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Abstract

This paper proposes a simple unified framework of changing awareness, addressing

both outcome and (nature) state awareness, and both how fine and how exhaustive

the awareness is. Six axioms characterize an (essentially unique) expected-utility

representation of preferences, in which utilities and probabilities are revised sys-

tematically under changes in awareness. Revision is governed by three well-defined

rules: (R1) certain utilities are transformed affinely, (R2) certain probabilities are
transformed proportionally, and (R3) certain (‘objective’) probabilities are pre-

served. Rule R2 parallels Karni and Viero’s (2013) ‘reverse Bayesianism’ and Ahn

and Ergin’s (2010) ‘partition-dependence’. Savage’s (1954) theorem emerges in the

special case of fixed awareness. The theorem draws mathematically on Kopylov

(2007), Niiniluoto (1972) and Wakker (1981).

Keywords: Decision under uncertainty, outcome unawareness versus state un-

awareness, non-refinement versus non-exhaustiveness, utility revision versus prob-

ability revision

1 Introduction

Savage’s (1954) expected-utility framework is the cornerstone of modern decision

theory. A widely recognized problem is that Savage relies on ready-made and fixed

concepts of outcomes and (nature) states. These concepts are taken to be stable,

as well as highly sophisticated: ideally, outcomes capture everything that matters

ultimately, and states everything that influences outcomes of actions. This ideal

translates partly into Savage’s axioms, which imply high ‘state sophistication’ (i.e.,

infinitely many states), while permitting low ‘outcome sophistication’ (i.e., possibly

just two outcomes). In sum, Savage’s theory is committed to stable outcome/state

awareness and sophisticated state awareness.

A real agent’s awareness can be limited on two levels in two ways. It can

be limited at the outcome and state level, and it can be non-fine (coarse) and

non-exhaustive (domain-restricted). Consider a social planner deciding where to

1Paris School of Economics & CNRS; fd@franzdietrich.net; www.franzdietrich.net. Address:

Centre d’Economie de la Sorbonne, 106-112 Boulevard de l’Hôpital, 75013 Paris, France.
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build a new nuclear power plant on his island. He has a non-exhaustive state

concept if he fails to foresee some contingencies such as a Tsunami. He has a non-

fine state concept if he conceives a Tsunami as a primitive possibility rather than

decomposing it into the (sub)possibilities of a Tsunami from the east, west, north,

or south. These are examples of state unawareness; analogous examples exist for

outcome unawareness. Figure 1 gives a formal illustration with four ‘objective’

states outcomes
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r x y

w

f

q

z

Figure 1: An act  for non-fine and non-exhaustive concepts of states and outcomes

states resp. outcomes from an external perspective, but only two subjectively

conceived states resp. outcomes. The concepts are non-fine:  and  are lumped

into the same state, and  and  into the same outcome. The concepts are also

non-exhaustive:  and  are ignored, i.e., excluded by all conceived states resp.

outcomes. State/outcome unawareness translates into act unawareness: if as in

Figure 1 only two states resp. outcomes are conceived, then only 22 = 4 acts

(functions from states to outcomes) are conceived.

There is a clear need for a generalization of Savage’s expected-utility theory to

cope with changes in awareness of the various sorts. If such a generalization has

not yet been offered, it is possibly because of an obstacle: Savage’s high demands of
‘state sophistication’ conflict with (state) unawareness. Overcoming this obstacle,

I offer a Savagean expected-utility theory under changing awareness, involving
‘rational’ revision rules. Future research might move towards non-expected-utility

representations and/or ‘boundedly rational’ revision rules. But since such issues are

orthogonal to the issue of awareness change, good scientific practice tells us to first

develop a general understanding of ‘rational’ decision and ‘rational’ revision under

changing awareness, thereby creating a solid starting point for future relaxations.

In short, I propose a simple unified model of changing awareness, capturing

changes in outcome as well as state awareness, and in refinement as well as exhaust-

iveness. Six axioms are shown to characterize an expected-utility agent who uses

three revision rules to update utilities and probabilities when his outcome/state

concepts change:

R1: utilities of unaffected outcomes are transformed in an increasing affine way;
R2: probabilities of unaffected events are transformed proportionally;
R3: ‘objective’ probabilities (in an endogenous sense) are preserved.2

2I.e., events that are ‘risky’ (in an endogenous sense) have description-invariant probabilities.
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Probabilities are unique; so R2’s coefficient of proportionality is unique. Utilities
are essentially unique. Utility revision is a genuine feature: utilities cannot gener-

ally be normalised such that R1’s transformation is always the identity transform-

ation. The theorem addresses the two problems raised at the outset: it permits

instable and unsophisticated awareness, of both outcomes and states. Further, it

generalizes Savage’s Theorem: it reduces to it in case of stable awareness, as our

axioms then reduce to Savage’s axioms, while rules R1 and R2 hold trivially and

R3 can be shown to reduce to Savage’s atomlessness condition on probabilities.

To my knowledge, the current framework and theorem are new. I wish to re-

late the paper to two seminal contributions, the Ahn-Ergin (2010) model of framed

contingencies and the Karni-Viero (2013) model of growing awareness. Ahn and

Ergin (2010) assume that each of various possible ‘framings’ of the relevant con-

tingencies leads to a particular partition of the objective state space (represent-

ing the agent’s state concept), and to a particular preference relation over those

acts which are measurable relative to that partition. Under plausible axioms on

partition-dependent preferences, they derive a compact expected-utility represent-

ation with fixed utilities and partition-dependent probabilities. The systematic

way in which these probabilities change with the partition implies our rule R2

(without an equivalence). Karni and Viero (2013), by contrast, model the discov-

ery of new acts, outcomes, and act-outcome links. Given their goal, they use a

non-Savagean framework (going back to Schmeidler and Wakker 1987 and Karni

and Schmeidler 1991) which takes acts as primitive objects and states as functions

from acts to outcomes. They characterize preference change under growing aware-

ness, using various combinations of axioms. A key finding is that probabilities are

revised in a reverse Bayesian way, a property once again related to our revision

rule R2. The compatibility of R2 with Ahn-Ergin’s and Karni-Viero’s findings on

belief revision confirms the robustness of their findings.

The current analysis differs strongly fromAhn-Ergin’s and Karni-Viero’s. I now
mention some differences. I analyse awareness change on both levels (outcomes and
states) and of both kinds (refinement and exhaustiveness), while Ahn-Ergin limit

attention to changes in state refinement (with fixed state exhaustiveness and fixed

outcome awareness), and Karni-Viero assume fixed outcome refinement.3 Ahn-

Ergin and Karni-Viero find that only probabilities are revised, yet I find that also

utilities are revised. Ahn-Ergin and Karni-Viero introduce lotteries as primitives

(following Anscombe and Aumann 1963), while I invoke no exogenous objective

probabilities (following Savage 1954). Ahn-Ergin and Karni-Viero exclude the

classical base-line case of ‘state sophistication’ with an infinite state space, while

I allow ‘state sophistication’ to be reached sometimes (or always, or never); this

3Karni-Viero do capture changes in outcome exhaustiveness, through the discovery of new

outcomes. Changes in state awareness are captured indirectly: the discovery of new acts resp.

new outcomes effectively refines states resp. renders states more exhaustive.
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flexibility is crucial for ‘generalizing Savage’. Karni-Viero invoke different axioms
for different types of awareness change (such as the discovery of new outcomes),
while I use a unified set of axioms.

The theorem’s long proof, presented in different appendices, makes use of key
theorems by Kopylov (2007), Niiniluoto (1972) and Wakker (1981). In the back-

ground of the paper is a vast and active literature on unawareness (e.g., Dekel,

Lipman and Rustichini 1998, Halpern 2001, Halpern and Rego 2008, Hill 2010,

Pivato and Vergopoulos 2015, Karni and Viero 2015). I do not attempt to review

this diverse body of work, ranging from epistemic to choice-theoretic studies, from

static to dynamic studies, and from decision- to game-theoretic studies.

2 A unified model of changing awareness

2.1 The variable Savage framework

Before introducing our own primitives, I recall Savage’s original primitives:

Definition 1 A Savage framework is a triple ( %) of a non-empty finite4

set  (of outcomes or consequences), a non-empty set  (of states), and a

(preference) relation % on the set of functions from  to  (acts).

I replace Savage’s fixed outcome/state spaces by context-dependent ones. This

leads to a family of Savage frameworks ( %) where  ranges over a set of

contexts. I take each  to partition (coarsen) some underlying set of ‘objective’

outcomes, and each  to partition (coarsen) some underlying set of ‘objective’

states. This captures changing awareness of the ‘objective’ world.5

Definition 2 A variable Savage framework is a family of Savage frameworks

( %)∈Γ indexed by some non-empty set Γ (of contexts), where

� each  is a partition of some set (of objective outcomes encompassed

in context ),

� each  is a partition of some set (of objective states encompassed in

context ).

An objective outcome resp. state simpliciter is an objective outcome resp. state

encompassed in at least one context.

4Savage in fact did not impose finiteness. I add finiteness for simplicity.
5A partition of a set is a set of non-empty, pairwise exclusive and exhaustive subsets.
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From now on, let ( %)∈Γ be a given variable Savage framework. Let

 := 
 (set of acts conceived in context  ∈ Γ),

C := ∪∈ (set of objective outcomes encompassed in context  ∈ Γ)

S := ∪∈ (set of objective states encompassed in context  ∈ Γ)

C := ∪∈ΓC (set of objective outcomes)

S := ∪∈ΓS (set of objective states)

F := CS (set of objective acts).

The spaces  and  could represent the framing of options in context , e.g., the

mode of presentation or level of descriptive detail (see Section 2.2). Here is a two-

context example: let Γ = { }, where  = {{} { }},  = {{} { }},

 = {{ } { }}, and  = {{} {  }}; so C = {  }, S = {  },

C = C = {   }, and S = S = {   }. The context  was illustrated

in Figure 1. The outcome/state spaces are non-fine in both contexts, and non-

exhaustive only in context . In general, the smaller the sets in  and  are,

the finer the agent’s outcome/state concepts are, up to the point of singleton sets

(full refinement). The larger the sets C and S are, the more exhaustive these

concepts are, up to the point of the entire sets C and S (full exhaustiveness).

When does the agent have full awareness of some type at some level?

Definition 3 The variable Savage framework has

(a) exhaustive outcomes if C = C in all contexts  ∈ Γ,

(b) exhaustive states if S = S in all contexts  ∈ Γ,

(c) fine outcomes if all outcomes  ∈ C are singleton in all contexts  ∈ Γ,

(d) fine states if all states  ∈ S are singleton in all contexts  ∈ Γ.

Our theorem will simplify under exhaustive states, and simplify differently un-
der fine states. Examples demonstrate the generality and flexibility of our model:

� Example 1: Savage. Γ contains a single context . Our variable framework

reduces to a classic Savage framework ( %) := ( %). Objective

outcomes and states are not needed: w.l.o.g. we can, like Savage, let  and

 be primitive sets, rather than partitions.

� Example 2: stable outcome awareness. All contexts  lead to the same

outcome space  = , which we may take as a primitive set, not a partition.

� Example 3: stable state awareness. All contexts  lead to the same

state space  = , which we may take to be a primitive set, not a partition.

� Example 4: fully variable awareness. All logically possible awareness

states occur: for all partitions  and  ofC resp. S (or of non-empty subsets

of C resp. S, to allow non-exhaustive awareness), where || ∞, there is a
context  ∈ Γ in which  =  and  = . This permits arbitrary ways

to conceive the world.
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� Example 5: finite awareness. All spaces  and , and so all act sets

, are finite. The agent can only conceive finitely many things at a time.

� Example 6: contexts as awareness states. Let each context be, not just

induce, a pair of an outcome space and a state space. Formally, Γ is a set of

pairs of partitions () (the ‘possible’ awareness states). The framework

( %)∈Γ can then be abbreviated as (%)∈Γ, as each context  =

( ) ∈ Γ already contains the information of the spaces  :=  and

 := . Such a ‘compact framework’ (%)∈Γ is the slimmest point of

departure for studying the effect of awareness on preference. It uses no

independent ‘context’ notion, be this an advantage or a loss.

Throughout I assume independence between outcome and state awareness: the

agent’s outcome awareness and state awareness do not constrain one another.

Formally, any occurring outcome and state spaces  and  (  ∈ Γ) can occur

jointly, i.e., some context  ∈ Γ has  =  and  = .
6

2.2 Four interpretive remarks

1. One might compare objective and subjective states with Savage’s (1954) grand-

world resp. small-world states, although he takes both types of states to be fixed.

2. The spaces  and  ( ∈ Γ) represent the awareness (concepts) ascribed

to the agent by the observer.7 The ascription could be based on the framing effects
which are at work in a context and render certain outcome/state concepts salient,

perhaps through an explicit mode of presentation, following Ahn and Ergin (2010)

and extending their idea also to outcomes. If the agent is presented car insurance

policies in terms of their net benefit as a function of the number (up to 10) of

accidents, then  contains the 11 events ‘ accidents’ for  = 0 1  10, and 

contains the 11 net-benefit outcomes; another context  with a different mode of
presentation will induce different spaces  and . Framing effects are important,
but by far not the only possible basis for ascribing spaces  and  ( ∈ Γ) to the

agent.8 Moreover, one could take the spaces  and  to represent the agent’s real

6This excludes that the agent conceives the outcome ‘I am popular’ only when conceiving

the state ‘I win in the lottery’, or that he conceives fine outcomes only when conceiving coarse

states.
7So  and  reflect how we take him to perceive or describe the world in context . They

embody our hypothesis (or theory, stipulation, conjecture etc.) about the agent’s awareness.
8At least in principle, the ascription could also be based on (i) common sense and intuition;

or (ii) neurophysiological evidence about how the context affects the cognitive system; or (iii)
the sort of options that are feasible in the context (here  and  are constructed such that

all feasible options become representable as subjective acts, in a sense made precise in Section

2.4); or (iv) patterns of observed choice that are taken to reveal the agent’s awareness, in a sense

that can be made precise (here  and  are constructed so as to be fine enough to distinguish

between those objective acts between which observed behaviour distinguishes).
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rather than ascribed awareness in context , adopting a first-person rather than

third-person perspective. The same two interpretations are also commonly applied

to a standard Savage framework (%): its spaces  and  could represent the

agent’s ascribed or real outcome/state concepts. Savage himself had the second

interpretation in mind: he focused on the notion of rationality rather than on an

observer’s third-person perspective.

3. By modelling outcomes and states as sets of objective outcomes resp. states,

I by no means suggest that the agent subjectively conceives outcomes and states

in terms of (complex) sets. He may conceive them as indecomposable primitives.

He may conceive the outcome ‘having close friends’ in complete unawareness of

the huge (infinite) set of underlying objective outcomes.

4. Crucially, the agent may in one context  conceive an event  ⊆  and in

another context  conceive a different event 0 ⊆ , where  and 0 represent

the same objective event, and yet the agent attaches a different probability to 
(in context ) than to 0 (in context ). The idea is that belief is description-

sensitive: it depends on how objective events are perceived subjectively. Imagine

that in context  the agent conceives (fine) states {} and {} (where   ∈ S)
and hence the event  = {{} {}}, while in context  he conceives the (coarser)

state { } and hence the event 0 = {{ }}. Although  and 0 represent the

same objective event { }, the agent might in context  find  unlikely on the

grounds that {} and {} each appear implausible, while in context  finding 0

likely because he fails to analyse this event in terms of its implausible subcases.9

2.3 Terminology and notation

The objective/subjective terminology: I carefully distinguish between the

two levels of description (often dropping the adjective ‘subjective’ for brevity):

� An objective outcome, state, act resp. event is a member of C, S, F

(= CS) resp. 2S.

� A (subjective) outcome, state, act resp. event conceived in context

 (∈ Γ) is a member of , ,  (= 
 ) resp. 2

; the (subjective)

state space resp. outcome space in context  is  resp. .

� A (subjective) outcome, state, act or event simpliciter (without refer-

ence to a context) is one that is conceived in some context, i.e., a member of

some , ,  resp. 2
 ( ∈ Γ); a (subjective) outcome space resp.

state space simpliciter is some  resp.  ( ∈ Γ).

