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ELEMENTS OF LINEAR ALGEBRA

Vectors and matrices

Vectors with n components (or n−components vectors, or vectors in the Euclidean space of dimension n, or vectors with
dimensions n × 1, or simply with dimension n); notation using small letters and representation as columns.
Elements or components of vectors.
Null vector.
Representation with directed line segments (e.g. 2 or 3 dimensions).
Equality.
Sum of vectors (and graphical representation in 2 dimensions).
Opposite vector.
Difference of vectors.
Product of a vector with a scalar (and graphical representation in 2 dimensions).
Unit vectors (with n components).
Scalar product (or internal product) of two vectors.
Orthogonal vectors: the scalar product is zero (graphical example in 2 dimensions, based on similarity of triangles).
Linear combination of m vectors with n components: it is an n− component vector.
Linear dependence or independence of m vectors with n components.
If m vectors are linearly dependent, someone of them can be represented as a linear combination of the others.
The m unit vectors with m components are linearly independent (example in 2 dimensions).
Two vectors are linearly dependent if and only if they have the same direction; 3 vectors if and only if they lay on the same
plane.
If 2 vectors with 2 components are linearly independent, any other 2−components vector is a linear combinations of them
(graphical example); analogously in 3 dimensions, a fourth vector is always a linear combination of three linearly independent
vectors; etc; in general, there cannot be more than m linearly independent m−components vectors; in particular, any
m−components vector can be represented as a linear combination of the m unit vectors.
A basis of an m−dimensional space is a collection of m linearly independent m−components vectors; for instance, the m
unit vectors.
Any m−components vector has a unique representation as a linear combination of m basis vectors; ab absurdo, suppose that
there are two different linear combinations that produce the same vector; subtracting one from the other, there would be a
linear combination of the basis vectors that produces a null vector.
Subsets of linearly independent vectors are linearly independent.
The vectors in a set that contains a subset of linearly dependent vectors are themselves linearly dependent.
If, in a set of n vectors (with the same dimensions), k vectors can be found linearly independent (but not more than k), and
it is k < n, then all the other n − k vectors in the set are linear combinations of these k vectors.
Matrices (with dimensions m × n) and representation as rectangles.
Vectors can be considered matrices with a single column.
Row index and column index.
Columns can be called column vectors; rows can be called row vectors.
Notation for rows (Ai.) and columns (A.j).
Null matrix.
Equality.
Multiplication by a scalar.
Linear combination of the columns of a matrix: it is a column vector.
Linear combination of the rows of a matrix: it is a row vector.
Sum, difference, linear combination of matrices with the same dimensions.
Matrix multiplication, or product rows by columns of two matrices conformable for multiplication; if the former (A) is an
m×n matrix and the latter (B) has dimensions n× k, the product AB is an m× k matrix; its i, j − th element is the scalar
product of the row vector Ai. with the column vector B.j .
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The i − th row of AB is the product of the i − th row of A with the matrix B: [AB]i. = Ai.B; the j − th column of AB is
the product of matrix A with the j − th column of B: [AB].j = AB.j .
Matrix multiplication is associative: (AB)C = A(BC); it is distributive with respect to the sum: D(E + F ) = DE + DF
(when the matrices are conformable for the operations above; example of proof with small dimensions).
Matrix multiplication of two matrices is not commutative (with examples: for different dimensions as well as equal dimen-
sions); pre- and post- multiplication.
Square matrices (n × n).
Identity matrix (I, or In); its n columns are the n−dimensional unit vectors; for any m× n matrix A, it is always AIn = A;
for any n × k matrix B, it is always InB = B.
Diagonal matrix.
Scalar matrix.
Transpose of a matrix and transpose of a vector (row vector).
Transpose of the sum of two matrices.
Transpose of the product of two matrices: (AB)′ = B′A′ (example of proof with small dimensions).
Transpose of the product of 3 or more than 3 matrices.
Scalar (or internal) product of two vectors (a and b) as a particular case of matrix multiplication, using the transpose of the
first vector (a′b).
External product of two vectors (ab′) is a matrix.
Symmetric (square) matrix.
The product of a (rectangular) matrix with its transpose is always a square symmetric matrix: A′A and AA′ are both square
symmetric matrices.
If b is a column vector, then Ab is a column vector, linear combination of the columns of the matrix A, the coefficients of
the linear combination being the elements of the vector b; if c is a column vector, c′D is a row vector, linear combination of
the rows of matrix D.
In a matrix, the maximum number of linearly independent columns and of linearly independent rows are equal; to simplify
the proof, given a 4 × 3 matrix A, with r = 2 maximum number of linearly independent rows, call Ã one of the 2 × 3
sub-matrices with all rows linearly independent (for simplicity, let be the first two rows of A); the 3 columns of Ã are
2−dimensional vectors, thus they are linearly dependent; write explicitly the third column of Ã as linear combination of the
first two columns of Ã; write explicitly all the elements of the third and fourth rows of the matrix A as linear combinations of
the first two rows (which are the two rows of Ã); making substitutions, it appears that the whole third column of A depends
linearly on the first and second column of A, so that there cannot be 3 independent columns in A; independent columns in
A will thus be 2 or 1; thus, the maximum number of linearly independent columns of A would be c ≤ r = 2; repeating the
whole procedure, but assuming that c = 2 is the maximum number of linearly independent columns of A, it will be r ≤ c;
thus the conclusion is r = c.
The maximum number of linearly independent rows or columns is called rank of the matrix (in the examples, use a rectangular
matrix X with more rows than columns).
If X has dimensions n × k, with k ≤ n, the rank will be ≤ k; if r(X) = k, X is called full rank matrix, or matrix with full
rank.
A full rank square matrix (thus all columns are linearly independent and all rows are linearly independent) is called non-

singular, otherwise it is called singular, and its columns (and rows as well) will be linearly dependent.
Definition of inverse of a square matrix: if A is an n × n (square) matrix, inverse of A is a matrix B (with the same
dimensions) such that AB = I.
If an n×n (square) matrix A is non-singular, the inverse matrix exists and is unique; to prove it, remember that the columns
of A form a basis for the n−dimensional vectors; as it must be AB = I, then for each j−th column it must be AB.j = ej

(j−th unit vector); thus, each ej must be representable as a linear combination of the columns of A; as columns form a basis,
this representation exists and is unique.
For the same matrix A just considered, there exists also a unique matrix C (with the same dimensions) such that CA = I;
the proof is analogous to the proof above, remembering that, being linearly independent, also the n rows of the matrix form
a basis for the n−dimensional row vectors; thus for each i−th row there is a unique linear combination of the rows of A that
produces the i−th row of the identity matrix: Ci.A = e′i (i−th unit row vector).
The two matrices B and C, whose existence and uniqueness has just been proved, are equal; in fact, if AB = I and CA = I;
then CAB is equal to B and also equal to C, thus B = C (no right or left inverse, just inverse).
A−1 is used to indicate the inverse of A.
Inverse of the transpose: (A′)−1 = (A−1)′; thus also symbols like A′−1 or A−1′ can be used.
Inverse of the product of two or more square matrices: (ABC)−1 = C−1B−1A−1.
Inverse of a diagonal matrix.
Inverse of a 2 × 2 matrix.

Determinants

Permutations of n objects.
Factorial (n!).
Fundamental permutation and number of inversions.
Class of a permutation (even or odd).
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Switching two elements, the class of the permutation changes (the proof is first for two consecutive elements, than for any
pair of elements).
Product associated to a square matrix.
Definition of determinant of a square matrix as sum of the n! products associated to the matrix.
Determinant of the transpose.
Switching two columns or two rows, the determinant changes sign.
If two rows or columns are equal, the determinant is zero.
Multiplying a row or a column by a scalar, the determinant is multiplied by the same scalar.
If a row (or a column) can be decomposed into the sum of two rows, the determinant is the sum of the determinants of two
matrices.
If a row (or a column) is equal to the sum of two other rows (or columns) of the same matrix, the determinant is zero.
If a row (or column) is a linear combination of other rows (or columns) of the same matrix, the determinant is zero.
The determinant of the sum of two matrices is not the sum of the two determinants.
Multiplying the whole n×n matrix by a scalar, the determinant is multiplied by the n−th power of the scalar (for instance,
the opposite matrix is obtained multiplying by −1, so the determinant remains unchanged if n is even, or it changes sign if
n is odd).
Algebraic complements (or adjoints, or co-factors).
Expansion of the determinant using co-factors: it is equal to the scalar product of a row or column with the corresponding
co-factors (only trace of the proof).
The scalar product of a row (or column) with the co-factors of another row (or column) is zero.
Adjoint matrix: it is the transpose of the matrix of co-factors.
Pre- or post-multiplying a matrix with its adjoint produces a diagnonal (scalar) matrix, whose diagonal elements are all
equal to the determinant.
Singular matrix (determinant is zero).
Inverse of a non-singular matrix: it is obtained dividing the adjoint matrix by the determinant.
Determinant of the product (rows by columns) of two square matrices (only trace of the proof).
Determinant of the inverse.
Determinant of a diagonal matrix.

Equation systems

Solution of a linear system of n equations with n unknowns; Cramer’s rule.
In a homogeneous system of n equations with n unknowns, if the coefficients matrix is non-singular, the unique solution is
the null vector; other solutions are possible only if the matrix is singular.
In a non-singular matrix, rows (and columns) are linearly independent; if rows (and columns) are linearly dependent, the
matrix is singular.

Partitioned matrices

Sottomatrici quadrate (di matrici rettangolari o quadrate) e minori.
Matrici partizionate.
Matrice rettangolare diagonale a blocchi.
Somma di matrici partizionate (uguali dimensioni delle matrici e uguali dimensioni dei blocchi corrispondenti): si sommano
i blocchi corrispondenti.
Matrice quadrata A (n × n) partizionata in 4 blocchi, di cui quelli diagonali A1,1 (n1 × n1) e A2,2 (n2 × n2) quadrati (con
n1+n2 = n), mentre quelli non diagonali A1,2 (n1×n2) e A2,1 (n2×n1) non sono necessariamente quadrati; se una matrice B
(n×n) viene partizionata in modo analogo, la matrice prodotto AB (n×n) può essere partizionata in modo analogo ad A e
B; il blocco 1, 1 della matrice prodotto vale (AB)1,1 = A1,1B1,1 +A1,2B2,1; il blocco 1, 2 vale (AB)1,2 = A1,1B2,1 +A1,2B2,2,
eccetera; si applicano cioè ai blocchi le stesse regole del prodotto righe per colonne.
La regola precedente vale anche per il prodotto di matrici rettangolari partizionate, purché le matrici siano di dimensioni
compatibili, e i blocchi siano di dimensioni compatibili.
Se X è una matrice (rettangolare o quadrata) diagonale a blocchi, X ′X è una matrice quadrata diagonale a blocchi, con
blocchi diagonali quadrati.
Inversa di una matrice quadrata A partizionata in quattro blocchi, di cui A1,1 e A2,2 quadrati; si indica con B la matrice inversa
B = A−1, e la si partiziona in maniera analoga; i quattro blocchi della matrice inversa valgono: B1,1 = (A1,1−A1,2A

−1
2,2A2,1)

−1;

B2,2 = (A2,2 − A2,1A
−1
1,1A1,2)

−1; B1,2 = −A−1
1,1A1,2B2,2; B2,1 = −A−1

2,2A2,1B1,1; sviluppando il prodotto delle due matrici
partizionate, si verifica che AB = I.
Caso particolare: se la matrice è diagonale a blocchi (e i due blocchi diagonali sono quadrati), l’inversa è diagonale a blocchi;
i blocchi diagonali dell’inversa sono gli inversi dei corrispondenti blocchi diagonali della matrice data; per la dimostrazione,
basta osservare che A1,2 = 0 e A2,1 = 0; questa proprietà vale anche per matrici diagonali a blocchi con tre o più blocchi
diagonali; per la dimostrazione, basta considerare la matrice come se fosse partizionata con due blocchi diagonali, ognuno
dei quali eventualmente partizionato come una matrice diagonale a blocchi.

Eigenvalues and eigenvectors

Autovalori, o radici caratteristiche, o radici latenti di una matrice quadrata; autovettori, o vettori caratteristici, o vettori
latenti corrispondenti; equazione caratteristica.
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Autovalori e autovettori di una matrice quadrata reale possono essere reali o complessi (coniugati); ad autovalori reali
corrispondono autovettori reali.
L’autovettore che corrisponde ad un certo autovalore non è definito in modo univoco; ad esempio, è certamente definito
a meno di una costante moltiplicativa, nel qual caso è definita la direzione, ma non la lunghezza; nel caso di autovalori
con molteplicità maggiore di uno non è definita in modo univoco nemmeno la direzione (ad esempio, per la matrice I, i
cui autovalori sono tutti uguali a uno, qualsiasi vettore è autovettore, dunque l’autovettore non è definito univocamente
nemmeno in direzione).
Una matrice quadrata simmetrica n × n ha n autovalori (distinti o multipli).
Una matrice quadrata simmetrica ha solo autovalori e autovettori reali.
In una matrice quadrata simmetrica, ad autovalori distinti corrispondono autovettori ortogonali.
In una matrice quadrata simmetrica, se un autovalore ha molteplicità k, esistono k autovettori ortogonali tra loro, corrispon-
denti a tale autovalore (senza dimostrazione).
Una matrice quadrata simmetrica n × n, con autovalori non necessariamente distinti, ha n autovettori tra loro ortogonali;
normalizzando ogni autovettore (lunghezza 1) si ottengono n autovettori ortonormali; questi n autovettori possono essere
ordinati nelle colonne di una matrice quadrata Q, di ordine n, che gode della seguente proprietà: Q′Q = I, quindi Q′ = Q−1,
quindi anche QQ′ = I, quindi anche i vettori riga della matrice Q sono n vettori ortonormali.
Matrice ortogonale.
In una matrice ortogonale il determinante vale 1 o −1.
Se A è una matrice quadrata simmetrica, la matrice ortogonale degli autovettori diagonalizza A, cioè Q′AQ = Λ, dove Λ è
la matrice diagonale degli n autovalori.
In una matrice quadrata simmetrica, il determinante è il prodotto degli autovalori.
Se A è una matrice quadrata simmetrica, gli autovalori di A2 = AA sono i quadrati degli autovalori di A, mentre gli
autovettori di A2 sono gli stessi di A.
Se A è una matrice quadrata simmetrica non singolare, gli autovalori di A−1 sono i reciproci degli autovalori di A, mentre
gli autovettori di A−1 sono gli stessi di A.
Minore diverso da zero di ordine massimo.

Trace, idempotent matrices

r(X ′X) = r(XX ′) = r(X); if X has full rank = k (k < n), also X ′X has full rank (= k), but not XX ′ (whose rank is k,
but dimensions n × n) (without proof).
r(AB) is less than or equal to the smaller between r(A) and r(B) (without proof).
If B is a non-singular (thus, full rank) square matrix, then r(AB) = r(A); in fact r(AB) ≤ r(A) and r(A) = r[(AB)B−1] ≤
r(AB).
Il rango di una matrice quadrata simmetrica è uguale al numero degli autovalori diversi da zero.
Trace of a square matrix.
Tr(AB) = Tr(BA) (if A e B have dimensions that allow both products).
La traccia di una matrice quadrata simmetrica è uguale alla somma degli autovalori.
Idempotent matrices.
Examples of idempotent matrices and their trace; matrix 0, I, A = I − ιι′/n, the projection matrices PX = X(X ′X)−1X ′,
MX = I − PX = I − X(X ′X)−1X ′.
Use of the matrices A, P

X
e M

X
: if y is a vector, Ay is the vector containing the deviations of the elements of y from their

arithmetical average (Ay = y − ȳ); P
X

y is the projection of the vector y on the plane (hyperplane) spanned by the columns
of the matrix X (example with a 2−columns matrix X; first of all show what happens if y is one of the two columns of X,
then show what happens if y is a generic vector of the plane and finally a generic vector y is decomposed into a component on
the plane and a component orthogonal to the plane); MX y = y − PX y, that is the projection of the vector y on the straight
line orthogonal to the plane (hyperplane) spanned by the columns of X.
In una matrice quadrata simmetrica idempotente gli autovalori valgono 0 o 1; il rango è quindi uguale alla traccia.

