180 0.02990 -0.00565

30-second

Bias(RVt) 1.61481 2.85837 3.10192 1.72912

Bias(RKN
t ) 0.02791 0.04940 0.05114 0.02369

Bias(V̂t) 1.61861 2.86192 3.10304 1.72808

Bias(V̂t,MA(1)) 0.00740 0.01384 0.00991 -0.01316

Bias(V̂t,MA(2)) 0.01097 0.02012 0.01847 -0.01156

10-second

Bias(RVt) 4.32800 7.65381 8.34221 4.67328

Bias(RKN
t ) 0.04034 0.07209 0.07321 0.04327

Bias(V̂t) 4.33163 7.66022 8.34491 4.65505

Bias(V̂t,MA(1)) 0.10993 0.20159 0.20140 0.13645

Bias(V̂t,MA(2)) 0.00656 0.01333 0.00872 -0.01857

This table reports the bias estimates from 5000 daily ex-post variances using
RV , RKN and Bayesian nonparametric estimators V̂ , V̂MA(1) and V̂MA(2) based
on returns at different frequencies and simulated from 4 DGPs. The observed
prices contains microstructure noise that is dependent with returns.
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Table 10: Coverage Probability (Dependent Microstructure Error Case)

Data Freq. Interval Estimator GARCH SV1F SV1FJ SV2F

5-minute

RVt 76.22% 74.00% 73.12% 21.14%

RKN
t - Infeasible 87.26% 87.62% 87.64% 76.72%

RKN
t - Feasible 91.16% 91.34% 92.02% 96.42%

V̂t 65.43% 63.34% 73.12% 21.14%

V̂t,MA(1) 94.28% 94.42% 93.94% 89.40%

V̂t,MA(2) 94.72% 94.72% 94.14% 89.74%

1-minute

RVt 0.00% 0.00% 0.10% 0.06%

RKN
t - Infeasible 90.02% 90.40% 89.98% 71.70%

RKN
t - Feasible 99.80% 99.80% 99.70% 99.46%

V̂t 0.00% 0.00% 0.04% 0.04%

V̂t,MA(1) 94.68% 95.08% 94.76% 87.20%

V̂t,MA(2) 94.70% 94.66% 94.34% 86.80%

30-second

RVt 0.00% 0.00% 0.00% 0.00%

RKN
t - Infeasible 91.50% 91.72% 91.26% 70.94%

RKN - Feasible 100.00% 100.00% 100.00% 99.96%

V̂ 0.00% 0.00% 0.00% 0.00%

V̂MA(1) 94.76% 95.30% 94.90% 85.40%

V̂MA(2) 94.90% 94.50% 94.76% 85.84%

10-second

RVt 0.00% 0.00% 0.00% 0.00%

RKN
t - Infeasible 91.90% 92.44% 92.30% 69.72%

RKN
t - Feasible 100.00% 100.00% 100.00% 100.00%

V̂t 0.00% 0.00% 0.00% 0.00%

V̂t,MA(1) 64.94% 65.70% 67.90% 78.84%

V̂t,MA(2) 94.42% 95.34% 95.12% 82.36%

This table reports the coverage probabilities of 95% confidence intervals of RV ,
RKN and 0.95 density intervals of Bayesian nonparametric estimators V̂ , V̂MA(1)

and V̂MA(2) based on 5000 days results. The observed prices contains microstruc-
ture noise that is dependent with returns.
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Table 11: Summary Statistics: IBM