9Concretely,  could stand for country S attacking country T, and  for T attacking S. In

context  the agent finds event  = {{} {}} unlikely: he reasons that {} and {} are each

implausible, as S most probably won’t attack T, and vice versa. In context , he finds event

0 likely on unsophisticated grounds: he treats 0 as a primitive scenario of ‘war’, which seems

likely to him, failing to realise that a war requires an (unlikely) attack by either country.
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Translating between ‘subjective’ and ‘objective’: Given a context  ∈ Γ,

� any objective outcome  ∈ C has a subjectivization  3  in ,

� any objective state  ∈ S has a subjectivization  3  in ,

� any subjective event  ⊆  induces (i.e., partitions) an objective one de-

noted ∗ := ∪∈ ⊆ S;  and ∗ are said to correspond to each other;

� any subjective act  ∈  induces a function on S denoted 
∗ and given by

∗() := ();  and ∗ are said to correspond to each other.

Standard notation: Let  be the restriction of function  to its subdomain .

For objective or subjective outcomes  and sets , let  be the function on  with

constant value . For functions  and  on disjoint domains,  is the function on

the union of domains matching  on  ’s domain and  on ’s domain. Examples

are ‘mixed’ acts \ ∈ , where   ∈  and  ⊆  ( ∈ Γ).

2.4 Excursion: awareness and choice behaviour

The setting is easily connected to choice behaviour. Assume the agent finds himself

in a context  ∈ Γ and faces a choice between some concrete (pre-theoretic)

options, such as meals or holiday destinations. The modeller faces two possibilities:

he could model options either as subjective acts in  or as objective acts in

F. Neither possibility is generally superior: all depends on the intended level of

description. In the first case, the feasible set is a subset of , and the prediction is

simply that a most %-preferred member is chosen. For the rest of this subsection,

I assume the second case: let options be objective acts. So the feasible set is a

subset of F, not . Which choice does % predict? It predicts that the agent

chooses a feasible objective act whose subjective representation in  is most %-

preferred. I now spell this out formally.

Definition 4 In a context  ∈ Γ, an act in  is the (subjective) represent-

ation of the objective act  ∈ F, denoted , if it agrees with  ‘modulo subject-

ivization’: for all  ∈ S and 0 ∈ , if  ∈ 0 then () ∈ (
0). An  ∈ F is

(subjectively) representable in context  if its representation  ∈  exists.

state subjectivization

outcome subjectivization

f

Figure 2: An objective act  : S→ C which is representable in context  (so maps

S into C by Remark 1), and the subjective representation  :  → 
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Remark 1 In a context  ∈ Γ, an act in  is the subjective representation of

 ∈ F, denoted , if and only if (S) ⊆ C and () = [()] for all  ∈ S
(so the diagram in Figure 2 commutes). The condition simplifies under exhaustive

states and outcomes: () = [()] for all  ∈ S.

Remark 2 (uniqueness) Any objective act  ∈ F has at most one representation
in a context.

Remark 3 (existence condition) In a context  ∈ Γ, an objective act  ∈ F is
representable if and only if (S) ⊆ C and S is ( )-measurable.

10 The con-

dition simplifies under exhaustive states and outcomes:  is ( )-measurable.

As an illustration, consider an objective act  that makes the agent rich if a

coin lands heads (and poor otherwise), and that might also do many other things,

such as making him sick in the event of cold weather. In context  the agent

conceives only ‘wealth outcomes’ and ‘coin states’:  = { } and  = { },

where  and  are the outcomes (sets of objective outcomes) in which he is rich

resp. poor, and  and  are the states (sets of objective states) in which the coin

lands heads resp. tails. Then  is represented by the subjective act  that maps

 to  and  to . But if instead  = { } and  = {S}, the state concept no

longer captures the coin toss, and  is no longer representable.

I can now define choice predictions: our framework predicts that whenever

in a context  ∈ Γ the agent has to choose from a set  ⊆ F of representable

objective acts, then he chooses an  ∈  such that  %  for all  ∈ . (This

may lead to choice reversals as the context changes; see Section 4.) No prediction

is made about choice from non-representable objective acts: the model is silent

on such choices. Does the model thereby miss out on many choice situations?

Perhaps not, because the mental process of forming outcome/state concepts might

(consciously or ‘automatically’) adapt these concepts to the feasible options, to

ensure representability. I call the agent — or more exactly his awareness, i.e., the

spaces ( )∈Γ — adaptive (to feasible options) if whenever in a context

 ∈ Γ an objective act  ∈ F is feasible, then  is representable in context .11

The idea is that the agent forms awareness of a coin toss when and because feasible

objective acts depend on it. Forming awareness is a costly mental activity, which

is likely to be guided by the needs of real choice situations, including the need

10( )-measurability means that members of the same  ∈  are mapped into the same

 ∈ , or equivalently, that the inverse image of any  ∈  is a union of zero or more  ∈ .
11A full-fledged definition could state as follows. Let choice situations be pairs () of a

non-empty menu  ⊆ F of (feasible) objective acts and a context or ‘frame’  ∈ Γ (in which
the choice from  is made). Some choice situations occur, others do not. Let CS be the set of

occurring (or feasible) choice situations. Adaptiveness (to feasible options) means that for all

() ∈ CS each  ∈  is representable in context .

9



to represent feasible options. Adaptiveness can thus be viewed as a rationality

requirement on the agent’s awareness.12

Is there any way to predict choices even when some feasible options are non-

representable, i.e., even without adaptiveness? There is indeed, if one is ready to

make one of two auxiliary assumptions: one could take non-representable options

to be ignored (‘not perceived ’), or rather to be misrepresented (‘misperceived ’).13

3 Six axioms

Sections 3—5 temporarily assume exhaustive states (see Definition 3). In fact, each

axiom, theorem or proposition, and most definitions and remarks, will already be

stated in their general form, for possibly non-exhaustive states. For transparency,

the three exceptions — two definitions and one remark — will be marked by ‘exh’.

So ‘Definition 13exh’ applies only under exhaustive states, but ‘Definition 5’ applies

generally. For each exception (identified by ‘exh’), a general re-statement is given

in Section 6 where I lift the restriction to exhaustive states.

The current section states six axioms. They are equivalent to Savage’s axioms

in the single-context case. I begin with the analogue of Savage’s first axiom:

Axiom 1 (weak order): For all contexts  ∈ Γ, % is a transitive and complete

relation (on ).

Savage’s sure-thing principle can be rendered in two ways in our setting, by

applying sure-thing reasoning either within each context, or even across contexts:

Axiom 2* (sure-thing principle, local version): For all contexts  ∈ Γ, acts

   0 0 ∈ , and events  ⊆ , if  =  0,  = 0, \ = \ and

 0\ = 0\, then  %  ⇔  0 % 0.

Axiom 2 (sure-thing principle, global version): For all contexts  0 ∈ Γ,

acts   ∈  and 
0 0 ∈ 0, and events conceived in both contexts  ⊆ ∩0,

if  =  0,  = 0, \ = \ and  00\ = 00\, then  %  ⇔  0 %0 
0.

12The agent’s awareness (his spaces  and ) can be ‘irrational’ in two distinct ways, the

second way being non-adaptiveness. (1) Outcomes may be too coarse to incorporate all relevant

features of objective outcomes that the agent would care about had he considered them (in the

above example, health features are absent from  = { }, though presumably relevant). (2)

States may be too coarse (given how outcome are specified) for all feasible objective acts to be

representable (in the above example,  is not representable if  = {S}, given that  = { }).

In (1) and (2) I assumed exhaustive states and outcomes, but the idea can be generalized.
13Under the first hypothesis, the agent considers not the full feasible set, but only the subset

of representable feasible options (among which he picks an option whose representation is most

%-preferred). Under the second hypothesis, a non-representable feasible option  in F is not

ignored, but (mis)perceived as some subjective act in  which fails to properly represent  .

Which is this subjective act? Here one would need to develop a theory of misrepresentation.
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Remark 4 Axiom 2* is the restriction of Axiom 2 to the case that  = 0.

I will employ Axiom 2 rather than 2*. Axiom 2 renders sure-thing reasoning in

a particularly rigorous way, applying it all the way through, regardless of irrelevant

barriers of context.14 I now extend four familiar Savagean notions to our setting:

Definition 5 (preferences over outcomes) In a context  ∈ Γ, an outcome

 ∈  is weakly preferred to another  ∈  — written  %  — if  % .

Definition 6 (conditional preferences) In a context  ∈ Γ, an act  ∈  is

weakly preferred to another  ∈  given an event  ⊆  — written  % 

— if  0 % 0 for some (hence under Axiom 2 any) acts  0 0 ∈  which agree

with  resp.  on  and with each other on \.

Definition 7 (conditional preferences over outcomes) In a context  ∈ Γ,

an outcome  ∈  is weakly preferred to another  ∈  given an event  ⊆
 — written  %  — if  % .

Definition 8 (null events) In a context  ∈ Γ, an event  ⊆  is null if it

does not affect preferences, i.e.,  ∼  whenever acts   ∈  agree outside .

I am ready to state the analogue of Savage’s third axiom:

Axiom 3 (state independence): For all contexts  ∈ Γ, outcomes   ∈ ,

and non-null events  ⊆ ,  %  ⇔  % .

A bet on an event is an act that yields a ‘good’ outcome  if this event occurs

and a ‘bad’ outcome  otherwise. Savage’s fourth axiom requires preferences over

bets to be independent of the choice of  and . His axiom can again be rendered

as an intra- or inter-context condition:

Axiom 4* (comparative probability, local version): For all contexts  ∈
Γ, events  ⊆ , and outcomes  Â  and 0 Â 0 in , \ %

\ ⇔ 0
0
\

% 0
0
\

.

Axiom 4 (comparative probability, global version): For all contexts  0 ∈
Γ with same state space  :=  = 0, events  ⊆ , and outcomes  Â  in

 and 0 Â0 
0 in 0, \ % \ ⇔ 0

0
\ %0 

0


0
\.

Remark 5 Axiom 4* is the restriction of Axiom 4 to the case that  = 0.

I will use Axiom 4 rather than 4*. Axiom 4 applies the reasoning underly-

ing Savage’s fourth axiom all the way through, regardless of barriers of context.

Another familiar notion can now be defined in our setting:

14Replacing sure-thing reasoning by ambiguity aversion in our setting is an interesting avenue.
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Definition 9 (comparative beliefs) In a context  ∈ Γ, an event  ⊆  is at

least as probable as another  ⊆  — written  %  — if \ % \
for some (hence under Axiom 4 any) outcomes  Â  in .

Savage’s fifth and sixth axioms have the following counterparts:

Axiom 5 (non-triviality): For all context  ∈ Γ, there are acts  Â  in .

Axiom 6* (Archimedean, local version): For all contexts  ∈ Γ, acts  Â 

in , and outcomes  ∈ , one can partition  into events 1   such that

\ Â  and  Â \ for all .

However, just as Savage’s sixth postulate, Axiom 6* is very demanding. It

forces the agent to conceive plenty of small events, ultimately forcing all state

spaces  to be infinite (assuming Axiom 5 for non-triviality). Our framework

allows for a cognitively less demanding Archimedean axiom, which permits all

state spaces  to be finite. To avoid ‘state-space explosion’, it allows the events

1   to be not yet conceived: they are conceived in some possibly different
context . So the agent can presently have limited state awareness, as long as he

can refine states by moving to a new context. The slogan is: ‘state refinability,

not state (already-)refinement ’. Indeed, many real people rarely consider events

of probability less than 1%, but are (if needed) perfectly able to conceive them by

refining their state concept.15 The next axiom renders this idea.

Definition 10 Acts  ∈  and  ∈  (  ∈ Γ) are (objectively) equivalent

if ∗ = ∗.

Definition 11 A partition  refines or is at least as fine as a partition  if,

for some equivalence relation on ,  = {∪∈ :  is an equivalence class}.16

Axiom 6** (Archimedean, global version 1): For all contexts  ∈ Γ, acts

 Â  in , and outcomes  ∈ , there is a context  ∈ Γ with state space

 at least as fine as  and outcome space  ⊇  (ensuring that  contains

acts  0 and 0 equivalent to  resp. ) such that one can partition  into events

1   for which  0\ Â 
0 and  0 Â 

0
\

 for all .

Remark 6 Axiom 6* is the restriction of Axiom 6** to the case that  = .

Axiom 6** is not yet fully suitable. It fails to ensure any connection between

% and %, allowing even that  Â  although  Â . I thus use a variant of

15It suffices to incorporate, say, the results of three independent tosses of a fair dice. Here the
refined state describes the ‘old’ state and the triple of dicing results. The refined state space can

thus be partitioned into the 63 = 216 small-probability events of the sort ‘the triple of dicing

results is (  )’, where    ∈ {1 2  6}.
16In other words,  coarsens or is at least as coarse as .
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Axiom 6**, which indirectly guarantees a connection. It requires that the objective

events represented by 1   — say 1   ⊆ S — are of a special ‘innocuous’
kind. Informally, 1   must belong to an algebra of risky objective events,

e.g., roulette events or coin flipping events. Formally, they must belong to a so-

called ‘robust’ algebra of ‘incorporable’ objective events. Before defining these

terms, I anticipate the axiom’s definitive statement (simpler axioms could also be

used, as seen later in Sections 7 and 8):

Axiom 6 (Archimedean, global version 2): There is a robust algebra R of

incorporable objective events such that, for all contexts  ∈ Γ, acts  Â  in ,

and outcomes  ∈ , one can partition S into some 1   ∈ R such that, in

some context  ∈ Γ with state space  =  ∨ {1  } (ensuring that each

 is representable by an  ⊆ ) and outcome space  ⊇  (ensuring that

 contains acts 
0 and 0 equivalent to  resp. ), we have  0\ Â 0 and

 0 Â 
0
\

 for all .

Axiom 6 of course allows that  = ; then 1   are already representable

in context . The label ‘R’ is meant to suggest ‘risky’ or ‘robust’. I now gradually

build up the axiom’s terminology. I start with the familiar join operator:

Definition 12 The join of partitions  and  is  ∨  := { ∩  :  ∈   ∈
}\{∅}.17

An objective event may or may not be representable in a context. Formally:

Definition 13exh In a context  ∈ Γ, an objective event  ⊆ S is (subjectively)
representable if it corresponds to some subjective event, which is then called its

(subjective) representation and denoted  (= { ∈  :  ⊆ }).

An objective event {  } ⊆ S might be represented by {{ } {}} ⊆  in

a context , and by {{  }} ⊆  in a context , while being non-representable

in a context  in which the agent lacks appropriate state awareness.

An algebra18 R on S is robust if the ranking of R-determined acts is stable:

Definition 14 For an algebra R on S, an act  is R-determined if the inverse

image −1() of any of its outcomes  represents an objective event in R.

Remark 7exh An act  is R-determined (given an algebra R on S) if and only if

∗ is R-measurable.19

17To be precise,  and  are partitions in the generalized sense of possibly containing ∅ Note
that  and  could partition different sets, a case relevant later under non-exhaustive states.
18R is an algebra on S if (a) S ∈ R, (b)  ∈ R⇒  ∈ R, and (c)  ∈ R⇒  ∪ ∈ R.
19R-measurability of ∗ means that (∗)−1() ∈ R for all outcomes  of ∗, i.e., of  .
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Definition 15exh An algebra R on S is robust if, for all contexts   ∈ Γ, we

have  %  ⇔  0 % 
0 whenever  ∈  and 

0 ∈  are equivalent R-determined

acts, and  ∈  and 
0 ∈  are also equivalent R-determined acts.

Robustness is plausible ifR contains risky objective events, so thatR-determined

acts are risky acts, because the agent presumably has fixed ‘preferences under risk’.

The idea is that a risky objective event tends to get the same subjective probab-

ility regardless of the state space  in which it is represented: the event that a

fair coin lands heads always has 1/2 probability, objectively and thus (where con-

ceived) subjectively. This translates into a stable evaluation of risky acts, hence

into robustness. I now introduce another natural notion:

Definition 16 A preference relation % is faithful to another % (  ∈ Γ)

if it preserves all comparisons made by %: given any acts   ∈ , we have

 %  ⇔  0 % 
0 for some (unique) acts  0 0 ∈  equivalent to  resp. .

If % is faithful to %, then any act in  is equivalent to one in . So in

context  the agent must conceive the same outcomes and at least as fine states:

Remark 8 If % is faithful to %, then (a)  is at least as fine as  (assuming

||  1), and (b)  ⊇  (hence  =  under exhaustive outcomes).

An objective event is incorporable if, whenever it is not representable, the agent

can refine states to make it representable, without ‘preference perturbation’.

Definition 17 An objective event  ⊆ S is incorporable if it is always repres-
entable after (if needed) a preference-neutral state refinement: for every context

 ∈ Γ there is a context  ∈ Γ (possibly equal to ) such that  refines  to

make  representable, i.e.,  =  ∨ {}, and % is faithful to %.