Quadratic forms

Quadratic form: if x is an n−dimensional vector and A is an n×n matrix, the scalar x′Ax is called quadratic form; its value
can be obtained from the (scalar) operation

∑
i

∑
j ai,jxixj .

Positive semidefinite square matrices.
Positive definite square matrices (a subset of the above).
A positive definite matrix is non-singular (columns are linearly independent).
A′A and AA′ are always symmetric positive semidefinite matrices, whatever the (square or rectangular) matrix A.
Inequality between matrices: given two square matrices, positive semidefinite (or definite) with the same dimensions, the
former is said to be greater than the latter if the difference matrix is not null and positive semidefinite.
The inverse of a positive definite matrix is itself positive definite (the proof would be based on the properties of eigenvalues).
If a matrix is positive semidefinite, but not positive definite, it is singular (its columns are linearly dependent).
If P has dimensions m × n, with n ≤ m, and r(P ) = n (full rank), then P ′P (square n × n matrix) is positive definite; to
prove it, given any non-null n−dimensional vector c, build the quadratic form c′P ′Pc = (Pc)′Pc; it is a sum of squares,
where Pc cannot be the null vector, being a linear combination of all the linearly independent columns of P ; thus the result
is always a strictly positive number; in addition, if A is an n×n symmetric positive definite matrix, P ′AP is also symmetric
and positive definite.
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In particular, if P is a non-singular square matrix (full rank), then both P ′P and PP ′ are positive definite.

First and second derivatives

Vettore delle derivate prime di una funzione scalare rispetto al vettore delle variabili (gradiente); casi particolari: derivare
un prodotto scalare rispetto a uno dei due vettori ∂(x′y)/∂x = y, ∂(x′y)/∂y = x; derivare la forma quadratica x′Ax rispetto
al vettore x: ∂(x′Ax)/∂x = (A + A′)x.
Matrice delle derivate prime di un vettore di funzioni rispetto al vettore delle variabili (Jacobiano); caso particolare ∂(Bx)/∂x′

= B.
Matrice delle derivate seconde di una funzione scalare rispetto a un vettore di variabili (Hessiano): caso particolare: derivare
due volte la forma quadratica x′Ax rispetto al vettore x: ∂2(x′Ax)/∂x∂x′ = A + A′ (che è sempre una matrice simmetrica).
Massimi e minimi di funzioni di più variabili: gradiente zero e Hessiano definito negativo o positivo.
Massimi e minimi vincolati; vettore dei moltiplicatori di Lagrange.

ELEMENTS OF STATISTICAL ANALYSIS

Probability and discrete random variables.
Expectation (or expected value, or mean), variance, standard deviation of a discrete random variable.
Expectation and variance of a random variable are not random variables.
Transforming a random variable with a function produces a new random variable.
Expectation and variance of a function of random variable (same formula, but the original variable is replaced by the
transformed variable).
A function of several random variables is itself a random variable.
Variance is always non-negative; it is zero if the random variable is degenerate (a constant).
Variance is equal to the expectation of the square minus the square of the expectation.
Expectation of the product of a constant with a random variable: E(ax) = aE(x).
Expectation of the sum of two random variables.
Expectation of a linear combination of random variables with constant coefficients; it is equal to the linear combination of
the expectations (expectation is a linear operator).
Variance of the product of a constant with a random variable: V ar(ax) = a2V ar(x).
If k is a constant, V ar(x) = V ar(x − k); in particular V ar(x) = V ar[x − E(x)].
Continuous random variable.
Cumulated distribution function and probability density function.
Expectation, variance and standard deviation of a continuous random variable.
Bivariate and multivariate discrete random variables.
Bivariate and multivariate continuous random variables.
Probability density for bivariate and multivariate continuous random variables (also called joint probability density function).
Marginal probability density.
Conditional probability density.
The joint probability density for a bivariate random variable is the product of the marginal density of the former variable
with the conditional probability density of the latter given the former.
Independent random variables: marginal and conditional probability densities are equal; the joint probability density is the
product of the marginal probability densities.
Expectations and variances of the components of a multivariate random variable (discrete or continuous) are computed from
the marginal probability densities.
Covariance of two random variables: Cov(x, y).
Covariance is not a random variable.
Cov(x, y) = Cov(y, x).
Covariance is equal to the expectation of the product minus the product of the two expectations Cov(x, y) = E(xy) −
E(x)E(y).
If a and b are constants, Cov(ax, y) = Cov(x, ay) = aCov(x, y) and Cov(ax, by) = abCov(x, y).
Expectation of the product of two random variables is equal to the product of the two expectations plus the covariance.
In a multivariate random variable, covariances are for pairs or couples of component elements.
Covariance may be positive, null or negative.
Correlation (or correlation coefficient) between two random variables: it is the covariance divided by the square root of the
product of the two variances.
Correlation coefficient is a number between −1 and 1.
Two random variables are called uncorrelated when the covariance (and thus the correlation) is zero.
Independent random variables are always uncorrelated; not viceversa: uncorrelated random variables are not necessarily
independent; for example sum of two dice and difference of the same dice are uncorrelated but not independent; (the
multivariate normal variable is the most important counter-example; when two component elements are uncorralated, they
are also independent).
Expectation of the product of two uncorrelated random variables is simply the product of the expectations (the covariance
is zero).
Functions of independent random variables are themselves independent random variables (thus uncorrelated) functions of
uncorrelated random variables are not necessarily uncorrelated.
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The n component elements X1, X2, ..., Xn of an n−variate random variable, x, (or the n random variables X1, X2, ..., Xn)
can be represented with an n−dimensional vector, called random vector, or vector of random variables.
Expactation of a random vector: E(x).
Variance-covariance matrix of a random vector x is defined as V ar(x) = Cov(x) = E{[(x − E(x)][x′ − E(x′)]}.
If a is a constant vector (non-random), then a′x is a scalar random variable, linear combination of the elements of x; its
expectation is therefore E(a′x) = a′E(x), being the expectation of a linear combination.
The variance of the scalar random variable a′x is V ar(a′x) = a′V ar(x)a.
The variance-covariance matrix of a random vector x is symmetric (because Cov(xixj) = Cov(xj , xi)) and positive semidef-
inite infact, if a is a constant vector with the same dimension of x, then a′V ar(x)a is the variance of the scalar random
variable a′x, therefore it is always non-negative; if it cannot happen that a′x degenerates for some non-zero vector a (it
cannot become a constant; its variance is therefore always strictly positive), then the variance-covariance matrix of x is
positive definite.
If A is a constant (non-random) matrix (with conformable dimensions) E(Ax) = AE(x) and V ar(Ax) = AV ar(x)A′.
The variance-covariance matrix of uncorrelated random variables is a diagonal matrix; if the variance is the same for each
component element, then the matrix is a scalar matrix (constant elements on the diagonal).
Uniform distribution (discrete and continuous).
The sum of two uniform random variables does not have uniform ditribution.
The normal distribution (or Gaussian distribution).
The formula of the probability density function defines a family of probability distributions, indexed by two parameters,
usually called µ and σ2; computing expectation and variance of the random variable, they turn out to be exactly equal to
those two parameters.
The probability of a value of the normal random variable to be between µ ± σ is approximately 66%; to be between µ ± 2σ
is approximately 95%.
A normal random variable with expectazion zero and unit variance is called standard normal;
Any normal random variable is transformed into a standard normal subtracting the expected value and dividing by the
standard deviation.
Tables for the standard normal distribution.
If a random vector (x) is such that any linear combination of its elements with constant coefficients (a′x) is a random variable
with normal distribution, the distribution of the random vector x is called multivariate normal.
Explicit formula for the probability density of a multivariate normal exists if and only if the variance-covariance matrix is
non-singular; the formula involves the vector of expected values and the variance-covariance matrix; the usual notation is
x ∼ N(µ,Σ).
Random vectors obtained as linear combinations (with constant coefficients) of the elements of a multivariate normal vector
are themselves multivariate normal vectors; for instance, if x is a vector N(µ,Σ), then Ax is a vector N(Aµ,AΣA′).
The χ2 distribution.
Summing the squares of n independent standard normal variables, the random variables obtained is called χ2 with n degrees
of freedom: χ2

n.
The χ2 family of probability distributions is indexed by one parameter (n, the number of degrees of freedom).
The expectation of a random variable χ2 with n degrees of freedom is n; the variance is 2n.
Tables for the χ2 distributions, for varying degrees of freedom.
The Student’s−t distribution.
Given two independent random variables, the former with standard normal distribution, the latter distributed a χ2 witn n
degrees of freedom, divided by the constant n; the former divided by the square root of the latter produces a random variable
called Studen’s-t with n degrees of freedom: tn.
The Student’s−t is a family of distributions indexed by one parameter (n, the number of degrees of freedom).
The probability density function is symmetric around zero.
Increasing n, the distribution becomes more and more close to the standard normal distribution (exactly equal when n → ∞).
Tables for the Student’s−t distribution, tn, for varying degrees of freedom.
Fisher’s−F distribution.
Given two independent random variables with χ2 distribution, with n and k degrees of freedom, respectively, the ratio
between the former (divided by n) and the latter (divided by k) is a random variable whose distribution is called Fisher’s−F
with n, k degrees of freedom: Fn,k.
Fisher’s−F is a family of probability distribution indexed by two parameters (n and k, the numbers of degrees of freedom).
Tables for the Fisher’s−F distribution, Fn,k, for varying degrees of freedom.

MULTIPLE LINEAR REGRESSION MODEL (the simple linear regression as a particular case)

The assumptions of the multiple linear regression model

(1) A dependent or explained variable (also called regressand) is assumed to be a linear combination of some independent
or explanatory variables (or regressors); the relationship is not exact, as it includes an additive error term (or unexplained
disturbance); dependent variable and regressors are observable (no latent variables) and measured without errors (no mea-
surement error); the coefficients of the linear combination are “fixed constants” (they are not random variables), but are
unknown; the error terms are random variables and are not observable; the vector containing the n observations of the
dependent variable (y1, y2, ..., yi, ..., yn) is called y (n× 1); the n observations of the k explanatory variables are assembled
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in a matrix X (n × k); if the model includes the intercept, matrix X has a column whose elements are all ones; the k
coefficients of the linear combination are assembled in a vector β (k × 1); the vector u (n × 1) contains the error terms; the
multiple linear regression model is represented as: y = Xβ + u; each element is yi = x′

iβ + ui, being x′
i the i− th row of X.

(2) All columns of X are linearly independent, thus r(X) = k; this implies, in particular, n ≥ k; in other words, the number
of observations (or sample size) cannot be smaller than the number of regressors (in practice, interest is confined to the case
where strictly n > k).
(3) The expectation of all the error terms is zero: E(u) = 0.
(4) The error terms are uncorrelated (all covariances are zero) and homoskedastic (the variance of each error, called σ2, is
constant, but unknown): V ar(u1) = V ar(u2) = σ2, etc; Cov(u1, u2) = 0, etc; E(uu′) = σ2In (scalar variance-covariance
matrix).
(5) The contents of matrix X are known constants (non-random variables); since E(u) = 0, one gets E(y) = Xβ; the expected
value (or “conditional” expected value) of each yi is always a point on the regression line (or plane, or hyperplane).
(6) The vector of error terms u has a multivariate normal distribution; thus, combining assumption 6 with assumptions 3
and 4, u is distributed N(0, σ2In).
The estimation method called “ordinary least squares” (OLS) provides an estimate of the unknown parameters of the
model (coefficients β and variance σ2); its algebraic properties are based on assumptions 1 and 2 (other assumptions being
unnecessary); some statistical properties of the OLS estimation method are based on assumptions 1-5; finally, some other
statistical properties need all assumptions (1-6).

OLS: algebraic properties (under assumptions 1-2)

Given a vector of coefficients β, the corresponding vector of “residuals” can be obtained as u = y − Xβ, thus each residual
can be represented as a function of the variables y and X (observed) and coefficients (β, unknown); we look for the vector

of coefficients (called β̂) that minimize the sum of all squared residuals; the method is called OLS (ordinary least squares),
and coefficients computed in this way are the OLS estimates of the regression coefficients (simply: OLS coefficients).

Under assumptions 1 and 2, OLS coefficients are available in closed form as β̂ = (X ′X)−1X ′y; this expression is obtained
equating to zero the first order derivatives of the sum of squared residuals with respect to the k coefficients β (first order
conditions); it can then be verified that the (k × k) matrix of second order derivatives (Hessian) is positive definite (second
order condition).

The vector that contains the computed values (or fitted values) of the dependent variable is ŷ = Xβ̂.
The vector of OLS residuals is the difference between the vector of observed values and the vector of computed values of the
dependent variable (computed with OLS coefficients): û = y − ŷ = y − Xβ̂ = y − X(X ′X)−1X ′y = MX y = MX u, where
M

X
is the idempotent symmetric matrix (or projection matrix) M

X
= In − X(X ′X)−1X ′, whose trace (=rank) is n − k.

If the number of observations (or sample size) is equal to the number of explanatory variables n = k (instead of n > k),
X would be a square matrix, thus (X ′X)−1 = X−1(X ′)−1, thus M

X
= 0, thus û = 0; in other words, all the points of the

sample would lie on the regression line (or plane, or hyperplane).
The vector of OLS residuals is orthogonal to each explanatory variable (or regressor): X ′û = 0; with different words, one
can say that OLS residuals are uncorrelated in the sample with each regressor.
The vector of OLS residuals is orthogonal to the vector of computed value of the dependent variable: ŷ′û = 0.
If the regression model includes the intercept, then the matrix of regressors includes a column whose values are all ones (a
constant regressor); thus the sum of residuals is zero; if the model is without intercept, the sum of OLS residuals may be
nonzero.
In particular, in a simple linear regression model with intercept y = β1+β2z+u, the point with coordinates (z̄,ȳ, arithmetical
averages) is on the regression line estimated by OLS; measuring variables yi and zi as deviations from their arithmetical
averages is like shifting the origin of the Cartesian axes over the point (z̄,ȳ); thus an OLS estimation of the model without

intercept yi − ȳ = β2(zi − z̄) + u would produce the same value β̂2 and the same residuals û as the OLS estimation of the
original model (with intercept).
Coefficient of determination (R2) for the model with intercept: it is a measure of the fit of the model (for the model without
intercept the definition should be slightly modified; not done here).
Defining A as the symmetric idempotent matrix that produces deviations from the arithmetical average, A = In − ιι′/n, the
sum of squares of the deviations of the yi from their arithmetical average is: TSS = (Ay)′Ay = y′Ay (total sum of squares).
ESS = ŷ′Aŷ = sum of squares of the deviations of the ŷi from their arithmetical average (explained sum of squares).
RSS = û′û = residual sum of squares (remembering that residuals have arithmetical average zero).
In the model with intercept, TSS = ESS + RSS; to prove it, from y = ŷ + û, pre-multiplication by A gives Ay = Aŷ + û,
then transposition of this expression and multiplication by the expression itself gives y′Ay = ŷ′Aŷ + û′û (the cross products
are zero because û is orthogonal to ŷ, and Aû = û because the model has the intercept).
The coefficient of determination is defined as R2 = ESS/TSS = 1 − RSS/TSS.

The sample correlation coefficient between y and ŷ is =
√

R2; the proof follows from observing that the sample variances of
y and ŷ are, respectively, TSS/n and ESS/n, and the sample covariance is (Ay)′(Aŷ)/n = (Aŷ + û)′(Aŷ)/n = ESS/n.
R2 in the model with intercept is a number between 0 and 1.
R2 = 0 means “no fit”; R2 = 1 means “perfect fit”; as a rough indicator of goodness of fit; usually, the larger the R2, the
better the fit; a remarkable exception is when k = 1 and the only regressor is the constant (all values = 1), so that β̂ = ȳ;
thus TSS = RSS, thus R2 = 0, even if the fit is good.

7



Adding new explanatory variables to the same equation necessarily improves the R2 (that cannot decrease); intuitively, if
the additional regressors are “meaningful”, the improvement will be large, but if they are meaningless the improvement will
be small or even null; it is possible to define an “adjusted” R2, that takes into account the reduction of degrees of freedom
due to the introduction of new regressors: 1− [RSS/(n− k)]/[TSS/(n− 1)]; it might become smaller after the introduction
of a new regressor without explanatory power.

