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2000 to 2013, premium subsidies increased seven-fold and acres enrolled increased by 77 
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farmers than for others. Estimates indicate that expanded coverage had little effect on the share 

of farmland harvested, crop specialization, productivity, or fertilizer and chemical use. More 

broadly, we construct and describe a new nation-wide, farm-level panel data set with nearly 
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The decisions of crop farmers, such as how much fertilizer and pesticide to use, can affect 

biodiversity and water quality. Hendricks et al. (2014), for example, find that increased demand 

for corn-based ethanol expanded the so-called dead zone in the Gulf of Mexico by encouraging 

farmers to plant more corn and use more fertilizer. U.S. federal crop insurance may have similar 

unintended effects. Although designed to reduce farm income variability, crop insurance may 

cause farmers to take more risks and apply more fertilizer, plant crops on erodible lands, or 

specialize in fewer crops, thereby exacerbating environmental externalities from agriculture. 

 The growth in federal crop insurance warrants greater study of the program’s unintended 

consequences (Goodwin and Smith, 2013). Crop insurance has expanded significantly since 

2000 and with the 2014 Farm Act is now the main conduit of financial support to farmers. 

Between 2000 and 2013, acres enrolled beyond the most basic coverage increased by 77 percent. 

The corresponding premium subsidies paid by the federal government also increased. Before 

2000 the subsidies never exceeded a billion dollars in real terms; for the years 2011-2013, they 

ranged between $6 and $7 billion annually (Figure 1).   

 The empirical literature on crop insurance provides a generally weak foundation for 

distinguishing the effect of insurance apart from confounding factors. There are no farm-level 

empirical studies of crop insurance and input use that use a sample of national scope and control 

for farm fixed effects. Studies have commonly relied on cross-sectional variation (e.g. Horowitz 

and Lichtenberg, 1993; Smith and Goodwin, 1996), even though time-invariant unobservable 

variables such as land quality and risk attitudes are likely correlated with crop insurance 

participation and input use. O’Donoghue, Roberts, and Key (2009) is an exception, but it only 

considers crop diversification, not input use.  
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 Almost all published studies also assume that crop insurance participation is exogenous 

to farm decisions. This is unlikely. Farmers may shift land from low-input, non-insurable uses to 

high-input, insurable crops (or vice versa) for reasons unrelated to insurance such as changing 

crop prices or farm finances. With the new land use eligible for subsidized insurance, 

participation in insurance would increase along with input use, inducing a spurious correlation 

between the two. Here, Cornaggia (2013) is a notable exception in his treatment of the 

endogeneity of insurance adoption. He exploits the introduction of new insurance policies in 

some counties and not others. However, his data only permit examining the effect of insurance 

on yields, and his identification strategy rests on 14 insurance policy events, with all but one 

occurring before the beginning of our study period.  

 We study how changes in insurance coverage over the 2000-2013 period affected farm-

level crop choice and fertilizer and chemical use while controlling for farm-fixed effects and the 

endogeneity of crop insurance participation. Controlling for farm-fixed effects is possible by our 

creation of a panel data set constructed from 14 years of the annual USDA Agricultural Resource 

Management Survey.  For plausibly exogenous variation in coverage, we exploit the insurance 

program’s limit on how much coverage farmers could purchase. As the incentive to have 

insurance grew, farmers who initially had little coverage could greatly expand coverage; farmers 

already close to the maximum level could not. Instrumenting the change in coverage with each 

farm’s initial coverage ratio–its actual coverage relative to its farm-specific maximum coverage 

possible‒allows us to identify the effect of coverage on production decisions under plausible 

assumptions. Moreover, the non-linear relationship between the initial coverage ratio and the 

subsequent change in coverage allows us to control (linearly) for the initial level of crop 
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insurance coverage in our regressions, making our approach robust to a linear relationship 

between initial coverage and changes in production decisions.   

 In addition to providing plausible estimates of the effects of insurance coverage, we  

create and document a new farm-level panel data set that will enrich future research in 

agriculture and environmental policy. Empirical research related to U.S. farms has been limited 

by the lack of nation-wide panel data at the farm level. Outside of the Census of Agriculture, 

which has a limited scope of questions and occurs once every five years, there has been no 

comprehensive panel data for U.S. farms. Our panel data set is based on the Agricultural 

Resource Management Survey–the only annual nation-wide data source on the finances, 

production practices, and resource use of U.S. farms and the households operating them. Despite 

its design as a cross-sectional survey, nearly 32,500 farms have been surveyed at least twice over 

the 2000-2013 period, thereby providing a rich resource to study dynamic issues and account for 

time-invariant farm heterogeneity.  

 Applying the data to study the effects of crop insurance, our OLS estimates from a first-

differenced model show a positive relationship between coverage and fertilizer and chemical use, 

though smaller than some prior estimates using cross-sectional data. Our instrumental variable 

estimates, however, show that coverage has little effect on crop specialization or input use. The 

estimates are sufficiently precise that even the upper bounds of a 95 percent confidence interval 

represent environmentally negligible effects. Thus, it does not appear that a more generous crop 

insurance program by itself encourages specialization or greater fertilizer and chemical use as 

several prior studies have found. 
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1 AGRICULTURE, THE ENVIRONMENT, AND CROP INSURANCE 

1.1 Agriculture and the Environment 

Farmers are the chief managers of arable lands around the world, and their decisions affect 

environmental quality on their lands and beyond (Tilmen et al., 2002). Switching marginal land 

from passive uses into cultivation reduces its value as wildlife habitat. Marginal lands are also 

more prone to soil erosion when cultivated, leading to the sedimentation of lakes and streams 

(Shortle, Abler, and Ribaudo, 2001). For land already in cultivation, a less diverse crop mix 

reduces biodiversity and increases insect and disease problems (Sulc and Tracy, 2007; Landis, 

2008).   

 Fertilizer nutrients or pesticides running into surface water or leaching into groundwater 

can be extensive. The U.S. Environmental Protection Agency has identified agricultural nonpoint 

source pollution as a leading source of impairment of the country’s water resources (U.S. EPA, 

2015). Studies have shown that 30 to 40 percent of nitrogen fertilizer applied to crop fields seeps 

into ground or surface water, with losses of 70 percent on the margin (Cambardella et al., 1999; 

Randall and Mulla, 2001; Li et al., 2006). A ten-year study by the U.S. Geological Survey found 

widespread occurrences of pesticides in streams and groundwater, often at concentrations 

deemed harmful to aquatic life and fish-eating wildlife (Gilliom, 2007). A 1990 nation-wide 

survey by the EPA found that 10 percent of community water systems and 4 percent of rural 

domestic wells contain at least one pesticide (EPA, 1990).  

 

1.2 The Federal Crop Insurance Program and Incentives to Participate   

The Risk Management Agency (RMA) of the U.S. Department of Agriculture oversees federal 

crop insurance by operating and managing the Federal Crop Insurance Corporation. RMA sets 
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the terms in which private insurance companies provide insurance to farmers, including the total 

premiums associated with each policy. The federal government encourages participation in crop 

insurance by paying a share of the premium for farmers.  

 With low initial participation by farmers, the government encouraged greater adoption by 

increasing premium subsidies and plan options in the Agricultural Risk Protection Act of 2000 

and the 2008 Farm Act. The 2000 Act increased premium subsidies from an average of 33 

percent of total premiums (across all coverage levels) to an average of 57 percent (O’Donoghue, 

2014). O’Donoghue (2014) shows that the subsidies led farmers to adopt policies with higher 

coverage levels, with a one percent increase in the subsidy rate increasing total premiums and 

premiums per acre by one percent. The 2008 Farm Act maintained subsidies for traditional 

policies and introduced a new option for enterprise units, which came with even higher subsidies 

(80 percent for most coverage levels).  

For both the 2000 and 2008 Acts, the additional subsidies and options would have been 

available in the year following the Act’s authorization. The full effect of the changes on 

coverage, however, likely took several years to occur as farmers learned about the new options in 

a way that is analogous to the adoption of new product or innovation. The rate of adoption of a 

new product or technology often follows the “S-shaped curve” described by the Diffusion of 

Innovations model (Rogers, 2010). The rate of adoption is initially slow and then accelerates 

before leveling off when only a few of those remaining have not adopted. This pattern seems to 

apply to crop insurance adoption. For example, revenue based policies were first introduced in 

1996 but adoption expanded most quickly during the 1998 to 2001 period (Dismukes and Coble, 

2006). Following this pattern, the subsidy increase in 2000 (and 2008) resulted in temporal 
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variation in crop insurance coverage over the next several years as more and more farmers 

adopted insurance in response to the subsidy increases.  

 In addition to changes in subsidies and insurance options, the Renewable Fuel Standard 

and macroeconomic factors also made insurance more attractive by increasing price levels, price 

variability, and consequently profit variability. Increases in energy prices helped increase 

fertilizer and other input prices while U.S. biofuel policy and rising global demand contributed to 

higher crop prices in the second half of our study period (Trostle et al., 2011; Beckman, 

Borchers, and Jones, 2013). Higher input and output prices, in turn, generally increase profit 

variability by magnifying the effect of yield shocks.1 Moreover, the U.S. Renewable Fuel 

Standard increased the volatility of corn prices by strengthening the linkage between energy and 

corn markets (McPhail, Du, and Muhammad, 2012; Du and McPhail, 2012; McPhail and 

Babcock, 2012).  

 Figure 1 shows that acres enrolled beyond the basic coverage level increased by 77 

percent over the study period. Acres enrolled beyond the most basic coverage level expanded 

consistently from 2000 to 2005, in part reflecting the delayed effect of changes made in the 2000 

Farm Act. Rising crop and input prices and increased volatility likely played a larger role in 

increasing crop insurance adoption in the later 2000s. Enrolled acres increased by 14 percent in 

2007 alone, then remained steady following the 2008 Farm Act, but saw strong growth over the 

2011-2013 period when corn prices were dramatically higher than most prior years. Premium 

                                                           
1 Consider crop profits as  𝜋 = 𝑝𝑦 ∙ 𝑦𝑖𝑒𝑙𝑑𝑠 + 𝑝𝑥 ∙ 𝑥. For simplicity, assume that only yields are stochastic, in which 

case the variance of profits is 𝑉𝑎𝑟(𝑝𝑦 ∙ 𝑦𝑖𝑒𝑙𝑑𝑠 + 𝑝𝑥 ∙ 𝑥) = 𝑝𝑦2 ∙ 𝑉𝑎𝑟(𝑦𝑖𝑒𝑙𝑑𝑠), indicating that variability increases 

exponentially with the crop price. If both input and output prices increase proportionally, average profits will 
increase by the same proportion, which could discourage insurance use. Empirically, Coble et al. (1996) find that the 
elasticity of crop insurance with respect to expected marginal revenue is similar in magnitude to the elasticity with 
respect to the variance of marginal revenue (though they have different signs). If their finding holds for recent years, 
it implies that a proportional increase in input and output prices would increase the demand for insurance because it 
would increase profits linearly and profit variability exponentially.     
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subsidies show a roughly similar pattern, though the percent increase was larger, reflecting 

reflects rising production values, which increased expected indemnities and premiums.  