The paradigmatic example of incorporability is, once again, risky objective

events, as these are trivial in many respects. Refining states such that a coin toss

becomes representable is an easy mechanical task (at least in principle), and the

new preferences should be faithful to the old ones since the ranking of previously

conceived (hence, coin-toss-independent) acts will hardly change.

Our axioms generalize Savage’s well-known axioms (stated in Appendix C.2):

Remark 9 In the single-context case Γ = {}, the variable Savage framework

( %)∈Γ is equivalent to an ordinary Savage framework (%) = ( %

), and our axioms reduce to Savage’s axioms, i.e.,

(a) Axiom 1 is equivalent to Savage’s Axiom P1,

(b) Axioms 2 and 2* are equivalent to Savage’s Axiom P2,

(c) Axiom 3 is equivalent to Savage’s Axiom P3,
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(d) Axioms 4 and 4* are equivalent to Savage’s Axiom P4,

(e) Axiom 5 is equivalent to Savage’s Axiom P5,

(f) Axioms 6, 6* and 6** are equivalent to Savage’s Axiom P6.20

4 Objective instability, subjective stability

Interestingly, whether an agent who obeys our axioms is stable or context-dependent

in his preferences and beliefs depends on the chosen level of description.

4.1 Instability at the objective level

When modelling options as objective acts, choice reversals happen easily. Just

imagine that in two contexts   ∈ Γ the agent chooses between the same objective

acts   ∈ F, which he subjectively represents as   ∈  in context , and as

  ∈  in context  (see Definition 4). Then he will choose  in context  if

 Â , but  in context  if  Â . Such reversals are driven by changes in

representation, i.e., description. All this is consistent with Axioms 1—6. One may

view such reversals as preference reversals, by ‘lifting’ preferences to the objective

level. I shall talk then of ‘effective’ preferences:

Definition 18 (preference over objective acts) In a context  ∈ Γ, an object-

ive act  ∈ F is (effectively) weakly preferred to another one  ∈ F — written
 %  — if  and  are representable and the representations satisfy  % .

The (effective) preference between   ∈ F is reversible, as possibly  %  but

 Â  . In a similar vein, (effective) beliefs are reversible. The agent may attach
high probability to the event {{} {}} (where conceived), but low probability

to the event {{ }} (where conceived), although both events represent the same

objective event { }. Formally, we may lift the agent’s comparative beliefs to the

objective level, talking then of ‘effective’ beliefs:

Definition 19 (comparative belief about objective events) In a context  ∈
Γ, an objective event  ⊆ S is (effectively) at least as probable as another one
 ⊆ S — written  %  — if  and  are representable and the representations

satisfy  % .

Nothing prevents a belief  %  ( ⊆ S) to reverse into  Â . However:

Proposition 1 (stability of comparative belief on robust algebras) Under

Axioms 2, 4 and 5, objective events from a robust algebra R on S are ranked the

same way wherever representable:  %  ⇔  %  for all objective events

 ∈ R representable in both contexts  and  (where   ∈ Γ).

20Axioms 6* and 6** imply Axioms 6 by letting R contain all representable objective events.
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4.2 Stability at the subjective level

Despite ‘objective instability’, our axioms imply stable preferences over subjective

acts (and outcomes) and stable comparative beliefs about subjective events.

Proposition 2 (preference stability) Under Axiom 2, acts are ranked the same

way wherever conceived:  %  ⇔  %  for all acts conceived in both contexts

  ∈  ∩  (where   ∈ Γ).

So, under Axiom 2 the context affects only which acts are conceived, not how
acts are ranked when conceived. Saying ‘only’ is perhaps an understatement, as

Proposition 2 has a bite only for those pairs of contexts   ∈ Γ for which ∩ 6=

∅, i.e., for which  =  and ∩ 6= ∅. If awareness varies so drastically that
no distinct contexts share any acts, then Proposition 2 is vacuous.

Proposition 3 (outcome-preference stability) Under Axiom 6, outcomes are

ranked the same way wherever conceived:  %  ⇔  %  for all outcomes

conceived in both contexts   ∈  ∩  (where   ∈ Γ).

One might at first take stability over outcomes to be a special case of stability

over acts, by identifying outcomes with constant acts. In fact, both stability

properties are independent, as the same outcome  ∈  ∩  is identified with

distinct constant acts  ∈  and  ∈  if  6= .

Proposition 4 (comparative-belief stability) Under Axioms 2, 4, 5 and 6,

events are ranked the same way wherever conceived:  %  ⇔  %  for all

events conceived in both contexts  ⊆  ∩  (where   ∈ Γ).

5 The representation theorem

I now state the theorem; it will be restated in Section 8 using a simpler sixth axiom

and an exogenous notion of risk. I start with terminology:

Definition 20 For the variable Savage framework ( %)∈Γ, a (variable)

expected-utility representation is a system ( )∈Γ of non-constant ‘utility’

functions  :  → R and probability measures21  : 2
 → [0 1] such that

 %  ⇔ E( ◦ ) ≥ E( ◦ ) for all contexts  ∈ Γ and acts   ∈ 

Definition 21 A probability measure on an algebra R is fine if for all   0 there

are mutually exclusive and exhaustive 1   ∈ R of probabilities at most .22

21The term ‘probability measure’ is used in its finitely additive sense.
22Fineness implies Savage’s atomlessness, and is equivalent to atomlessness if R is a -algebra.
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I call a function  on a setR of objective events uncontroversial among probab-

ility measures  on 2
 ( ∈ Γ) if, roughly speaking, each  assigns probability

() to the event representing  ∈ R. The precise definition is more general: it
allows an  ∈ R to be not (yet) representable in a context , in which case the

probability () is derived not from  itself, but from a version of  defined on

a refined state space that makes  representable. Formally:

Definition 22 Given a context  ∈ Γ, a function  on 2 induces a function  ∗

on the set of representable objective events  ∈ 2S via  ∗() :=  ().

Definition 23 A function  on a set R of objective events is uncontroversial

among functions  on 2
 ( ∈ Γ) if each induced function  ∗ matches  ‘modulo

extension’: for any  ∈ R, each  ∗ has an extension  ∗ (for some  ∈ Γ) such

that  =  ∨ {} (so that  ∗ () is defined) and  ∗ () = ().

Remark 10 If  (defined on R) is uncontroversial among functions  ( ∈ Γ),

then  ∗() = () whenever  (∈ R) is representable in context  (∈ Γ).

Our axioms characterize expected-utility preferences with certain revision rules:

Theorem 1 The variable Savage framework ( %)∈Γ satisfies Axioms 1—6

if and only if it has an expected-utility representation ( )∈Γ satisfying three

revision rules: (R1) any  is an increasing affine transformation of any  on

 ∩ , (R2) any  is proportional to any  on 2
∩ , and (R3) some fine

(‘objective’) probability measure on some algebra on S is uncontroversial among

the measures . Each  is unique and each  is unique up to increasing affine
transformation.23

Rules R1—R3 describe how utilities and probabilities are revised as the agent’s

outcome/state concepts change. By R1 and R2 utilities and probabilities are

affinely resp. proportionally rescaled where concepts are stable. So if the agent,
say, splits an outcome  ∈  into  and , resulting in a context  with  =

(\{}) ∪ { } and  = , then  =  by R2, and utilities are essentially

unchanged on \{} by R1. By R3 certain (‘objective’) probabilities are robust.

Remark 11 In Theorem 1’s representation, probabilities are independent of out-

come awareness, and utilities are independent of state awareness: if from context

 to context  only the outcome space changes then  = , and if only the state

space changes then  =  for suitably normalised utility functions. So:

� if state awareness (i.e., ) is the same in all contexts ,  =  is fixed,

23Formally, if ( )∈Γ is a representation in the theorem’s sense, then ( 0 
0
)∈Γ is also

one if and only if, for all  ∈ Γ,  0 =  and  0 =  +  for some   0 and  ∈ R.
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� if outcome awareness (i.e., ) is the same in all contexts ,  =  is fixed

given suitably normalised utility functions.

Remark 12 In the single-context case Γ = {}, Theorem 1 reduces to Savage’s

Theorem (for the ordinary Savage framework ( %)), as Axioms 1—6 reduce

to Savage’s Axioms P1—P6 (by Remark 9), rules R1 and R2 hold trivially, and R3

reduces to atomlessness of .
24

Remark 13 In contrast to Savage’s Theorem, Theorem 1’s representation allows

that all state spaces  are finite; but it forces the objective state space S to be

infinite (as by R3 there is an infinite algebra on S). C can be finite or infinite.

Remark 14 R3 has an equivalent formulation: ‘the objective probability function

induced by the  is fine’. This draws on a well-defined, purely endogenous and

preference-based notion of ‘objective probability’.25

Rule R2 implies stable probability ratios, an interesting analogy to Ahn-Ergin’s

(2010) ‘partition-dependent probabilities’ and Karni-Viero’s (2013) ‘reverse Bayesian-

ism’. But the functions  need not admit an Ahn-Ergin-type representation.
26

It is tempting to further increase uniqueness of the representation by requiring

any  and  to coincide on the domain overlap; one could then replace the

family of  functions by a single function  on ∪∈Γ. This may not work:

Remark 15 In Theorem 1 it may be impossible to ‘simultaneously scale’ the utility

functions such that any  and  coincide on the domain overlap  ∩ .

Indeed, after scaling  to match  on  ∩ , and scaling  to match 

on  ∩ ,  might fail to match  on  ∩ . This shows the genuine need

for utility revision. I now give two examples of Theorem 1’s representation.

A trivial example (with only risky contingencies and full outcome awareness): A

fair coin is tossed infinitely often. Let C = { } and S = {0 1}N. In an objective

state ()∈N ∈ S, an  is 1 resp. 0 depending on whether the -th toss resulted in

24Indeed, R3 reduces to fineness of  , and so to atomlessness of  by footnote 22.
25The (endogenous or revealed) objective probability function is the uncontroversial function 

with largest domain. It is fully determined by preferences as all  are unique. It is a probability

measure, albeit in the generalized sense that its domain R need not be an algebra (it need not

be closed under union, but is closed under complement and contains S). That is, (S) = 1 and

 is additive, i.e., ( ∪ ) = () + () if  ∪  ∈ R and  ∩  = ∅.  is fine if it

defines a fine (ordinary) probability measure on some (sub)algebra R0 ⊆ R.
26That is, even if all  are finite, there may not exist any (possibly non-additive) function 

on ∪∈Γ which simultaneously induces each  in the sense that  and  are proportional

as functions on . Indeed, there may exist contexts    ∈ Γ and states  ∈  ∩    ∈
 ∩    ∈  ∩  such that () = () () = () () 6= (); here, an inducing 

would have to satisfy () = () () = () () 6= () a contradiction.
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heads resp. tails. An objective event  ⊆ S is finitely complex if it concerns only
finitely many tosses, i.e.,  = {()∈N ∈ S : ()∈ ∈ } for some finite subset

 ⊆ N and some  ⊆ {0 1} . An example is the objective event ‘first toss heads,
fourth tails’ (here  = {1 4}). Identifying contexts with state spaces, let Γ be the

set of (finite non-singleton) partitions  of S into finitely complex objective events,

and let  :=  and  := {{} {}}. An example is  =  = {‘first toss heads’,

‘first toss tails, second heads’, ‘first toss tails, second tails’}. In each context  ∈ Γ,

let the agent hold expected-utility preferences given by a context-invariant (non-

constant) utility function  =  on  and the probability measure  on 2


which assigns probability ||

2||
to state {()∈N ∈ S : ()∈ ∈ } ∈ .

27 So 

mirrors that the agent knows that the coin is fair and the tosses are independent.

Rules R1 and R2 hold. Also R3 holds, because the objective tossing probabilities

are fine and uncontroversial.28

A refined example: I now enrich the previous example by including non-risky

contingencies, which may get different probabilities depending on the subjective
representation. Let S0 be a non-empty set of ‘non-risky objective states’, represent-

ing contingencies without objective probability such as the weather or the music

at tonight’s concert. I redefine the objective state space as {0 1}N × S0, whose

members ( 0) have two parts: a ‘risky objective state’  ∈ {0 1}N with the same
coin-toss interpretation as before, and a ‘non-risky objective state’ 0 ∈ S0. Let
Γ0 be some non-empty set of finite partitions of S0; they represent the agent’s

possible awareness levels relative to non-risky contingencies. If one also wishes

to model non-exhaustive awareness (to which we return in Section 6), one should

more generally let Γ0 contain partitions of (non-empty) subsets of S0. I redefine

the set of contexts as Γ × Γ0, where Γ is the old set of contexts. In context

 = ( 0) ∈ Γ × Γ0, the outcome space is still  = {{} {}}, and the state

space is  := {×0 :  ∈ 0 ∈ 0}. Each state ×0 ∈  is thus composed

of ‘risky state’  and a ‘non-risky state’ 0. In each context  = ( 0), let the

agent hold expected-utility preferences given by a context-invariant (non-constant)

utility function  =  on , and the probability function  which to any state

×0 ∈  assigns the probability (×0) := ()0(
0), where  is the

earlier-defined probability measure for the ‘risky state space’ , and 0 is a prob-

ability measure for the ‘non-risky state space’ 0. This reflects the plausible idea

that coin tosses are independent of non-risky contingencies. I assume the functions

0 (
0 ∈ Γ0) are related to each other: let there be an arbitrary function  assign-

27The value ||
2||

does not depend on the pair () used to represent the state in  (the most

natural representation takes the minimal ).

28Formally, the N-fold product
∞N

=1
(1

2
) of the uniform Bernoulli measure is fine and

uncontroversial. I define it on an algebra (not ‘-’algebra) on {0 1}N: the N-fold product of the

power-set algebra on {0 1}, which consists precisely of the finitely complex objective events.
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ing to any ever conceived non-risky state 0 ∈ ∪0∈Γ00 a ‘plausibility’ (0)  0,

and let  induce each 0 (
0 ∈ Γ0) in the sense that 0 and  are proportional

as functions on 0 (so 0 arises from normalising  within 0). Rules R1 and

R2 hold, as one may verify. Rule R3 holds since, as before, the objective tossing

probabilities are fine and uncontroversial.29

6 The general case

I now lift the temporary restriction to exhaustive states. Recall that the above

‘theorem’ and ‘propositions’ and most ‘definitions’ and ‘remarks’ continue to apply

as stated. The three exceptions, namely Definitions 13exh and 15exh and Remark

7exh, will now be re-stated in their general form, using the same numbering but

without index ‘exh’. The general statements are equivalent to their earlier counter-

parts in case of exhaustive states. In light of the generalized statements, readers

can afterwards reconsider Sections 3—5 without restriction to exhaustive states.

This will pose no problems, but two details should be kept in mind. For one, two

partitions (e.g., state spaces) of which one refines the other must be partitions of

the same set (see Definition 11). Further, the (unchanged) Definitions 17 and 23

and Axiom 6, when applied with non-exhaustive states, require forming the join

of partitions of possibly distinct sets (namely S and S). This join then partitions

the intersection of the two sets (here S), by Definition 12. I now state the three

generalizations.

First, I generalize the definition of representations of objective events:

Definition 13 In a context  ∈ Γ, an objective event  ⊆ S is (subjectively)
representable if its encompassed part  ∩ S corresponds to a subjective event,
called then ’s (subjective) representation, denoted  (= { ∈  :  ⊆ }).

Second, the notion of an act  being determined by an algebra R on S, while

defined as before, has a generalized ‘measurability characterization’:

Remark 7 A subjective act  ∈  ( ∈ Γ) is R-determined (given an algebra

R on S) if and only if ∗ is R0-measurable where R0 = { ∩ S :  ∈ R} is the
trace of R in S.

Third, I generalize the definition of robustness of an algebra R, through repla-

cing ‘equivalent R-determined acts’ by ‘corresponding R-determined acts’:

Definition 24 Two acts  ∈  and 
0 ∈  (where   ∈ Γ) are corresponding

R-determined acts (for an algebra R on S) if both are given by an identical R-

29Formally, letting  be the fine and uncontroversial measure of the ‘trivial’ example and R

its underlying algebra on {0 1}N (see footnote 28), we obtain a fine uncontroversial measure 0

for the refined example by defining 0 on the algebra {× S0 :  ∈ R} by 0(× S0) := ().
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measurable function, i.e., there is an R-measurable function f on S such that

f(s) = () whenever s ∈  ∈  and f(s) =  0() whenever s ∈  ∈  (i.e., such

that, fS = ∗ and fS =  0∗).