OLS: some statistical properties (under assumptions 1-5; valid even without intercept)

The vector of estimated coefficients is a random vector (unlike the “true” coefficients vector β, which is a non-random vector).

The vector of coefficients estimation errors is β̂ − β = (X ′X)−1X ′u.

Under assumptions 1-5 (6 is unnecessary), OLS estimator is linear and unbiased, as E(β̂ − β) = (X ′X)−1X ′E(u), being X
non-random.
Under assumptions 1-5, the variance-covariance matrix of the OLS coefficients is V ar(β̂) = (X ′X)−1σ2; the proof follows

from computing E[(β̂ − β)(β̂ − β)′] = E[(X ′X)−1X ′uu′X(X ′X)−1] where expectation will be applied only to uu′, being X
non-random.
Gauss-Markov theorem: Under assumptions 1-5 (6 is unnecessary), OLS coefficients have the smallest variance-covariance
matrix, among all linear unbiased estimators; thus, OLS estimator is the most efficient linear unbiased estimator.
Proof: any linear estimator of the coefficients vector would be B′y, where B is a matrix with the same dimensions of X
and does not contain random variables; unbiasedness of the estimator is ensured if and only if B′X = Ik; defining A′ =
B′ − (X ′X)−1X ′, unbiasedness of the estimator is ensured if and only if A′X = 0; the variance-covariance matrix of the
coefficients obtained with the new estimation method is B′Bσ2, which is greater than the variance-covariance matrix of the
OLS coefficients (X ′X)−1σ2, the difference being A′Aσ2, positive semi-definite, having taken into account the unbiasedness
condition A′X = 0.
Corollary: With B satisfying the unbiasedness condition, defining the non-random (n × k) matrix W = BX ′X, it follows
that B′y = (W ′X)−1W ′y; viceversa, if W is an arbitrary (n × k) matrix, not containing random variables, such that W ′X
is non-singular, then the linear estimator (W ′X)−1W ′y is unbiased; thus, any linear unbiased estimator can be expressed
as β̃W = (W ′X)−1W ′y; its variance-covariance matrix, being W non-random, is (W ′X)−1W ′W (X ′W )−1σ2; this matrix is
always greater or equal to (X ′X)−1σ2 (Schwarz inequality).
OLS estimator is BLUE (best linear unbiased estimator).
RSS = û′û = u′MX u (even if the model has no intercept); its expected value is E(RSS) = E(u′MX u) = E[tr(u′MX u)] =
E[tr(MX uu′)] = tr[E(MX uu′)] = tr[MX E(uu′)] = tr(MX σ2) = tr(MX )σ2 = (n − k)σ2.
Thus E[RSS/(n − k)] = σ2; thus an unbiased estimator of the variance of the error terms is σ̂2 = RSS/(n − k).
Summarizing: σ̂2 = RSS/(n − k) = û′û/(n − k) = u′M

X
u/(n − k); its square root (σ̂) is called “standard error” of the

regression.
Since X does not contain random variables, (X ′X)−1σ̂2 is an unbiased estimator of the variance-covariance matrix of the
OLS coefficients; the j − th diagonal element [(X ′X)−1]j,j σ̂

2 is an unbiased estimator of the variance of the j − th estimated

coefficient (β̂j), and its square root is the standard error of β̂j .
Forecast (or prediction) at time h (not belonging to the sample estimation period 1, 2, ..., n): given the vector of explanatory
variables at time h, xh, assumed known (conditional prediction), the best prediction at time h of the dependent variable y
would be the expectation (conditional on xh) of y at time h, that will be indicated as ȳh = x′

hβ; if the model is correctly
specified the “true” value of y at time h will be affected by a random error uh and therefore will be yh = x′

hβ +uh; being the

“true” coefficients β unknown, and being β̂ the available estimate, the actual prediction will be the estimated conditional
expectation of y at time h, that is ŷh = x′

hβ̂; with a geometric notation, prediction would be the point on the estimated
regression line (or plane, or hyperplane) corresponding to xh.
Forecast error (or prediction error) at time h: it is the difference between prediction and the “true” value of y at time h,
that is ŷh − yh.
Variance of the forecast error (or simply variance of forecast): adding and subtracting the same quantity gives ŷh − yh =

(ŷh − ȳh) + (ȳh − yh) = x′
h(β̂ − β) − uh = x′

h(X ′X)−1X ′u − uh; it is the sum of two uncorrelated random variables (since
the forecast period h does not belong to the sample estimation period, uh is uncorrelated with the n “in sample” elements
of the vector u, according to assumption 4), thus the variance is the sum of the two variances; the variance of the second
component is σ2 (constant for any xh), while the variance of the first component is x′

h(X ′X)−1xhσ2, thus it depends on the
values of the explanatory variables in the forecast period (xh); in the simple linear regression model, with two variables y =
β1 + β2z + u, the variance has a minimum when zh is equal to the arithmetical average of the elements of z in the sample,
and becomes larger and larger as zh moves far away from the average.

Distribution of linear and quadratic forms (built from multivariate normal vectors)

(1) If the random vector z (whose dimension is n× 1) has a multivariate standard normal distribution N(0, In), then z′z has
a χ2 distribution with n degrees of freedom (χ2

n).
(2) If the vector z (whose dimension is n × 1) contains k < n elements = 0, while the other n − k elements form a vector
N(0, In−k), then z′z has a χ2 distribution with n − k degrees of freedom (χ2

n−k).
(3) If the random vector z (whose dimension is n × 1) has a multivariate standard normal distribution N(0, In) and A is a
matrix of constants, with dimensions n×n, symmetric, idempotent with rank n−k ≤ n, then the univariate random variable
z′Az has a χ2 distribution with n − k degrees of freedom; the proof is based on the decomposition A = Q′ΛQ, where Q
is an orthogonal matrix (Q′ = Q−1) and Λ is the diagonal matrix containing the eigenvalues; among eigenvalues, there are
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n− k ones, while the others are zeroes; also Λ is idempotent (ΛΛ = Λ); the vector Qz has a multivariate normal distribution
N(0, In) (since QQ′ = In); ΛQz is a random vector with n elements; n − k elements have a N(0, In−k) distribution, while
the other k elements are zeroes; finally, z′Az = (ΛQz)′ΛQz and the results follows from applying (2).
(4) If the random vector x (whose dimension is n × 1) has a multivariate normal distribution N(0, Σ), where Σ is a n × n
symmetric positive definite matrix, then the univariate random variable x′Σ−1x has a χ2 distribution with n degrees of
freedom; to prove it, first Σ must be decomposed as Σ = P ′P , where P is a non-singular square matrix; it follows that z =
(P ′)−1x has a zero mean multivariate normal distribution with variance-covariance matrix (P ′)−1ΣP−1 = (P ′)−1P ′PP−1

= In; thus, z has a multivariate standard normal distribution, and the result follows from (1).
(5) If the random vector z (whose dimension is n × 1) has a multivariate standard normal distribution N(0, In), if A and
B are two “constant” matrices with dimensions m × n and k × n respectively, and their product is AB′ = 0 (null matrix),
then the two random vectors Az (m × 1) and Bz (k × 1) are independent random vectors; to prove it, Az and Bz must be
regarded as two sub-vectors of a multivariate normal random vector [(m + k)× 1], and the matrix that contains covariances
between all the elements of Az and Bz is AB′ (thus = 0); finally it is enough to remember that uncorrelated elements of a
multivariate normal are independent.
(6) If A, B and z are as in (5), any transformation of the vector Az and any transformation of the vector Bz will produce
independent random variables (or vectors).
(7) If A and B are as in (5), and the random vector x (with dimension n× 1) is distributed N(0, σ2In), the random vectors
Ax and Bx will be independent multinormal random vectors, and any transformation of each of the two vectors will produce
independent random variables (or vectors); the proof follows from (5) or (6) simply dividing each vector by the scalar constant
σ, and remembering that z = x/σ is N(0, In).
(8) As a particular case of (7), if the random vector x (with dimension n × 1) is distributed N(0, σ2In), and A and B are
both square symmetric idempotent matrices (n×n) such that AB = 0, then the two quadratic forms x′Ax/σ2 and x′Bx/σ2

are independent scalar random variables; in addition, it follows from (3) that each of the two quadratic forms has a χ2

distribution with degrees of freedom equal to the rank (therefore also equal to the trace) of the matrix A or B, respectively.

Statistical inference in the multiple linear regression model (under assumptions 1-6; also 6 is necessary)

Coefficients estimated by (Gaussian) maximum likelihood are equal to the OLS coefficients, and their variance-covariance
matrix is the inverse of Fisher’s information matrix (Cramér-Rao bound); remember that Gauss-Markov theorem did not use
the assumption of normality, and proved efficiency among “linear unbiased” estimators; here, under the additional assumption
of normality (6), OLS is efficient with respect to “any unbiased” estimator (proof, see sect. 17.6).

The vector of coefficient estimation errors β̂ − β = (X ′X)−1X ′u is a linear combination of u (multivariate normal); thus it
has a multivariate normal distribution N [0, (X ′X)−1σ2].

The j − th estimated coefficient (β̂j) has a normal distribution with mean βj and variance [(X ′X)−1]j,jσ
2.

The vector u/σ has a multivariate normal distribution N(0, I).
RSS/σ2 = û′û/σ2 = (u′/σ)M

X
(u/σ), where M

X
is symmetric, idempotent and its rank is n − k, is a random variable with

distribution χ2 with (n − k) degrees of freedom.
Since σ̂2 = RSS/(n−k), then the ratio σ̂2/σ2 is a random variable χ2

n−k divided by the number of degrees of freedom n−k.

The two random vectors β̂ − β and û are independent, since β̂ − β = (X ′X)−1X ′u, û = M
X

u, and the product of the two
matrices (X ′X)−1X ′M

X
= 0.

Any transformation of β̂ − β and of û will produce independent random variables; in particular, β̂ − β is independent of σ̂2.
(1) β̂j − βj , divided by the square root of its variance [(X ′X)−1]j,jσ

2, is a standard normal random variable.

(2) If R is a constant row vector, the scalar variable (Rβ̂ −Rβ) divided by the square root of its variance [R(X ′X)−1R′]σ2,
is a standard normal random variable.
(3) The quadratic form (β̂ − β)′(X ′X/σ2)(β̂ − β) is a random variable χ2

k.

(4) If R is a constant matrix with dimensions (q×k) and rank q, the quadratic form (Rβ̂−Rβ)′[R(X ′X)−1R′]−1(Rβ̂−Rβ)/σ2

is a random variable χ2
q; the proof follows observing that Rβ̂ − Rβ = R(β̂ − β) is a q × 1 random vector with multivariate

normal distribution, zero mean and variance-covariance matrix [R(X ′X)−1R′]σ2.
Case (1) is a particular case of (2), obtained when R is a row vector of all zeroes, but the j − th element = 1.
Case (3) is a particular case of (4), obtained when R is the identity matrix k × k.
If r is a constant vector with dimension q × 1, then Rβ = r is a system of q linear restrictions (or linear constraints) on the
k coefficients; in particular, if q = 1 (that is matrix R is a row vector and r is a scalar constant), Rβ = r represents “one”
linear restriction on coefficients.
Suppose that σ2 is known, then a test of “one” coefficient or a test of “one” linear restriction on coefficients (cases 1 and 2)
could be done using the standard normal distribution.
Suppose that σ2 is known, then a test of q linear restrictions on coefficients (also called multiple restriction, case 4) could be
done using the χ2

q distribution; in particular a test of all coefficients (case 3) would use the χ2
k distribution.

Usually σ2 is unknown, and the formulas of cases 1, 2, 3 and 4 can be applied replacing σ2 with its unbiased estimate σ̂2; as a
consequence, the test statistics that had a standard normal distribution (cases 1 and 2) are now distributed as a Student’s−t
with n − k degrees of freedom; the test statistics that had χ2 distributions with k or q degrees of freedom (cases 3 and 4)
are now distributed as by Fisher’s−F with k, n− k or q, n− k degrees of freedom, after the expressions of the test statistics
are divided by k or q, respectively.
The proof follows observing that, in all cases, σ2 is always at the denominator (under square root in cases 1 and 2); replacing
σ2 with σ̂2 is equivalent to multiplying the denominator by the ratio σ̂2/σ2, that is a random variable χ2

n−k/(n − k) (under
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square root in cases 1 and 2) independent of the numerator; thus, the standard normal will produce a Student’s−t with n−k
degrees of freedom (cases 1 and 2); in case 3, the random variable χ2

k will be divided by an independent random variable
χ2

n−k/(n− k), thus a further division by k will produce a Fisher’s−F with k, n− k degrees of freedom; in case 4, the random
variable χ2

q will be divided by an independent random variable χ2
n−k/(n − k), thus a further division by q will produce a

Fisher’s−F with q, n − k degrees of freedom.
(1bis) (β̂j − βj)/

√
[(X ′X)−1]j,j σ̂2, is a random variable with Student’s−t distribution (tn−k).

(2bis) If R is a row vector of constants, the scalar (Rβ̂ − Rβ)/
√

R(X ′X)−1R′σ̂2 is a random variable with Student’s−t
distribution (tn−k).

(3bis) The quadratic form (β̂ − β)′[X ′X/(kσ̂2)](β̂ − β) is a random variable with Fisher’s−F distribution (Fk,n−k).

(4bis) If R is a matrix of constants, with dimensions (q×k) and rank q, the quadratic form (Rβ̂−Rβ)′[R(X ′X)−1R′]−1(Rβ̂−
Rβ)/(qσ̂2) is a random variable with Fisher’s−F distribution (Fq,n−k).
Examples of tests that use the Student’s−t distribution.
The null hypothesis concerns the exact value of the j − th coefficient, while the alternative is that such a coefficient has a
different value; this is usually written as H0 : βj = r; H1 : βj 6= r, where r is a given constant; under the null hypothesis

the ratio between (β̂j − r) and the standard error of β̂j will be a random variable with Student’s−t distribution (tn−k); as a

“default” option, all software packages test the null hypothesis βj = 0, thus they simply compute the ratio between β̂j and
its standard error; under the null hypothesis such a ratio is a random variable with Student’s−t distribution (tn−k); if this
ratio (in absolute value) is greater than the critical value (at 5%, for instance), the null hypothesis is rejected in favour of
the alternative hypothesis (βj 6= 0, thus concluding that the j − th regressor is significant).
The null hypothesis concerns the “equality” of two coefficients, that is H0 : β1 = β2; H1 : β1 6= β2; the null hypothesis is
a linear restriction that can be represented as Rβ = r, where r = 0 (scalar) and R is a row vector whose first two elements
are 1 and −1, while all the others are zeroes; then, under the null hypothesis, the ratio between the scalar random variable
(Rβ̂ − r) and the square root of [R(X ′X)−1R′]σ̂2 is a tn−k; if this ratio (in absolute value) is greater than the critical value
(at 5%, for instance), the null hypothesis is rejected in favour of the alternative hypothesis (thus concluding that the two
coefficients are different).
The null hypothesis concerns the “sum” of two coefficients: H0: β1 + β2 = 1; H1: β1 + β2 6= 1; for instance, the exponents of
the two production factors in a Cobb-Douglas log-linear function become the coefficients of a linear regression model after
variables have been transformed into logarithms, and the constant returns to scale hypothesis has to be tested; the null
hypothesis is a linear restriction representable as Rβ = r, where r = 1 (scalar) and R is a row vector whose first two elements
are 1, while all the others are zeroes; then the procedure is the same as in the previous case.
Examples of tests that use the Fisher’s−F distribution.
If the matrix R has dimensions 1 × k (row vector) and its elements are all zeroes with the only exception of the j − th
element, which is 1, then the test statistic is distributed as a F (1, n − k) and it is exactly equal to the square of the test
statistic discussed above (when testing the hypothesis βj = 0), which was distributed as a Student’s−t (tn−k); the two tests
always give the same result, since the critical value (for instance at 5%) of the F (1, n − k) is exactly the square of the tn−k

critical value.
If r is a vector of k zeroes, and R is the identity matrix with dimensions k× k, then the system of linear restrictions Rβ = r
means β1 = 0, β2 = 0, ..., βk = 0, and the F (k, n−k) test statistic is obtained from β̂′X ′Xβ̂/(kσ̂2); this could be considered
a significance test of the whole regression; in fact, the null hypothesis would be accepted if no regressor is significant; in
practice, this is done only for linear regressions without intercept.
Significance test for a subset of regressors; the usual procedure is applied using a suitable matrix R (q × k) with elements
zeroes or ones, and a (q × 1) vector r = 0; as a “default” option for regression models with intercept, software packages test
the null hypothesis that “all coefficients but the intercept” are zeroes, and this is the usual significance test of the whole
regression.