 

1.3 Crop Insurance and Farm Decisions 

There are several reasons why insurance coverage could influence decisions like how much 

fertilizer to apply. According to the moral hazard argument, greater coverage encourages riskier 

production choices, causing farmers to use more risk-increasing inputs and fewer risk-decreasing 

inputs (Pope and Kramer, 1979; Leathers and Quiggin, 1991; Horowitz and Lichtenberg, 1993; 

Babcock and Hennessy, 1996). Sheriff (2005) argues that farmers over-apply nitrogen fertilizer 

to reduce the risk of very low yields, in which case subsidized crop insurance would reduce 

nitrogen use. Whether an input is risk-increasing or risk-decreasing, and consequently how 

insurance affects input use, becomes an empirical question.  

 A similar logic applies to other production decisions that affect profit variability. With 

greater coverage, a risk-averse producer could shift to riskier crops or specialize in one or two 

crops (O’Donoghue, Roberts, and Key, 2009). For farm households, less farm income risk may 

encourage households to spend less time at off-farm jobs and more time on the farm (Key, 

Roberts, and O’Donoghue, 2006). Shifting time or money to the farm could result in cultivation 

of marginal land and more fertilizer used per acre (Chang and Mishra, 2012).  

 However, the potential effects of crop insurance on production via moral hazard should 

not be overstated. Deductibles and premiums depend on yield histories and should therefore 

attenuate moral hazard. The premium a farmer pays also depends on his claim history. A claim in 
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one year increases the premium for following years and reduces the guarantee at which insurance 

pays, effectively increasing the deductible.  

 Federal crop insurance might alter production decisions for other reasons. Because it is is 

heavily subsidized, the program increases the risk-adjusted returns to insured crops. By 

encouraging farmers to shift to insured crops, which may require more inputs, additional 

insurance could increase input use at the farm or regional level, even if it lowered input use on 

individual crops (Wu, 1999; Wu and Adams, 2001; Young, Vandeveer, and Schnepf, 2001; 

Goodwin, Vandeveer and Deal, 2004; Walters et al., 2012). In addition, banks may lend to 

insured farmers at more favorable terms, relaxing financial constraints and making it cheaper to 

buy equipment or inputs to increase yields or plant more acres (Cornaggia, 2013).  

1.4 Empirical Approaches and Findings  

Much of the earliest empirical work examining the production effects of crop insurance used 

cross-sectional data and focused on fertilizer and pesticide application rates. Horowitz and 

Lichtenberg (1993) show large, input-increasing effects of adopting crop insurance, with 

federally insured farms applying 19 percent more nitrogen and spending 21 percent more on 

pesticides than uninsured farms. Two other empirical studies around the same time find that 

insurance reduced chemical use: Quiggin, Karagiannis, and Stanton (1993) for Midwestern corn 

and soybean farmers and Smith and Goodwin (1996) for Kansas wheat farmers. Babcock and 

Hennessy (1996) take a different approach and use data from field experiments to estimate how 

fertilizer use affected crop yield distributions. In a simulation with their parameterized model 

they find that insurance would cause small reductions in nitrogen fertilizer use. 
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 Later empirical work estimated the effect of insurance on a wider range of farm 

outcomes. Wu (1999) shows that in Nebraska, crop insurance shifted land away from hay and 

pasture into corn, which increased chemical use. Goodwin, Vandeveer, and Deal (2004) 

simultaneously estimate the effect of insurance on output and input intensity and find that 

increased participation in insurance programs caused modest changes in acreage and mixed 

effects on fertilizer and chemical expenditures per cropped acre. More recently, Walters et al. 

(2012) use insurance contract data and find acreage responses to insurance for some crops and 

regions but not others. Looking only at crop yields, Cornaggia (2013) exploits the exogenous 

expansion of insurance to new crops and finds that county-level yields increased after the 

expansion. 

 The generally weak foundation for distinguishing the effects of crop insurance from 

confounding factors may explain the diverse findings in the literature. Many studies use cross-

sectional data or assume that insurance decisions are unrelated to unobserved factors that affect 

crop choices or fertilizer use. As noted earlier, this is a tenuous assumption: it is easy to imagine 

a scenario where, for reasons unrelated to crop insurance, a farmer decides to plant more acres of 

corn, which then affects decisions about fertilizer use and insurance coverage. 

 

2. EMPIRICAL ANALYSIS 

2.1 Empirical Approach 

To quantify how crop insurance coverage affects farm decisions and therefore the environment, 

our empirical approach uses a novel unbalanced panel data set (described in the next section) 

with rich farm-level information. The base model relates changes in various outcomes to changes 
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in crop insurance premiums per acre while controlling for initial farm characteristics, county 

fixed effects, and the years when the farm was observed: 

𝑦𝑖,𝑡 − 𝑦𝑖,𝑠 = 𝛽0 + 𝛽1(ln𝑃𝐴𝑖,𝑡 − ln𝑃𝐴𝑖,𝑠) + 𝑿𝑖,𝑠𝜽𝑥 + 𝑻𝑖,𝑠𝜽1 + 𝑻𝑖,𝑡𝜽2 + 𝜈𝑐(𝑖) + 𝜂𝑖𝑡,  (1) 

where 𝑦𝑖,𝑡 − 𝑦𝑖,𝑠 is the change in the production variable for farm 𝑖 between the first year the 

farm was observed 𝑠 and the second year 𝑡 (or in the case of farms observed three or more times, 

the second and third time and so forth). To measure the allocation of land to crops, we look at the 

share of total acres operated that are harvested; to capture crop specialization, we use the share of 

total acres harvested accounted for by the most harvested crop. For fertilizer and chemical use, 

we look at the log of fertilizer expenses per acre, the log of chemical expenses per acre, and the 

log of the sum of fertilizer and chemical expenses per acre. To capture overall intensity of land 

use, we use the log of the value of production per acre. 

 We measure crop insurance coverage using the premium paid per acre of land operated 

(𝑃𝐴𝑖,𝑡). Many prior studies used a binary variable to indicate whether a farmer had any acres 

enrolled in crop insurance (Horowitz and Lichtenberg, 1993; Smith and Goodwin, 1996; Wu, 

1999). Conditional on having some acres enrolled, this approach does not capture increases in 

the number of acres enrolled or the level of coverage chosen for enrolled acres. More recent 

work has used the share of total acres enrolled in crop insurance (Walters et al., 2012; Chang and 

Mishra, 2012). But as Goodwin, Vandeveer, and Deal (2004) note, such a measure ignores 

changes in coverage levels on enrolled acres.  

 Our measure of coverage, in contrast, captures changes in acres enrolled and coverage 

levels. Because coverage is expressed as premiums per acre operated by the farm, the measure 

increases with the share of acreage enrolled in crop insurance. It also increases with the level of 
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coverage chosen for enrolled acres since farmers pay higher premiums for higher coverage 

levels. The measure is similar to that of Goodwin, Vandeveer, and Deal (2004), who use a 

measure of total liabilities, since premiums are proportional to the liabilities covered by the 

insurance policy. Our premium-based measure of coverage is well-suited to our empirical goal of 

quantifying how an increase in crop insurance coverage–whether from enrolling more acres or 

selecting higher coverage levels or both–affects farm decisions.  

 The vector 𝑋𝑖,𝑠 contains farm-specific characteristics observed in the first year of the 

difference in the dependent variable (subscript s in equation (1)). Controlling for initial 

characteristics allows farms managed by young versus old farmers, for example, to have 

different growth trends, and avoids the potential for reverse causality that comes with using 

changes in characteristics. We control for the initial level of crop insurance coverage as 

measured by (unlogged) premiums per acre. To capture farm size and life cycle effects we 

include a linear and quadratic term for both the farm operator age and the initial total value of 

production. To account for differences in crop specialization, we control for the initial share of 

harvested acres accounted for by soybeans, corn, and wheat, all separately. Including the share of 

acres in each of these major crops helps control for any effect that crop rotation patterns may 

have on changes in insurance coverage and input decisions. As we will show, our conclusions 

are robust to excluding the farm-level control variables.    

 The vector 𝑇𝑖𝑠 contains binary variables indicating the first year of the differenced 

dependent variable; the variables in 𝑇𝑖𝑡 indicate the second year. These year dummy variables 

control for shocks unique to those years and that affect the change observed over the time 

spanned by the two years. This controls for confounding macroeconomic factors correlated with 

crop insurance coverage and our outcomes. For example, coverage generally increased over time 
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along with corn prices, which would lead to an increase in the value of production per acre, or, 

similarly, an increase in fertilizer use per acre.   

 The term  𝜈𝑐(𝑖) is a county fixed effect. It captures any change in behavior common to all 

sample farms from the same county. It therefore controls for local unobserved conditions such as 

the possibility that changing crop prices encouraged agricultural intensification in some areas 

more than others because of differences in land suitability. On average there are about 6 sample 

farms per county.  

 

2.2 Identification 

Prior studies of crop insurance and production decisions that do not control for farm fixed effects 

(e.g. Horowitz and Lichtenberg, 1993; Smith and Goodwin, 1996) likely suffer from omitted 

variable bias caused by unobserved farm characteristics correlated with farm decisions and 

insurance participation. By relating differences in farm-level outcomes with differences in 

coverage, the specification in (1) accounts for time-invariant farm characteristics that affect the 

outcome in an additive manner.  

 Controlling for farm fixed effects may nonetheless be inadequate to identify the causal 

effect of crop insurance participation on farm decisions. Any factor causing a shift in land use 

towards input-intensive insurable crops could create a spurious correlation between input use and 

insurance coverage. OLS would give biased results in other plausible scenarios as well.2 

                                                           
2 Another example where OLS would give biased results is where in absence of insurance farmers use few inputs on 
marginal land and many inputs on high-quality land. With an insurance program, farmers might only get coverage 
for marginal land, which could encourage them to use as much inputs on the marginal land as they do on the high-
quality land. Suppose that much of the variation in premiums over time is based on farmers replacing marginal land 
with high-quality land, which causes premiums to decrease, or vice versa, which causes premiums to increase. In 
every instance where such replacing occurs, premiums change in a way that is uncorrelated with input use on the 
average acre. The first difference model estimated with OLS uses all of this variation in premiums in the estimation, 
which would bias the coefficient on premiums towards zero. 
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Appropriately estimating the effect of insurance coverage requires temporal variation in 

coverage unrelated to the decision to expand or intensify crop production.  

Our instrumental variable identification strategy leverages two facts: first, as previously 

discussed, the incentive for farmers to adopt more insurance increased over time and second, the 

federal crop insurance program has always had a maximum coverage level (85 percent for an 

individual level policy; 90 percent for an area-based policy). The growing incentive to expand 

coverage and the presence of a maximum coverage level suggests a negative nonlinear 

relationship between a) a farmer’s initial coverage relative to the maximum coverage possible, 

and b) the change in coverage in response to incentives to have more insurance. This nonlinear 

relationship is because farmers who initially had coverage close to the maximum coverage were 

substantially more limited in how much they could expand coverage compared to farmers who 

initially had less coverage. 