Definition 15 An algebra R on S is robust if, for all contexts   ∈ Γ, we have

 %  ⇔  0 % 
0 whenever  ∈  and  0 ∈  are corresponding R-determined

acts, and  ∈  and 0 ∈  are also corresponding R-determined acts.

Definition 15 indeed generalizes Definition 15exh, for a simple reason:

Remark 16 In case of exhaustive states, then acts  ∈  and  0 ∈  (  ∈
Γ) are corresponding R-determined acts if and only if they are equivalent (i.e.,

∗ =  0∗) and R-determined.

The label ‘corresponding R-determined acts’ is explained by a simple fact:

Remark 17 Each of two corresponding R-determined acts is R-determined.

7 The special case of fine states

I now apply our theorem to the case of fine states. Here all  ∈  are singleton,

and just one kind of state awareness changes: the level of state exhaustiveness.

Remark 18 In case of fine states, all objective events are representable in each

context (hence, are trivially incorporable).

As a result, the fine-state case allows us to work with a simpler sixth axiom:

Axiom 6̃ (Archimedean, fine-state version: There is a robust algebra R on

S such that, for all contexts  ∈ Γ, acts  Â  in , and outcomes  ∈ , one

can partition  into events 1   ⊆  representing objective events from R

such that \ Â  and  Â \ for all .

We may also work with a more basic notion than ‘uncontroversial measures’:

Definition 25 The commonality of functions  on 2
 ( ∈ Γ) is the meet

(greatest common subfunction) of all  ∗ ( ∈ Γ).

Remark 19 The commonality of probability measures  ( ∈ Γ) is itself a prob-

ability measure, namely the restriction of each  ∗ to the algebra { ⊆ S : in all
contexts  ∈ Γ the probability  ∗() (:= ()) is defined

30 and identical}.

30Definedness is equivalent to representability of , and comes for free under fine states.
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Interpretively, the commonality of probability measures is their ‘objective over-

lap’ and captures objective probabilities.31 In general, its domain can be as small

as {∅S} or as large as 2S. Theorem 1’s fine-state corollary follows via two lemmas:

Lemma 1 Under fine states, Axioms 6 and 6̃ are equivalent given Axiom 2.

Lemma 2 Under fine states, R3 holds if and only if the  have fine commonality.

Corollary 1 Under fine states, Axioms 1—5 and 6̃ hold if and only if there is an

expected-utility representation ( )∈Γ satisfying R1, R2, and a third revision

rule: the functions  have fine commonality.
32

8 Exogenizing risk

I now restate Theorem 1 using an exogenous notion of ‘risky objective events’ (but

leaving the ‘objective’ probabilities of these events endogenous). I introduce an

exogenous algebra R (on S) of ‘risky’ objective events, and replace Axiom 6 by

three axioms with R as parameter:

Axiom 6R (Archimedean, global version 3): This axiom states like Axiom 6,

but without the initial quantification ‘There is a robust algebra R of incorporable

objective events such that’.

Axiom 7R (robust risk preference): The algebra R is robust.

Axiom 8R (risk incorporability): All objective events in R are incorporable.

Theorem 2 Given an exogenous (risky) algebra R on S, the variable Savage

framework ( %)∈Γ satisfies Axioms 1—5 and 6R—8R if and only if it has an

expected-utility representation ( )∈Γ satisfying R1, R2, and a third revision

rule: some fine (‘objective’) probability measure on R is uncontroversial among

the measures . Each  is unique and each  is unique up to increasing affine
transformation.

Remarks 11, 13 and 15 apply analogously to Theorem 2. To obtain Theorem

2’s fine-state corollary, I simplify Axiom 6R, drop Axiom 8R (which comes for free)

and simplify rule R3, drawing on two lemmas:

Axiom 6̃R: This axiom states like Axiom 6̃, but without the initial quantification

‘There is a robust algebra R such that’.

31Under fine states it is just the endogenous objective probability function of footnote 25.
32Fine states are essentially objective states. So, had this paper focused exclusively on fine

states, we could have introduced each  as a primitive set (not a partition), redefined the

‘objective state space’ as ∪∈Γ, and redefined accordingly all concepts that refer to objective
states (such as ‘robust algebras’ and the ‘commonality’ of functions).
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Lemma 3 Under fine states and an exogenous (risky) algebra R on S, Axioms

6R and 6̃R are equivalent given Axiom 2.

Lemma 4 Under fine states and an exogenous (risky) algebra R on S, Theorem

2’s third revision rule holds if and only if the commonality of the measures 

extends a fine measure on R.

Corollary 2 Under fine states and an exogenous (risky) algebra R on S, Ax-

ioms 1—5, 6̃R and 7R hold if and only if there is an expected-utility representation

( )∈Γ satisfying R1, R2, and a third revision rule: the commonality of the

functions  includes (i.e., extends) a fine measure on R.

9 Concluding remarks

I have presented a unified theorem for preferences under uncertainty and changing

awareness. Preferences are governed by expected utility with three rules for revis-

ing utilities and probabilities. The theorem has many special cases, including (i)

fixed awareness, where we recover the classic Savage theorem, (ii) fixed outcome

awareness, where utilities are stable, (iii) fixed state awareness, where probabil-

ities are stable, (iv) exhaustive state awareness, where some definitions simplify,

and (v) fine state awareness, where Axiom 6 simplifies and the third revision rule

is expressible in terms of the commonality (‘objective overlap’) of the probability

functions. Just as Savage’s axioms have been weakened over time, giving rise to

‘non-expected-utility’ theories, it would be interesting to relax the current axioms

and explore alternative representations with other revision rules.

In our analysis, the agent ‘looks’ stable or instable (in his preferences and

beliefs) depending on whether the subjective or objective level of description is

chosen. This suggests that instability and context-dependence are phenomena

driven by a changing subjective perception of the objective world.

A When are probabilities objectively stable?

A stronger belief stability condition than R2 requires any  to coincide with any

 on the domain overlap. An even stronger condition (natural from an ortho-

dox full-rationality perspective) requires stable probabilities of objective events,

irrespective of their subjective representation. Formally:

(R2+) Objective belief stability: For all   ∈ Γ,  ⊆  and  ⊆ , if

∗ = ∗, then () = (). (So the functions  are given by fixed

function of objective events.)

This for instance forces the event {{ 0} {00}} (where conceived) to have the

same probability as {{} {0 00}} (where conceived), as both events represent
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{ 0 00}. Rule R2+ holds in Section 4’s ‘trivial example’, but not in the ‘refined

example’. How do we need to strengthen our axioms to enforce R2+? Under

exhaustive states, the following additional axiom fills the gap:

Axiom ROB (robustness): For all contexts   ∈ Γ, we have  %  ⇔
 0 % 0 whenever acts   ∈  are objectively equivalent to acts 

0 0 ∈ ,

respectively.

Corollary 3 Under exhaustive states, preferences satisfy Axioms 1—6 and ROB if

and only if they have an expected-utility representation ( )∈Γ satisfying R1,

R2+ and R3.

Proof. Assume exhaustive states. First, let preferences admit Corollary 3’s rep-

resentation. Ax. 1—6 hold by Theorem 1. Regarding Ax. ROB, consider   ∈ Γ;

w.l.o.g. let  and  coincide on  ∩ . It suffices to consider  ∈  and

 0 ∈  with ∗ =  0∗ and show that E( ◦ ) = E( ◦  0), or equivalently,
that E∗( ◦ ∗) = E∗ ( ◦  0∗). This holds because  ◦ ∗ =  ◦  0∗ and
because  ∗() =  ∗ () for all  in the domains of both  ∗ and  ∗ .

Conversely, let Ax. 1—6 and ROB hold. By Theorem 1, there is a representation

( )∈Γ with the properties specified there. Pick a fine and uncontroversial

probability measure . To show R2+, consider   ∈ Γ and an  ⊆ S from

the domains of  ∗ and  ∗ . I show that 
∗
() =  ∗ (). For a contradiction,

assume  ∗() 6=  ∗ (), say  ∗()   ∗ (). As  is fine, its range is dense

in [0 1]. So we can pick a  in ’s domain such that  ∗()  ()   ∗ ().

As  is uncontroversial,  ∗ extends to some  ∗0 with state space 0 =  ∨
{}, where  ∗0() = (); and similarly,  ∗ extends to some 

∗
0 with state

space 0 =  ∨ {}, where  ∗0() = (). The inequalities  ∗()  ()

and ()   ∗ () now reduce to  ∗0()   ∗0() and  ∗0()   ∗0(). This

contradicts belief-stability on robust algebras (Prop. 1), since  and  belong to

2S, a robust algebra by Ax. ROB. ¥

Theorem 2 has an analogous corollary. Axiom ROB essentially requires pref-

erences to be independent of the state concept. For instance, whether the agent

prefers getting 100 Dollars in the objective event  = { 0 00} (and nothing oth-

erwise) to getting 50 Dollars for sure should not depend on whether he represents

 as {{ 0} {00}}, {{} {0 00}}, {{ 0 00}} or {{} {0} {00}}. However, if

we take the idea of limited awareness seriously, there is little reason to believe in

Axiom ROB or objective belief stability. An agent who fails to conceive object-

ive states will not know whether two acts from different contexts are objectively
equivalent. This undermines Axiom ROB’s plausibility.
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B Proof of the stability propositions

This and the following appendices contain proofs, starting with the stability pro-

positions (App. B), followed by Thm. 1 under exhaustive states (App. C), Thm.

1 in general (App. D), Thm. 2 (App. E), and finally Lem. 1—4 and some tech-

nical lemmas stated in due course whose proofs are relegated to the end to avoid

distraction (App. F). Proofs use the following notation:

� Recall the notation ‘’, ‘’, ‘
∗’ and ‘∗’ (see Sect. 2.3), as well as ‘’

(Def. 13exh resp. 13) and  ∗ (Def. 22).

� For any set of events  , define the set of objective events  ∗ := {∗ :  ∈ }.

� For any set  of acts, define the set of functions  ∗ := {∗ :  ∈ }.

� For any  ∈ Γ and  ∈  ∗, let  ∈  be the act given by ()
∗ =  . (‘’

was also used for the representation of an objective act  ∈ F; see Def. 4.)

Proof of Prop. 2. Just take  =  = 0,  =  0 and  = 0 in Ax. 2. ¥

Proof of Prop. 3. Ax. 6 implies existence of a robust algebra R on S. The

claim holds as R is robust and as any two constant acts with same outcome (on

possibly distinct state spaces) are corresponding R-determined acts. ¥

Proof of Prop. 4. Assume Ax. 2, 4, 5 and 6, and let   ∈ Γ and ⊆ ∩.
I suppose  %  and show that  %  (the converse is analogous). Using Ax.

5, pick outcomes  Â  in  and 0 Â 0 in . Using independence between

outcome and state awareness, pick a  ∈ Γ with  =  and  = . As  Â 

we have  Â  by Prop. 3. As  %  and  Â , by Ax. 4 \ % \.

So \ % \ by Ax. 2 applied to the event  ∪  ⊆  ∩ . Hence

0
0
\

% 
0


0
\

by Ax. 4. So  % . ¥

Proof of Prop. 1. Assume Ax. 2, 4 and 5. Consider a robust algebra R on S,

  ∈ Γ,  ⊆ , and ̃ ̃ ⊆ , such that  and ̃ represent an identical

objective event 0 ∈ R, and  and ̃ also represent an identical 0 ∈ R. I show
that  %  ⇒ ̃ % ̃ (the converse direction ‘⇐’ holds analogously). Let
 % . Using Ax. 5, pick outcomes  Â  in  and 0 Â 0 in . Using

independence between outcome and state awareness, pick a  ∈ Γ with  = 
and  = . As  Â  we have  Â , by Prop. 3 (more exactly, a version of

Prop. 3 based not on Ax. 6, but only on the existence of a robust algebra). Also,

as  %  and  Â , by Ax. 4 \ % \. So ̃\̃ % ̃\̃,

because R is robust, \ and ̃\̃ are corresponding R-determined acts

(as both stem from theR-measurable function 0S\0), and \ and ̃\̃
are also corresponding R-determined acts (as both stem from the R-measurable

function 0S\0). As ̃\̃ % ̃\̃ and  Â , by Ax. 4 ̃ % ̃. So

̃ % ̃, by Prop. 4 (more precisely, a version of Prop. 4, like before). ¥
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C Proof of Theorem 1 under exhaustive states

Proof strategy: This appendix assumes exhaustive states (the general proof

follows in App. D). While a relation% ( ∈ Γ) may violate Savage’s Archimedean

axiom, we will ‘extrapolate’ it to a relation to which ‘Savage applies’. To get an

idea, note that for incorporable objective events 1 2  ⊆ S, we can successively
refine the state space  to 1 =  ∨ {1 1} (for a context 1), then to 2 =
1 ∨ {2 2} (for a context 2), and so on. In each step another  becomes
representable, and the new relation % remains faithful to the earlier ones if it

has the same outcome space. These refinements do not lead far enough: if 
was finite, then all  are finite, hence still too small ‘for Savage’. We will thus

go further: we will faithfully extrapolate each % to a relation whose state space

incorporates infinitely many and indeed all incorporable  ⊆ S. This high state
sophistication is purely hypothetical: it might never be reached by the agent in

any context in Γ. The proof proceeds as follows, leaving out various difficulties:
� Sufficiency of the axioms is established by (i) showing that under Ax. 1—6
each extrapolated relation, denoted %+ , satisfies Savage’s axioms, (ii) dedu-

cing an expected-utility representation of each %+ via Savage’s Theorem in

Kopylov’s (2007) version, and (iii) deducing suitable representations ( )

of the original relations % satisfying rules R1—R3.

� Necessity of the axioms is trivial in the case of the ‘local’ Ax. 1, 3 and 5,

while the ‘non-local’ Ax. 2, 4 and 6 are proved using rules R1—R3.

� The uniqueness property of the representation is established by reducing

it to the uniqueness property when representing the extrapolated relations,

which is in turn obtained via Savage’s Theorem in Kopylov’s (2007) version.

C.1 Definition of extrapolated preferences

As mentioned, we extrapolate each relation % by incorporating into the state

space all incorporable objective events. In fact, we even incorporate all weakly in-

corporable objective events (in a shortly defined sense), because weakly incorpor-

able objective events are more canonical. They form an algebra, and are probably

the largest class suitable for incorporation along with preference extrapolation.

Definition 26 An objective event  ⊆ S is weakly incorporable if there is

a finite partition P of S at least as fine as {} which the agent can always

represent after (if necessary) refining states in a preference-neutral way: for all

contexts  ∈ Γ there is a  ∈ Γ (possibly equal to ) with  =  ∨ P and with

% faithful to %. Let I := { ⊆ S :  is weakly incorporable}.

Remark 20 Incorporability implies weak incorporability: here P = {}.
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Remark 21 The set I of weakly incorporable objective events is an algebra on S:

(i) S ∈ I; (ii) if  ∈ I (in virtue of partition P) then  ∈ I (in virtue of P); (iii)
if   0 ∈ I (in virtue of P resp. P 0) then  ∩  0 ∈ I (in virtue of P ∨ P 0).

Given what was announced, one might expect that I refine each state space 
to a partition 0 of S (a hypothetical subjective state space) in which all  ∈ I
are representable, and to extrapolate the relation % to one on 

0

 . It will in fact

be easier to work not with a (hypothetical) subjective state space 0, but with the

objective state space S. So I will extrapolate % to a relation on the set 
S

 of

‘semi-objective acts’, which map objective states to subjective outcomes.

Definition 27 A partition of S harmlessly refines another one  if it is the

join of  and some finite partition of S into weakly incorporable objective events.

Definition 28 For a contexts  ∈ Γ, the extrapolated relation %+ on S

 is

given as follows:  %+  if and only if  %  for some context  ∈ Γ such that

(i)   ∈  ∗ (so  and  are defined) and (ii)  harmlessly refines .
33

C.2 Sufficiency of the axioms

Using extrapolated preferences, I now gradually prove sufficiency.

Definition 29 Events  ⊆  and  ⊆  (  ∈ Γ) are (objectively) equi-

valent if ∗ = ∗.

Definition 30 The join R∨R0 of algebras R and R0 on S is the smallest algebra

A ⊇ R ∪R0 on S, i.e., the closure of R ∪R0 under complement and finite union.

An extrapolated relation %+ may still violate one of Savage’s axioms, by failing

completeness: many functions in S

 may be non-ranked. But %
+
 will be shown

to be complete among functions measurable w.r.t. the ‘extrapolated algebra’:

Definition 31 The extrapolated algebra for context  ∈ Γ is the set E of

objective events that are representable after a harmless state refinement: E :=

{∗ :  ⊆  for some harmless refinement  of }.