Restricted least squares estimation

The method aims at producing coefficient values that minimize the sum of squared residuals satisfying, at the same time, q≤k
linear restrictions Rβ = r; λ indicates a q × 1 vector of Lagrange multipliers and is used to build the Lagrangean function: f
= (y−Xβ)′(y−Xβ)−2λ′(Rβ− r) (minus sign and the factor 2 are introduced to simplify computation); estimates of β and
λ are the solution of the system of first order conditions, obtained differentiating f with respect to β and λ; differentiating
with respect to β gives ∂f/∂β = −2X ′y + 2X ′Xβ − 2R′λ; differentiating with respect to λ gives ∂f/∂λ = −2(Rβ − r); the

first order conditions are obtained equating to zero the two vectors of derivatives: (1) X ′Xα̂ − X ′y − R′λ̂ = 0; (2) Rα̂ − r
= 0 (the system (1) and (2) is a system of k + q linear equations with k + q unknowns; to avoid confusion with the OLS

coefficients of the unrestricted model, α̂ will be used to indicate the solution for coefficients, while λ̂ will be the solution
for the multipliers); pre-multiplying (1) by R(X ′X)−1 gives Rα̂ − R(X ′X)−1X ′y − R(X ′X)−1R′λ̂ = 0, where substitution

of Rα̂ with r gives r − Rβ̂ − R(X ′X)−1R′λ̂ = 0, that produces the solution for the vector of Lagrange multipliers λ̂ =

[R(X ′X)−1R′]−1(r−Rβ̂); this expression of λ̂ can be substituted into (1) giving X ′Xα̂−X ′y−R′[R(X ′X)−1R′]−1(r−Rβ̂)

= 0, that provides the solution α̂ = β̂ − W (Rβ̂ − r), having indicated W = (X ′X)−1R′[R(X ′X)−1R′]−1.
After estimating coefficients that satisfy the system of linear restrictions, α̂, the corresponding residuals are ê = y − Xα̂ =
y−Xβ̂−X(α̂− β̂) = û−X(α̂− β̂) where û is the vector of OLS residuals (unrestricted); pre-multiplication by the transpose

gives ê′ê = û′û+(α̂− β̂)′X ′X(α̂− β̂) (the cross products vanish, because X ′û = 0); substituting the value of α̂− β̂ computed

above gives ê′ê − û′û = (Rβ̂ − r)′[R(X ′X)−1R′]−1(Rβ̂ − r).
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The above expression is the difference between the sums of squared residuals in the least squares estimations with restrictions
and without restrictions, respectively; ê′ê = RRSS is the restricted residual sum of squares, û′û = URSS is the unrestricted
residual sum of squares, (obviously the former is always greater or equal to the latter); the explicit formula just obtained for
such a difference is equal to the numerator of the Fisher’s−F statistic when testing the system of q linear restrictions Rβ =
r (4bis).
Thus, an alternative expression of the Fisher’s−F test statistic can be used: [(RRSS − URSS)/q]/[URSS/(n − k)], where
RRSS is the restricted residual sum of squares (that is, after restrictions have been imposed to the model), URSS is the
unrestricted residual sum of squares (the model estimated by OLS, without imposing any restriction), q is the number of
restrictions; the denominator, as above, is the OLS unbiased estimate of the variance of the unrestricted model: σ̂2 =
URSS/(n − k); obviously, it is always RRSS ≥ URSS, so that the value cannot be negative.
The above alternative expression of the Fisher’s−F test statistic can always be applied when testing a set of linear restrictions
Rβ = r; instead of estimating by OLS the unrestricted model, and then applying the formula (4bis), the alternative procedure
needs two OLS estimations, one of the original model (unrestricted) and one of the model after restrictions have been imposed
(restricted model); URSS and RRSS are computed from the two set of residuals.
When restrictions produce a model whose OLS estimation is simple (in other words, when restricted least squares can be
performed easily) the alternative procedure can be easier than the application of the formulas (3bis and 4bis); it does not
lead to a simplification when restricted least squares is of difficult application.
As a “default” option for regression models with intercept (β1), software packages test the null hypothesis that “all coefficients
but the intercept” are zeroes, and this is the usual significance test of the whole regression, that is H0 : β2 = 0, β3 = 0,
..., βk = 0; thus the number of restrictions is q = k − 1, and the alternative expression of the Fisher’s−F is quite simple;
the restricted model has a unique regressor (the constant), thus its coefficient is the arithmetical average of the dependent
variable; thus RRSS is the sum of squared deviations of the observed elements of y from their arithmetical average (called
TSS, when dealing with the definition of R2); therefore in this particular case the computation of the Fk−1,n−k test statistic
is quite similar to the computation of the R2 (in particular, the R2 adjusted for the degrees of freedom); a value of the
test statistic greater than the critical value (for instance at 5%) of the Fk−1,n−k distribution leads to rejection of the null
hypothesis, thus accepting some sort of significance of the whole regression.
Other cases where it is simple to estimate the restricted least squares coefficients (thus the alternative form of the Fisher’s−F
test statistic is of simple computation): when the null hypothesis is β1 = β2, or β1 +β2 = 0, or β1 +β2 = 1, or the hypothesis
concerns a structure of distributed lags where weights decrese linearly.
Expected values of coefficients estimated by restricted least squares: since α̂ = β̂−W (Rβ̂−r), it is E(α̂) = E(β̂)−W (RE(β̂)−
r) = β − W (Rβ − r); thus, if the restrictions are “valid” so that Rβ − r = 0, the consequence is E(α̂) = β, thus estimation
is unbiased; on the contrary, if restrictions are not valid, Rβ − r 6= 0 and the restricted least squares estimates are usually
biased, the bias being E(α̂) − β = −W (Rβ − r).

The variance-covariance matrix of coefficients estimated by restricted least squares is V ar(α̂) = V ar[β̂ − W (Rβ̂ − r)] =

V ar(β̂−WRβ̂) = V ar[(I −WR)β̂] = (I −WR)(X ′X)−1(I −WR)′σ2 = (X ′X)−1σ2 −WR(X ′X)−1σ2 − (X ′X)−1R′W ′σ2 +
WR(X ′X)−1R′W ′σ2 (when W is replaced by its full expression, two terms will cancel out) = (X ′X)−1σ2 − (X ′X)−1R′

[R(X ′X)−1R′]−1 R(X ′X)−1σ2; thus it is equal to the variance-covariance matrix of OLS coefficients “minus” a symmetric
positive semidefinite matrix; thus restricted least squares coefficients always have a variance-covariance matrix smaller than
(at most equal to) the unrestricted OLS coefficients, no matter if restrictions are valid (thus the restricted estimate is
unbiased) or not valid (thus the restricted estimate is usually biased); it must be noticed that the vector r does not appear
in the expression of this matrix.
Specification error due to omission of relevant explanatory variables: let X = [X1, X2], but instead of the correctly specified
model y = X1β1 + X2β2 + u, with k = k1 + k2 regressors, the model that is estimated is y = X1α1 + e, with k1 regressors,
omitting k2 relevant regressors (X2); it is like estimating the original model with restricted least squares, after imposing the
restrictions β2 = 0, which are not valid; thus there will usually be a bias in the estimated coefficients; explicit computation
gives E(α̂1) = E[(X ′

1X1)
−1X ′

1y] = E[(X ′
1X1)

−1X ′
1(X1β1 +X2β2 +u)] = β1 +(X ′

1X1)
−1X ′

1X2β2; thus, bias depends, among
other things, on the omitted variables and coefficients (X2β2); however, in a particular case the restricted estimate might be
unbiased for the included coefficients: when the omitted regressors are orthogonal to the included regressors, that is when
X ′

1X2 = 0; also the estimate of the variance is biased (overestimated); in fact σ̂2 = (ê′ê)/(n − k1) = (y′M
X1

y)/(n − k1) =
(X1β1 + X2β2 + u)′MX1

(X1β1 + X2β2 + u)/(n − k1) = (X2β2 + u)′MX1
(X2β2 + u)/(n − k1) (being MX1

X1 = 0), and its

expectation is E(σ̂2) = σ2 +β′
2X

′
2MX1

X2β2/(n−k1); this sistematic overestimation occurs also when the omitted regressors

are orthogonal to the included regressors: in fact, if X ′
1X2 = 0, the expected value is σ2 + β′

2X
′
2X2β2/(n − k1).

Specification error due to the inclusion of irrelevant explanatory variables (regressors that do not help explanation of the
dependent variable): the correctly specified model is y = X1β1 + e, but OLS estimation is applied to a model that includes
additional regressors, X2, which are not relevant; this is like saying that the “unrestricted” model y = X1β1 + X2β2 + u is
correctly specified, with “true” values of the β2 coefficients = 0; thus OLS estimation of the unrestricted model is unbiased
(in particular with E(β̂2) = 0); the original model, y = X1β1 + e, can be viewed as obtained from the unrestricted model
imposing the set of “valid” restrictions β2 = 0, so OLS estimation is also unbiased and, having imposed restrictions, it
has a variance-covariance matrix smaller than the unrestricted OLS coefficients; thus, including some irrelevant explanatory
variables on the right hand side of the equation does not produce any bias, but reduces efficiency.
Test of structural change (also called Chow test): in a linear regression model, where the sample size is n, a change in the
structure may have occurred; it is possible that the coefficients in the first sub-sample (n1 observations) are different from
coefficients in the second sub-sample (n2 observations, where n1 +n2 = n); the null hypothesis to be tested is that coefficients
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remained constant over the whole sample; vector y (n elements) is divided into the two sub-vectors y1 e y2, corresponding to
the two sub-samples of the dependent variable; analogously, the matrix of regressors is divided into the two sub-matrices X1

(n1×k) and X2 (n2×k) and two vectors of coefficients are considered, β1 and β2, both k×1; the coefficients vector β (2k×1)
contains the elements of β1 followed by the elements of β2; matrix X (n × 2k) is a block-diagonal matrix whose diagonal
blocks are X1 and X2, while off-diagonal blocks contain all zeroes; OLS estimation is applied to the model y = Xβ + u; the
coefficients in the vector β̂ (2k × 1) are exactly the same that would be obtained from two separate OLS estimations of the
model y1 = X1β1 +u1 using the first n1 observations, and the model y2 = X2β2 +u2 on the last n2 observations (the proof is
straightforward, remembering that X ′X is a block-diagonal square matrix, thus it can be inverted simply inverting the two
diagonal blocks that are X ′

1X1 and X ′
2X2); the sum of the n squared residuals is URSS; the null hypothesis is that β1 = β2

(no structural change); this test is based on the Fisher’s−F distribution and is usually applied using the alternative form of
the test; so it is now necessary to estimate the model after imposing the k linear restrictions (or constraints) β1 = β2; the
restricted model has a matrix of regressors X (n × k) where X1 and X2 are two consecutive blocks (rather than diagonal
blocks), and has a vector of coefficients β containing k elements; this restricted model y = Xβ + u is estimated by OLS on
the whole sample period (n observations) computing RRSS as the sum of n squared residuals; it must be noticed that the
unrestricted model has 2k regressors, and that the restricted model is obtained imposing k restrictions; thus the Fisher’s−F
test statistic (k, n− 2k) is obtained as [(RRSS − URSS)/k]/[URSS/(n− 2k)]; a value of the test statistic greater than the
critical value (for instance at 5%) of the Fk,n−2k distribution leads to rejection of the null hypothesis (that coefficients did
not change in the two sub-samples), thus evidencing a structural change.
The test of structural change can be applied to a subset of coefficients; this can be done in the unrestricted model by
“duplicating” only the coefficients that might change in the sample, and splitting the corresponding regressors, while the
other regressors and coefficients remain unchanged; the degrees of freedom of the Fisher’s−F depend on the number of
coefficients that are tested; for instance, when testing only one coefficient, the degrees of freedom of the Fisher’s−F will be
1, n− k − 1 (1 restriction, k regressors in the original model, k + 1 regressors in the unrestricted model, after the split of one
column into two columns).
The test of structural change can be applied also when two or more changes may have occurred in the sample; for instance
it is possible that all coefficients have changed their values when passing from the first sub-sample (n1 observations) to the
second sub-sample (n2 observations) and again to the third sub-sample (n3 observations, where n1 + n2 + n3 = n); the
unrestricted model will have a block-diagonal matrix of regressors with 3 diagonal blocks (its dimensions will be n × 3k),
and a (3k × 1) vector of coefficients.
Remark. Estimation of the unrestricted model would be impossible if the block-diagonal matrix X ′X is singular; this happens
if one of the sub-periods has a number of observations < k (insufficient observations); for instance, if n2 < k, X ′

2X2 is singular,
so X ′X cannot be inverted, being X ′

2X2 its second diagonal block; a solution to this problem is the Chow predictive test,
that estimates the restricted model on the longer sub-sample, uses it to predict the shorter sub-period, and finally considers
the distribution of the prediction error.

Multiple linear regression model where the variance-covariance matrix is not scalar and it is “known”

(4-bis) If assumption (4) is not valid, the variance-covariance matrix of the error terms is represented as E(uu′) = σ2Ω,

where Ω (n × n) is symmetric and positive definite; OLS estimation is unbiased, since E(β̂ − β) = E[(X ′X)−1X ′u] = 0; the
variance-covariance matrix of the OLS coefficients is (X ′X)−1X ′ΩX(X ′X)−1σ2; if assumption (4) is not valid, Gauss-Markov
may be not applicable; thus OLS may be inefficient.
Aitken’s theorem: under assumptions 1, 2, 3, 4-bis and 5 (6 is unnecessary), if Ω is known (that is, the variance-covariance
matrix is almost completely known, the only unknown being a scalar multiplicative constant called σ2), coefficient estimated
by generalized least squares (GLS) β̇ = (X ′Ω−1X)−1X ′Ω−1y have the smallest variance-covariance matrix among all linear
unbiased estimators; in other words, GLS is efficient with respect to any other linear unbiased estimator.
The proof follows from a straightforward application of Gauss-Markov theorem to an appropriate transformation of the
model; first of all the GLS estimator is unbiased because E(β̇ − β) = (X ′Ω−1X)−1X ′Ω−1u = 0, and its variance-covariance
matrix is (X ′Ω−1X)−1σ2; to prove efficiency, first of all matrix Ω must be decomposed as Ω = P ′P , where P is a non-singular
square matrix (n × n); the model is then transformed pre-multiplying by P ′−1, which gives P ′−1y = P ′−1Xβ + P ′−1u; the
transformed variables are now called q = P ′−1y, Q = P ′−1X and the transformed error terms are called ε = P ′−1u; the
transformed variable are thus related through the linear regression model q = Qβ + ε, where coefficients are the same as in
the original model, and the error terms are such that E(ε) = 0, E(εε′) = P ′−1E(uu′)P−1 = P ′−1ΩP−1σ2 = σ2In; thus the
transformed model satisfies all the conditions underlying Gauss-Markov theorem, thus OLS is efficient when it is applied to
the transformed model (instead of the original model), which gives: β̇ = (Q′Q)−1Q′q = (X ′P−1P ′−1X)−1X ′P−1P ′−1y =
(X ′Ω−1X)−1X ′Ω−1y, which is the GLS estimation of the original model.
Substituting y = Xβ + u into β̇ = (X ′Ω−1X)−1X ′Ω−1y, it follows that β̇ − β = (X ′Ω−1X)−1X ′Ω−1u, so that the variance
V ar(β̇) = (X ′Ω−1X)−1σ2.