 To illustrate, consider an increase in the demand for insurance from period 1 to period 2 

caused perhaps by a drop in the price of insurance. Greater demand will result in more coverage 

for most farms, and premiums per acre in period 2 will increase relative to premiums per acre in 

period 1 (Figure 2). How much premiums increase in the second period depends on the farmer’s 

initial coverage. A farmer paying the maximum premium in the first period cannot increase 

coverage in response to the lower price of insurance, which is why the ratio of the second and 

first period premium equals one when the first period premium equals the maximum premium. A 

farm with a low premium in the first period, in contrast, may double or triple coverage. This is 

shown in Figure 2 by the negative nonlinear relationship between the ratio of the period 1 

premium to the maximum premium possible in period 1 (horizontal axis) and the ratio of the 

second period premium to first period premium (vertical axis). 
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 The relationship in Figure 2 has a firm microeconomic foundation. Consider two risk-

averse farmers who seek a specific level of risk exposure. The farmers can reach their desired 

risk exposure through a combination of risk-reducing practices (“diversification”) and insurance. 

The combinations of diversification and insurance that yield the same risk exposure constitute an 

indifference curve for each farmer. The price of insurance relative to the price of diversification 

(e.g. the cost of risk-reducing practices) determines the cost-effective mix of diversification and 

insurance. Further assume that the maximum coverage constraint binds for one farmer and not 

the other (perhaps because of a greater aversion to risk and therefore a greater demand for 

insurance).  

Consider an increase in premium subsidies, which causes the price of insurance to decline 

relative to the price of diversification. The constrained farmer cannot increase the quantity of 

insurance and, assuming that his preferred risk exposure has not changed, he has no incentive to 

change his use of diversification. In contrast, the change in relative prices causes the 

unconstrained farmer to use less diversification and more insurance, a shift associated with an 

increase in premiums relative to the constrained farmer. Moreover, the percent change in 

coverage increases exponentially the further the farmer’s initial insurance level is from the 

maximum level (see the online appendix for a detailed explanation, a graphical illustration, and a 

treatment of the case where increased profit variability increases the demand for a reduction in 

risk). 

Following the logic of Figure 2, let the relationship between the rate of increase in 

coverage and the initial coverage level can be described with an exponential function of the 

form: 
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𝑃𝐴𝑖,𝑡𝑃𝐴𝑖,𝑠 = ( 𝑃𝐴𝑖.𝑠𝑀𝑎𝑥 𝑃𝐴𝑖,𝑠)𝜙 ,      (2) 

where 𝜙 is presumably negative. Taking logs of both sides gives 

  ln(𝑃𝐴𝑖,𝑡) − ln (𝑃𝐴𝑖,𝑠) = 𝜙ln ( 𝑃𝐴𝑖.𝑠𝑀𝑎𝑥 𝑃𝐴𝑖,𝑠).     (3) 

 Equation (3) motivates using an instrumental variable approach to estimate (1), where the 

log of the initial premium divided by the maximum premium, which we call the coverage ratio, 

is used as an instrument for the log difference in coverage as measured by premiums per acre. 

The first stage in this IV regression is then: 

ln(𝑃𝐴𝑖,𝑡) − ln(𝑃𝐴𝑖,𝑠) = 𝛾 + 𝜙ln ( 𝑃𝐴𝑖.𝑠𝑀𝑎𝑥 𝑃𝐴𝑖,𝑠) + 𝑿𝑖,𝑠𝜹𝑥 + 𝑻𝑖,𝑠𝜹1 + 𝑻𝑖,𝑡𝜹2 + 𝜈𝑐(𝑖) + 𝜀𝑖𝑡.      (4) 

 We calculate the coverage ratio by dividing the initial per acre premium paid by the 

farmer by his maximum premium. The maximum premium–and therefore maximum coverage–

varies by county and crop mix. We calculate the maximum using producer premium data from 

the Risk Management Agency’s Summary of Business data, which are county-level data 

aggregated from all individual policies issued in the county. We find the crop-specific plan and 

coverage level with the highest per‒acre premium in each year and each county. Then we 

multiply this maximum per-acre premium by the number of harvested acres of each crop for 

every farm. This gives the total premiums each farm would have paid, had it enrolled each crop 

in the most expensive plan observed in the county. We refer to this amount as the farm’s 

maximum premium.3 

                                                           
3 While we call this a maximum premium it is calculated as the average premium per acre associated with the most 
expensive plan and coverage level observed in the county. For example, two farmers with the most expensive plan 
in the county may pay different premiums because of different claim histories. If these were the only two farmers 
with the most expensive plan, we would use the average of the two for the per acre premium associated with the 



17 
 

 The nonlinear relationship between the coverage ratio and changes in coverage allows for 

estimating 𝜙 while controlling for the initial premium per acre, 𝑃𝐴𝑖.𝑠, which is included in X.  

The instrument–the log of the coverage ratio–is not perfectly predicted by a linear relationship 

with the initial premium per acre. Note that the log of the ratio can be written as ln(𝑃𝐴𝑖.𝑠) −ln (𝑀𝑎𝑥 𝑃𝐴𝑖,𝑠). Both terms have variation that is not fully predicted by a linear function of the 

farm’s initial premium per acre. First, the log of the maximum coverage, ln (𝑀𝑎𝑥 𝑃𝐴𝑖,𝑠), varies 

by county and year, causing the coverage ratio to differ for two farmers despite having the same 

initial level of coverage. Second, the non-linearity introduced by taking the natural logarithm 

provides another source of variation, since ln(𝑃𝐴𝑖.𝑠) and 𝑃𝐴𝑖.𝑠 are not perfectly correlated. This 

non-linearity is a product of the constraint imposed by policy. As shown by Figure 2, the 

maximum coverage level introduces a constraint that binds exponentially more for farmers as 

their initial coverage level approaches the maximum level. This non-linearity is confirmed by the 

data in Figure 3, which shows a negative linear relationship between the log of the coverage ratio 

and the log difference in premium per acre.  

 Our instrumental variable is plausibly exogenous to changes in farm decisions because it 

is statistically related to changes in coverage because of a policy constraint (the coverage limit) 

and changing policy and market conditions (more subsidies, program options, and higher crop 

and input prices). Moreover, the inclusion of the farm’s initial coverage level makes the model 

robust to a correlation between a farm’s initial coverage level and changes in the outcomes 

studied.  

                                                                                                                                                                                           

most expensive plan and coverage level. Also, note that this maximum is based on the most expensive insurance 
option chosen in a county, which may be different than the most expensive option available if that option is not 
selected by anyone in the county.   
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 More specifically, the IV estimator is likely to give more credible estimates than the OLS 

estimator because the change in premiums per acre predicted non-linearly by the coverage ratio 

should strip out much of the endogenous changes in premiums per acre. Consider a scenario 

where changing crop prices or farm finances encourage some farmers to shift land from low-

input, non-insurable uses to high-input, insurable crops. With the switch, farmers increase 

insurance coverage, so premiums per acre and input use per acre both increase. Because OLS 

uses all the variation in premiums for identification, every time such a switch happens, premiums 

change in a way that is spuriously correlated with input use. As long as the log of the coverage 

ratio imperfectly predicts such switching, the predicted change in premiums will contain less 

endogenous variation then the actual change.4   

 

2.3. Creating a Panel Data Set from the Agricultural Resource Management Survey 

Empirical research on the causal effects of U.S. agricultural and environmental policy has been 

constrained by a lack of farm-level panel data. The only nation-wide source of detailed and 

comprehensive farm-level data is the Agricultural Resource Management Survey (ARMS), 

which is a cross-sectional survey. The National Agricultural Statistics Service (NASS), which 

administers the survey, draws a new sample of farms each year, sampling roughly 30,000 farms 

out of a population of 2.1 million.5  

 Although designed as a repeated cross-sectional survey, farms surveyed more than once 

over the years can be identified and their records linked. If a simple random sample were drawn, 

                                                           
4 It is possible for IV to be more biased than OLS even if the instrument is less correlated with the error term than 
the endogenous variable that it is instrumenting for. However, this becomes increasingly less likely to hold with a 
stronger instrument (more correlated with the endogenous variable problem). We note that our instrument is 
extremely strong, with a first-stage F-statistic in excess of a thousand. 
5 For an overview of ARMS along with detailed documentation, visit www.ers.usda.gov/data-products/arms-farm-
financial-and-crop-production-practices. 

http://www.ers.usda.gov/data-products/arms-farm-financial-and-crop-production-practices
http://www.ers.usda.gov/data-products/arms-farm-financial-and-crop-production-practices
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the probability of observing the same farm twice would be very low. This is not the case with 

ARMS. The USDA definition of a farm is broad and, as a result, many farms in the population 

have little production. Because ARMS seeks to be an annual snapshot of the state of agriculture 

every year, small farms are undersampled while larger farms, where most production occurs, are 

oversampled. Having been conducted annually since 1996, the many years of ARMS samples 

combined with the oversampling of large farms has caused many farms to be surveyed two or 

more times.  

 Using the unique principal operator identifier, a number assigned to each farm that does 

not change over time, we identified all farms appearing at least twice in the ARMS. Because the 

survey questions necessary for our study were not present prior to 2000, we focus on the data 

sets from 2000 to 2013. Over this period, 202,127 distinct farms were sampled and responded to 

the survey, of which 16 percent, or 32,498 farms, appear at least twice (Table 1). Roughly 4 

percent of farms appear at least three times.  

 Farms appearing at least twice in ARMS, which we label repeat farms, are quite different, 

on average, from the typical ARMS respondent. Because larger farms are sampled with a higher 

probability, repeat farms tend to be larger farms. For each year of ARMS we compare the 

median value of production and acreage operated of all respondent farms with that of repeat 

farms observed for the first time in that year. We calculate the unweighted median since we are 

interested in comparing repeat farms with the typical ARMS respondent farm, not repeat farms 

with the general population. As expected the median repeat farm consistently has more acres and 

production than the median respondent farm (Table 2).  

 The oversampling of large farms arguably suits our purposes better than a sample 

representative of the U.S. farm population as defined by the USDA. We are not interested in the 
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observing the typical farm in the population, which‒because of the broad USDA farm definition‒

has little agricultural production and is unlikely to participate in federal crop insurance. For 

environmental and land use issues we are most interested in what happens to the typical acre. 

Because large farms account for most acres enrolled in crop insurance, a sample reflecting the 

large farm population provides more information on how crop insurance affects practices on the 

typical acre.  