Lemma 5 For all contexts  ∈ Γ, E is an algebra on S, characterizable as

(1) the join (2)∗ ∨ I of the algebra of representable objective events (2)∗
(= {∗ :  ⊆ }) and the algebra I,

(2) the union ∪∈Γ: harmlessly refines (2)∗ of each algebra (2)∗ of represent-
able objective events after some harmless refinement.

33Clause (ii) ensures that %+ is intimately linked to (i.e., ‘extrapolates’) %.
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I now recall Savage’s theorem in the generalized version in which acts are

measurable w.r.t. an arbitrary event algebra, not necessarily a -algebra, let alone

the power set of the state space. It operates in a generalized framework:

Definition 32 A generalized Savage framework is a tuple ( ( E)%) of a

non-empty finite set  of ‘outcomes’, a non-empty set  of ‘states’ endowed with

an algebra E on  (the ‘event algebra’), and a ‘preference’ relation % on the

set of E-measurable functions from  to  (‘acts’).

An ordinary Savage framework (%) is identified with the generalized one

( ( 2)%). In a generalized Savage framework ( ( E)%) with sets of acts

denoted  , Savage’s well-known postulates can be stated as follows.

P1: % is a transitive and complete relation on  .

P2: For all    0 0 ∈  and  ∈ E, if  =  0,  = 0, \ = \ and

 0\ = 0\, then  %  ⇔  0 % 0.

P3: For all   ∈  and non-null  ∈ E ,  %  ⇔  % .34

P4: For all  ∈ E and all  Â  and 0 Â 0 in , \ % \ ⇔
0

0
\ % 0

0
\.

P5: There exist   ∈  such that  Â .

P6: For all  Â  in  and  ∈ , one can partition  into 1   ∈ E such
that \

 Â  and  Â \
 for  = 1  .

Lemma 6 (Savage’s Theorem for arbitrary event algebras; see Kopylov 2007) A

generalized Savage framework ( ( E)%) satisfies Ax. P1—P6 if and only if there

exist a non-constant utility function  :  → R and a fine probability measure

 : E → [0 1] such that  %  ⇔ E ( ◦ ) ≥ E ( ◦ ) for all   ∈  . Further,

 is unique and  is unique up to increasing affine transformation.35

Lemma 7 If Ax. 1—6 hold, then for each context  ∈ Γ Ax. P1—P6 hold for the

generalized Savage framework ( (S E)%) in which (i) E is E or more generally

any algebra such that R ⊆ E ⊆ E for some algebra R as in Ax. 6, and (ii) % is

%+ restricted to the set of acts  = { ∈ S

 :  is E-measurable}.

Lem. 7’s proof rests on some technical lemmas (shown in App. F):

Lemma 8 Under Ax. 2, a relation % is faithful to another % if  ⊇  and

 harmlessly refines .

34Elements of  are identified with constant acts. An event is null if all acts that agree outside

it are indifferent. An act (or outcome)  is weakly preferred to another  given  ∈ E — written
 %  — if  0 % 0 for some acts  0 and 0 such that  =  0,  = 0 and  0S\ = 0S\.
35Kopylov proves this theorem for the case that E is a mosaic, a more general structure than

an algebra. My statement uses the condition that  is fine, which is equivalent in the algebra

case to his condition that  is finely ranged. In Savage’s special case E = 2 , a probability

measure  on E is fine if and only if it is atomless, and if and only if for all  ∈ E and 0    1

there is a  ⊆  in E such that  () =  (). In general, fineness is a weaker condition.
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Lemma 9 Under Ax. 2, whenever  %+  (where  ∈ Γ and   ∈ S

), then

(a)  %  for all (not just some)  ∈ Γ satisfying (i)—(ii) in Def. 28,

(b)  %  for some  ∈ Γ such that (i)—(ii) in Def. 28 hold and % is faithful

to % (in particular,  ⊇ ).

Lemma 10 For any context  ∈ Γ and finite set B ⊆ E, there is a context  ∈ Γ

such that (i) all  ∈ B are representable (i.e., B ⊆ (2)∗), (ii)  harmlessly

refines , and (iii) % is faithful to %.

Lemma 11 For all contexts  ∈ Γ and finite sets G of E-measurable functions

from S to , there is a context  ∈ Γ such that (i) G ⊆  ∗ , (ii)  harmlessly

refines , and (iii) % is faithful to %.

Lemma 12 Assume Ax. 2 and 5 and let  ∈ Γ. For all acts   and events

 of Lem. 7’s generalized Savage framework, the conditional preference  % ,

i.e.,  %+ , holds if and only if  %
 holds for some  ∈ Γ such that

  ∈  ∗ ,  is representable in context , and  harmlessly refines . The

equivalence remains true when also requiring that % is faithful to %.

Lemma 13 Assume Ax. 2 and let  ∈ Γ. An event  in Lem. 7’s generalized

Savage framework is non-null if and only if  is a non-null event in some context

 ∈ Γ such that  is representable (i.e.,  is defined) and  harmlessly refines

. The equivalence remains true when also requiring that % is faithful to %.

Proof of Lem. 7. Assume Ax. 1—6. Let  R E be as specified. I show P1—P6

for the extrapolated relation %+ restricted to  := { ∈ S

 :  is E-measurable}.

Claim 1: P1 holds. To show completeness, let   ∈  . Using Lem. 11, pick

a  ∈ Γ such that   ∈  ∗ and  harmlessly refines . By Ax. 1,  %  or

 % . In the first case  %
+
 , in the second  %+  . To show transitivity, let

   ∈  such that  %+  and  %+ . Using Lem. 11, pick a  ∈ Γ such that

   ∈  ∗ and  harmlessly refines . So, as  %
+
  and  %+ , we have

 %  and  %  by Lem. 9. Hence,  %  by Ax. 1, and so  %
+
 .

Claim 2: P2 holds. Consider    0 0 ∈  and  ∈ E such that  =  0,

 = 0, \ = \ and  0\ = 0\. Pick an  ∈  taking one value on 

and another on  ( exists as || ≥ 2 by Ax. 5). Using Lem. 11, pick a  ∈ Γ

such that    0 0  ∈  ∗ and  harmlessly refines . As   
0 0 ∈  ∗ , the

acts   
0
 

0
 ∈  are defined; and as  ∈  ∗ , the event  is representable

in context , so that  is defined (the sole purpose of introducing  was indeed

to ensure representability of ). Note that () = ( 0) , () = (0) ,

()\ = ()\ and (
0
)\ = (0)\ . So, by Ax. 2 (or just 2*),  %

 ⇔  0 % 
0
. This equivalence reduces to  %

+
  ⇔  0 %+ 0 by Lem. 9.

Claim 3: P3 holds. Let   ∈ . Let  ∈ E be non-null. I show  %+  ⇔
 %+ . By Lem. 13,  is non-null for a  ∈ Γ such that  is representable,
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 =  ∨ P with a finite partition P ⊆ I of S, and % is faithful to %. First,

if  %+ , then  %  by Lem. 9, so  %
 by Ax. 3 and ’s non-nullness,

hence  %+  by Lem. 12. Now let  %+ . By Lem. 12,  %  for a  ∈ Γ

such that  is representable,  =  ∨ Q with a finite partition Q ⊆ I of S,

and % is faithful to %. Using Lem. 10, pick  ∈ Γ such that P ∪ Q ⊆ (2)∗,
 = ∨P 0 with a finite partition P 0 ⊆ I of S, and % is faithful to %. W.l.o.g.

 and  equal  (by independence between outcome and state awareness) and

P 0 refines P and Q (otherwise replace P 0 by P 0 ∨ P ∨Q). Now % is faithful to

% and %, each time by Lem. 8, using that  ⊇  =  (= ) and that

 =  ∨P 0 =  ∨P 0 (since each set equals  ∨P 0 as P 0 refines P and Q). As
 (⊆ ) is non-null and % is faithful to %,  (⊆ ) is non-null. As  % 

and % is faithful to %,  % . So  %  by Ax. 3. Thus  %
+
 .

Claim 4: P4 holds. Let  ∈ E and   0 0 ∈  such that  Â
+
 

and 0 Â+ 0. I show S\ %+ S\ ⇔ 0
0
S\ %+ 0

0
S\ Via Lem.

11, pick a  ∈ Γ such that S\ S\ 
0


0
S\ 

0


0
S\ ∈  ∗ and  harm-

lessly refines . By Lem. 9,  Â  and 0 Â 0. So the claimed equi-

valence reduces to (S\) % (S\) ⇔ (0
0
S\) % (

0


0
S\), i.e.,


\

% 
\

⇔ 0
0\

% 
0

0\

. This holds by Ax. 4.

Claim 5: P5 holds. Using Ax. 5, pick  Â  in . Clearly, 
∗ Â+ ∗.

Claim 6: P6 holds. Let  Â+  in  and  ∈ . As  %
+
 , we have  % 

for a  ∈ Γ such that   ∈  ∗ ,  =  ∨ P for a finite partition P ⊆ I of S,
and % is faithful to %. Note  ∈ ; and  6%  as  6%

+
  . So  Â .

As R (⊆ E) is as in Ax. 6, one can partition S into 1   from R (hence

from E) such that, for some  ∈ Γ with  =  ∨ {1  } and  ⊇ ,

()\()() Â  and  Â ()\()() for all , i.e., (S\) Â 
and  Â (S\

) for all . So (as  harmlessly refines , being the join of

 and P ∨ {1  } ⊆ I), S\
 Â

+
  and  Â+ S\

 for all .
36 ¥

Given Ax. 1—6, for each  ∈ Γ we now use Lem. 6 and 7 to pick a utility

function  on  and a fine probability measure 
+
 on E which represent the

extrapolated relation %+ on { ∈ S

 :  is E-measurable}:

 %+  ⇔ E+
( ◦ ) ≥ E+ ( ◦ ) for all E-measurable   ∈ S

 .

Each +
 induces a probability measure  on the subjective event space 2

 via

() := +
 (

∗) for all  ⊆ .

The next four lemmas complete the sufficiency proof by establishing that the
functions  and  ( ∈ Γ) have all properties required in Thm. 1.

36To make the last step, one needs to first decompose each strict preference (Â) into a

weak preference (%) without weak dispreference ( 6-), then infer corresponding extended weak

preferences (%+ ) without weak dispreference (6-
+
 ) using Lem. 9, which implies extended strict

preferences (Â+ ).
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Lemma 14 Under Ax. 1—6, the above-defined system ( )∈Γ is an expected-

utility representation.

Lemma 15 Under Ax. 1—6, the above-defined functions  satisfy R1.

Lemma 16 Under Ax. 1—6, the above-defined functions  satisfy R2.

Lemma 17 Under Ax. 1—6, for each algebra R as in Ax. 6,

(a) all above-defined measures + have identical restriction  := +
 |R,

(b) the above-defined measures  satisfy R3 in virtue of .

I begin by proving the first of these four ‘sufficiency lemmas’.

Proof of Lem. 14. Assume Ax. 1—6. Let  ∈ Γ and   ∈ . Let , 

and +
 be as above. I show  %  ⇔ E( ◦ ) ≥ E( ◦ ) The left side

reduces to ∗ %+ ∗ by Lem. 9, and the right side to E+ ( ◦ ∗) ≥ E+ ( ◦ ∗)
because, letting  : S →  map any  ∈ S to its subjectivization () = , we

have ∗ =  ◦  , ∗ =  ◦  , and  is 
+
 ’s image under  . To complete the proof,

note ∗ %+ ∗ ⇔ E+
( ◦ ∗) ≥ E+ ( ◦ ∗) by definition of  and + . ¥

Proving the other three ‘sufficiency lemmas’ requires further results. I begin
with two cornerstone results from the literature:

Lemma 18 (Niiniluoto 1972, Wakker 1981) Every fine and tight qualitative prob-

ability relation on an algebra E on S (not necessarily a -algebra) is uniquely

representable by a probability measure on E.

Lemma 19 (Wakker 1981, Kopylov 200737) A probability measure on an algebra

E on S (not necessarily a -algebra) is fine if and only if the represented qualitative

probability relation is fine and tight.

I also need five technical lemmas (proved in App. F), the last two about

extrapolated preferences, and the first three about the extrapolated belief relation

over objective events induced by %+ and denoted again by ‘%
+
 ’.

Lemma 20 (extrapolated comparative beliefs) Under Ax. 2, 4 and 5, for all

 ∈ Γ and  ⊆ S,  %+  if and only if  %  for some  ∈ Γ such that

 and  are representable (i.e.,  and  are defined) and  harmlessly refines

. The equivalence remains true when also requiring % to be faithful to %.

Lemma 21 Under Ax. 2, 4, 5 and 6, whenever  %+  (where  ∈ Γ and

 ⊆ S), then  %  for each (not just some) context  ∈ Γ in which  and

 are representable (so that  and  are defined) and  harmlessly refines .

37Lem. 19 is implicit in Wakker (1981) and a special case of Kopylov’s (2007) Thm. A.1.
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Lemma 22 Under Ax. 2, 4 and 5, the extrapolated relations %+ ( ∈ Γ) agree

(as belief relations on 2S) on each robust algebra R of incorporable objective events.

Lemma 23 Under Ax. 1—6, the restriction of the above-defined measure +
 to

an algebra R of type in Ax. 6 is (a) fine, and (b) the same for all  ∈ Γ.

Lemma 24 Given Ax. 1 and 2, for any contexts   ∈ Γ, if  harmlessly refines

 then E = E, and if moreover % is faithful to % then %
+
 = %

+
 .

Lemma 25 (stability of nullness) Under Ax. 2, any null event  of some

context is null in all contexts  ∈ Γ where it is conceived, i.e., where  ⊆ .

Proof of Lem. 17. Assume Ax. 1—6. Let R be as in Ax. 6, and  and +


( ∈ Γ) as above. By Lem. 23,  := + |R is fine and independent of  ∈ Γ. I

show  is uncontroversial. Let  ∈ R and  ∈ Γ. I must show existence of a  ∈ Γ

such that  =  ∨ {},  ∗ extends  ∗ , and  ∗ () = (). As  ∈ R,  is

incorporable; so pick a  ∈ Γ such that  =  ∨ {} and % is faithful to

%. By Lem. 24, E = E and %
+
 = %

+
 . So 

+
 = +

 . Thus 
∗
 (= +

 |(2 )∗)

extends  ∗ (= +
 |(2)∗). Finally, 

∗
 () = + () = (). ¥

Proof of Lem. 16. Assume Ax. 1—6. Let  
+
 ( ∈ Γ) be as above,   ∈ Γ,

and  := ∩. If  is null in both contexts,  and  are zero, so proportional,

on 2. Now let  be non-null in one, hence by Lem. 25 both, contexts. Let R be

as in Ax. 6. Put E := {∗ :  ⊆  ∨ P for a finite partition P ⊆ R of S}. Here

 ∨ P joins partitions of distinct sets ∗ and S; Def. 12 still applies.
Claim 1: The measures +

 and +
 are ordinally equivalent on E . Note E is

an algebra on ∗, not S.38 Let  ∈ E . I show +
 () ≥ +

 () ⇔ +
 () ≥

+
 (), or equivalently (as +

 and +
 represent %+ resp. %+ )  %+  ⇔

 %+ . As  ∈ E , we may pick finite partitions PP ⊆ R of S such that

 ∈ (2∨P)∗ and  ∈ (2∨P)∗. Clearly, P := P ∨ P is again a finite partition

of S. Using that all  ∈ P are incorporable (as P ⊆ R), pick 0 0 ∈ Γ such that

0 =  ∨P and 0 =  ∨P. Now  and  are representable in context 0 (as

0 refines  ∨ P); so  %+  ⇔ 0 %0 0 by Lem. 20 and 21. Similarly,

 and  are representable in context 0; so  %+  ⇔ 0 %0 0. It remains

to show 0 %0 0 ⇔ 0 %0 0. This holds by comparative-belief stability

(Prop. 4), since 0 = 0 and 0 = 0 as 0 and 0 agree within 
∗ (⊇ ).

Claim 2:  and  are proportional on 2
. By Claim 1, the conditional

probability measures +
 (·|

∗) and +
 (·|

∗) are ordinally equivalent on E . Their

restrictions +
 (·|

∗)|E and +
 (·|

∗)|E are probability measures on E (an algebra

on ∗), which are fine as +
 and 

+
 are fine. So 

+
 (·|

∗)|E = + (·|
∗)|E by Lem.