If the model is estimated by OLS, being β̂ − β = (X ′X)−1X ′u, it follows that V ar(β̂) = (X ′X)−1(X ′ΩX)(X ′X)−1σ2.
This variance-covariance matrix is greater or equal to the GLS matrix, the proof being obtained computing the product
[(X ′X)−1X ′P ′ − (X ′Ω−1X)−1X ′P−1] [PX(X ′X)−1 − P ′−1X(X ′Ω−1X)−1] = (X ′X)−1(X ′ΩX)(X ′X)−1 − (X ′Ω−1X)−1

which is positive semi definite, being the product of a matrix with its transpose.
Remark. The result does not change if, in the final GLS formula, the whole expression of the variance-covariance matrix σ2Ω
is used instead of Ω (the scalar constant σ2 would cancel out).

A list of other topics
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Dummy variables.
Regression specification error test (Reset).
Heteroskedastic errors: OLS is unbiased but not efficient; heteroskedasticity of “known” form and weighted least squares;
Breusch and Pagan test; heteroskedasticity of “unknown” form and “sandwich” estimator of the variance-covariance matrix;
White’s test.
Autocorrelated errors: OLS is unbiased but not efficient; first order autoregressive errors AR(1); Cochrane-Orcutt estimation
method; Breusch and Godfrey test (LM test or Fisher’s−F test); optimal prediction when errors are AR(1).
Multicollinearity; perfect and near multicollinearity.
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1 OBVIOUS AND BANAL MATTERS - Ma con voi non si sa mai.........

1.1 Products of matrices and vectors

X ′ =
(k × n)




x1,1 x2,1 ... xi,1 ... xn,1

x1,2 x2,2 ... xi,2 ... xn,2

... ... ... ... ... ...
x1,k x2,k ... xi,k ... xn,k


 X =

(n × k)




x1,1 x1,2 ... x1,k

x2,1 x2,2 ... x2,k

... ... ... ...
xi,1 xi,2 ... xi,k

... ... ... ...
xn,1 xn,2 ... xn,k




u =
(n × 1)




u1

u2

...
ui

...
un




xi =
(k × 1)




xi,1

xi,2

...
xi,k


 = column i of X ′ x′

i =
(1 × k)

[xi,1 xi,2 ... xi,k] = row i of X ui = is a scalar

There are n matrices xix
′
i of dimensions (k × k).

X ′X =
∑n

i=1 xix
′
i is the matrix (k × k) sum of these n matrices.

1
nX ′X = 1

n

∑n
i=1 xix

′
i is the matrix (k × k) arithmetical average of these n matrices.

There are n vectors xiui of dimensions (k × 1).

X ′u =
∑n

i=1 xiui is the vector (k × 1) sum of these n vectors.

1
nX ′u = 1

n

∑n
i=1 xiui is the vector (k × 1) arithmetical average of these n vectors.

W ′ =
(k × n)




w1,1 w2,1 ... wi,1 ... wn,1

w1,2 w2,2 ... wi,2 ... wn,2

... ... ... ... ... ...
w1,k w2,k ... wi,k ... wn,k


 W =

(n × k)




w1,1 w1,2 ... w1,k

w2,1 w2,2 ... w2,k

... ... ... ...
wi,1 wi,2 ... wi,k

... ... ... ...
wn,1 wn,2 ... wn,k




wi =
(k × 1)




wi,1

wi,2

...
wi,k


 = column i of W ′ w′

i =
(1 × k)

[wi,1 wi,2 ... wi,k] = row i of W

There are n matrices wix
′
i of dimensions (k × k).

W ′X =
∑n

i=1 wix
′
i is the matrix (k × k) sum of these n matrices.

1
nW ′X = 1

n

∑n
i=1 wix

′
i is the matrix (k × k) arithmetical average of these n matrices.

There are n vectors wiui of dimensions (k × 1).

W ′u =
∑n

i=1 wiui is the vector (k × 1) sum of these n vectors.

1
nW ′u = 1

n

∑n
i=1 wiui is the vector (k × 1) arithmetical average of these n vectors.

1.2 Quadratic forms and rectangular forms

If u is a (n × 1) vector and A is a (n × n) matrix, the quadratic form has the following scalar expression:
u′Au =

∑n
i=1

∑n
j=1 ai,juiuj

If v is a (k × 1) vector and B is a (n × k) matrix, the rectangular form has the following scalar expression:

u′Bv =
∑n

i=1

∑k
j=1 bi,juivj

1.3 A special product of three matrices

If X is a (n × k) matrix as above, and Σ is a (n × n) diagonal matrix

Σ =
(n × n)




σ2
1 0 ... 0 ... 0
0 σ2

2 ... 0 ... 0
... ... ... ... ... ...
0 0 ... σ2

i ... 0
... ... ... ... ... ...
0 0 ... 0 ... σ2

n




then X ′ΣX =
∑n

i=1 xix
′
iσ

2
i

1.4 Schwarz inequality

Between scalars, with scalar notation: (
∑n

i=1 aibi)
2 ≤

(∑n
i=1 a2

i

) (∑n
i=1 b2

i

)

Between scalars, with vector notation (if a′b 6= 0): (a′b)2 ≤ (a′a) (b′b) ⇒ (a′b)−1a′a(b′a)−1 ≥ (b′b)−1
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It is a particular case of the following inequality between positive semidefinite matrices (with dimensions of X and W as
above, and provided n ≥ k and W ′X is non-singular): (W ′X)−1W ′W (X ′W )−1 ≥ (X ′X)−1

Proof: (W ′X)−1W ′W (X ′W )−1−(X ′X)−1 =
[
(W ′X)−1W ′ − (X ′X)−1X ′] [

(W ′X)−1W ′ − (X ′X)−1X ′]′, being the product
of a matrix with its transpose, is a positive semidefinite matrix.

2 AN EXAMPLE OF SIMULTANEOUS EQUATIONS: KLEIN-I MODEL

The structural form of the model is




Ct = α1 + α2 Pt + α3 Pt−1 + α4 Wt + u1,t

It = α5 + α6 Pt + α7 Pt−1 + α8 Kt−1 + u2,t

W p
t = α9 + α10 Xt + α11 Xt−1 + α12 At + u3,t

Xt = Ct + It + Gt

Pt = Xt − Tt − W p
t

Kt = Kt−1 + It

Wt = W p
t + W g

t .

Consumption
Investment (net)
Private wages
Equilibrium demand
Profits
Capital stock
Total wages

(2.1)

The model is usually presented as a system of 6 equations with 6 endogenous variables, as it was originally proposed in Klein
(1950). The last (seventh) equation and endogenous variable, introduced here in addition to the original 6, avoids the need
of equality restrictions in the first equation (otherwise the coefficient α4 would multiply the sum of two variables W p

t +W g
t ).

Also, the third and fourth equations are usually presented in a slightly different way; the representation adopted here (2.1),
taken from Greene (2008, 15.2), is perfectly equivalent to the original, but can be treated more easily.
This is an excellent example of a small, linear and manageable macroeconomic dynamic model, widely used in the literature
as a test ground for estimation methods. The original Klein’s data set contains data of the U.S. economy from 1920 to 1941
(interwar years, including the depression years; all variables are at constant prices). Due to the lag-1 variables, the estimation
period (or sample period) is 1921-1941.
Endogenous variables are the 7 variables appearing on the left hand side of each structural equation, labeled on the right.
The exogenous variables are 5:
1 = Constant
W g

t = Government wages
Tt = Business taxes
At = Linear time trend, measured as annual deviations from 1931, positive or negative; it is used as a proxy for increased
bargaining power of labour (or union strength) during the sample period
Gt = Government nonwage expenditure.
The model also includes 3 lagged endogenous variables:
Xt−1

Pt−1

Kt−1.
The model contains 3 behavioural stochastic equations (the first 3 equations) and 4 identities, the first of which is an
equilibrium condition, while the last three equations are accounting (or definitional) identities.
No variable appears in this model with an order lag greater than one; also there are no lagged exogenous variables. The
original data set and detailed numerical results are in Appendix (14).

3 SIMULTANEOUS EQUATIONS: STRUCTURAL FORM AND REDUCED FORM

There are problems for which it is necessary to distinguish between exogenous and lagged endogenous variables (for example,
dynamic solution, multi steps ahead forecast, delay or cumulated multipliers). In these cases we use an explicit dynamic

notation.
There are cases where such a distinction is unnecessary, for example when studying identification, estimation methods and
solution of the model one step ahead, and the notation can be slightly simplified, becoming essentially a static notation.

3.1 Dynamic notation

Structural form and reduced form of a system of dynamic simultaneous equations can be represented as




Structural form

Byt + Czt + Dyt−1 = ut

ut : i.i.d.
E(ut) = 0
V ar(ut) = Σ




Reduced form

yt = Π1zt + Π0yt−1 + vt

vt : i.i.d.
E(vt) = 0
V ar(vt) = Ψ

(3.2)
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The (G × 1) vector of endogenous variables at time t is called yt (7 × 1 in the example); with the same dimensions, yt−1 is
the vector of lagged endogenous variables; zt is the (K × 1) vector of exogenous variables at time t (5× 1 in the example); ut

and vt are the (G × 1) vectors of error terms at time t, Σ and Ψ their variance-covariance matrices (assumed constant ∀t).
With reference to the model used as example it is

yt =
(G × 1)
(7 × 1)




Ct

It

W p
t

Xt

Pt

Kt

Wt




yt−1 =
(7 × 1)




Ct−1

It−1

W p
t−1

Xt−1

Pt−1

Kt−1

Wt−1




zt =
(5 × 1)




1
W g

t

Tt

At

Gt




ut =
(G × 1)
(7 × 1)




u1,t

u2,t

u3,t

0
0
0
0




vt =
(G × 1)
(7 × 1)




v1,t

v2,t

v3,t

v4,t

v5,t

v6,t

v7,t




(3.3)

B is the (G×G) matrix of structural form coefficients of the endogenous variables (7× 7 in the example); C is the (G×K)
matrix of structural form coefficients of the exogenous variables (7×5 in the example); D is the (G×G) matrix of structural
form coefficients of the lagged endogenous variables (7×7 in the example). Although being of dimensions (7×7), the matrix
C has 4 columns of zeroes, corresponding to the 4 endogenous variables that do not appear in the model with lag-1.

B =
(G × G)
(7 × 7)




1 0 0 0 −α2 0 −α4

0 1 0 0 −α6 0 0
0 0 1 −α10 0 0 0

−1 −1 0 1 0 0 0
0 0 1 −1 1 0 0
0 −1 0 0 0 1 0
0 0 −1 0 0 0 1




C =
(7 × 5)




−α1 0 0 0 0
−α5 0 0 0 0
−α9 0 0 −α12 0

0 0 0 0 −1
0 0 1 0 0
0 0 0 0 0
0 −1 0 0 0




D =
(7 × 7)




0 0 0 0 −α3 0 0
0 0 0 0 −α7 −α8 0
0 0 0 −α11 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 0




(3.4)

Remark. Higher order lags as well as lagged exogenous could be easily accomodated for by augmenting the vector of
endogenous variables and including appropriate definitional identities. For example, should we want to include the lagged
exogenous Tt−1 into some equations, the simplest technique would be to introduce an 8− th endogenous variable (called for
instance Ht), complete the structural model with the 8 − th equation Ht = Tt, and replace everywhere in the model Tt−1

with the lagged endogenous Ht−1.
The vector of error terms in the structural form equations, ut, has some elements identically zero (4 in the example),
corresponding to the identities. So, the (G×G) matrix of variances and covariances of the structural form errors Σ (7× 7 in
the example) has a 3× 3 nonzero block (Σ3, assumed symmetric and positive definite), while all the other elements are zero.

Σ =
(G × G)
(7 × 7)




σ1,1 σ1,2 σ1,3 0 0 0 0
σ2,1 σ2,2 σ2,3 0 0 0 0
σ3,1 σ3,2 σ3,3 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




=

[
Σ3 0
0 0

]
(3.5)

Π1 is the (G×K) matrix of reduced form coefficients of exogenous variables (7×5 in the example). Π0 is the (G×G) matrix
of reduced form coefficients of lagged endogenous variables (7 × 7 in the example). Ψ is the (G × G) variance-covariance
matrix of the reduced form error terms vt (7 × 7 in the example; of course, its rank cannot be greater than 3).

Π1 = −B−1C =
(7 × 5)




π11,1

π12,1

π13,1

π14,1

π15,1

π16,1

π17,1

π11,2

π12,2

π13,2

π14,2

π15,2

π16,2

π17,2

π11,3

π12,3

π13,3

π14,3

π15,3

π16,3

π17,3

π11,4

π12,4

π13,4

π14,4

π15,4

π16,4

π17,4

π11,5

π12,5

π13,5

π14,5

π15,5

π16,5

π17,5




Π0 = −B−1D =
(7 × 7)




0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0
0
0

π01,4

π02,4

π03,4

π04,4

π05,4

π06,4

π07,4

π01,5

π02,5

π03,5

π04,5

π05,5

π06,5

π07,5

π01,6

π02,6

π03,6

π04,6

π05,6

π06,6

π07,6

0
0
0
0
0
0
0




(3.6)

Ψ = B−1ΣB′−1

(G × G)
(7 × 7)

(3.7)
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Matrices B, C and D are usually sparse matrices. Zeroes and ones represent a-priori restrictions on the structural form. In
particular, considering only the behavioural stochastic equations (the first three equations in the example) zeroes represent
exclusion restrictions, ones represent normalization restrictions. For instance, in the first equation the coefficient of the
endogenous variable Consumption (Ct) is 1, and not a generic b1,1 (normalization); the coefficient of It, is 0, and not a
generic b1,2 (exclusion); the coefficient of Tt, is 0, and not a generic c1,3 (exclusion); etc.
Matrix Π1 is usually a full matrix; some of its elements are zeroes only exceptionally.
Matrix Π0 has 4 columns of zeroes (like matrix D); the other 3 columns have usually no zeroes.

3.2 Static notation

When it is unnecessary to distinguish between exogenous and lagged endogenous variables, a simplified notation can be
adopted. We still use the same vectors yt, ut, vt and the matrix B exactly as in the dynamic notation. but zt becomes a
(8× 1) vector containing the 5 exogenous variables at time t and the 3 lagged endogenous variables that really appear in the
model. The matrix of structural form coefficients of the exogenous and lagged endogenous variables has therefore dimensions
(7 × 8) and will be called Γ; in the example, the first 5 columns of Γ will be the columns of the matrix C adopted with the
dynamic notation,, while the last 3 columns will be the nonzero columns of D. When using the static notation, K indicates
the total number of exogenous and lagged endogenous variables (8 in the example).

zt =
(K × 1)
(8 × 1)




1
W g

t

Tt

At

Gt

Xt−1

Pt−1

Kt−1







Byt + Γzt = ut

yt = Πzt + vt

Structural form

Reduced form
(3.8)

B =
(G × G)
(7 × 7)




1 0 0 0 −α2 0 −α4

0 1 0 0 −α6 0 0
0 0 1 −α10 0 0 0

−1 −1 0 1 0 0 0
0 0 1 −1 1 0 0
0 −1 0 0 0 1 0
0 0 −1 0 0 0 1




Γ =
(G × K)
(7 × 8)




−α1 0 0 0 0 0 −α3 0
−α5 0 0 0 0 0 −α7 −α8

−α9 0 0 −α12 0 −α11 0 0
0 0 0 0 −1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 −1
0 −1 0 0 0 0 0 0




(3.9)

Π = −B−1Γ =
(G × K)
(7 × 8)




π1,1 π1,2 π1,3 π1,4 π1,5 π1,6 π1,7 π1,8

π2,1 π2,2 π2,3 π2,4 π2,5 π2,6 π2,7 π2,8

π3,1 π3,2 π3,3 π3,4 π3,5 π3,6 π3,7 π3,8

π4,1 π4,2 π4,3 π4,4 π4,5 π4,6 π4,7 π4,8

π5,1 π5,2 π5,3 π5,4 π5,5 π5,6 π5,7 π5,8

π6,1 π6,2 π6,3 π6,4 π6,5 π6,6 π6,7 π6,8

π7,1 π7,2 π7,3 π7,4 π7,5 π7,6 π7,7 π7,8




(3.10)

4 MULTIPLIERS, FORECASTS, GOODNESS OF FIT MEASURES

Recursive substitution into the reduced form system (3.2) gives

yt = Π1zt + Π0yt−1 + vt

= Π1zt + Π0Π1zt−1 + Π2
0yt−2 + vt + Π0vt−1

= Π1zt + Π0Π1zt−1 + Π2
0Π1zt−2 + Π3

0yt−3 + vt + Π0vt−1 + Π2
0vt−2

= etc.