 As this is the first study to construct a true panel data set using ARMS, there is value to 

documenting how repeat farms might differ from the typical respondent farm. We know that 

repeat farms are larger than the typical respondent farm, but if we control for farm size are the 

repeat farms similar to the typical respondent? To make this comparison, we draw a random 

subsample of ARMS respondent farms that is stratified to match the farm size distribution of 

repeat farms. We compare the two groups for a variety of characteristics other than farm size 

(provided in the appendix). In considering the comparability of treatment and control groups, 

Imbens and Wooldridge (2009) suggest that linear regression may be misleading when the 

normalized difference in group means is larger than 0.25 standard deviations. The largest 

difference we observe is 0.23 and the average absolute difference is 0.04, indicating substantial 

comparability across the two groups. We also make comparisons among farms meeting our 

sample criteria and find substantial comparability across the groups, with only one normalized 

difference exceeding 0.25. 

 

2.4 Sample farms 

We narrow our sample of repeat farms to those most relevant for studying the effects of crop 

insurance. We focus on farms that participated in federal crop insurance in at least one of the 
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years observed and whose primary outputs are insurance-eligible, which we define as farms 

where at least half of the value of production in the first year observed came from crop insurance 

eligible crops.6 This gives a sample of 6,681 repeat observations, the majority of which reflect 

unique farms because most sample farms are observed only twice and therefore account for one 

repeat observation (Table 1). To take full advantage of our panel data, we also included 

observations from farms observed three or more times. A farm observed three times contributes 

two observations to our sample, the difference from the first and second year observed and the 

difference between the second and third year observed. Excluding these farms has little effect on 

the results. 

  In the first year of each year-to-year difference, the average farm in the sample was 

operated by a 52 year old whose farm had nearly $854,000 in production or about $380 per acre 

(Table 3). The farm had 23 percent of its acres planted to corn, another 30 percent to soybeans, 

and 20 percent to wheat. It also harvested close to 85 percent of the acres it operated and had 

fertilizer expenses of $51 per acre and chemical expenses (e.g. herbicides and insecticides) of 

$45 per acre. All monetary amounts are in 2011 dollars. 

 A threat to our instrumental variable approach is that time-varying factors affected land 

and input use in a way that was non-linearly related to the initial coverage ratio. We cannot 

dismiss such a situation but we can compare the beginning-period values for land and input use 

for farms across coverage-ratio terciles. Farms with initially similar practices are arguably more 

likely to experience similar time-varying factors than farms with differing practices. Table 4 

shows that farms in the first tercile (low coverage ratios) harvested a larger share of their land 

                                                           
6 We calculate the value of production of insurance–eligible crops by using the market value of the farm’s 
production of corn (for grain or silage), soybeans, cotton, sorghum (for grain or silage), barley, oats, wheat, and 
canola. These crops represented over 91 percent of all insured crops (excluding forage as a crop) in crop year 2014 
according to RMA Summary of Business data. 
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and used more inputs per acre than farms in the second and third terciles. The differences, 

however, are surprisingly small. As mentioned earlier, a normalized difference in means of 0.25 

standard deviations or less is often interpreted as indicating reasonably comparable groups 

(Imbens and Wooldridge, 2009). In comparing the first and the second tercile, the normalized 

difference is 0.13 on average and is always less than a quarter. When comparing the first and the 

third terciles, the average normalized difference is 0.14 and is greater than 0.25 for only one 

variable‒the share of harvested acres.  

 Figures 4a and 4b illustrate the geography of our sample and show that sample farms are 

spread throughout the major row-crop regions of the U.S. and that increases in insurance 

coverage were not confined to a particular region. Figure 4a shows counties shaded based on 

their quartile for the number of sample farms. The distribution of sample farms generally 

matches where substantial production of key row crops occurs (to use the Economic Research 

Service Farm Resource Regions: the Southern Seaboard, the Mississippi Portal, the Heartland, 

and the Northern Great Plains). Figure 4b depicts counties based on the average log difference in 

premiums per acre, with counties again shaded by quartiles. Counties with large increases in 

coverage are spread across the regions where sample farms are present. In another map, we also 

show that the distribution of low-coverage-ratio farms generally follows the distribution of all 

sample farms (see online appendix).  

 Given the unique nature of our panel, we assess the distribution of sample farms across 

years. We provide the number of farms observed in each year pairing, for example, the number 

of farms observed for the first time in 2000 and for the second time in 2003 (see online 

appendix). Farms are well distributed across years, with a farm most commonly observed two or 

three years apart. More than 11 percent of the sample was observed for the first time in 2000, 
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prior to the implementation of the 2000 Farm Act that increased subsidies. Similarly, 68 percent 

were observed for the first time prior to the large increase in crop prices in 2007 (and therefore 

also before the implementation of the 2008 Act). 

2.5 Weighting, Standard errors, and Zeros 

The sample statistics are based on unweighted data. The ARMS uses a stratified sampling design 

and each observation has a weight based on its probability of selection. In the typical cross-

sectional use of ARMS data the weights permit using sample data to estimate population values 

such as the income of the average U.S. farm. Because ARMS is designed to create a nationally 

representative cross-section of farms rather than a panel of farms, the weights associated with 

repeat farms do not expand to a meaningful population. We therefore ignore the weights in 

estimation.  

 Researchers using ARMS normally account for sample design in estimating variances 

using a jackknife method with replicate weights provided by the USDA/NASS (e.g., Katchova, 

2005; Ahearn et al., 2006). This is an unattractive option because the replicate weights (like the 

base weights) are designed uniquely for each cross-sectional sample, not for the subsample of 

repeat farms. Facing a similar problem of needing to account for sample design without using 

weights, Weber and Clay (2013) cluster standard errors by each farm’s survey stratum or 

location. The intuition is clear–clustering by stratum amounts to summing variances from 

mutually exclusive and exhaustive subpopulations. They show that clustering by strata or by 

location gives standard errors of similar magnitude, both of which are about two-thirds larger 

than the unclustered errors. Because we use county fixed effects, we cluster our standard error by 

county. The robustness section considers using crop reporting district fixed effects and clustering 

errors by district.   
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 Because farms sometimes have zero insurance coverage in one of the years observed, our 

key dependent variable, the log difference in premiums per acre, is undefined for about a quarter 

of sample of farms. We take the common, though arbitrary, approach of adding a very small 

number to observations with a zero premium. To allow for a discrete effect of this arbitrary fix, 

we include in all models a dummy variable for whether the farm had a zero premium in the first 

year observed and another one for whether it had a zero premium in the second year observed. In 

the robustness section we present results for when these observations are excluded.  

 

3. RESULTS 

3.1 Ordinary Least Squares 

Estimating equation (4) with OLS suggests that greater insurance coverage encourages farms to 

cultivate and harvest a larger share of their acres and use more fertilizer and chemicals per acre 

(Table 5). A 10 percent increase in insurance coverage (measured by premiums per acre) is 

associated with a 0.11 percentage point increase in the share of acres harvested and a 0.44 

percent increase in fertilizer and chemical expenses. Unsurprisingly, the value of production per 

acre also increases with greater coverage.  

 Qualitatively, these first-differenced OLS results fit the farm-level cross-sectional 

findings of Horowitz and Lichtenberg (1993) and Chang and Mishra (2012) as well as the 

county-level panel data findings from Goodwin, Vandeveer, and Deal (2004), all of which show 

a positive association between insurance and fertilizer and chemical use. Yet, as highlighted 

before, such correlations may reflect unobserved factors that encourage a farmer to both intensify 

production and expand coverage.   
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3.2 Instrumental Variable Approach 

Figure 2 depicts the hypothesized nonlinear relationship between the initial coverage ratio and 

the ratio of the second and first period premium. Using the sample data, we plot the actual 

linearized relationship as described by equation (3) (Figure 3). The slope of the line corresponds 

to 𝜙 in equation (3). It is negative as predicted: farmers with a larger log coverage ratio had a 

smaller proportional change in premiums per acre. The line runs through the point (0,0), which 

corresponds to the point (1,1) in the hypothesized nonlinear relationship in Figure 2.  

 We more formally establish the strength of the excluded instrument, the log of the 

coverage ratio, by estimating equation (4). A first-stage regression for the full sample shows that 

a 1 percent increase in the logged ratio was associated with 0.73 percent less growth in premiums 

per acre (coefficient of 0.724, standard error of 0.022) (Table 6). The F statistic for whether the 

coefficient on the logged ratio is zero is above 1,100, far higher than the thresholds provided in 

Stock and Yogo (2005) for the reliability of t-tests based on IV estimates and for a sufficiently 

low probability that the bias of the IV point estimates is less than 10 percent of the bias of OLS.  

 In contrast to the OLS estimator, the Instrumental Variable estimator shows that crop 

insurance slightly decreases the share of acres harvested and has little effect on input use (Table 

7). Compared to the statistically significant coefficients in the OLS regressions, the IV 

coefficients are multiple times smaller and yet with standard errors of roughly similar magnitude. 

OLS, for example, gives a coefficient of 0.044 on the change in premiums when looking at total 

fertilizer and chemical expenditures while the IV estimate is only 0.011.  
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 The one case where both OLS and IV give similar results is for crop specialization. In 

both cases the coefficient is positive, but with point estimates that indicate economically 

insignificant effects: a 10 percent increase in crop insurance coverage leads to a 0.03 (OLS) to 

0.05 (IV) percentage point increase in the share of acres harvested dedicated to the most 

harvested crop. Only the IV estimate is statistically distinguishable from zero.  

 

3.3 Robustness 

We perform nine robustness checks. The first six checks concern the general robustness of the 

results. The seventh and eight checks relate to heterogeneous effects and external validity. The 

ninth check address concerns about measurement error in premiums per acre.  

 First, we drop the farm characteristic control variables and only control for county and 

year fixed effects and the zero-premium indicator variables. If our instrument, the log of the 

coverage ratio, were substantially correlated with farm characteristics that affect our outcomes, 

we would expect large changes in our estimates. Sensitivity to controlling for observed 

characteristics, in turn, would suggest that estimates may also be sensitive to unobservable 

characteristics correlated with our instrument. Second, we exclude farms that had a zero 

premium in one year and for which we added a small number to the premium to permit taking 

the log. Third, instead of including a dummy variable for the first year observed and another 

dummy variable for the second year observed, we include a dummy variable for each unique 

year pairing (e.g. 2002 for year 1 and 2007 for year 2).  This provides a general robustness check 

on our approach to controlling for time shocks. It also controls for a modification in the 

calculation of premiums made in the 2008 Farm Act, which could cause a shift in premiums for 
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farms observed before and after 2008.7 Fourth, we control for the number of years between the 

first and the second observation. This helps address concerns about survivor bias as it allow for a 

correlation between years of survival and changes in farm decisions. Fifth, to address concerns 

that varying time lengths used in differencing may affect our results, we limit estimation to farms 

observed 3 to 5 years apart, which reduces our sample size by about two-thirds. Sixth, we use 

crop reporting district fixed effects and cluster our standard errors at the district level. Crop 

reporting districts are groupings of roughly 10 agriculturally similar counties.  

 The results are surprisingly stable across the first six robustness checks (Table 8). 