Frequency Data Mean Median Var Skew. Kurt. Min Max

Daily
rt 0.0673 0.0656 1.6046 0.2069 8.3059 -6.4095 12.2777

r2t 1.6091 0.4352 18.9654 13.9087 387.4812 0.0000 150.7429

5-minute

RVt 1.8353 0.9458 11.9867 9.5887 148.2622 0.1032 76.2901

RKF
t 1.6613 0.8447 9.3647 8.5539 124.8480 0.0375 71.9626

RKN
t 1.6670 0.8476 8.8872 8.0467 109.1098 0.0556 66.3995

V̂t 1.7839 0.9211 10.5246 8.5070 116.9235 0.1080 70.2483

V̂t,MA(1) 1.6686 0.8422 9.2512 7.3019 79.49682 0.0284 52.9256

V̂t,MA(2) 1.6997 0.8486 10.1324 8.4690 118.2698 0.0118 72.2393

1-minute

RVt 2.0004 1.0468 13.5019 10.5704 202.6835 0.1535 103.8773

RKF
t 1.7952 0.9163 10.8043 8.3092 113.5727 0.1006 73.8576

RKN
t 1.7425 0.8973 9.6499 7.7187 94.7830 0.0897 60.2024

V̂t 1.9653 1.0306 13.0413 10.7078 209.5183 0.1523 103.2695

V̂t,MA(1) 1.8326 0.9028 11.2766 7.4122 82.9604 0.1077 61.9220

V̂t,MA(2) 1.7895 0.8946 10.8954 8.4448 120.2637 0.1058 75.0062

V̂t,MA(3) 1.7392 0.8814 9.6590 7.8399 102.1530 0.0968 63.0524

V̂t,MA(4) 1.7103 0.8688 9.0700 7.2766 84.7264 0.0971 55.1365

This table reports the summary statistics of ex-post variance estimators based on 5-minute and
1-minute returns, along with the summary statistics of daily return and daily squared return. The
number of daily observation is 3764.
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Table 12: HAR and HARQ Model Regression Result Based on IBM Ex-post Variance Esti-
mators

Data Freq. Parameter
HAR HARQ

RKF
t V̂t,MA(1) RKF

t V̂t,MA(1)

5-minute

β0 0.1322 0.1233 0.1015 -0.0124

(0.0374) (0.0376) (0.0382) (0.0394)

β1 0.1926 0.2432 0.2341 0.4585

(0.0196) (0.0197) (0.0224) (0.0284)

β2 0.5649 0.4871 0.5664 0.4350

(0.0332) (0.0330) (0.0331) (0.0329)

β3 0.1598 0.1929 0.1422 0.1475

(0.0286) (0.0282) (0.0289) (0.0282)

β1Q - - -0.0012 -0.0197

(0.0003) (0.0019)

R-squared 57.74% 59.33% 57.90% 60.45%

Data Freq. Parameter
HAR HARQ

RKN
t V̂t,MA(4) RKN

t V̂t,MA(4)

1-minute

β0 0.1246 0.1297 0.0065 -0.0337

(0.0365) (0.0374) (0.0367) (0.0390)

β1 0.2493 0.2464 0.4464 0.5138

(0.0195) (0.0196) (0.0242) (0.0288)

β2 0.5435 0.5154 0.5033 0.4531

(0.0318) (0.0321) (0.0312) (0.0319)

β3 0.1331 0.1598 0.0708 0.0914

(0.0265) (0.0271) (0.0263) (0.0272)

β1Q - - -0.0031 -0.0328

(0.0002) (0.0026)

R-squared 62.71% 60.38% 64.39% 61.96%

1 This table reports OLS regression results for the HAR and HARQ
model. The results in top panel are based on RKF

t and V̂t,MA(1)

calculated using 5-minute returns and the bottom panel shows the
results of 1-minute RKN

t and V̂t,MA(4). The values in brackets are
standard error of coefficients.

2 Sample period: 2001/01/03 - 2016/02/16, 3764 observations.
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Table 13: Out-of-Sample Forecasts of IBM Volatility

Panel A: 5-minute Return

Dependent Variable Regressors HAR HARQ

5-minute RKF
t

RKF
t 1.84113 1.84444

V̂t,MA(1) 1.84083 1.81263

5-minute V̂t,MA(1)
RKF

t 1.86262 1.86699

V̂t,MA(1) 1.85581 1.83220

Panel B: 1-minute Return

Dependent Variable Regressors HAR HARQ

1-minute RKN
t

RKN
t 1.87539 1.82881

V̂t,MA(4) 1.87006 1.83173

1-minute V̂t,MA(4)
RKN

t 1.93618 1.88542

V̂t,MA(4) 1.92428 1.87654

1 This table reports the root mean squared forecast error
(RMSFE) of forecasting next period ex-post variance us-
ing both classical and Bayesian nonparametric variance es-
timator. Both HAR and HARQ model are considered. The
forecasting target is the dependent variable one period out-
of-sample.

2 On each day, the model parameters are re-estimated using
all the data up to that day.

3 Out of sample period: 2005/01/03 - 2016/02/16, 2773 days.
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Table 14: Summary Statistics: Disney