(4.11)

The long run dynamic behaviour of the system depends on the powers of Π0. In the example, Π0 is a (7× 7) nonsymmetric
matrix, with 4 columns of zeroes; it has therefore 3 nontrivial eigenvalues (one of which is necessarily real, the other two can
be real or conjugate complex) that ensure stability if all are less than one in modulus.

Π1 = ∂E[yt|zt, zt−1, ...]/∂zt matrix of impact multipliers;
Π0Π1 = ∂E[yt|zt, zt−1, ...]/∂zt−1 matrix of lag-1 delay multipliers;
Π2

0Π1 = ∂E[yt|zt, zt−1, ...]/∂zt−2 matrix of lag-2 delay multipliers;
etc.

(4.12)

In the example, all these matrices have dimensions (7 × 5). Their sum, up to a given lag, is the matrix of cumulated or
sustained multipliers.
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Multipliers are fundamental tools for economic policy simulations.
The reduced form equations (3.8 or 3.2), coefficients (Π, Π0 or Π1) and variance-covariance matrix (Ψ) are called restricted

if they derive (i.e. are computed) from the structural form (inverting matrix B, etc.). Otherwise they are called unrestricted

(when we consider directly each reduced form equation as a the linear regression of an endogenous variable against all the
exogenous and lagged endogenous variables).
All the expressions restricted reduced form, reduced form derived from the structural form, simultaneous solution of the

structural form equations have exactly the same meaning. When talking of static or one step ahead solution of the structural
form equations, reference is always done to (3.8). When talking of dynamic solution of the structural form equations, reference
is always done to (3.2).
Forecasts, simulations and economic policy experiments are usually conducted using the restricted reduced form, deriving
it from the structural form after a convenient estimate of the unknown coefficients has been computed (α1, ..., α12 in the
example).
There is much more economic theory in the structural form than in the unrestricted reduced form.
Forecasts one step ahead are usually produced using the static notation (3.8), setting the random error terms vt to zero
(expected value). When data are available till time n (last sample observation) and forecast is performed for time n + 1,
some elements of the vector z

n+1
are available from the sample (the lagged endogenous variables, since they are related to

time n). But the other elements of zn+1 (the exogenous variables) must be supplied from outside (usually, financial plans of
the government, forecasts produced by central banks, etc.).
To produce forecasts multi steps ahead it is necessary to resort to the dynamic notation (3.2), still setting the random error
terms vt to zero at any time. For example, if data are available till time n (last sample observation) and forecast is performed
for time n + 1 and n + 2, we first forecast at n + 1 as above. Then, to forecast at n + 2, the values of the lagged endogenous
variables in zn+2 are taken from the forecast at n + 1, while the exogenous variables at n + 2 must be supplied from outside.
Etc.
In sample forecasts (historical tracking) and goodness of fit measures over the sample period can be both static or dynamic.
In the static case, the structural form is always solved one step ahead, taking values of the lagged endogenous variables
from the observed sample. In the dynamic case, the dynamic notation is used (3.2) and the values of the lagged endogenous
variables, in each period, are taken from the solution of the previous period. Initial values of the endogenous variables are
always taken from the sample, so there is no difference between static and dynamic solution at the beginning of the sample
period.
The following are the most common univariate measures of goodness of fit. Each formula is related to one endogenous
variable; Ot is the observed value of the variable at time t; Ct is the value of the variable at time t computed with the model
(static or dynamic solution); ot is the observed growth rate of the variable at time t (the annual percentage change, in the
example); ct is the growth rate of the variable at time t computed with the model (static or dynamic solution).

RMSE =

√∑n

t=1
(Ot−Ct)2

n Root Mean Squared Error

RMSE(dim) =

√∑n

t=1
(Ot−Ct)2∑n

t=1
O2

t

Dimensionless Root Mean Squared Error

MAPE = 1
n

∑n
t=1

|Ot−Ct|
Ot

× 100 Mean Absolute Percentage Error

Theil′s U1 =

√∑n

t=1
(ot−ct)2∑n

t=1
o2

t

Theil Inequality Coefficient (1966, eq.4.5)

Theil′s U2 =

√∑n

t=1
(ot−ct)2∑n

t=1
(ot−ō)2

Theil Inequality Coefficient (1966, eq.4.6)

(4.13)

MAPE and Theil’s inequality coefficients are not computed for variables that change sign over the sample period (such as
It in the example).

5 IDENTIFICATION BY MEANS OF A-PRIORI RESTRICTIONS

We consider in detail the case of a-priori restrictions on coefficients, in particular exclusion restrictions. Covariance restric-
tions are briefly discussed at the end.

Definition. Two different structural form systems

[
Byt + Γzt = ut

V ar(ut) = Σ
and

[
B∗yt + Γ∗zt = u∗

t

V ar(u∗
t ) = Σ∗ (5.14)

are called observationally equivalent if they have the same reduced form.
More precisely, let the corresponding reduced form systems be
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


yt = Πzt + vt

vt = B−1ut

Π = −B−1Γ;
Ψ = V ar(vt) = B−1ΣB′−1

and




yt = Π∗zt + v∗t
v∗t = B∗−1u∗

t

Π∗ = −B∗−1Γ∗;
Ψ∗ = V ar(v∗t ) = B∗−1Σ∗B∗′−1

(5.15)

then, the two structural form systems (5.14) are called observationally equivalent till the second moments if Π∗ = Π and
Ψ∗ = Ψ. If this happens, it will be impossible to discriminate between the two different structural forms on the basis of the
observed data, since data (the values of yt) are produced by the reduced form.

Definition. A parameter (or an equation) of the structural form is identified if it (or the equation’s parameters) can be
deduced from knowledge of the reduced form parameters Π and Ψ.

Theorem. Two structural forms (5.14) are observationally equivalent if and only if there exists a non-singular square matrix
F (same dimensions as B) such that B∗ = FB, Γ∗ = FΓ, and Σ∗ = FΣF ′.

The proof is straightforward. In fact, if B∗ = FB, Γ∗ = FΓ, and Σ∗ = FΣF ′, then Π∗ = −B∗−1Γ∗ = −(FB)−1(FΓ)
= −B−1F−1FΓ = −B−1Γ = Π; moreover Ψ∗ = B∗−1Σ∗B∗′−1 = (FB)−1FΣF ′(FB)′−1 = B−1F−1FΣF ′F ′−1B′−1 =
B−1ΣB′−1 = Ψ.
Viceversa, if Π∗ = Π, then B∗−1Γ∗ = B−1Γ and pre-multiplication of both sides by B∗ gives Γ∗ = B∗B−1Γ; thus, B∗ = FB
and Γ∗ = FΓ, having defined F = B∗B−1. Also, Ψ∗ = Ψ implies that B∗−1Σ∗B∗′−1 = B−1ΣB′−1, where pre-multiplication
of both sides by B∗ and post-multiplication by B∗′ gives Σ∗ = B∗B−1ΣB′−1B∗′ = FΣF ′, having defined F as above.

The theorem implies that, given a structural form Byt +Γzt = ut, there will be an infinity of other structural forms, different
from it, but observationally equivalent to it: any non-singular square matrix F , arbitrarily chosen, will in fact produce the
matrices B∗, Γ∗ and Σ∗ of an observationally equivalent structural form. Notice that each row of B∗ and Γ∗ would be a
linear combination ot the rows of B and Γ.

5.1 Restrictions and admissible transformations

It may happen that pre-multiplication by F produces matrices B∗ and Γ∗ that do not satisfy the a-priori restrictions of B,
Γ and Σ. For instance, it may happen that β∗

1,2 is nonzero, while β1,2 = 0 in the original model; this means that the variable
It was excluded, by the economic theory of the model’s builder, from the first equation of Byt + Γzt = ut, but is included in
the first equation of B∗yt +Γ∗zt = u∗

t . Exclusion restrictions are a particular case of homogeneous restrictions. They are the
only type of homogeneous restrictions in the model used as example.

Definition. A linear transformation produced by a non-singular matrix F is admissible if the transformed structural form
coefficients [B∗; Γ∗] satisfy all the a-priori restrictions on [B ; Γ] and the transformed variance-covariance matrix Σ∗ satisfies
all the a-priori restrictions on Σ.

To simplify the problem, we only consider restrictions on coefficients, without considering possible restrictions on the variance-
covariance matrix (which are rather unusual); for further simplification, we first consider only homogeneous restrictions (and
later normalization restrictions). To fix ideas, we focus on the first equation of the structural form model (consumption, in
the example).
The (G×G) unit (or identity) matrix obviously produces an admissible transformation. Any (G×G) scalar matrix (the identity
matrix multiplied by a nonzero scalar) also produces an admissible transformation (exclusion restrictions are preserved, as
well as homogeneous restrictions in general).
If an admissible matrix F exists, and it is different from a scalar matrix, this implies that an alternative structural form
B∗yt + Γ∗zt = u∗

t exists, which is observationally equivalent to the original model Byt + Γzt = ut, satisfies all the a-priori

restrictions on the original model, but has one or more coefficients different from the original model: thus, some coefficients
(or equations) are not identified. If this happens for some coefficients of the first equation, then the first equation is not
identified. If this cannot happen in the first equation (even if it may happen in other equations), then the first equation is
identified.
Notice that, when pre-multiplying by F the matrices B and Γ to produce B∗ and Γ∗, the first row (structural coefficients of
the consumption equation, in the example) is

[B∗ ; Γ∗]1,• = [F (B ; Γ)]1,• = F1,•[B ; Γ] (5.16)

If such a F1,• produces a first row of structural coefficients satisfying all the restrictions on the first equation of the original
model, the first equation is not identified. If only the first row of the unit matrix or the first row of a scalar matrix can do
it, and no other F1,•, then the first equation is identified.
A representation of the exclusion restrictions in the first equation can be obtained introducing the matrix Φ1. In the example
such a matrix is
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Φ1 =
[(G + K) × R1]
(15 × 10)




0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1




(5.17)

The number of columns, R1, is the number of exclusion restrictions from the first structural form equation of the model.
The whole system includes G + K = 15 variables, and the first structural form equation includes 5 variables (a dependent
variable, and 4 variables on the right hand side); therefore the number of exclusions is R1 = 15 − 5 = 10. Each column
corresponds to an excluded variable, and contains a unique nonzero element (= 1), indicating which variable is excluded.
For example, considering the list of all the variables of the model (beginning with the endogenous variables, followed by the
exogenous and lagged endogenous variables) the first variable of the list is Ct, which is included in the first equation, and
therefore corresponds to no column. The following variable in the list is It and it is excluded from the equation. Since it is
the first variable excluded from the equation, and it is the second variable in the list of all variables, then in the first column
there is a value = 1 in the second row. The following variable in the list is W p

t , and it is also excluded from the equation.
Since it is the second variable excluded from the equation, and it is the third in the list of all variables, then in the second
column there is a value = 1 in the third row. And so on.
Matrix Φ1 is such that the coefficients of the first structural form equation satisfy the system of R1 (= 10 in the example)
linear homogeneous equations

[B ; Γ]1,• Φ1 = 0 (5.18)

5.2 Rank condition - Order condition

An admissible transformation matrix F has its first row (F1,•) that must produce transformed coefficients satisfying the
analogous system of equations

[B∗; Γ∗]1,• Φ1 = 0 (5.19)

that is, substituting (5.16)

F1,• [B ; Γ] Φ1 = 0 (5.20)

This can be viewed as a system of R1 (= 10) homogeneous equations with G (= 7) unknowns (the elements of F1,•). The
matrix of coefficients is [B ; Γ]Φ1, and its dimensions are (G × R1) (7 × 10 in the example). If the rank of this matrix of
coefficients is G (= 7), then the system (5.20) has the unique solution F1,• = 0. This is obviously impossible, because also
F1,• = I1,• (the first row of the unit matrix) is for sure a solution of the system.
If the rank of this matrix of coefficients is G − 1 (= 6 in the example), then the system (5.20) would have ∞1 solutions for
F1,•, and all these solutions would be proportional to I1,•, the first row of the unit matrix (in other words, the first row of
an arbitrary scalar matrix would be a solution, and there would be no other solutions). These ∞1 solutions are reduced to a
single solution after imposing the normalization restriction β1,1 = 1 (the coefficient of Ct in the first equation of the example
is not a generic β1,1, but is fixed to 1). Thus, the first equation is identified.
If the rank of this matrix of coefficients is G − 2 or less (5 or less than 5 in the example), then the system (5.20) would
have ∞2 or more solutions for F1,•, and not all would be proportional to I1,•, the first row of the unit matrix. These
solutions would not be reduced to a single solution after imposing the normalization restriction β1,1 = 1. Thus, there would
be other observationally equivalent structural forms whose first equation satisfies all the a-priori restrictions on the original
first equation, but coefficients would be different. Thus the first equation would not be identified.
The above discussion can be summarized in the following condition, which is necessary and sufficient.

Theorem (rank condition). The i − th structural form equation is identified if and only if rank[(B ; Γ)Φi] = G − 1.

Considering that B is non-singular, so that necessarily rank[B ; Γ] = G (= 7 in the example), and that the rank of a product
of matrices is smaller than or equal to the smallest of the ranks, it is necessary that rank[Φ1] ≥ G − 1, otherwise the rank
condition cannot hold. This is a necessary but not sufficient condition, known as the order condition.
For the case of exclusion restrictions, the order condition can be stated in very simple terms. We first consider that the rank
of Φ1 equals the number of columns of Φ1, or number of exclusion restrictions R1 (= 10 in the example). Thus the order
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condition becomes R1 ≥ G− 1. We then consider that the whole structural form system includes G+K variables, but R1 of
these variables are excluded from the first equation, so the number of included variables in the first equation is G−R1 + K.
Considering now that one of these variables is on the left hand side of the structural equation (the dependent variable, Ct in
the example), there are G− 1−R1 + K variables on the right hand side of the first equation (the regressors, or explanatory
variables in the structural equation of consumption). When R1 ≥ G− 1 (as stated above), then the number of regressors on
the right hand side of the strucural equation G − 1 − R1 + K will be ≤ K. Summarizing

Theorem (order condition). A necessary (but not sufficient) condition for a structural form equation to be identified is
that the number of regressors on the right hand side of the equation must not exceed K, the total number of exogenous and
lagged endogenous variables of the system.

Stated as above, the order condition is quite intuitive. We cannot have in a single structural equation more regressors than
independent inputs in the whole system, which are the exogenous and lagged endogenous variables of the system.
The same condition (order) is presented by some textbooks in the following (equivalent) way: the number of exogenous (and
lagged endogenous) variables excluded from a structural equation must be at least as large as the number of endogenous
variables included, less one.

Definitions. The first structural form equation is called just-identified (or exactly identified) if it is identified (i.e. the rank
condition is satisfied), and rank[Φ1] = G − 1.
The first structural form equation is called over-identified if it is identified (i.e. the rank condition is satisfied), and rank[Φ1] >
G − 1.
If rank[Φ1] < G − 1, then the rank condition cannot be satisfied and the equation is not identified; it can also be called
under-identified.

5.3 Remarks

Matrix Φ1 would be more complex if restrictions other than exclusion were introduced. For instance, the first structural
equation of the Klein-I model (the private consumption equation) is more usually presented as

Ct = α1 + α2 Pt + α3 Pt−1 + α4 (W p
t + W g

t ) + u1,t

This would avoid the need of the seventh equation, and the endogenous variables would be 6 rather than 7. But at the same
time it would make more complex the structure of the matrices. In fact, the same coefficient α4 would multiply the sum of
two variables. This would be an additional restriction, and should be properly considered either in the matrices B and Γ
(α4 should appear in both matrices) or in matrix Φ1 (where a column should contain a +1 and a −1 in the proper rows).
Other types of restrictions can be found in econometric models. For example, the constant return to scale hypothesis in a
Cobb-Douglas production function implies that two (or more) structural coefficients sum to one. This is a nonhomogeneous

restriction on coefficients and would require some changes in the rank condition (5.20 would be replaced by a nonhomogenous
equation system and the normalization restriction should be directly introduced into the system, rather than at the end as
above).