Controlling for farm characteristics provides economically small and statistically insignificant 

coefficients for all outcomes. There is a change in statistical significance compared to the main 

results for the share harvested and the maximum share in one group, but even these main results 

were economically small. Excluding farms with zero premiums gives point estimates very 

similar to the main estimates. Likewise, including dummy variables for year pairings, including a 

length of time elapsed variable, limiting estimation to farms observed 3 to 5 years apart, or using 

crop reporting district fixed effects all provide results similar to the main results. 

 The seventh and eight checks address the applicability of the estimates of the response to 

greater crop insurance (𝛽1in equation 1) to the broader population of crop farms growing 

insurance-eligible crops. Almost all farm-level empirical studies of crop insurance assume that 

conditional on covariates, the behavioral response to crop insurance coverage is the same for all 

sample farms (Quiggin, Karagiannis, and Stanton, 1993; Horowitz and Lichtenberg, 1993; Smith 

                                                           
7Prior to 2008, total premiums were mandated to be priced to generate a loss-ratio of 1.075. The 2008 Farm Act 
mandated that total premiums should be priced to generate a ratio of 1.0 (actuarially fair). Including dummy 
variables for each unique year pairing will control for this change in policy. For information on the change, see 
Dennis Shields, “Federal Crop Insurance: Background and Issues,” Congressional Research Service, Dec 2010, 
footnote 16, p12. 
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and Goodwin, 1996; Wu, 1999; O’Donoghue, Roberts, and Key, 2009). Endogeneity issues 

aside, assuming a homogenous behavioral response, and therefore the same coefficient across 

farms, OLS gives a consistent point estimate of this coefficient when using a simple random 

sample as well as when using a sample where large farms are oversampled, such as the normal 

ARMS sample or the repeat sample that we have constructed. If there are heterogeneous 

responses, weighted or unweighted OLS will not provide a consistent estimate of the populated-

share-weighted average response, regardless of the sample design (see p. 67-70 in Deaton, 1997). 

The only solution to estimate interpretable coefficients is to simply estimate different equations 

(or at least different coefficients) based on each farm group for which the behavioral response is 

unique.   

 The key issue for applying our results more broadly, then, is whether small and large 

farms, for example, have a fundamentally different response to crop insurance, in which case a 

distinct coefficient should be estimated for each type of farm. A reasonable test of the 

assumption of a homogenous response is to estimate separate equations for different types of 

sample farms. We do this on two dimensions: crop specialization and farm size. For crop 

specialization, we split the sample based on how much corn a farm had in its original crop mix, 

with corn farms categorized as those where 25 percent or more of the value of production comes 

from corn. For farm size, we split the sample based into small and large farms based on having 

more or less acreage than the median farm. 

 When splitting the sample, the estimated coefficient on the change in premiums is 

statistically indistinguishable from zero 22 out of the 24 times (four samples multiplied by six 

outcomes) (Table 8). The actual coefficients are generally statistically similar across subsamples 

as well. For farms specialized in corn, the 95 percent confidence interval for the coefficient on 
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the change in premiums contains the coefficient estimated for farms not specialized in corn five 

out of six times. Similarly, for large farms, the confidence interval contains the point estimate for 

small farms five out of six times. Thus, the overall results suggest that greater crop insurance 

coverage has little effect on farm behavior and that this is true for different types of farms.  

 The one statistically strong and economically large result from the sample is for the value 

of production per acre on small farms. However, this was not associated with greater input use. 

One interpretation is that insurance encourages smaller farmers to switch to higher value crops 

that require more investment but not more fertilizer or pesticide.  

  The final robustness check addresses concerns about measurement error in our measure 

of crop insurance coverage, the change in premiums per acre. Although our measure has 

advantages over past measures, it is still open to improvement. Ideally we would use the total 

premium per acre (the combined farmer and government-paid premium), which is not collected 

in the Agricultural Resource Management Survey. The total premium would provide a more 

precise measure of the change in coverage for farms observed before and after the 2008 Farm 

Act, which changed subsidy rates for farms selecting policies involving enterprise units.  

 For farms where both observations occur in the 2001 to 2007 window, the percent change 

in the farmer premium equals the percent change in the total premium since the relationship 

between the two was fixed by law during this period. We exploit this fact to explore the 

possibility of attenuation bias from measurement error and find little indication that measurement 

error is a problem. If it were a problem, OLS estimates for the change in premiums in equation 

(1), 𝛽1, should be larger when using only farms observed for the first and second time between 

2001 and 2007. Yet, we find estimates of 𝛽1that are similar to or smaller than those from the full 

sample where measurement error is presumably greater (see online appendix). 
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4. DISCUSSION   

4.1 Can We Reject Economically Important Effects?  

In many instrumental variable applications, large standard errors can prevent a rejection of the 

null hypothesis of a zero effect but, at the same time, not allow researchers to rule out 

economically important effect sizes. This is not the case for our results, where even the upper 

bound estimated effects are economically small. Table 9 presents the upper bound on the 95 

percent confidence interval for the effect of crop insurance on each outcome (column 2). For 

sample farms, premiums per acre doubled from 2000 to 2013 in real terms, going from $6 to $12 

dollars per acre. This is also true for all participating farms as calculated from the 2000 and 2013 

cross sections of the ARMS. A doubling of premiums would translate into a 0.7 increase in the 

log premium per acre (ln(12/6)). In column 3, we multiply this change in log premiums by our 

upper bound estimate.  

 The upper bound estimate of the effect of a doubling of crop insurance coverage on the 

share of land harvested is zero. The effect on the maximum share of land in one crop is larger: a 

0.8 percentage point increase, which translates to less than one additional acre allocated to the 

most planted crop in a 100 acre farm. The upper bound estimate of the effect on the value of 

production is slightly larger, at 2.2 percent, though this is still an economically small effect.  

 For fertilizer and chemical use, we draw from existing studies to translate an upper bound 

estimate of use into a percent increase in externality. For fertilizer, our upper bound estimate 

suggests that doubling coverage would cause a 1.3 percent increase in fertilizer nutrients leaving 

the field (column 5 of Table 8). This estimate comes from multiplying our upper bound estimate 

of the increase in fertilizer expenses (1.9 percent) with the estimate of fertilizer loss from Li et al. 

(2006). They found that a 1 percent increase in the fertilizer application rate on Iowa corn and 
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soybean fields leads to a 0.7 percent increase in nutrients in water flowing in tiles that drain 

agricultural areas, which would likely result in an even smaller percentage increase in nutrients 

in larger streams (column 4 in Table 8).8 It is reasonable to apply these numbers to our study, 

which has many Midwestern corn and soybean farms, and assume that a 1 percent increase in 

fertilizer expenses per acre would translate into a similar increase in the fertilizer application 

rate.   

 The implied (upper-bound) elasticity between crop insurance coverage and fertilizer loss 

is 0.013 (=1.3/100). By comparison, Hendricks et al. (2014) find an elasticity between corn 

prices and nitrogen loss of 0.074, almost six times the effect of doubling crop insurance 

coverage. 

 Our finding for chemical usage suggests an upper bound increase of pesticides in nearby 

waterways of 1.1 percent. The most common component of chemical expenditures is pesticides. 

Using data from the National Water Quality Assessment program, Tesfamichael et al. (2005) 

estimate that a 1 percent increase in the application rate of atrazine led to a 0.5 percent increase 

in the concentration of atrazine in streams. (Atrazine is a commonly used pesticides and was the 

second most commonly found pesticide in a nation-wide survey by the EPA (U.S. EPA, 1990)). 

Our upper-bound estimate suggests that a doubling of crop insurance premiums would cause a 

1.9 percent increase in chemical expenses. Supposing the increase in chemical expenses is 

associated with a similar increase in quantity of pesticide applied, our estimate multiplied by that 

of Tesfamichael et al. (2005) suggests a 1.1 percent (=2.2 percent x 0.5 percent) increase in the 

concentration of pesticide in streams.  

 

                                                           
8 Gowda, Mulla, and Jaynes (2008) also conduct a farm level study in the Midwest and find a similar result: a 1 
percent decrease in the fertilizer rate was associated with a 0.85% decline in nitrate losses.  



32 
 

4.2 What Our Empirics Do and Do Not Capture  

Our measures of fertilizer and chemical use are per acre operated by the farm. It is possible that 

insurance subsidies caused marginal lands to be brought into cultivation. If the land was 

originally part of the farm (e.g. in pasture) and crop insurance encouraged the farmer to convert 

it to cropland, we would observe increases in the value of production per acre, the share of land 

harvested, and fertilizer and chemical expenses per acre. If, however, crop insurance encouraged 

the farm to acquire the land, our outcome variables would only increase if the farmer used more 

fertilizer on it (or had a more specialized crop mix and so forth) than the average acre already 

operated by the farm. Otherwise, we would not capture the effect. 

 We do not know how land acquired between the first and second time observed may have 

differed from land already in the farm. But we can test if crop insurance was association with 

farms acquiring more land. Using the log difference in the total acres operated as the dependent 

variable, we find that greater insurance coverage was not associated with an increase in acres 

operated (coefficient of -0.01, standard error of 0.007). This result combined with the lack of an 

effect on the value of production suggests that insurance did not cause participating farmers to 

intensify production on marginal lands.  

 Still, it is possible that both high and low-coverage farms acquired land at similar rates, 

with farms with high coverage tending to acquire marginal lands (and intensify production on 

them) while low coverage farms tended to acquire better lands. However, this would require that 

high coverage farmers replaced high quality land with marginal land such that the total acres 

operated did not change, which seems unlikely. 

 Our empirics capture the effect of expanding crop insurance coverage in a period when 

other farm programs changed very little. We do not examine the effects of replacing any 
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particular farm program with crop insurance. Over our study period, crop insurance premium 

subsidies and plans increased while the main farm income support program, the Direct Payment 

program, remained in place, paying around $5 billion each year to qualified farmers. Shortly 

after our study period, however, Congress passed the 2014 Farm Act, repealing the Direct 

Payment program in favor of strengthening crop insurance. The shift in programs will likely 

have minor environmental consequences. Weber and Key (2012) present evidence that the Direct 

Payment program did not affect production or harvested acreage. And although farmers had to 

comply with conservation provisions to receive payments, with the 2014 Act Congress 

transferred similar provisions to crop insurance. To be eligible for premium subsidies, the 

provisions require that farmers with highly erodible land or wetlands maintain conservation 

practices in line with National Resources Conservation Service guidelines. 

 

5. CONCLUSION 

Policies with non-environmental goals can cause unintended environmental harm. Using a novel 

data set and identification strategy, we find that federal crop insurance does not appear to fall 

into this category despite several past studies suggesting otherwise. Farmers who expanded crop 

insurance coverage during the 2000 to 2013 period had changes in land use, crop mix, and 

fertilizer and chemical use similar to farmers with smaller or no changes in coverage. Our 

finding is striking because the changes in crop prices over the period caused farmers to plant 

more corn, a high value and input intensive crop. One may have expected increasingly generous 

insurance subsidies to have accentuated this shift.  