Frequency Data Mean Median Var Skew. Kurt. Min Max

Daily
rt -0.0389 0.0181 0.9636 -0.5750 5.8989 -4.1621 3.4451

r2t 0.9651 0.2398 4.6847 4.6843 28.5354 0.0000 17.3236

5-minute

RVt 1.2881 0.8274 4.0558 7.8379 85.1183 0.1740 25.3443

RKF
t 1.2949 0.7435 5.3934 7.9331 83.5863 0.0692 28.54962

V̂t 1.2485 0.7907 3.7617 7.9542 87.3439 0.1812 24.5851

V̂t,MA(1) 1.3119 0.8102 5.7790 8.2469 88.7450 0.0833 30.0731

1-minute

RVt 1.3018 0.9177 2.7262 7.6683 83.5494 0.2024 20.9397

RKF
t 1.2727 0.8019 4.4924 8.7883 102.4300 0.1373 27.8559

V̂t 1.2783 0.8984 2.6164 7.6427 83.0711 0.2033 20.4880

V̂t,MA(1) 1.2587 0.8365 3.6509 8.7573 102.9476 0.1751 25.2803

30-second

RVt 1.3077 0.9536 2.4310 7.2835 76.3258 0.2232 19.3896

RKF
t 1.2558 0.8224 3.3762 8.2074 92.6638 0.1744 23.7206

RKN
t 1.2559 0.8255 3.8733 8.4716 96.7899 0.1352 25.5732

V̂t 1.2876 0.9366 2.3030 7.1143 73.1945 0.2238 18.6778

V̂t,MA(1) 1.2154 0.8546 2.6036 7.5516 80.0820 0.1854 20.1312

V̂t,MA(2) 1.2478 0.8557 3.3850 8.4036 95.4195 0.1618 23.8698

This table reports the summary statistics of ex-post variance estimators based on 5-minute, 1-
minute and 30-second Disney returns, along with the summary statistics of daily return and daily
squared return. Sample period: 01/03/2015 - 12/29/2015.
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Figure 1: True Variance σ2
t , RVt and V̂t (No Microstructure Noise Case). From top to bottom:

5-minute, 1-minute, 30-second, 10-second returns simulated from GARCH(1,1) DGP without
noise.
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Figure 2: RMSE(RVt)-RMSE(V̂t) in 100 subsamples (No Microstructure Noise Case). Left:
GARCH(1,1) DGP, Right: SV1F DGP, From top to bottom: 5-minute, 1-minute, 30-second,
10-second returns.
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Figure 3: True Variance σ2
t , RK

F
t and V̂t,MA(1) (Independent Microstructure Noise Case).

From top to bottom: 5-minute, 1-minute, 30-second, 10-second returns simulated from SV1F
DGP with independent noise.

39



-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

1 20 40 60 80 100
-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

1 20 40 60 80 100

-0.015

-0.005

 0.005

 0.015

 0.025

 0.035

1 20 40 60 80 100
-0.04

-0.02

 0

 0.02

 0.04

 0.06

1 20 40 60 80 100

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

1 20 40 60 80 100
-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

1 20 40 60 80 100

-0.01

-0.005

 0

 0.005

 0.01

 0.015

1 20 40 60 80 100
-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

1 20 40 60 80 100

Figure 4: RMSE(RKF
t )-RMSE(V̂t,MA(1)) in 100 subsamples (Independent Microstructure

Noise Case). Left: GARCH(1,1) DGP, Right: SV1F DGP, From top to bottom: 5-minute,
1-minute, 30-second, 10-second returns.
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Figure 5: True Variance σ2
t , RK

N
t and V̂t,MA(2) (Dependent Microstructure Noise Case). From

top to bottom: 5-minute, 1-minute, 30-second, 10-second returns simulated from SV1F DGP
with noise correlated with returns.
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Figure 6: RMSE(RKN
t )-RMSE(V̂t,MA(2)) in 100 subsamples (Dependent Microstructure

Noise Case). Left: GARCH(1,1) DGP, Right: SV1F DGP, From top to bottom: 5-minute,
1-minute, 30-second, 10-second returns.
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Figure 7: Posterior Mean of the Number of Clusters, K. Model: DPM. Data: 5-minute
return without microstructure noise from SV1F.
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Figure 8: Posterior Mean of the Number of Clusters, K. Model: DPM-MA(1). Data: 1-
minute return with independent noise from SV1FJ
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Figure 9: Posterior Mean of the Number of Clusters, K. Model: DPM-MA(2). Data: 30-
second return with dependent noise from SV2F.
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Figure 10: RKF
t and V̂t,MA(1) based on 5-minute IBM returns
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Figure 11: RKN
t and V̂t,MA(4) based on 1-minute IBM returns
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Figure 12: High volatility period: RKF
t and V̂t,MA(1) calculated using 5 minute IBM returns.

Top: variance, below: log-variance
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Figure 13: Low volatility period: RKF
t and V̂t,MA(1) calculated using 5 minute IBM returns.

Top: variance, below: log-variance
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Figure 14: Posterior Mean of the Number of Clusters, K (Based on 3764 days results from
DPM-MA(1) using 5-minute IBM returns).
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Figure 15: Posterior Mean of the Number of Clusters, K (Based on 3764 days results from
DPM-MA(4) using 1-minute IBM returns).
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Figure 16: RVt and V̂t based on 5-minute Disney returns in December 2015. Top: variance,
below: log-variance
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Figure 17: RKF
t and V̂t,MA(1) based on 30-second Disney returns in December 2015. Top:

variance, below: log-variance
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