5.4 Demand - supply model

If we consider the following model in structural form




Qd
i = α1 + α2 Pi + u1,i

Qs
i = α3 + α4 Pi + u2,i

Qd
i = Qs

i

Demand
Supply
Equilibrium

(5.21)

neither demand nor supply equations are identified, since they both fail the order condition (necessary). The model, in
fact, has 3 endogenous variables (Qd

i = demand, Qs
i = supply, Pi = equilibrium price) and only one exogenous variable (the

constant); so K = 1, while each of the first two equations would have two explanatory variables (regressors).
Intuitively the lack of identification has a quite simple explanation. We expect that demand is a decreasing function of price,
thus α2 < 0, while supply is expected to be an increasing function of price, thus α4 > 0. In the two-dimensional plane (Q,
P ) the two straight lines would cross in a unique point (the equilibrium value of Q and P ). This point would remain fix for
any i (the simultaneous solution of the equation system). If the model is correctly specified, observations at various times
would be points scattered around this unique solution point (maybe very close to it, if the random error terms u1,i and u2,i

are small). Such a scatter diagram makes it impossible to distinguish between a demand (decreasing) function and a supply
(increasing) function of price.
We could introduce an additional explanatory variable (exogenous) into the supply equation, for instance Li = cost of labour
and/or raw materials: Qs

i = α3 + α4 Pi + α5 Li + u2,i. The order condition would now be satisfied by the first structural
equation (demand); there would be in fact K = 2 exogenous variables in the system, the constant and Li, and there would be
two regressors in the equation. Some simple algebra could show that also the rank condition is satisfied by the first equation
if α5 6= 0. The second equation (supply) would be still under-identified.
There is again an intuitive explanation of all this. We could still represent the demand and supply functions in the two
dimensional plane. Values of the additional exogenous variable Li, changing with i, would shift the supply line in the
plane. There would be, therefore, several intersection points between demand and supply (equilibrium values of Q and P for
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different values of Li). All these points would be on the demand line (that does not shift). If the model is correctly specified,
observations at various i-s would be points scattered around the solution points, therefore they would be scattered along the
demand line, making it visible. There would be, however, no chance to identify the supply function.

5.5 Some remarks on variance-covariance restrictions

Restrictions on variances and covariances help identification (but they are quite unusual). For example, if the first equation
is not identified by means of exclusion restrictions, it could be identified by imposing restrictions on the first row (and first
column) of the Σ matrix. In particular, the variance could be known, or some covariances could be zero.
We still consider linear restrictions, but not necessarily homogeneous, so that the right hand side of equations (5.18) and
(5.20) will be a constant vector r1, not necessarily equal to zero. If we impose S1 restrictions on the first row of Σ (Θ1 is the
matrix of restrictions)

Σ1,• Θ1 = s1 (5.22)

an admissible transformation matrix F must have the first row satisfying the system of R1 + S1 equations

[
F1,• [B ; Γ] Φ1 = r1

F1,• Σ F ′ Θ1 = s1
(5.23)

The system is nonlinear in the unknown F1,•. We can nevertheless discuss the problem considering what could be its solution
if F was treated as fixed, and the unknown F1,• was considered as not belonging to F . In such a way we derive a condition
which is necessary, but not sufficient.
The first equation of the model is identified if, and only if, for any admissible F , the unique solution of the system (5.23) is
F1,• = I1,• (unit row vector). The matrix F = I is surely admissible, so we fix F = I; then, the solution F1,• = I1,• must
be unique, and this holds when rank[(B ; Γ) Φ1 ; Σ Θ1] = G. This is called generalized rank condition. It is a necessary
condition. It ensures that there cannot be a solution different from F1,• = I1,•, but having treated F1,• and F separately,
the condition does not ensure the existence of a solution; thus, the condition is not sufficient.
To ensure a rank = G, the matrix, which has G rows, must have at least G columns. The number of columns is R1 + S1.
Therefore it must be R1 + S1 ≥ G, which is the generalized order condition (also necessary, but not sufficient). When R1 is
too small, and thus identification is not ensured by means of restrictions on coefficients, R1 + S1 could be large enough, and
the first equation of the model might be identified.

6 ASYMPTOTIC PROPERTIES OF ORDINARY LEAST SQUARES (OLS)

Let’s consider the linear regression model

y = Xβ + u (6.24)

where

y =
(n × 1)




y1

y2

...
yt

...
yn




X =
(n × k)




x1,1 x1,2 ... x1,k

x2,1 x2,2 ... x2,k

... ... ... ...
xt,1 xt,2 ... xt,k

... ... ... ...
xn,1 xn,2 ... xn,k




β =
(k × 1)




β1

β2

...
βk


 u =

(n × 1)




u1

u2

...
ut

...
un







ut : i.i.d.

E[u] = 0

V ar[u] = E[uu′] = σ2In

(6.25)

OLS estimator of coefficients is

β̂ = (X ′X)−1X ′y (6.26)

Substituting y = Xβ + u into the above expression, we get the estimation error

β̂ − β = (X ′X)−1X ′u =

(
X ′X

n

)−1
X ′u

n
(6.27)

and the estimation error rescaled by
√

n

√
n(β̂ − β) =

(
X ′X

n

)−1
X ′u√

n
(6.28)

We assume that the k×k matrix X ′X/n is non-singular for any n (classical hypothesis), and converges to a non-singular and
finite limit as n → ∞. If no random variables are contained in the matrix X, then convergence for X ′X/n is in mathematical

sense (lim), otherwise we are dealing with convergence in probability (plim) to a constant matrix. Trends are therefore
excluded (otherwise the limit would not be finite).
We roughly consider four different cases.
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6.1 First case

The matrix of explanatory variables, X, does not contain random variables. In this case, from (6.27) we get

E[β̂ − β] = (X ′X)−1E[X ′u] = (X ′X)−1X ′E(u) = 0

and

plim[β̂ − β] = lim

(
X ′X

n

)−1

plim
X ′u

n
= lim

(
X ′X

n

)−1

plim
1

n

n∑

t=1

xtut = 0

The last equality follows directly from the weak law of large numbers (WLLN) observing that the plim is the probability
limit of the average of n vectors (k × 1), each of which has zero expected value: E(xtut) = xtE(ut) = 0.
So in this case the OLS estimator is unbiased and consistent.

6.2 Second case

The matrix of explanatory variables, X, contains some random variables, but these random variables are independent from
the error terms u (strictly exogenous).
Also in this case the OLS estimator is unbiased and consistent. The only difference, with respect to the previous case, is that
the limit of (X ′X/n) must be a probability limit, rather than a limit in mathematical sense.

6.3 Third case

Contemporaneous explanatory variables and error terms are independent, but some explanatory variables at time t (elements
of the vector xt) may be not independent of us for some s 6= t. This is, for example, the case of a model where the lagged

dependent variable yt−1 is one of the explanatory variables, or, more generally, when xt contains some lagged endogenous

variables.
In this case the OLS estimator is biased, but consistent.
Bias follows from E[β̂ − β] = E[(X ′X)−1X ′u] 6= (X ′X)−1X ′E(u), because the whole vector u is not independent of the
whole matrix X, and so the result is generally 6= 0.
Consistency follows still from (6.27) observing that

plim
X ′u

n
= plim

1

n

n∑

t=1

xtut = lim
1

n

n∑

t=1

E[xtut] (6.29)

which is = 0, because each of the n vectors (k × 1) in the sum has zero expected value: E(xtut) = E(xt)E(ut) = 0, being
the contemporaneous xt and ut independent.
Of course, the vectors in the sum are not independent of each other; for instance, xt may contain a lagged endogenous
variable, that is a function of ut−1, so that xtut and xt−1ut−1 are not independent vectors. So it is necessary to resort to a
suitable form of the weak law of large numbers (WLLN) for non-independent sequences.

6.4 Fourth case

Contemporaneous explanatory variables and error terms are not independent. In other words, some of the explanatory
variables at time t (elements of the vector xt) are not independent of ut. This is, for example, the case of a model where a
current endogenous variable is one of the explanatory variables of the equation (for example, a structural form equation of
a simultaneous equation model).
In this case the OLS estimator is biased (as in the previous case) and inconsistent.
Inconsistency follows observing that (6.29) usually produces a result 6= 0, because the contemporaneous xt and ut are not
independent, so that each of the n vectors (k × 1) has nonzero expected value: E[xtut] 6= 0,
Therefore, in this last case it is necessary to resort to estimation methods different from OLS.

7 INSTRUMENTAL VARIABLES (I.V.)

Let W be a n×k matrix (same dimensions as X), such that the two k×k matrices W ′X/n and W ′W/n are both non-singular
for any n, and both converge to finite, non-singular, constant limits as n → ∞.
Temporarily we assume that the matrix W does not contain random variables. This assumption will help in simplifying the
first proofs of the next section; then it will be relaxed, and random variables (with some limitations) will be admitted into
W . Thus, convergence for W ′W/n is in mathematical sense (lim), while for W ′X/n is in probability (plim), if X contains
random variables.
Define the instrumental variable estimator (that makes use of W as a matrix of instruments) as

β̃W = (W ′X)−1W ′y (7.30)

Substituting into the above expression y = Xβ + u we get the estimation error
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β̃W − β = (W ′X)−1W ′u =

(
W ′X

n

)−1
W ′u

n
(7.31)

and the estimation error rescaled by
√

n

√
n(β̃W − β) =

(
W ′X

n

)−1
W ′u√

n
(7.32)

8 ASYMPTOTIC PROPERTIES OF INSTRUMENTAL VARIABLE ESTIMATOR

We have the following preliminary results.

plim
W ′u

n
= 0 (8.33)

This follows from the weak law of large numbers (WLLN) observing that W ′u/n =
∑n

t=1 wtut/n is the (k × 1) vector
arithmetical average of the n vectors wtut, each of which has zero expected value: E(wtut) = wtE(ut) = 0.

W ′u√
n

distr
−−−−→n → ∞ N

(
0, σ2lim

W ′W

n

)
(8.34)

This can be easily proved considering that the (k×1) vector W ′u/
√

n has zero expected value and variance-covariance matrix
E(W ′uu′W )/n = W ′E(uu′)W/n = W ′σ2InW/n = σ2W ′W/n. This expression of the variance-covariance matrix is valid for
any n, therefore also in the limit. The normal distribution is obtained by a straightforward application of the central limit
theorem.

8.1 Consistency and asymptotic normality of the Instrumental Variable estimator

If we consider the estimation error (7.31), then

plim(β̃W − β) = plim

[(
W ′X

n

)−1
W ′u

n

]
= plim

(
W ′X

n

)−1

plim
W ′u

n
= 0 (8.35)

as it follows from (8.33). If we consider the estimation error rescaled by
√

n (7.32), then

√
n(β̃W − β) =

(
W ′X

n

)−1
W ′u√

n

distr
−−−−→n → ∞ N

[
0, σ2

(
plim

W ′X

n

)−1

lim
W ′W

n

(
plim

X ′W

n

)−1
]

(8.36)

This follows from considering separately the limits of the two elements of the product: (W ′X/n)−1, whose limit is the inverse
of the constant plimW ′X/n, and W ′u/

√
n whose limit is the multivariate normal distribution, with zero mean, given in

(8.34).

8.2 Efficient instrumental variables: expectations of regressors

Since wt does not contain random variables, it is

E(wtx
′
t) = wtE(x′

t) (8.37)

Then

plim
W ′X

n
= lim

W ′E(X)

n
(8.38)

which follows from a straightforward application of some suitable version of the weak law of large numbers (WLLN), observing
that W ′X/n =

∑n
t=1 wtx

′
t/n it the (k × k) matrix arithmetical average of the n matrices wtx

′
t, each of which has expected

value given by (8.37). Finally, W ′E(X)/n =
∑n

t=1 wtE(x′
t)/n is the (k × k) matrix arithmetical average of the n matrices

containing the expected values wtE(x′
t). By assumption, the limit exists and is a finite non-singular matrix. Moreover, it is

clear from the right hand side of (8.38) that it does not contain random variables (so it can be treated as a constant).
Applying (8.38), the asymptotic variance-covariance matrix in (8.36) can be written as

σ2

(
plim

W ′X

n

)−1

lim
W ′W

n

(
plim

X ′W

n

)−1

= σ2

(
lim

W ′E(X)

n

)−1

lim
W ′W

n

(
lim

E(X ′)W

n

)−1

(8.39)

If we choose W = E(X), the above asymptotic variance-covariance matrix becomes
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σ2

(
lim

E(X ′)E(X)

n

)−1

(8.40)

For any other choice of W , the asymptotic variance-covariance matrix (8.39) cannot be smaller than (8.40)

σ2

(
lim

W ′E(X)

n

)−1

lim
W ′W

n

(
lim

E(X ′)W

n

)−1

≥ σ2

(
lim

E(X ′)E(X)

n

)−1

(8.41)

according to Schwarz inequality.
Thus W = E(X) can be called the matrix of efficient instrumental variables.

8.3 Efficient instrumental variables: conditional expectations of regressors

Sections 8, 8.1 and 8.2 proved consistency, asymptotic normality and efficieny, confining to “non-random variables only”
the choice of the instrumental variables (elements of the matrix W ). Quite similar results hold, still under the assumptions
(6.25), if we “enlarge” the choice of the instrumental variables. We admit also random variables among the elements of W ,
provided that, at time t, all the elements of wt are independent from the random error terms ut, ut+1, ut+2... Notice that the
“independence” requirement is stronger than strictly necessary, and is here assumed to simplify the proofs. It is, however,
important to notice that it would not be enough to assume that ut and wt are not correlated. The same consideration holds
for the strong assumption on the ut (i.i.d., eq. 6.25, rather than simply not autocorrelated).
Exogenous variables can be random variables, but they satisfy the requirement, and so they can be used as elements of W .
At time t, lagged endogenous variables (lagged one or more periods) also satisfy the requirement, so they can be used as
elements of wt. On the contrary, the value of current endogenous variables (or future endogenous variables) cannot be used
as elements of wt.
Since all the variables in the simplified world summarized by the model are included in the vectors yt and zt, for varying t,
the vector of instrumental variables at time t, wt, can include any element of zt, zt−1, zt−2, etc., but no element of yt, yt+1,
etc. In principle, it might also contain any exogenous element of zt+1, zt+2, etc., but no lagged endogenous element of zt+1,
zt+2, etc. The set of variables that can be used as elements of wt will be indicated as ℑt. It contains, as a subset, all the
non-random variables that were considered as the only possible elements of W in the previous sections.
With some simple changes, the main results of sections 8, 8.1 and 8.2 can now be proved under the new, less restrictive
conditions on the instrumental variables choice. The differences will be E(xt|ℑt) replacing E(xt) in all the formulas, and
plim replacing lim when the sequences contain random variables.
Analogously to (8.33) we have

plim
W ′u

n
= 0 (8.42)

because W ′u/n =
∑n

t=1 wtut/n is the (k × 1) vector arithmetical average of the n vectors wtut, each of which has zero
expected value: E(wtut) = E(wt)E(ut) = 0.
Analogously to (8.34) we have

W ′u√
n

distr
−−−−→n → ∞ N

(
0, σ2plim

W ′W

n

)
(8.43)

This follows from some suitable version of the central limit theorem (CLT, for non-independent sequences), considering that
the (k × 1) vector W ′u/

√
n =

∑n
t=1 wtut/

√
n, where each term has zero expected value. Computing its variance-covariance

matrix, we get E(W ′uu′W )/n = E [(
∑n

t=1 wtut) (
∑n

t=1 w′
tut)] /n = E

[∑n
t=1 wtw

′
tu

2
t

]
/n + E

[∑
r 6=s wrw

′
surus

]
/n (notice

that each element in the the second sum is zero being always one of the ur or us independent of all the other terms of
the product) =

∑n
t=1 E[u2

t wtw
′
t]/n (notice also that the independence of ut from wt implies independence of u2

t as well;
it would not happen if they were simply not correlated) =

∑n
t=1[E(u2

t )E(wtw
′
t)]/n = σ2

∑n
t=1 E[wtw

′
t]/n, whose limit is

σ2plimW ′W/n (having applied some suitable WLLN for non-independent sequences).
Analogously to (8.36) we have

√
n(β̃W − β) =

(
W ′X

n

)−1
W ′u√

n

distr
−−−−→n → ∞ N

[
0, σ2

(
plim

W ′X

n

)−1

plim
W ′W

n

(
plim

X ′W

n

)−1
]

(8.44)

that follows from considering separately the limits of the two elements of the product and applying the previous results.
Analogously to (8.37) we have

E(wtx
′
t|ℑt) = wtE(x′

t|ℑt) (8.45)

because wt is σ(ℑt) − measurable; roughly speaking, when ℑt is known, also wt is known, thus it can be moved outside

conditional expectation. However it must be noticed that, unlike (8.37), here wt and E(xt|ℑt) are random variables.