 Although our results are based on the 2000-2013 period, they arguably hold under the 

2014 Farm Act in which policymakers linked premium subsidies to conservation compliance on 
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erodible lands or wetlands. Our findings of small effects of crop insurance coverage on farmer 

decisions combined with the recent linking to conservation requirements suggest that the federal 

crop insurance program should not have substantial negative environmental implications moving 

forward. 

 Looking beyond crop insurance, our panel data set of nearly 32,500 distinct farms in the 

2000-2013 period lends itself to studying a wide range of agro-environmental issues and their 

links with program participation and farm household finances and characteristics. As the panel 

expands with each passing year, it will aid in studying the effects of the shifts in farm and 

conservation policy that occurred in the 2014 Farm Act including the reduction of the 

Conservation Reserve Program, the re-linking of insurance premium subsidies to conservation 

compliance, and the elimination of the direct payment program. 
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Figures 

 

 

Figure 1. Enrolled Acres and Total Premium Subsidies, 1989-2013. The figure was 

elaborated by the authors using data are from the U.S. Department of Agriculture, Risk 

Management Agency, Summary of Business. Enrolled acres correspond to the number of acres 

enrolled in a plan beyond the basic catastrophic level. Premium subsidies refer to those subsidies 

applied to acres enrolled in a plan beyond the basic catastrophic level. Premium subsidies are in 

2009 dollars. 
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Figure 2. The Initial Coverage Ratio and the Response to Greater Incentives for Insurance 
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Figure 3. The Log of the Initial Coverage Ratio is Negatively Related to the Change in 

Coverage. The line represents the results of a kernel-weighted local polynomial regression of the 

log difference in coverage on the log of the initial coverage ratio. For the figure, the log of the 

coverage ratio is truncated at -6, and only observations with nonzero premiums are used.  
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Figure 4a. Sample Farms Are Distributed Across the Major Row-Crop Regions 

 

 

Figure 4b. Counties with High Growth in Coverage Are Spread Across Regions  
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Tables 

Table 1. How Often is the Same Farm Observed in ARMS?  

 

Number of Times Observed Farms Percent of Distinct Farms Observed 

1 169,629 84  

2 25,548 13  

3 5,449 3 

4 1,239 1 

5 230 <0.1 

6 24 <0.1 

7 8 <0.1 

Total 202,127 100 
Source.‒ The USDA, Economic Research Service and USDA, National Agricultural Statistics Service, Agricultural 

Resource Management Survey (ARMS), 2000-2013. 

Note.‒ The data are from The percents in the third column do not add to 100 because of rounding. 
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Table 2. How Do Repeat Farms Compare to the Typical ARMS Respondent Farm? 

 

  

Farms  

(number of) 

Acres Operated 

(median acres) 

Value of Production 

(median $) 

Year Repeat  All Repeat  All Repeat All 

2000 2,862 9,863 748 440 382,148 151,126 

2001 1,999 7,343 840 416 474,014 131,190 

2002 2,925 11,926 720 397 367,400 114,503 

2003 4,398 17,782 620 395 320,628 142,233 

2004 4,376 19,468 445 300 369,739 133,307 

2005 4,213 21,564 412 250 339,560 105,583 

2006 3,584 20,351 466 264 355,012 125,529 

2007 2,314 17,465 650 360 560,727 239,878 

2008 2,126 20,469 576 340 435,519 153,940 

2009 1,700 19,877 450 300 292,288 111,103 

2010 1,242 20,661 400 250 258,473 100,000 

2011 661 19,441 300 280 300,694 181,221 

2012 98 20,561 555 323 159,123 147,634 

All 

Years* 32,498 243,378 550 310 369,834 135,293 

Source.‒ The USDA, Economic Research Service and USDA, National Agricultural Statistics Service, Agricultural 

Resource Management Survey (ARMS), 2000-2013. 

Note.‒ “All Years” contains 2013 data in the “All” categories while there is no row for 2013 since any repeat farms 
would, by definition, have to have been observed prior to 2013. 
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Table 3. Descriptive Statistics for the Sample Used in Estimation 

        

Variable Mean S.D. Median 

 
Farm characteristics  

Operator age 52 11 52 

Off-farm income 44,600 116,000 26,250 

Value of production 854,000 1,508,000 489,000 

Wheat acres to total acres harvested 0.2 0.31 0.01 

Corn acres to total acres  harvested 0.23 0.25 0.14 

Soybean acres to total acres harvested 0.3 0.27 0.32 

Change in premium per acre 2.48 11.2 1.2 

Change in log premium per acre 0.31 3.8 0.28 

Premium per acre in 2000 6.17 7.86 3.7 

Premium per acre in 2013 11.3 11.59 8.64 

 
Farm outcomes  

Share of acres harvested 0.84 0.25 0.92 

Max share accounted for by one crop 0.42 0.36 0.35 

Value of production per acre 382 281 331 

Fertilizer expenses per acre 51 47 40 

Chemical expenses per acre 45 42 32 

Fertilizer and chemical expenses per acre 96 77 78 

Source.‒ The USDA, Economic Research Service and USDA, National Agricultural Statistics Service, Agricultural 

Resource Management Survey (ARMS), 2000-2013. The descriptive statistics are for farms meeting the sample criteria as 

described in the text. 

Note.‒ The farm-level statistics are based on the first year the farm was observed. There are a total of 6,681 

observations in the full sample used in our analysis. The premium per acre statistics are based only on farms 

observed for the first time in the reference year (n=752 for 2000 and n =1,199 for 2013). Monetary amounts are in 

2011 dollars.
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Table 4. Farms in Different Coverage-Ratio Terciles Had Similar Initial Levels of the Dependent Variables 

                      

 

Coverage Ratio Tercile  
(Mean Ratio)  

    

 

Tercile 1 
(0.04)  

Tercile 2 
 (0.28) 

Tercile 3  
(0.82) Tercile 2 vs. Tercile 1 Tercile 3 vs. Tercile 1 

Variables at Initial Period Values Mean SD Mean SD Mean SD Diff. Norm. Diff. Diff. Norm. Diff. 

Share of acres harvested 0.88 0.23 0.84 0.25 0.78 0.28 -0.04 -0.11 -0.10 -0.29 

Max share accounted for by one crop 0.42 0.34 0.38 0.36 0.47 0.37 -0.05 -0.10 0.04 0.08 

ln(Value of production/acre) 5.80 0.76 5.67 0.83 5.57 0.95 -0.13 -0.11 -0.23 -0.19 

ln(Fertilizer expenses/acre) 3.67 0.92 3.56 0.95 3.55 1.01 -0.11 -0.08 -0.12 -0.08 

ln(Chemical expenses/acre) 3.60 1.03 3.28 1.06 3.30 1.11 -0.32 -0.22 -0.30 -0.20 

ln(Fertilizer and chemical expenses/acre) 4.38 0.89 4.17 0.93 4.17 0.99 -0.21 -0.16 -0.21 -0.16 
Note.‒ The initial period values are based on the first year of each year-pair observation. The coverage ratio terciles are based on each farm’s initial 

coverage ratio (=initial premiums / premiums associated with maximum coverage). Monetary amounts are in 2011 dollars.  
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Table 5. OLS Estimates of the Effect of Crop Insurance Coverage  

              

  
Δ Share of 

acres 
harvested 

Δ Max share 
accounted for by 

one crop 
Δ ln(Value of 
prod. /acre)  

Δ ln(Fertilizer 
expenses/acre) 

Δ ln (Chemical 
expenses/acre)  

Δ ln(Fert. + chem. 
expenses/acre) 

Δ log premium per acre 0.011*** 0.003 0.033*** 0.039*** 0.044*** 0.044*** 

 
(0.002) (0.002) (0.006) (0.009) (0.009) (0.008) 

Initial premium per acre 0.000 -0.000 0.000*** 0.000 0.000*** 0.000 

 
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Control variables Y Y Y Y Y Y 

Year fixed effects Y Y Y Y Y Y 

County fixed effects Y Y Y Y Y Y 

Observations 6,681 6,543 6,574 6,368 6,341 6,574 

Adjusted R-Squared 0.024 0.189 0.112 0.092 0.030 0.085 

Note.‒ Robust standard errors clustered by county are in parenthesis. County and year fixed effects are included as well as all the control variables 
mentioned in the text (dummy variables indicating zero premiums in the first or second year observed; linear and quadratic terms for the age of the farm 
operator’s age and the farm’s total value of production; the initial share of harvested acres accounted for by soybeans, corn, and wheat, all separately).  Other 
than the share variables, the dependent variables are per acre operated by the farm. The different number of observations across regressions is from some farms 
not having positive values for the outcome variable in at least one year.  

*p < .10. 

** p < .05. 

*** p < .01
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Table 6. The Initial Coverage Ratio Is Negatively Correlated With Increases in Coverage 

  Δ log premium per acre 

Initial coverage ratio -0.724*** 

 
(0.022) 

Initial premium per acre -0.000* 

 
(0.000) 

Wheat acres to total acres harvested 0.189 

 

(0.135) 

Corn acres to total acres  harvested 0.019 

 
(0.138) 

Soybean acres to total acres harvested 0.535*** 

 
(0.142) 

Operator age 0.010 

 
(0.010) 

Operator age squared -0.000 

 
(0.000) 

Total off-farm income -0.000 

 
(0.000) 

Total value of production -0.000 

 
(0.000) 

Total value of production squared 0.000 

 
(0.000) 

Zero premium, first year -4.166*** 

 
(0.135) 

Zero premium, second year 8.363*** 

 
(0.071) 

Intercept -5.577*** 

  (0.446) 

County fixed effects Y 
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Year fixed effects Y 

Observations 6,681 

Adjusted R-Squared 0.90 

F Statistic on the coverage ratio 1,130 
Note.‒ ***,**,* indicate statistical significance at the 1, 5, and 10 percent levels. Robust standard errors clustered by county are in parenthesis. 
*p < .10. 

** p < .05. 

*** p < .01



50 
 

Table 7. Instrumental Variable Estimates of the Effect of Crop Insurance Coverage 

              

  
Δ Share of 

acres 
harvested 

Δ Max share 
accounted for by 

one crop 
Δ ln(Value of 
prod. /acre)  

Δ ln(Fertilizer 
expenses/acre) 

Δ ln (Chemical 
expenses/acre)  

Δ ln(Fert. + chem. 
expenses/acre) 

Δ log premium per acre -0.007** 0.005** 0.014 -0.001 0.006 0.011 

 (0.003) (0.003) (0.009) (0.014) (0.013) (0.010) 

Initial premium per acre -0.000 -0.000 0.000*** -0.000 0.000** 0.000 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Control variables Y Y Y Y Y Y 

Year fixed effects Y Y Y Y Y Y 

County fixed effects Y Y Y Y Y Y 

Observations 6,681 6,543 6,574 6,368 6,341 6,574 

Note.‒ Robust standard errors clustered by county are in parenthesis. County and year fixed effects are included as well as all the control variables 

mentioned in the text (dummy variables indicating zero premiums in the first or second year observed; linear and quadratic terms for the age of the farm 

operator’s age and the farm’s total value of production; the initial share of harvested acres accounted for by soybeans, corn, and wheat, all separately).   Other 

than the share variables, the dependent variables are per acre operated by the farm. The different number of observations across regressions is from some farms 

not having positive values for the outcome variable in at least one year. The first stage F statistic for the excluded instrument (Δ log premium per acre) is 

1,130. 