18 and 19. Hence, +
 is proportional to +

 on E , and thus on (2)∗ (⊆ E). So,
 is proportional to  on 2

. ¥

38E is also the join of algebras on ∗: {∗ :  ⊆ } and { ∩ ∗ :  ∈ R} (R’s trace in ∗).
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Proof of Lem. 15. Assume Ax. 1—6. Let  
+
 ( ∈ Γ) be as above. Fix

  ∈ Γ. Put  :=  ∩ . For all   ∈ ,  %  ⇔  %  by outcome-

preference stability (Prop. 3); so () ≥ () ⇔ () ≥ () by Lem. 14.

If  (and so ) is constant on , then  is an increasing affine transformation
of  on . Now let  (and so ) be non-constant on . Let R be as in Ax.

6. As ( 
+
 ) represents %

+
 restricted to the E-measurable acts, (|  

+
 |R)

represents%+ restricted further toR-measurable acts mapping into, i.e., to  :=

{ ∈ S :  is R-measurable}. For analogous reasons, (|  
+
 |R) represents

%+ restricted to  . (In fact +
 |R = +

 |R by Lem. 17.) Next I show that %
+


and %+ coincide on  . Let   ∈  . As   ∈ E we may by Lem. 11 pick
an 0 ∈ Γ such that   ∈  ∗0 and 0 harmlessly refines . Analogously, as

  ∈ E we may pick a 0 ∈ Γ such that   ∈  ∗0 and 0 harmlessly refines .

Now  %+  ⇔  %+ , as by Lem. 9 this reduces to 0 %0 0 ⇔ 0 %0 0,

which holds since  (= (0)
∗ = (0)

∗) and  (= (0)
∗ = (0)

∗) are measurable

w.r.t. a robust algebra. As just shown, (|  
+
 |R) and (|  

+
 |R) represent

the same relation on  ; note also that | and | are non-constant and 
+
 |R

and +
 | are fine. So | is an increasing affine transformation of | by Lem.

7. ¥

C.3 Necessity of the axioms

I now show that our representation implies all axioms. I start by the ‘local’ Axioms

1, 3 and 5, and then turn to the ‘global’ (cross-context) Axioms 2, 4 and 6.

Lemma 26 Given an expected-utility representation, Ax. 1, 3 and 5 hold.

Proof. If ( )∈Γ is such a representation, then Ax. 1 holds trivially, Ax.

5 holds by non-constancy of all , and Ax. 3 holds by definition of conditional

preference (using that non-null events  ⊆  have probabilities () 6= 0). ¥

Lemma 27 If ( )∈Γ is a representation in Thm. 1’s sense, Ax. 2 holds.

Proof. Let ( )∈Γ be a representation. Let  0 ∈ Γ,   ∈ , 
0 0 ∈ 0,

and  ⊆ ∩0, such that  =  0,  = 0, \ = \ and 
0
0\

= 00\.

I must show  %  ⇔  0 %0 
0, i.e., E(◦) ≥ E(◦)⇔ E0 (0 ◦ 0) ≥

E0 (0 ◦0), or
R

◦ d ≥

R

◦ d ⇔

R

0 ◦ 0 d0 ≥

R

0 ◦0 0

as \ = \ and  00\ = 00\. The latter holds as (i)  is proportional

to 0 within , (ii)  =  0 and  = 0, and (iii)  is an increasing affine
transformation of 0 on  ∩0 (where by (ii)—(iii)  ◦  is an increasing affine
transformation of 0 ◦  0 on , and  ◦  is one of 0 ◦ 0 on ). ¥

Lemma 28 If ( )∈Γ is a representation in Thm. 1’s sense, Ax. 4 holds.
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Proof. Assume ( )∈Γ is a representation. Let  0 ∈ Γ such that  :=

 = 0, let  ⊆ , and consider  Â  in  and 0 Â0 
0 in 0. I claim

that \ % \ ⇔ 0
0
\ %0 

0


0
\. Noting that ()  () (as

 Â ) and 0(
0)  0(

0) (as 0 Â0 
0), the claimed equivalence reduces

to the equivalence () ≥ () ⇔ 0() ≥ 0(), which holds as  is

proportional (in fact, identical) to 0 on the full domain 2
 (= 2 = 20 ). ¥

Lemma 29 If ( )∈Γ is a representation in Thm. 1’s sense, with a fine

uncontroversial  : R→ [0 1] in R3, then Ax. 6 holds in virtue of algebra R.

Proof. Let ( )∈Γ,  and R be as assumed.

Claim 1: All  ∈ R are incorporable. Let  ∈ R and  ∈ Γ. As  is

uncontroversial, there is a  ∈ Γ where  =  ∨ {} and  ∗ extends 
∗
.

W.l.o.g.  =  (by independence between outcome and state awareness); so %

is faithful to %, using R1 and the fact that 
∗
 extends 

∗
.

Claim 2: R is robust. Let 1 2 ∈ Γ. Consider R-determined acts 1 1 ∈ 1

and 2 2 ∈ 2 such that 
∗
1 = ∗2 =:  and 

∗
1 = ∗2 =: . I show that 1 %1 1 ⇔

2 %2 2, i.e., E1 (1 ◦ 1) ≥ E1 (1 ◦ 1)⇔ E2
(2 ◦ 2) ≥ E2 (2 ◦ 2)

As  and  are R-measurable and  ∗() = () for all  ∈ {1 2} and all  ∈
R∩(2 )∗, the desired equivalence reduces to E(1◦) ≥ E(1◦)⇔ E(2◦
) ≥ E(2 ◦ ), which holds by R1 and the fact that 1 ∩2 ⊇ (1) (2).

Claim 3 : R has the additional property required in Ax. 6. Let  ∈ Γ,  Â 

in , and  ∈ . For any   0, pick (i) a finite partition P ⊆ R of S such

that () ≤  for all  ∈ P (using ’s fineness) and (ii) an  ∈ Γ such that

 =  ∨ P,  = , and  ∗ extends 
∗
 (using ’s uncontroversialness and

the independence between outcome and state awareness); let    ∈  be the

acts equivalent to  resp. . It suffices to show that (*) for small enough   0,

E ( ◦(( )\


))  E ( ◦) for all  ∈ P, and (**) for small enough

  0, E ( ◦  )  E ( ◦ (()\
 )) for all  ∈ P As all  have

same domain as , they are increasing affine transformations of . W.l.o.g.

let  =  =:  for all   0. Given   0, each ( )\


( ∈ P)

differs from   at most on , hence at most with (-)probability . Put ∆ :=

max∈ |()− ()|. Now
¯̄
E ( ◦ (( )\


))− E ( ◦  )

¯̄
≤ ∆

for all  ∈ P This implies (*) since E ( ◦  )) = E( ◦ )  E( ◦ ) =
E ( ◦ ) where the ‘’ holds as  Â , and both ‘=’ hold as   () is

equivalent to  () and  ∗ extends 
∗
. An analogous argument shows (**). ¥

C.4 Uniqueness of the representation

I now prove uniqueness, based on two technical lemma (shown in App. F):

Lemma 30 If a probability measure  on an R is uncontroversial among probab-

ility measures  on 2
 ( ∈ Γ) which satisfy R2, then for each  ∈ Γ there is a
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probability measure  onR := R∨(2)∗ which extends all  ∗ for which  is the
join on  and a finite partition P ⊆ R (so  extends  as  is uncontroversial).

Lemma 31 If ( )∈Γ is a representation in Thm. 1’s sense with a fine un-

controversial measure  on R, and  and R ( ∈ Γ) are as in Lem. 30, then,

for all  ∈ Γ, ( ) represents the restriction of %
+
 to { ∈ S

 :  is R-

measurable} in Lem. 6’s sense.

Lemma 32 If ( )∈Γ and ( 0
 

0
)∈Γ are representations in Thm. 1’s sense,

then each  equals 
0
 and each  is an increasing affine transformation of  0

.

Proof. Let ( )∈Γ be a representation, with a fine uncontroversial measure

 : R→ [0 1]; so Ax. 1—6 hold. Let  and R ( ∈ Γ) be as in Lem. 30 and 31.

Let ( 0
 

0
)∈Γ be the representation defined in in App. C.2 under Ax. 1—6 using

the objects %+ and 
+
 (it was formerly denoted ‘( )∈Γ’). Fix  ∈ Γ. I show

 0
 =  and 

0
 = +  with   0 and  ∈ R. As ( 0

 
+
 ) represents %

+


on { ∈ S

 :  is E-measurable} (in Lem. 6’s sense), (
0
 

+
 |R) represents the

same relation as ( ) on { ∈ S

 :  is R-measurable} by Lem. 31. So by

Lem. 6  = +
 |R and  is an increasing affine transformation of  0

. Finally,

 =  0: for all  ⊆ , () =  ∗(
∗) = (

∗) = + (
∗) =  0

(). ¥

D Proof of Theorem 1 for the general case

From now on states can be non-exhaustive. I prove Thm. 1 by reduction to the

case of exhaustive states where it has been established. Let Π be the partition

of Γ into non-empty sets of contexts such that   ∈ Γ belong to the same set

in Π if and only if S = S. This yields for each ∆ ∈ Π a (sub)framework

( %)∈∆ with exhaustive states, called the ∆-subframework, to which

we may apply Thm. 1; let S∆ be its set of objective states. For all  ∈ Γ, let

∆ be the member of Π containing , and, generalizing earlier objects, let %+ ,

E and +
 be defined as in App. C, but w.r.t. the ∆-subframework (which has

exhaustive states, ensuring well-definedness); so %+ is a relation on 
S∆
 , and E

is an algebra on S∆ . The trace in S
0 (⊆ S) of an algebra R on S is the algebra

on S0 given by R|S0 := { ∩ S0 :  ∈ R}.39

D.1 Sufficiency of the axioms

Our reductive proof draws on a technical lemma shown in App. F:

39A direct, non-reductive proof of Theorem 1 would also work, by generalizing App. C’s proof

strategy and defining the objects I, %+ , E and + ( ∈ Γ) directly relative to the general
framework (here %+ is a relation on S , and E an algebra on S).

35



Lemma 33 If Ax. 1—6 hold, then they hold for each ∆-subframework (∆ ∈ Π).

Now assume Ax. 1—6. By Lem. 33, each ∆-subframework (∆ ∈ Π) satisfies

Ax. 1—6. So by Thm. 1 each ∆-subframework (∆ ∈ Π) has a representation

( )∈∆ in Thm. 1’s sense. Joining these representations together, we obtain a

grand system ( )∈Γ, which is now shown to represent the general framework.

Lemma 34 Under Ax. 1—6, the above-defined system ( )∈Γ is an expected-

utility representation.

Proof. This property is inherited from the subsystems ( )∈∆ (∆ ∈ Π). ¥

I now reduce R3 to subframeworks, using another lemma shown in App. F:

Lemma 35 Given Ax. 1—6 and the above-defined functions , if R is an algebra

as in Ax. 6 and for each ∆-subframework (∆ ∈ Π) ∆ is a fine probability measure

on R|S∆ uncontroversial among ()∈∆, then the assignment  7→ ∆( ∩ S∆)
defines a fine probability measure on R which does not depend on ∆ ∈ Π and is

uncontroversial among ()∈Γ.

Lemma 36 Under Ax. 1—6, the above-defined measures  satisfy R3.

Proof. Assume Ax. 1—6, with R as in Ax. 6. By Lem. 35 it suffices to show that
for each ∆ ∈ Π there is a fine probability measure ∆ on R|S∆ uncontroversial

among the above-defined (∆-)family ()∈∆. Let ∆ ∈ Π. As ()∈∆ satisfies

R3, some fine measure ∆ is uncontroversial among ()∈∆. By Lem. 33’s proof,

the ∆-subframework satisfies Ax. 6 in virtue of the trace algebra R|S∆. So by

Thm. 1’s proof we may w.l.o.g. let ∆ have domain R|S∆. ¥

Lemma 37 Under Ax. 1—6, the above-defined functions  satisfy R2.

Proof. The proof states literally like that of Lem. 16, the corresponding lemma

under exhaustive states. As a tiny addition, 0 and 0 in Claim 1 must be chosen

from ∆ resp. ∆,
40 so that Lem. 20 and 21 can be applied to the ∆- resp.

∆-subframework; both lemmas hadn’t been stated for a general framework.
41 ¥

I finally prove R1, again using a technical lemma shown in App. F:

Lemma 38 Under Ax. 1—6, for any contexts   ∈ Γ, algebra R as in Ax. 6 and

R-measurable functions   : S→  ∩ , S %
+
 S ⇔ S %

+
 S .

Lemma 39 Under Ax. 1—6, the above-defined functions  satisfy R1.

40This is possible, because S0 = S and (by independence between outcome and state aware-

ness) w.l.o.g. C0 = C, and because S0 = S and w.l.o.g. C0 = C .
41Lem. 25 is applied to the general framework for which it had not been stated but still holds.
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Proof. Suppose Ax. 1—6. Let   ∈ Γ. Put  :=  ∩. Let  and  be the

above-defined functions. W.l.o.g. they are both non-constant on .42 Let R be as

in Ax. 6, and  a (by Lem. 36 and its proof existing) fine uncontroversial measure

on R. Let ≥ be the relation on  := { ∈ S :  is R-measurable} given by  ≥
 ⇔ S %

+
 S for some (hence by Lem. 38 any)  ∈ { }. To show that |

is an increasing affine transformations of |, I prove that (|  ) and (|  )

both represent ( ()≥) in Lem. 6’s sense. Let  ∈ { }. I show E(◦) ≥
E( ◦ ) ⇔  ≥  for all   ∈  . As  ≥  reduces to S %

+
 S , hence to

E+
(◦S) ≥ E+ (◦S), it suffices to show that E(◦) = E+ (◦S) for

all  ∈  . Let  ∈  ; I prove (−1()) = + (
−1
S
()) for all  ∈  By Lem. 35

(and Lem. 36’s proof), we may write  = ∆
(·∩S) for a fine measure ∆

onR|S
uncontroversial among ()∈∆ . Not only ∆

, but also +
 |R|S is uncontroversial

among ()∈∆ , by Lem. 4 (applied to the ∆-subframework). So ∆
= +

 |R|S .

For any  ∈ , (−1()) = ∆
(−1()∩S) = ∆

(−1
S
()) = +

 (
−1
S
()) where

the first equality holds as  = ∆
(· ∩ S), and the last one as ∆

= +
 |R|S . ¥

D.2 Necessity of the axioms and uniqueness

Necessity of Ax. 1—5 holds by the same arguments as under exhaustive states

(App. C). I now prove necessity of Ax. 6 and uniqueness of the representation,

both by reduction to subframeworks via the following technical lemma (shown in

App. F):

Lemma 40 If ( )∈Γ is a representation in Thm. 1’s sense (with a fine

uncontroversial measure  on an algebra R), then each subsystem ( )∈∆
(∆ ∈ Π) represents the ∆-subframework in Thm. 1’s sense (with a fine uncontro-

versial measure ∆ on R|S∆ given by (·) = ∆(· ∩ S∆)).

Lemma 41 If ( )∈Γ and ( 0
 

0
)∈Γ are representations in Thm. 1’s sense,

then any  equals 
0
 and any  is an increasing affine transformation of  0

.

Proof. This property follows via Lem. 40 from the uniqueness property for

subframeworks, which is guaranteed by Thm. 1 applied to subframeworks. ¥

Lemma 42 If ( )∈Γ is a representation in Thm. 1’s sense, with a fine

uncontroversial measure on an algebra R, then Ax. 6 holds in virtue of algebra R.

Proof. Let ( )∈Γ and R be as specified. Let  ∈ Γ,  Â  in , and

 ∈ . Put ∆ := ∆. By Lem. 40, ( )∈∆ represents the ∆-subframework,

with a fine uncontroversial measure on R|S∆. So by Lem. 29, Ax. 6 holds for

this subframework in virtue of algebra R|S∆. Hence one can partition S∆ into

42The argument is like in the proof of Lemma 15, but using Lem. 34 rather than 14.
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1   ∈ R|S∆ and pick a  ∈ Γ where  =  ∨ {1  } (so any  is

representable by an  ⊆ ),  ⊇  (so  contains acts 
0 and 0 equivalent to

 resp. ), and  0\ Â 
0 and  0 Â 

0
\

 for all . Each  is in R|S∆;

so  =  ∩ S∆ for a  ∈ R. W.l.o.g. 1   partition S.
43 Ax. 6 for the

general framework follows since  =  ∨ {1  } (as  =  ∨ {1  }

and each  matches  within S∆) and any  is, like , represented by . ¥

E Proof of Theorem 2

I now reduce Thm. 2 to Thm. 1. The proof is stated so as to be useful also for

readers focusing on exhaustive states.

Let a (‘risky’) algebra R on S be given. First assume Ax. 1—5 and 6R—8R.

As Ax. 6R—8R imply Ax. 6, Thm. 1’s representation ( )∈Γ exists. This

representation satisfies even Thm. 2’s modified third rule, as the uncontroversial

measure can be defined on any algebra as in Ax. 6, e.g., on the risky algebra R,

using Lem. 17 (under exhaustive states) or more generally Lem. 36.

Conversely, if preferences admit Thm. 2’s representation, then Ax. 1—6 hold

by Thm. 1. In fact Ax. 6 holds in virtue of the risky algebra R, by Lem.29 (under

exhaustive states) or more generally Lem. 42. This implies Ax. 6R—8R. ¥

F Proof of the technical lemmas

Proof of Lem. 1. Assume fine states. Ax. 6̃ implies Ax. 6 in virtue of the same

R and the special case  = , because incorporability of all  ∈ R comes for

free (see Rem. 18) and whenever 1   ⊆  partition  and represent some

1   ∈ R, then we may choose 1   such as to partition S. Conversely,

assume Ax. 6 and 2. Pick an algebra R as in Ax. 6. To show that Ax. 6̃ holds

in virtue of R, consider  ∈ Γ, acts  Â  in , and an outcome  ∈ . Pick

 ∈ Γ, 1   ⊆  and  0 0 ∈  as given by Ax. 6; so 
0
\

 Â 0 and

 0 Â 
0
\

 for  = 1  . By state fineness,  = ; so 1   ⊆  and

(as also  ⊇ ) 
0 =  and 0 = . So, by preference stability (see Prop. 2,

which uses Ax. 2), \ Â  and  Â \ for  = 1   ¥

Proof of Lem. 2. Assume fine states. First, fineness of the commonality implies

R3 since the commonality is uncontroversial. Conversely, assume there is a fine

uncontroversial . As states are fine, all objective events are representable in all

contexts. So the commonality extends , hence it itself fine. ¥

Lem. 3 and 4 are provable analogously to Lem. 1 resp. 2.

43Otherwise replace each  by \∪−1=1 if    and by (\∪−1=1)∪ (∪=1) if  = ,

which yields sets in R that are exclusive (by the ‘\∪−1=1’) and exhaustive (by the ‘∪(∪=1)’).
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We now turn to App. C’s technical lemmas. Let states be exhaustive until

otherwise stated.

Proof of Lem. 5. Let  ∈ Γ. Let R1 and R2 be the sets in (1) resp. (2). Since

R1 is obviously an algebra, it suffices to show that E = R1 = R2.

Claim 1: R1 ⊆ R2. Note that R2 includes (2
)∗ as  harmlessly refines

; and R2 also includes I as each  ∈ I is by definition representable in some
harmless refinement  of , meaning that  ∈ (2)∗. Hence R2 includes the

join R1 = (2
)∗ ∨ I.

Claim 2: R2 ⊆ E. Let  ∈ R2. Then we may pick a context  ∈ Γ such that

 harmlessly refines  and  ∈ (2)∗. So  = ∗ for some  ∈ 2 , i.e., some
 ⊆ . Hence,  ∈ E.
Claim 3: E ⊆ R1. Let  ∈ E. Then we may pick a finite partition  ⊆ I of

S such that  = ∗ where  ⊆  ∨ P. Note that  can be represented as

 = ∪∈P ∪∈:∩∈ ( ∩ ) = ∪∈P( ∩ (∪∈:∩∈))

So  is a Boolean combination of members of I and (2)∗, showing that  ∈ R1.

¥

Lemma 43 Given any finite set J ⊆ I, there is a finite partition P ⊆ I of S
refining each { } ( ∈ J ) such that for all contexts  ∈ Γ there is a  ∈ Γ for

which  =  ∨ P and % is faithful to %.

Proof of Lem. 43. This can be shown by induction on the size of J . The

claim holds trivially if J = ∅, namely in virtue of the partition P = {S}. Now
assume the claim holds for some sets J1J2 ⊆ I, say in virtue of partitions P1
resp. P2. Then the claim also holds for J1 ∪ J2, namely in virtue of the partition
J1 ∨ J2, because for any  ∈ Γ we may first pick a context 0 ∈ Γ such that

0 =  ∨ P1 and %0 is faithful to %, and then pick a context  ∈ Γ such that

 = 0 ∨ P2 =  ∨ P and % is faithful to %0, hence to %. ¥

Proof of Lem. 8. Assume Ax. 2, and let   ∈ Γ such that  ⊆  and

 =  ∨ P for a finite partition P ⊆ I of S. Using Lem. 43, pick a finite

partition P 0 ⊆ I of S refining P such that there are 0 0 ∈ Γ where 0 = ∨P,
0 =  ∨ P, %0 is faithful to %, and %0 is faithful to %. Now 0 = 0 (as

 =  ∨ P) and 0  0 ⊇  (as by faithfulness 0 ⊇  and 0 ⊇ , and

as  ⊇ ). So 0 ∩ 0 ⊇ 
0
 . Hence, by Ax. 2, %0 matches %0 on 

0
 ,

hence is (like %0) faithful to %. As %0 is faithful to % and % (and as each

 ∈  is objectively equivalent to some  ∈ ), % is faithful to %. ¥

Proof of Lem. 9. Assume Ax. 2 and  %+ , where  ∈ Γ and   ∈ S

 .

(a) Let  ∈ Γ satisfy the conditions (i)—(ii) in Def. 28. I show that  % .

As  %+ , we have 0 %0 0 for some 
0 ∈ Γ satisfying these conditions. As 
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and 0 harmlessly refine , we may pick finite partitions PP
0 ⊆ I of S such that

 =  ∨ P and 0 =  ∨ P 0. Using Lem. 43, there is a partition Q ⊆ I of S
which refines P and P 0 and contexts  0 ∈ Γ such that  = ∨Q, 0 = 0∨Q,
% is faithful to %, and %0 to %0. Note that  = 0 = ∨Q, so that  = 0

and  = 0. Hence, by preference stability (Prop. 2),  %  ⇔ 0 %0 0.

This equivalence reduces to  %  ⇔ 0 %0 0 by faithfulness of % to %

and of %0 to %. As 0 %0 0, it follows that  % .

(b) Pick any  ∈ Γ satisfying (i)—(ii) in Def. 28 hold. Pick a context 0 ∈ Γ

such that 0 =  and 0 = . Clearly, also 
0 ∈ Γ satisfies (i)—(ii) in Def. 28.

Moreover, %0 is faithful to % by Lem. 8. ¥

Proof of Lem. 10. Consider an  ∈ Γ and a finite B ⊆ E. For each  ∈ B,
pick a partition P of S refining {} and having the property stated in the

definition of weak incorporability (note that P ⊆ I). Let 1   be all  = |B|

members of B in any given order. We may pick, first, a context 1 ∈ Γ such that

1 =  ∨ P1 and %1 is faithful to %; second, a context 2 ∈ Γ such that

2 = 1 ∨ P2 and %2 is faithful to %1; and so on for contexts 3  . Let

 := . Property (i) holds because each  is representable in context , hence

in context . Property (ii) holds as  =  ∨ P with P := P1 ∨ · · · ∨ P.

Property (iii) holds by transitivity of faithfulness. ¥

Proof of Lem. 11. This claim follows from Lem. 10 applied to the (finite) set

B = {−1() :  ∈ G  ∈ }, by noting that for any  ∈ Γ  ∗ is characterizable

as the set of (2)∗-measurable function from S to . ¥

Proof of Lem. 12. Assume Ax. 2 and 5, let  ∈ Γ and consider Lem. 7’s

generalized Savage framework, with set of acts denoted  . Let    be as spe-

cified. First assume  %+ . Then, by definition,  0 %+ 0 for some  0 0 ∈ 

agreeing with  resp.  on  and with each other outside . Choose any  ∈ 

taking one value on  and another on  (it exists as || ≥ 2 by Ax. 5). Using
Lem. 11, we pick a  ∈ Γ such that    0 0  ∈  ∗ and  harmlessly refines

 (and % is faithful to %, which is only needed if the modified equivalence is

to be proved). As  ∈  ∗ ,  is representable. As  0 %+ 0, we have  0 % 0 by

Lem. 9. Noting that  0 and 0 agree with  resp.  on  and with each other

outside  (because of inheriting these properties from analogous properties of 
0

and 0), it follows that  % .

Conversely, assume that  %
 for some  ∈ Γ satisfying the specified

properties. Then there are two functions in  — we may write them as 
0
 and 0

for certain   ∈  ∗ — such that 
0
 % 0 and such that 

0
 and 0 agree with 

resp.  on  and with each other outside . From  0 % 
0
 (and the properties

of ) it follows that  0 %+ 0, which in turn implies that  %+  since  0 and

0 agree with  resp.  on  and with each other outside  (they inherit this
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behaviour from  and  because  = ()
∗,  = ()∗ and  = ()

∗). ¥

Proof of Lem. 13. Assume Ax. 2 and let  ∈ Γ. Consider Lem. 7’s generalized

Savage framework and an event  ∈ E .
First assume  is non-null. Then there are   ∈  such that  =  and

 6∼+ . Pick any  ∈  taking one value on  and another on  ( exists as

|| ≥ 2 by the fact that  contains distinct functions  ). By Lem. 11, we

may choose a context  ∈ Γ such that    ∈  ∗ and  faithfully refines 
(and such that % is faithful to %, something we need to add when proving the

equivalence in its modified version). As  ∈  ∗ ,  is representable in context ,

i.e.,  is defined. As  6∼+ , we have  6∼ , which (since  and  agree

outside ) shows that  is non-null.

Conversely, assume  is non-null (under %) for some  ∈ Γ with the specified

properties. Then we may pick two non-indifferent acts in  which agree outside

; we may write them as  and  for some   ∈  ∗ . Since  6∼ , we have

 6∼+  by Lem. 9. So, as  and  agree outside ,  is non-null. ¥

Proof of Lem. 20. Assume Ax. 2, 4 and 5. Let  ∈ Γ and  ⊆ S. By Ax. 5
there are  Â  in .

First assume  %+ . Then there exist   ∈  such that  Â
+
  and

 %
+
 . So by Lem. 11 there is a context  ∈ Γ such that   ∈  ∗

(hence,  and  are representable),  harmlessly refines , and % is faithful

to % (the latter is needed when proving the modified equivalence). By Lem. 9,

it follows that  Â  and () % (). In other words  Â  and


\

% 
\

. So,  % .

Conversely, assume  %  for a  ∈ Γ such that  and  are representable

and  harmlessly refines . It follows that  ∈ E. So by Lem. 10 we may
pick a context 0 ∈ Γ such that  and  are representable, 0 harmlessly refines

, and %0 is faithful to %. In particular, 0 = . As  %  we have

0 %0 0 by belief stability (see Prop. 4, which uses Ax. 2, 4 and 5). Hence

there are 0 0 ∈ 0 (= ) such that 
0 Â0 

0 and 00
0
0\0

%0 
0
0

00\0
.

In other words, (0
S
)0 Â0 (

0
S
)0 and (

0


0

)0 %0 (

0


0

)0 . By Lem. 9 it follows

that 0
S
Â+ 0

S
(i.e., 0 Â+ 0) and 0

0

%+ 0

0

. So  %+ . ¥

Proof of Lem. 21. Assume Ax. 2, 4, 5 and 6. Let  %+ , where  ∈ Γ and

 ⊆ S. Let  ∈ Γ satisfy the conditions stated. I show that  % . As

 %+ , we have 0 %0 0 for some 
0 ∈ Γ satisfying the analogous conditions,

by Lem. 20 (which uses Ax. 2, 4 and 5). As  and 0 harmlessly refine , we

may pick finite partitions PP 0 ⊆ I of S such that  = ∨P and 0 = ∨P 0.
Using Lem. 43, there is a partitionQ ⊆ I of S which refines P and P 0 and contexts
 0 ∈ Γ such that  = ∨Q, 0 = 0∨Q, % is faithful to %, and %0 to %0.

Note that  = 0 = ∨Q, so that  = 0 and  = 0. So, by comparative-
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belief stability (Prop. 4, which uses Ax. 2, 4, 5 and 6),  %  ⇔ 0 %0 0.

This equivalence reduces to  %  ⇔ 0 %0 0 by faithfulness of % to %

and of %0 to %. As 0 %0 0, it follows that  % . ¥

Proof of Lem. 22. Assume Ax. 2, 4 and 5. Let R be a robust algebra of

incorporable objective events, and let  ∈ R and   ∈ Γ. I assume  %+ 

and have to prove  %+ . By Lem. 22, as  %+  we have  %  for a  ∈ Γ

such that  and  are representable and  harmlessly refines . Meanwhile,

as  ∈ R ⊆ I ⊆ E, by Lem. 10 there exists a  ∈ Γ such that  and  are

representable in context  and  harmlessly refines . As  %  and as 

and  belong to a robust algebra (i.e., R), we have  %  by belief stability

on robust algebras (Prop. 4). So  %+  by Lem. 20. ¥

Proof of Lem. 23. Assume Ax. 1—6. Let R be as in Ax. 6. Let  and +


( ∈ Γ) be as defined above.

Claim 1 : + |R is fine for all  ∈ Γ. Let  ∈ Γ. The pair ( 
+
 ) represents

%+ on { ∈ S

 :  is E-measurable} (in Lem. 6’s sense). So ( 
+
 |R) represents

%+ on { ∈ S

 :  is R-measurable}. By Lem. 7 (applied with E = R), there is

a fine probability measure on R representing the (belief) relation induced by %+
on R. This measure represents the same (belief) relation on R as +

 |R, and thus

coincides with +
 |R by Lem. 18 and 19. So 

+
 |R is fine.

Claim 2:  := +
 |R is the same for all  ∈ Γ. Let   ∈ Γ. By Lem. 22, the

functions +
 |R and 

+
 |R are ordinally equivalent. Since these are fine probability

measures by Claim 1, they must coincide by Lem. 18 and 19. ¥

Lemma 44 Under Ax. 1, for any context  ∈ Γ, two functions   ∈ S

 are

%+ -comparable (i.e.,  %
+
  or  %+ ) if and only if both are E-measurable.

Proof. Assume Ax. 1. Let  ∈ Γ and   ∈ S

 . First assume  and  are

comparable under %+ . Then  and  are comparable for some context  ∈ Γ

such that   ∈  ∗ and  =  ∨ P for some finite partition P ⊆ I of S.

Since   ∈  ∗ ,  and  are (2)∗-measurable, which implies E-measurability as

(2)∗ = (2∨P)∗ ⊆ E. Conversely, if  and  are E-measurable, then by Lem.

11 there is a context  ∈ Γ such that   ⊆  ∗ and  harmlessly refines . By

Ax. 1,  %  or  % , which implies that  %
+
  or  %+  . ¥

Proof of Lem. 24. Assume Ax. 1 and 2. Let   ∈ Γ. Assume  harmlessly

refines . Then E = E by definition of extrapolated algebras. Now suppose

that in addition % is faithful to %. In view of Lem. 44 it suffices to show that
%+ and %

+
 coincide on the set of E- (resp. E-)measurable functions in S

 . Let

  ∈ S

 be E- (hence, E-)measurable. Then by Lem. 11 there is a context

 ∈ Γ such that   ∈  ∗ and  harmlessly refines , hence, also . We have

 %+  ⇔  %+  because each side is equivalent to  %  by Lem. 9. ¥
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Proof of Lem. 25. Assume Ax. 2. Let   ∈ Γ and  ⊆ ∩. We assume 
is non-null in  and prove non-nullness in . By assumption, there exist   ∈ 

such that \ = \ and  6∼ . Pick any  0 0 ∈  such that  =  0,

 = 0, and  0\ = 0\. As  6∼  we have  0 ∼ 0 by Ax. 2. So  is

non-null in . ¥

Proof of Lem. 30. Let ( )∈Γ, , R and R be as specified. Fix  ∈ Γ.

Claim 1: R = ∪∈Γ:=∨P for some finite partition P⊆R of S(2
)∗. This claim is

provable analogously to the proof of Lem. 5.