*p < .10. 

** p < .05. 

*** p < .01
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Table 8. The Robustness of the Estimates of the Effect of Insurance Coverage  

              

Sample/Specification 

Δ Share of 
acres 

harvested 

Δ Max share 
accounted for by 

one crop 

Δ ln(Value 
of prod. 
/acre)  

Δ ln(Fertilizer 
expenses/acre) 

Δ ln (Chemical 
expenses/acre)  

Δ ln(Fert. + chem. 
expenses/acre) 

Main results (for comparison) -0.007** 0.005** 0.014 -0.001 0.006 0.011 

 

(0.003) (0.003) (0.009) (0.014) (0.013) (0.010) 

Excluding farm covariates  -0.002 -0.000 -0.002 -0.002 0.001 0.004 

 
(0.001) (0.001) (0.003) (0.005) (0.005) (0.004) 

Farms with positive premiums -0.009** 0.005 0.006 -0.011 0.009 0.001 

 (0.004) (0.003) (0.010) (0.017) (0.015) (0.012) 

Year-pair dummy variables -0.007** 0.005* 0.014 0.002 0.007 0.013 

 (0.003) (0.003) (0.009) (0.014) (0.013) (0.010) 

Add (year2 – year1) variable -0.007** 0.005** 0.014 -0.001 0.006 0.011 

 (0.003) (0.003) (0.009) (0.014) (0.013) (0.010) 

Periods 3-5 years apart -0.003 0.003 0.018 0.000 -0.028 -0.007 

 (0.005) (0.006) (0.018) (0.028) (0.028) (0.024) 

Crop reporting district -0.008** 0.004 0.005 0.001 0.001 0.008 

 (0.003) (0.003) (0.011) (0.016) (0.012) (0.010) 

Farms specialized in corn  -0.004 -0.001 0.026 0.052* 0.021 0.033 

 
(0.006) (0.004) (0.019) (0.029) (0.028) (0.021) 

Farms not specialized in corn -0.008 0.006 0.017 -0.025 -0.012 -0.004 

 
(0.005) (0.004) (0.012) (0.021) (0.016) (0.014) 

Large farms -0.002 0.003 0.013 -0.005 0.006 0.015 

 
(0.004) (0.004) (0.011) (0.018) (0.019) (0.013) 

Small farms 0.001 0.003 0.077*** 0.003 -0.017 0.010 

  (0.007) (0.007) (0.019) (0.027) (0.028) (0.024) 

Note.‒ Robust standard errors clustered by county are in parenthesis. For the row “Full sample, excluding farm covariates”, only the zero-premium 

indicator variables and the county and year fixed effects are controlled for. The other regressions include county and year fixed effects as well as all the control 

variables mentioned in the text. Other than the share variables, the dependent variables are per acre operated by the farm. Specialization in corn farming is based 
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on having at least 25 percent of the farm’s value of production coming from corn. The large and small farm categories are based on being above or below the 

sample median acres operated. For all regressions, the first stage F statistic on the excluded instrument is well above thresholds for weak instrument bias.      

*p < .10. 

** p < .05. 

*** p < .01



53 
 

Table 9. The Economic Magnitude of Our Findings 

            

  
Point 

Estimate 
95 % CI Upper 

Bound 
Change for a 100% Increase 
in Premiums Per Acre (%) 

Elasticity of 
Contamination  

Increased Presence 
in Waterways (%) 

Share of acres harvested -0.007 -0.000 -0.0 - 
 Max share in one crop 0.005 0.011 0.8 - 
 Value of production  0.014 0.032 2.2 - 
 Fertilizer expenses  -0.001 0.027 1.9 0.7 1.3 

Chemical expenses  0.006 0.032 2.2 0.5 1.1 

Fertilizer and chemical expenses  0.011 0.031 2.2 -   
Note.‒ The doubling of premiums per acre is based on the observed change in premiums per acre from 2000 to 2013 (roughly $6 to $12 per acre). The 

results in column 3 are from multiplying column 2 by 0.70 (=ln(12/6)). For the share variables, the numbers in column 3 refer to the percentage point increase in 

the share (e.g. a 0.8 percentage point increase in the max share of one crop). The elasticity of contamination for fertilizer (column 4) is from Li et al. (2006) and 

represents the percent increase in nitrogen in tile drainage water for a percent increase in fertilizer application. The elasticity of contamination for chemical 

expenses refers to the percent increase in atrazine in waterways resulting from a one percent increase in atrazine application as estimated by Tesfamichael et al. 

(2005). Column 5 comes from multiplying column 3 with column 4.  
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Supplemental Online Appendix for  

“Does Federal Crop Insurance Make Environmental Externalities from Agriculture 
Worse?”  

 

SA1. The Microeconomic Foundations of Figure 2–A Graphical Explanation 

Figure SA1 depicts risk indifference curves for farmers A and B. Assume that both farmers seek 

to reach a particular level of risk exposure through the lowest-cost combination of risk-reducing 

practices (“diversification”) and insurance.9 The vertical axis indicates spending on risk-

reduction through diversification and the horizontal axis indicates spending on insurance. The 

slope of the isocost line is the price of insurance divided by the price of diversification (e.g. the 

cost of risk-reducing practices). Given a particular risk indifference curve (assumed to have the 

same shape for both farmers), these relative prices determine the mix of diversification and 

insurance used.  

We assume that farmer B seeks less risk exposure than farmer A, perhaps because of risk 

preferences or wealth. This puts farmer B on an indifference curve further from the origin, 

indicating less risk exposure and more spending on risk-reducing practices and insurance 

(DB>DA; IB>IA). We further assume that farmer B’s optimal insurance amount is beyond the 

maximum coverage level (IB> IMax).  

Consider an increase in premium subsidies, which lowers the price of insurance. The 

decline in price flattens the isocost curve, causing farmer A to use less diversification and more 

insurance (𝐷𝐴′ < 𝐷𝐴, 𝐼𝐴′ > 𝐼𝐴). Farmer B, in contrast, is constrained in the amount of insurance he 

                                                           
9 The assumption that each farm has a targeted risk indifference curve allows us to abstract away from a full 
household utility maximization problem and focus on the mix of diversification and insurance used to achieve the 
targeted level of risk. While it is a strong assumption, it could be a reasonable approximation if farm households 
seek a risk level that rules out extreme outcomes such as defaulting on a loan, and once this risk level is achieved the 
household places little value on further reductions in risk.  
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can purchase, so is while his optimal unconstrained insurance level, indicated by stars, increases 

from  𝐼𝐵∗  to 𝐼𝐵∗′  his actual purchase remains at IMax (farmer B’s use of diversification will also not 

change as long as he does not change his preferred level risk exposure). Farmer A’s premiums 

increase relative to farmer B’s premiums since farmer B cannot increase his use of insurance. 

The empirical focus of the paper is whether farmer A’s shift away from diversification and 

towards insurance is associated with an increase in fertilizer use, chemical use, and so on. 

Consistent with Figure 2, the percent change in coverage in response to the subsidy increases 

exponentially the further the farmer’s initial insurance level is from the maximum level. In the 

example given, 𝐼𝐴′ 𝐼𝐴⁄ > 𝐼𝑀𝑎𝑥 𝐼𝑀𝑎𝑥⁄ = 1 and 𝐼𝐴′ 𝐼𝐴⁄  increases exponentially as 𝐼𝐴 decreases. 

The same framework can be used to explore an overall increase in profit variability, 

which causes the indifference curves for both farmers to shift outward by the same degree‒to 

obtain the same level of risk requires more insurance and/or diversification. The previous isocost 

line is now associated with an indifference curve with more risk exposure, requiring farmers to 

spend more–either on diversification or insurance–to reach the prior level of risk exposure 

(Figure SA2). Without limits on coverage and no changes in relative prices, both farmers would 

increase diversification and insurance proportionally (indicated by an outward shift in the isocost 

curve) and remain at a similar point of curvature on the indifference curve but on a new curve 

with the desired risk exposure. Because the coverage constraint binds for farmer B, he will hold 

constant the use of insurance but increase the use of diversification, moving up the indifference 

curve towards greater dependence on diversification. Farmer A, in contrast, increases the use of 

diversification and insurance and remains at the same point on the indifference curve. As before, 

premiums increase proportionally more for farmer A than for farmer B. The change corresponds 

to the replacing of insurance with diversification and fits the empirical focus of the paper, which 
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is whether farmer A’s shift away from diversification and towards insurance is associated with 

an increase in fertilizer use, chemical use, and so on. 

SA2. Comparing Repeat Farms to the Typical Respondent farm. 

The full sample of repeat farms is 32,498 (see Table 2 in the main text). For the purpose of broad 

conclusions about repeat farms, our comparison of repeat and respondent farms is based on the 

full sample of repeat farms, not the more narrow sample used for our analysis of crop insurance. 

We break the repeat farm sample into quartiles based on the value of production. There are 8,124 

repeat farms in the bottom quartile of the value of production, which is defined by having 

$116,075 or less in production. We then randomly draw the same number of farms among all 

respondent farms having $116,075 or less in production. We do this for the second, third, and 

fourth farm-size quartiles, thereby creating a subsample of ARMS respondent farms with a farm-

size distribution similar to that of the repeat farm sample.  

 For many quartiles, repeat and respondent farms have group means that are statistically 

different at the one percent level. But given the more than 16,000 observations in each quartile, a 

statistically significant difference is likely even if the difference is economically unimportant. 

The normalized difference–the difference in means for the two groups divided by the square root 

of the sum of their squared standard deviations–is a common metric of comparison and is more 

informative than a test of statistical significant difference in means between two large groups. 

Comparing the two groups across 11 variables and four quartiles for each variable, the average 

absolute normalized difference is just 0.04. By comparison, Imbens and Wooldridge (2009) 

suggest that linear regression to estimate treatment effects may be misleading when it is larger 

than 0.25 standard deviations.  
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 Across most of the variables explored in Table SA1, the mean differences between the 

two samples are more pronounced for the smaller farms (the first quartile) and tend to disappear 

by the fourth quartile. This is likely because the full ARMS respondent sample includes many 

very small farms–often without any agricultural production at all, which lowers the average 

values within the first quartile. The differences in the second and third quartiles, though 

sometimes statistically significant, generally diminish and by the fourth quartile, the two samples 

tend to have very similar means across the variables explored.  

We performed a similar comparison for farms meeting our sample criteria. The repeat 

farms correspond to our sample farms while the “Random Draw of Respondent Farms” refers to 

the respondent farms in the random draw that meet our sample criteria. One of the criteria was 

for repeat farms to have crop insurance in one or more years. This criterion cannot be applied to 

general respondent farms. Instead, we require these farms to be participating in crop insurance. 

As before, the comparison shows substantial comparability across the two groups, with an 

average normalized difference of 0.11, with only one case where the normalized difference was 

above 0.25 (excluding the crop insurance participation variable which will be different for the 

two groups by construction) (Table SA2).      
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Figure SA1. Farmers With Lower Initial Coverage Levels Have More Ability to Respond to Increasing Premiums  
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Figure SA2. Farmers With Higher Initial Coverage Levels Depend More on Diversification for Managing Additional Risk  
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Figure SA3. Low-Coverage-Ratio Farms Are Distributed Across Regions 

 

 

  



61 
 

Table SA3. How Do Repeat Farms Compare to a Random Subsample of Respondent Farms? 

  Repeat Farms 
Random Draw of 

Respondent Farms 
Normalized 

Diff. in 
Means 

Stat. Sign. 
Difference 
in Means? 

  Mean S.D. Mean S.D. 

Farm Characteristics 
 

Acres 
      

Quartile 1 
(Q1) 

530 1,780 370 1,460 0.07 Y 

Q2 1,470 3,650 1,240 2,700 0.05 Y 

Q3 1,960 6,460 1,750 4,380 0.03 N 

Q4 2,160 5,800 2,250 7,470 -0.01 N 

Value of 

production 

(VOP) 
   

  
  

Q1 37,430 35,400 26,650 31,700 0.23 Y 

Q2 259,250 90,800 245,200 91,300 0.11 Y 

Q3 701,500 178,400 689,900 176,000 0.05 Y 

Q4 2,883,500 3,880,500 3,027,400 11,620,700 -0.01 N 

Crop farm 

(0/1)       

Q1 0.49 0.5 0.47 0.5 0.03 Y 

Q2 0.62 0.49 0.61 0.49 0.01 N 

Q3 0.58 0.49 0.62 0.48 -0.06 Y 

Q4 0.42 0.49 0.47 0.5 -0.07 Y 

Share of 

acres 

harvested 
      

Q1 0.41 0.65 0.38 3.34 0.01 N 

Q2 0.65 0.35 0.66 1.37 -0.01 N 

Q3 0.69 0.38 0.71 0.37 -0.04 Y 

Q4 0.64 0.42 0.66 0.41 -0.03 Y 

VOP/acre 
      

Q1 590 3,120 485 2,710 0.03 N 

Q2 2,720 16,100 2,760 13,500 0.00 N 

Q3 6,770 29,750 6,600 31,800 0.00 N 

Q4 23,700 99,400 30,300 337,700 -0.02 N 

Debt to 

asset ratio       

Q1 0.12 1.71 0.18 9.55 -0.01 N 
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Q2 0.25 7.53 0.17 1.28 0.01 N 

Q3 0.31 8.67 0.31 8.69 0.00 N 

Q4 0.87 48.4 0.35 3.49 0.01 N 

Has acres in 

crop 

insurance 

(0/1) 

      

Q1 0.22 0.41 0.17 0.37 0.09 Y 

Q2 0.49 0.5 0.5 0.5 -0.01 N 

Q3 0.49 0.5 0.54 0.5 -0.07 Y 

Q4 0.41 0.49 0.45 0.5 -0.06 Y 

Operator and Household (HH) Characteristics 
 

  Operator 

age       

Q1 56 12 59 13 -0.17 Y 

Q2 53 12 54 12 -0.06 Y 

Q3 52 11 53 11 -0.06 Y 

Q4 52 11 52 11 0.00 N 

Operator 

experience       

Q1 25 15 27 16 -0.09 Y 

Q2 27 13 28 14 -0.05 Y 

Q3 26 12 27 13 -0.06 Y 

Q4 25 13 25 13 0.00 N 

Off-farm 

income       

Q1 76,300 129,200 82,700 186,800 -0.03 N 

Q2 51,200 115,700 56,550 137,100 -0.03 Y 

Q3 52,400 139,600 52,500 133,500 0.00 N 

Q4 59,400 178,200 59,600 224,800 0.00 N 

Total HH 

income       

Q1 81,200 161,500 83,200 190,500 -0.01 N 

Q2 96,000 177,300 97,800 207,500 -0.01 N 

Q3 154,100 279,100 162,100 271,500 -0.02 N 

Q4 373,200 950,000 420,200 1,397,400 -0.03 N 

Note.‒ The subsample of respondent farms is a stratified random selection of respondent farms such that the 
resulting sample has a similar farm size distribution as repeat farms. This is done by selecting a certain number of 

farms in each size quartiles, where the quartiles are based on the repeat sample. Statistical significance is at the one 

percent level. 
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Table SA2. Comparing Repeat and Respondent Farms Among Farms Meeting Sample Criteria  

  Repeat Farms 
Random Draw of 

Respondent Farms 
Normalized 

Diff. in 
Means 

Stat. Sign. 
Difference 
in Means? 

  Mean S.D. Mean S.D. 

Farm Characteristics 
 

Acres 
      

Quartile 1 
(Q1) 

1,280 1,710 744 1,030 0.27 Y 

Q2 2,130 2,320 1,500 1,320 0.24 Y 

Q3 2,780 2,780 2,200 1,890 0.17 Y 

Q4 4,790 3,700 3,830 2,880 0.20 Y 

Value of 

production 

(VOP) 
   

    

Q1 138,440 75,690 119,300 74,500 0.18 Y 

Q2 414,330 89,600 406,400 88,600 0.06 Y 

Q3 820,350 160,000 803,300 156,300 0.08 Y 

Q4 2,555,100 2,785,300 2,090,500 1,691,000 0.14 Y 

Share of 

acres 

harvested 
    

  

Q1 0.71 0.30 0.74 0.27 -0.07 Y 

Q2 0.80 0.25 0.84 0.23 -0.12 Y 

Q3 0.89 0.21 0.90 0.20 -0.03 N 

Q4 0.94 0.18 0.93 0.18 0.04 N 

VOP/acre 
    

  

Q1 224 196 285 237 -0.20 Y 

Q2 320 250 410 400 -0.19 Y 

Q3 415 250 500 277 -0.23 Y 

Q4 620 500 670 520 -0.07 Y 

Debt to 

asset ratio     
  

Q1 0.10 1.71 0.28 4.47 -0.04 N 

Q2 0.12 0.18 0.19 0.37 -0.17 Y 

Q3 0.14 0.35 0.24 1.00 -0.09 Y 

Q4 0.14 0.40 0.27 1.14 -0.11 Y 

Has acres in 

crop 

insurance 

(0/1) 

    
  



64 
 

Q1 0.89 0.31 1 0 -0.35 Y 

Q2 0.91 0.29 1 0 -0.31 Y 

Q3 0.92 0.27 1 0 -0.30 Y 

Q4 0.91 0.29 1 0 -0.31 Y 

Operator and Household (HH) Characteristics  

Operator 

age     
  

Q1 52 12 56 13 -0.23 Y 

Q2 51 11 53 12 -0.12 Y 

Q3 51 10 52 10 -0.07 Y 

Q4 52 10 52 10 0.00 N 

Off-farm 

income     
  

Q1 47,580 58,420 60,000 95,000 -0.11 Y 

Q2 46,600 101,500 44,800 59,100 0.02 N 

Q3 46,700 115,800 53,200 135,400 -0.04 N 

Q4 62,700 194,100 48,400 98,200 0.07 Y 

Total HH 

income     
  

Q1 75,800 58,400 91,300 142,000 -0.10 Y 

Q2 126,750 226,550 139,000 197,000 -0.04 N 

Q3 183,750 331,200 221,400 313,100 -0.08 Y 

Q4 440,700 742,700 418,600 649,800 0.02 N 

Note.‒ The repeat farms correspond to our sample farms while the “Random Draw of Respondent Farms” 
refers to the respondent farms in the random draw that meet our sample criteria.Comparison are then made within 

each farm-size quartile. One of the criteria was for repeat farms to have crop insurance in one or more years. This 

criterion cannot be applied to general respondent farms. Instead, we require all of these farms to be participating in 

crop insurance.  

  



65 
 

Table SA3. The Number of Sample Farms Observed in Each Year Pairing 

                            
 Year1/Year2 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Total 

2000 25 131 131 70 53 79 47 37 41 28 31 51 56 780 

2001 0 17 99 67 42 52 38 42 35 13 18 51 15 489 

2002 0 0 78 123 83 120 73 62 45 30 44 84 53 795 

2003 0 0 0 30 99 111 150 85 75 36 88 77 42 793 

2004 0 0 0 0 23 125 65 74 89 36 41 67 59 579 

2005 0 0 0 0 0 41 89 77 46 32 42 63 55 445 

2006 0 0 0 0 0 0 79 147 85 67 66 158 165 767 

2007 0 0 0 0 0 0 0 87 97 57 64 110 94 509 

2008 0 0 0 0 0 0 0 0 47 110 83 165 130 535 

2009 0 0 0 0 0 0 0 0 0 22 186 135 92 435 

2010 0 0 0 0 0 0 0 0 0 0 20 206 115 341 

2011 0 0 0 0 0 0 0 0 0 0 0 46 209 255 

2012 0 0 0 0 0 0 0 0 0 0 0 0 134 134 

2013 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Total 25 148 308 290 300 528 541 611 560 431 683 1,213 1,219 6,857 
Note.‒ Year 1 corresponds to the first year the farm was observed; Year 2 corresponds to the second year observed. 
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Table SA4. OLS Estimates Using Observations from the 2001-2007 Period 

              

  
Δ Share of 

acres 
harvested 

Δ Max share 
accounted for 
by one crop 

Δ ln(Value 
of prod. 
/acre)  

Δ ln(Fertilizer 
expenses/acre) 

Δ ln 
(Chemical 

expenses/acre)  
Δ ln(Fert. + chem. 

expenses/acre) 

Δ log premium per acre 0.011** 0.001 0.028** 0.019 0.032* 0.037** 

 
(0.004) (0.005) (0.012) (0.018) (0.018) (0.015) 

Initial premium per acre 0.000 -0.000* 0.000*** -0.000 -0.000 0.000 

  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Control variables Y Y Y Y Y Y 

Year fixed effects Y Y Y Y Y Y 

County fixed effects Y Y Y Y Y Y 

Observations 1,547 1,516 1,531 1,475 1,498 1,529 

Adjusted R-Squared 0.041 0.216 0.125 0.053 0.037 0.057 

Note.‒ The regression is based on farms where the first year observed was after 2000 and the second year observed was before 2008. Robust standard errors 

clustered by county are in parenthesis. County and year fixed effects are included as well as all the control variables mentioned in the text (dummy variables 

indicating zero premiums in the first or second year observed; linear and quadratic terms for the age of the farm operator’s age and the farm’s total value of 
production; the initial share of harvested acres accounted for by soybeans, corn, and wheat, all separately).  Other than the share variables, the dependent 

variables are per acre operated by the farm. The different number of observations across regressions is from some farms not having positive values for the 

outcome variable in at least one year.  

*p < .10. 

** p < .05. 

*** p < .01 
 

 