Claim 2: For all  ∈ Γ and finite partitions P ⊆ R of S, there is a  ∈ Γ

such that  =  ∨ P and  ∗ extends  ∗ . Consider such  and P. Write

P = {1  }. As each  is incorporable and  is uncontroversial, we can let

0 :=  and successively pick 1   ∈ Γ such that, for each , 
∗

extends

 ∗−1 and  = −1 ∨ { }. Clearly,  ∗ extends 
∗
 and  =  ∨ {1 1}∨

· · · ∨ { } =  ∨ P.
Claim 3: The measures  ∗ with  =  ∨P for some finite partition P ⊆ R

of S agree pairwise on the domain overlap. Let  0 ∈ Γ such that  =  ∨ P
and 0 = ∨P 0 for finite partitions PP 0 ⊆ R of S. I show that  ∗ and  ∗0 agree
on the domain overlap. By Claim 2, there are  0 ∈ Γ such that  =  ∨ P 0,
0 = 0 ∨ P,  ∗ extends  ∗ , and  ∗0 extends 

∗
0. It suffices to show that

 ∗ =  ∗0. As  and 0 have the same domain 2
 = 20 (= 2∨P∨P

0
),  = 0

by R2, whence  ∗ =  ∗0.

Claim 4 : All desired properties are met by the function  which to each  ∈ R

assigns  ∗ () for a (by Claim 1 existing and by Claim 3 arbitrary)  ∈ Γ such

that  =  ∨ P for a finite partition P ⊆ R of S. By definition,  extends

all  ∗ such that  =  ∨ P for some finite partition P ⊆ R of S. It remains to

show that  is a probability measure. Clearly, (S) =  ∗(S) = 1. Now consider

disjoint  ∈ R. By Claim 1 we may pick   ∈ Γ such that  ∈ (2)∗,
 ∈ (2 )∗,  = ∨P and  = ∨Q, for finite partitions PQ ⊆ R of S. By

Claim 2 we may pick a  ∈ Γ such that  =  ∨ P ∨Q. Now  ∈ (2)∗ and
() + () =  ∗ () +  ∗ () =  ∗ ( ∪) = ( ∪) ¥

Proof of Lem. 31. Let ( )∈Γ, , R,  and R be as specified. Fix  ∈ Γ.

The proof proceeds in two steps.

Claim 1: E(◦) ≥ E(◦)⇔  %+  for all R-measurable   ∈ S

 .

Let   ∈ S

 be R-measurable. We may pick a finite partition P ⊆ R of S

such that  and  are (2∨P)∗-measurable, and then pick a  ∈ Γ such that

 = ∨P (for details see Claims 1 and 2 in Lem. 30’s proof). W.l.o.g.  = 

by independence of outcome and state awareness. The desired equivalence holds

as E(◦) ≥ E(◦)⇔ E( ◦) ≥ E( ◦)⇔  %  ⇔  %+ ,

where the last ‘⇔’ holds by Lem. 9 and the first ‘⇔’ holds as  extends  ∗ and
 is an increasing affine transformation of  (by R1 and the fact that  = ).
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Claim 2:  is fine and  is non-constant. Non-constancy of  holds as 

is part of representation in Thm. 1’s sense. Further, as R ⊆ R ⊆ E where by
Lem. 29 R is an algebra as in Ax. 6 (and E is the extrapolated algebra), we

know by Lem. 6 that the restriction of %+ to { ∈ S

 :  is R-measurable} has

a representation ( 0
 

0
) in Lem. 6’s sense; in particular, 

0
 is a fine probability

measure on R. By Claim 1,  represents the same probability order on R as 
0
.

Hence  =  0
 by Lem. 18 and 19. So  is itself fine. ¥

From now on the restriction to exhaustive states is lifted.

Lemma 45 If an algebra R on S is robust, then w.r.t. any ∆-subframework

(∆ ∈ Π) the (trace) algebra R|S∆ on S∆ is robust.

Proof. Consider a robust algebra R on S, a ∆ ∈ Π, contexts   ∈ ∆, and

R|S∆-determined acts   ∈  and 
0 0 ∈  such that  is equivalent to 

0, and

 to 0. We must show that  %  ⇔  0 % 
0. This holds because (i)R is robust,

and (ii) the R|S∆-determinedness of the four acts implies (in fact, is equivalent to)

their R-determinedness. ¥

Lemma 46 Assume Ax. 2. If an objective event  ⊆ S is incorporable, then

w.r.t. any ∆-subframework (∆ ∈ Π)  ∩ S∆ is incorporable.

Proof. Let  ⊆ S be incorporable w.r.t. ( %)∈Γ and let ∆ ∈ Π. Let

 ∈ ∆. By ’s incorporability, there is a context  ∈ Γ (perhaps not in ∆) such

that  = ∨{} and% is faithful to%. By independence between outcome

and state awareness, we can pick a context  ∈ Γ such that  =  and  = .

As C = C and as S = S = S (the last identity holds because  refines ),

we have  ∈ ∆. So it remains to show two things:

�  =  ∨ { ∩ S∆S∆\( ∩ S∆)}: this holds because

 =  =  ∨ {} =  ∨ { ∩ S∆S∆\( ∩ S∆)}

� % is faithful to %: As % is faithful to %,  ⊇ , i.e.,  ⊇ . So,

as also  = , the relation % is the restriction of % to  (⊆ ) by

preference stability (see Prop. 2, which uses Ax. 2). Hence, not only %,

but also % is faithful to %. ¥

Proof of Lem. 33. Let ∆ ∈ Π. The ∆-subframework trivially inherits the first

five axioms. We now show that also Ax. 6 is inherited, given Ax. 2. Assume Ax.

2 and 6. Pick an algebra R on S as in Ax. 6 (for the general framework). I show

that the subframework satisfies Ax. 6 in virtue of the trace algebraR|S∆. By Lem.

45 and 46, R|S∆ is, w.r.t. the subframework, a robust algebra (on S∆) composed

of incorporable objective events. Now consider an  ∈ ∆, acts  Â  in , and

an  ∈ . By Ax. 6 for the general framework, we may partition S into some
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1   ∈ R such that, in some context  ∈ Γ where  =  ∨ {1  }

(so each  is representable by an  ⊆ ) and  ⊇  (so  contains acts 
0

and 0 equivalent to  resp. ), we have  0\ Â 0 and  0 Â 0\ for

 = 1   To complete the proof of Ax. 6 for the subframework, it suffices to
note that (i)  ∈ ∆ because S = S (as  =  ∨ {1  }), and (ii) S∆ is

partitioned into (the non-empty sets among) 1 ∩ S∆   ∩ S∆ ∈ R|S∆, where
each such  ∩ S∆ is represented by . ¥

Proof of Lem. 35. Assume Ax. 1—6. Let R, ()∈Γ, and (∆)∆∈Π be as

specified. Each ∆ induces a function ∆ on R via ∆() := ∆(∩S∆) ( ∈ R).
Claim 1: Each ∆ (∆ ∈ Π) is a fine probability measure. Let∆ ∈ Π. First, ∆

is a probability measure as ∆ is one, or more precisely, as ∆(S) = ∆(S∆) = 1

and as for disjoint  ∈ R we have ∆( ∪ ) = ∆(( ∪ ) ∩ ∆) = ∆(( ∩
∆) ∪ ( ∩ ∆)) = ∆( ∩ ∆) + ∆( ∩ ∆) = ∆() + ∆(). Second, I show

fineness. Let   0. As ∆ is fine, we may partition S∆ into 1   ∈ R|S∆
such that ∆()   for all . As each  belongs to R|S∆, we may write it as

 =  ∩ S∆ for some  ∈ R. We may take 1   to partition S, by the

argument in fn. 43. Now ∆ is fine as ∆() = ∆( ∩ S∆) = ∆()   for all

.

Claim 2 : ∆ is the same for all ∆ ∈ Π. Let ∆∆0 ∈ Π; we show that

∆ = ∆0. By Claim 1 and Lem. 18 and 19, it suffices to show that ∆ and

∆0 are ordinally equivalent. Let  ∈ R. As  and  are incorporable, we

may pick a context  ∈ ∆ in which  and  are representable. The events

  (⊆ ) representing  resp.  also represent  ∩ S∆ resp.  ∩ S∆. Now
(*) ∆() ≥ ∆() ⇔  %  since ∆() ≥ ∆() ⇔ ∆( ∩ S∆) ≥
∆( ∩ S∆) ⇔ () ≥ () ⇔  %  where the second equivalence

holds as ∆ is uncontroversial among ()∈∆ and  and  represent  ∩ S∆
resp.  ∩ S∆. Analogously, as  and  are incorporable we may pick an 0 ∈ ∆0

where  and  are representable; as before, (**) ∆0() ≥ ∆0()⇔ 0 %0 0 

As  and  belong to the robust algebra R,  %  ⇔ 0 %0 0 by Prop.

1, and so ∆() ≥ ∆()⇔ ∆0() ≥ ∆0() by (*) and (**), as required.

Claim 3 : The (by Claim 2 ∆-independent) probability measure  :≡ ∆ is

uncontroversial among the  ( ∈ Γ). For any  ∈ Γ, recall that  ∗ is the

function of (representable) objective events  ⊆ S induced by ; let 
∗∗
 be

the analogous function induced by  w.r.t. the ∆-subframework. So  ∗∗ is a

function of (representable)  ⊆ S∆. Now let  ∈ R,  ∈ Γ, and ∆ := ∆. As

∆ is uncontroversial among ()∈∆, there is a  ∈ ∆ such that  ∗∗ extends  ∗∗ ,

 = ∨{(∩S∆)S∆\(∩S∆)} and  ∗∗ (∩S∆) = ∆(∩S∆). Turning to the
general framework, we must show that (i)  ∗ extends 

∗
, (ii)  = ∨{S\},

and (iii)  ∗ () = ∆(). Claim (i) holds as for all  ⊆ S in the domain of

 ∗, hence of 
∗
 , 

∗
() =  ∗∗ ( ∩ S∆) =  ∗∗ ( ∩ S∆) =  ∗ () where the
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second equality holds as  ∗∗ extends  ∗∗ , while the first (resp. third) holds as

 and  ∩ ∆ have same representation in context  (resp. ). Claim (ii) holds

as  =  ∨ {( ∩ S∆)S∆\( ∩ S∆)} =  ∨ {S\}. Claim (iii) holds as

 ∗ () =  ∗∗ ( ∩ S∆) = ∆( ∩ S∆) = ∆() = () ¥

Proof of Lem. 38. Assume Ax. 1—6. Let  R   be as given. Note that

R|S is included in the extrapolated algebra E, as by Lem. 46 R|S consists of

(w.r.t. the ∆-subframework) incorporable objective events. As  and  are R-

measurable, S and S are R|S-measurable, so (as R|S ⊆ E) E-measurable.
Hence by Lem. 11 (applied to the subframework) we may pick an 0 ∈ ∆ such

that S = ̂∗ and S = ̂∗ for certain ̂  ̂ ∈ 0 and 0 harmlessly refines

; so, by Lem. 9, S %
+
 S ⇔ ̂ %0 ̂. By analogous arguments, we may

pick a 0 ∈ ∆ such that S = ̃∗ and S = ̃∗ for certain ̃  ̃ ∈ 0 and 0

harmlessly refines ; so, S %
+
 S ⇔ ̃ %0 ̃. As S %

+
 S ⇔ ̂ %0 ̂

and S %
+
 S ⇔ ̃ %0 ̃, it suffices to show that ̂ %0 ̂ ⇔ ̃ %0 ̃. This

holds since ̂ and ̃ are corresponding R-measurable acts (as the R-measurable

function  equals ̂∗ on S = S0 and ̃∗ on S = S0) and since also ̂ and ̃ are

corresponding R-measurable acts (as the R-measurable function  equals ̂∗ on

S = S0 and ̃∗ on S = S0). ¥

Proof of Lem. 40. Let ( )∈Γ,  and R be as assumed. Let ∆ ∈ Π. w.r.t.

the ∆-subframework, the subsystem ( )∈∆ is still a variable expected-utility

representation satisfying R1 and R2, as all this is inherited from the full system.

It suffices to show R3. We have

 ∩ S∆ =  ∩ S∆ ⇒ () = () for all  ∈ R (1)

because any  ∈ R are (by ’s uncontroversialness) representable in some

context  ∈ ∆, for which () =  ∗() =  ∗( ∩ S∆) (the last equality holds as
 and ∩S∆ are represented by the same subjective event) and similarly () =
 ∗() =  ∗( ∩ S∆). Now the function  induces a function ∆ : R|S∆ → [0 1]

by defining, for any  ∈ R|S∆, ∆() := (), where  is some (hence by (1)

any) member of R such that  ∩ S∆ = . By construction, ∆( ∩ S∆) = ()

for all  ∈ R. So the following two observations complete the proof.
Claim 1: ∆ is a fine probability measure. ∆ inherits these properties from .

Indeed, firstly, ∆ is a probability measure, since ∆(S∆) = (S) = 1, and since

any disjoint 0 ∈ R|S∆ may be written as  =  ∩ S∆ and 0 = 0 ∩ S∆ for
some (w.l.o.g.) disjoint sets 0 ∈ R, so that

∆( ∪0) = ( ∪0) = () + (0) = () + (0)

Secondly, ∆ is fine, since for each positive   0 we may (by ’s fineness) partition

S into 1   ∈ R such that ()   for all  = 1  , and consequently S∆ is

partitioned into1∩S∆  ∩S∆ ∈ R|S∆ (in the broad sense of ‘partitioned’ that
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allows some of 1 ∩S∆   ∩S∆ to be empty), where ∆( ∩S∆) = ()  

for all  = 1  .

Claim 2: ∆ is uncontroversial (w.r.t. the ∆-subframework). For any  ∈ ∆,

let  ∗ be (as usual) the function of representable objective events induced by

, and let 
∗∗
 be the analogous function defined w.r.t. the ∆-subframework;

so  ∗ is a function of (representable) subsets of S, whereas 
∗∗
 is a function of

(representable) subsets of S∆. Now consider an  ∈ ∆ and an  ∈ R|S∆ . We
need to show that there is a  ∈ ∆ such that (a)  ∗∗ extends  ∗∗ , (b)  =

 ∨ {S∆\}, and (c)  ∗∗ () = ∆(). Write  as  ∩ S∆ for some  ∈ R.
As  is uncontroversial w.r.t. the general framework, there is a  ∈ Γ such that

 ∗ extends 
∗
,  =  ∨ {}, and  ∗ () = (). We may assume w.l.o.g.

that  ∈ ∆, as one may verify using independence between outcome and state

awareness and Rem. 11. Condition (a) holds because, when restricted to subsets

of S∆, 
∗
 coincides with  ∗∗ and  ∗ coincides with  ∗∗ . Condition (b) holds

because  ∨ {} =  ∨ {S∆\}. Condition (c) holds because, as  ⊆ S∆,
we have  ∗∗ () =  ∗ () and () = ∆(). ¥

References

Ahn, D., Ergin, H. (2010) Framing Contingencies, Econometrica 78: 655—695

Anscombe, F. J., Aumann, R. J. (1963) A Definition of Subjective Probability,

Annals of Mathematical Statistics 34 (1): 199—205

Dekel, E., Lipman, B. L., Rustichini, A. (1998) Standard state-space models

preclude unawareness, Econometrica 66: 159—73

Halpern, J. Y. (2001) Alternative Semantics for Unawareness, Games and Eco-

nomic Behavior 37: 321—39

Halpern, J. Y., Rego, L. C. (2008) Interactive Unawareness Revisited, Games and

Economic Behavior 62: 232—62

Hill, B. (2010) Awareness Dynamics, Journal of Philosophical Logic 39: 113—37

Karni, E., Schmeidler, D. (1991) Utility Theory with Uncertainty. In: Handbook

of Mathematical Economics, Vol. 4, edited byWerner Hildenbrand and Hugo

Sonnenschein, 1763—1831, New York: Elsevier Science

Karni, E., Viero, M. (2013) Reverse Bayesianism: a choice-based theory of grow-

ing awareness, American Economic Review 103: 2790-2810

Karni, E., Viero, M. (2015) Awareness of unawareness: a theory of decision

making in the face of ignorance, working paper, Johns Hopkins University

Kopylov, I. (2007) Subjective probabilities on “small” domains, Journal of Eco-

nomic Theory 133: 236-265

Niiniluoto, I. (1972) A note on fine and tight qualitative probabilities, Annals of

Mathematical Statistics 43: 1581-91

Pivato, M., Vergopoulos, V. (2015) Categorical decision theory, working paper,

47



University Cergy-Pontoise

Savage, L. J. (1954) The Foundations of Statistics, New York: Wiley

Schmeidler, D„ Wakker, P. (1987) Expected Utility and Mathematical Expecta-

tion. In: The New Palgrave: A Dictionary of Economics, first edition, edited

by J. Eatwell, M. Milgate, and P. Newman, New York: Macmillan Press

Wakker, P. (1981) Agreeing probability measures for comparative probability

structures, Annals of Statistics 9: 658-62

48