A new simbol must be introduced to indicate the matrix whose t − th row is E(x′
t|ℑt)
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Eℑ(X) =
(n × k)




E(x1,1|ℑ1) E(x1,2|ℑ1) ... E(x1,k|ℑ1)
E(x2,1|ℑ2) E(x2,2|ℑ2) ... E(x2,k|ℑ2)

... ... ... ...
E(xt,1|ℑt) E(xt,2|ℑt) ... E(xt,k|ℑt)

... ... ... ...
E(xn,1|ℑn) E(xn,2|ℑn) ... E(xn,k|ℑn)




=




E(x′
1|ℑ1)

E(x′
2|ℑ2)
...

E(x′
t|ℑt)
...

E(x′
n|ℑn)




(8.46)

Notice that in each row the expectation is conditional on a different, time varying information set.
Analogously to (8.38) we have

plim
W ′X

n
= plim

W ′Eℑ(X)

n
(8.47)

This can be proved observing that plimW ′X/n = plim
∑n

t=1 wtx
′
t/n (applying some suitable WLLN) = lim

∑n
t=1 E(wtx

′
t)/n

(thus it is not random; we assume that the limit exists, and is a finite non-singular matrix. Applying now iterated ex-
pectations) = lim

∑n
t=1 E[E(wtx

′
t|ℑt)]/n (applying 8.45) = lim

∑n
t=1 E[wtE(x′

t|ℑt)]/n (WLLN) = plim
∑n

t=1 wtE(x′
t|ℑt)/n

= plimW ′Eℑ(X)/n.
Applying (8.47), the asymptotic variance-covariance matrix in (8.44) can be written as

σ2

(
plim

W ′X

n

)−1

plim
W ′W

n

(
plim

X ′W

n

)−1

= σ2

(
plim

W ′Eℑ(X)

n

)−1

plim
W ′W

n

(
plim

Eℑ(X ′)W

n

)−1

(8.48)

Choosing W = Eℑ(X), that is, at time t, wt = E(xt|ℑt), the above asymptotic variance-covariance matrix becomes

σ2

(
plim

Eℑ(X ′)Eℑ(X)

n

)−1

(8.49)

which is the smallest possible, being for any other choice of W

σ2

(
plim

W ′Eℑ(X)

n

)−1

plim
W ′W

n

(
plim

Eℑ(X ′)W

n

)−1

≥ σ2

(
plim

Eℑ(X ′)Eℑ(X)

n

)−1

(8.50)

according to Schwarz inequality; this is analogous to (8.41).
Thus W = Eℑ(X) can be called the matrix of efficient instrumental variables.
Notice that, being this the most efficient choice in the new class of instrumental variables, that include the previous instru-
mental variables (non-random) as a subset, it must be more efficient than (or at least as efficient as) the previous choice.
This follows also considering directly that

(
plim

Eℑ(X ′)Eℑ(X)

n

)−1

≤
(

lim
E(X ′)E(X)

n

)−1

(8.51)

because plimEℑ(X ′)Eℑ(X)/n = plim
∑n

t=1[E(xt|ℑt)E(x′
t|ℑt)]/n = lim

∑n
t=1 E[E(xt|ℑt)E(x′

t|ℑt)]/n (each term of the sum
is the “expectation of a square”, that is always ≥ the “square of the expectation”) ≥ lim

∑n
t=1 E[E(xt|ℑt)]E[E(x′

t|ℑt)]/n
= lim

∑n
t=1 E(xt)E(x′

t)/n = limE(X ′)E(X)/n. The variance-covariance matrices are obtained inverting the expressions, so
that the inequality would be inverted, as in (8.51).
To conclude, we observe that if a regressor at time t (an element of xt) is exogenous or lagged endogenous (thus it is an
element of zt), it coincides with its conditional expectation, given ℑt, because all elements of zt belong to ℑt. Thus it remains
unchanged in the vector of efficient instrumental variables wt. If a regressor at time t is a current endogenous, its conditional
expectation, given ℑt, follows immediately from the reduced form: yt = Πzt + vt, thus E[yt|ℑt] = Πzt.
In all cases we obtain as efficient instrumental variables the same values that would be obtained by treating exogenous
variables and lagged endogenous variables as if they were non-random. In such a case, in fact, we could simply say that zt

= E[zt], with a notational simplification over E[zt|ℑt]; also, we can say that Πzt = E[yt], with a notational simplification
over E[yt|ℑt]. This suggest to adopt a trick (8.4) to simplify notations.

8.4 A simplification trick

What has been proved above is that, if we treat exogenous and lagged endogenous variables as if they were non-random

variables, the main results remain valid, with a considerable simplification of notations.

Let’s consider an equation where a current endogenous variable is among the regressors (an endogenous variable at time
t is one of the elements of the vector xt). For example, in the first structural equation of the Klein-I model (the private
consumption equation)

Ct = α1 + α2 Pt + α3 Pt−1 + α4 Wt + u1,t

the vector of regressors (explanatory variables) at time t is xt = [1, Pt, Pt−1,Wt]
′. Current profits (Pt) is the second regressor

of Ct in the structural form. In the reduced form system yt = Πzt +vt, the equation of Pt is the 5th, being Pt the 5th element
of the 7 × 1 vector yt. Therefore Pt = [yt]5 = Π5,•zt + v5,t, being Π5,• the 5th row of the 7 × 8 matrix Π. Since ℑt contains
all the elements of zt, it is, E[Pt|ℑt] = Π5,•zt. Exactly the same value would be obtained using the simplification trick:
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E[Pt] = Π5,•zt, because zt contains only exogenous and lagged endogenous variables (thus non-random), and the error term
v5,t has zero mean. Thus the vector of efficient instrumental variables at time t, wt = E(xt), should contain, as a second
element, E[Pt] = Π5,•zt.
We do analogously for the fourth element of the vector wt, that should be filled by E[Wt] = Π7,•zt, being total wages and

salaries the 7th endogenous variable of the model.
The first (1) and the third (Pt−1) element of the vector wt are equal to the corresponding elements of xt, because they are
non-random (simplification trick).
Notice finally that being [Pt] = Π5,•zt + v5,t, the scalar E[Pt] = Π5,•zt can be viewed as a linear combination of the elements
of zt, but also as the observed value of the endogenous variable Pt purged of its reduced form error E[Pt] = Pt − v5,t.
In all the formulas that follow, E(X) implicitly means Eℑ(X), and expectation implicitly means conditional expectation.

8.5 Instrumental variables for Klein-I model

The model has 3 stochastic behavioural equations. We call X1 the (n × k1) matrix of the explanatory variables in the
structural form equation of consumption. X2 (n × k2) and X3 (n × k3) are the matrices of explanatory variables in the
structural form equations of investment and private wages, respectively. For this particular model the three matrices have
the same dimensions (21 × 4). The t − th row of these matrices are as follows

x′
1t =

(1 × k1)
[1 Pt Pt−1 Wt] x′

2t =
(1 × k2)

[1 Pt Pt−1 Kt−1] x′
3t =

(1 × k3)
[1 Xt Xt−1 At]

The matrices W1, W2 and W3 have the same dimensions as the corresponding matrices X1, X2 and X3. Their t − th rows
are as follows

w′
1t =

(1 × k1)
[1 Π5,•zt Pt−1 Π7,•zt] w′

2t =
(1 × k2)

[1 Π5,•zt Pt−1 Kt−1] w′
3t =

(1 × k3)
[1 Π4,•zt Xt−1 At]

8.6 Feasible instrumental variable estimator

Unfortunately, the method discussed above is asymptotically efficient just in principle; in practice the method is not feasible.
To make the method feasible, we shall replace the (n × k) matrix E(X) with a matrix that contains good estimates of the
expected values of the elements of X. So, in practice, we shall use as a matrix of instrumental variables

W = Ê(X) (8.52)

More or less all the estimation methods proposed in the literature use instrumental variables of this type (8.52). The

differences from one another are due to different ways of computing the estimated expected values Ê(X).
Concerning the consumption equation, being Π (and therefore Π5,•) unknown, to make the estimation method feasible

in practice we first estimate Π (or at least Π5,•), obtaining Π̂, and then plug into wt, as its second element, the scalar

Ê[Pt] = Π̂5,•zt.
If a consistent estimator of Π is used to build the matrix of instrumental variables, then the resulting feasible instrumental
variable estimator has the same asymptotic variance-covariance matrix as the not feasible efficient estimator (the one that
would use the true matrix Π).
To prove it, we can consider how the estimation error (eq. 8.36) changes if we use W = E(X) (the not feasible estimator that

uses the true Π) or if we use W = Ê(X) (the feasible estimator that uses a consistent estimator Π̂). Let’s first consider the

(k × k) matrix W ′X/n of equation (8.36). It has exactly the same plim whether we use W = E(X), or we use W = Ê(X)

plim

(
E(X ′)X

n

)
= plim

( ̂E(X ′)X

n

)

The above equality can be easily proved element by element. For example, still with reference to the consumption equation
of the Klein-I model, the element (1,2) of such a matrix is

∑n
t=1 E(Pt)/n =

∑n
t=1 Π5,•zt/n = Π5,• (

∑n
t=1 zt/n) in the not

feasible case, while in the feasible case it is
∑n

t=1 Ê(Pt)/n =
∑n

t=1 Π̂5,•zt/n = Π̂5,• (
∑n

t=1 zt/n). The two expressions have

obviously the same limit if plimΠ̂5,• = Π5,•.
Analogously, the equality can be proved for all the other elements of the (k × k) matrix (4 × 4, in the example).
Considering now the (k × 1) vector W ′u/

√
n in equation (8.36), again it is straightforward to verify that each element

converges to the same distribution whether we use W = E(X), or we use W = Ê(X).

We conclude, therefore, that also the feasible estimator is asymptotically efficient.

9 LIMITED INFORMATION ESTIMATION METHODS (or Single Equation Estimation Methods)

Most of the different traditional estimation methods of the literature are based on equation (7.30), with different ways of

computing the feasible W = Ê(X) (more precisely, W = ̂Eℑ(X)). Its computation always uses a previously computed

estimator (Π̂) of the matrix of reduced form coefficients, such that plimΠ̂ = Π (consistent estimator of Π). All estimation
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methods are performed in several stages (or steps, two or more than two): the final stage is always equation (7.30), while
the previous stages aim at providing a consistent estimator of Π.
Limited information methods do not exploit information contained in the correlation between error terms of different equa-
tions.

9.1 2SLS - Two Stage Least Squares: Basmann (1957), Theil (1958)

We first select all the current endogenous variables appearing somewhere on the right hand side of the structural form
equations. Then we regress, with OLS, each of these current endogenous variables against all the exogenous and lagged

endogenous variables of the system (first stage). The fitted values of these variables are used in the matrices of instrumental
variables, where exogenous and lagged endogenous variables are left at their observed value. Then we apply the instrumental
variables formula (7.30) to each structural form equation (second stage).
The first stage is an OLS estimation of each reduced form equations, unrestricted. Each OLS provides a consistent estimate
of a row of Π, since the variables on the right hand side of each equation are only exogenous and lagged endogenous variables.
The fitted values of the dependent variables can therefore be used in the matrices of instrumental variables, to replace the

current endogenous regressors of the structural form equations.
Having built the matrices of instrumental variables in this particular way, the results remain algebraically equal if, instead of
the I.V. formula, in the second stage we again apply the OLS formula. For instance, in the first equation, W ′

1X1 = W ′
1W1,

thus (W ′
1X1)

−1W ′
1y1 = (W ′

1W1)
−1W ′

1y1. For this reason the method is called two stage least squares.
2SLS is perhaps the most popular among limited information methods. It cannot be applied to large scale systems. In
fact, when the number of exogenous and lagged endogenous variables in the system is too large (> n), the first stage OLS
estimation is not feasible.

9.2 LIVE - Limited information Instrumental Variables Efficient: Brundy and Jorgenson (1971), Dhrymes (1971)

In the first stage of this method some arbitrary matrices of instrumental variables are used, and equation (7.30) is applied
to each structural form equation. In the example, we use three matrices W1, W2 and W3 that only need to satisfy the quite
general requirements for the matrices of instrumental variables given in section 7.
This first stage provides, for each structural form equation, coefficient estimates which are consistent, but not asymptotically
efficient. Estimated coefficients are then plugged into the matrices of structural form coefficients, producing a consistent (but
inefficient) estimate of B and Γ.
Inverting the estimated B and multiplying by the estimated Γ (with minus sign) provides a consistent estimate of the matrix
of reduced form coefficients Π. This estimate of Π is now used to build, for each equation, the matrix of the estimated
expected values of the regressors, to be used as new matrices of instrumental variables (as in section 8.5 for the example
model).
Then the second stage applies equation (7.30) to each structural form equation, producing coefficient estimates which are
consistent and asymptotically efficient.
Unlike 2SLS, this method estimates Π from the restricted reduced form. The estimation formula is only applied to the
structural form equations, (usually with a small number of regressors), thus the method can be applied also to large scale
models. It is, however, less robust than 2SLS. A specification error in a structural form equation may have consequences in
the estimation of the other equations as well, even if correctly specified. This does not happen for 2SLS, where a specification
error in one equation has consequences only for such equation.
Notice finally that the estimated expected values of the endogenous regressors, to be used in the i.v. matrices of the second
stage, are the values of the endogenous variables computed from the simultaneous solution of the structural form model,
using the terminology of section 4. Solution is, of course, static (or one-step-ahead), since lagged endogenous are considered
fixed (section 8.4).
The instrumental variables used in the first stage can be completely arbitrary, as already observed. A simple technique is
customarily (even if not necessarily) adopted to build them. A preliminary estimation is done, using OLS on the structural
form equations. Estimates would therefore be inconsistent, but presumably better than if we invent them from scratch. From
these estimates, filling the matrices B and Γ we compute an estimate of Π (still inconsistent, of course), and use it to fill the
matrices of instrumental variables to be used in the first stage. Then, first and second stage are as above.

9.3 IIV - Iterative Instrumental Variables: Dutta and Lyttkens (1974), Lyttkens (1974)

The final stage of LIVE can be applied iteratively, till convergence is achieved. At the end of each iteration, estimated
coefficients are plugged into the matrices B and Γ; a new estimate of Π is then computed; new matrices of instrumental
variables are then computed and used in the next iteration.
Each new iteration (or stage) may change the numerical values of the estimates, but not their asymptotic distribution:
efficiency has been already achieved at the second stage.

9.4 k-class Estimator: Theil (1958), Nagar (1959)

It is convenient here to interpret the instrumental variables as at the end of section 8.4, that is the observed value of each
regressor purged of its reduced form error.
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With reference to the first structural form equation of the example model, we may replace Pt, in the matrix of instrumental
variables, with Pt − k v̂5,t, where k is a scalar random variable, function of the data. Analogously, we replace Wt with
Wt − k v̂7,t. If v̂5,t and v̂7,t are residuals of OLS applied to the unrestricted reduced form (as in the first stage of 2SLS), the
instrumental variable estimator is called k-class estimator. It is straightforward to prove that the estimator is consistent if
plim (k − 1) = 0, and also asymptotically efficient if plim

√
n (k − 1) = 0. Roughly speaking, k must converge to 1 fast

enough.
2SLS is the particular case when k = 1; as well known, it is consistent and asymptotically efficient. OLS is the particular
case when k = 0, and it is inconsistent.

9.5 GIVE - Generalized Instrumental Variable Estimator: Sargan (1958)

9.6 LIML - Limited Information Maximum Likelihood: Anderson and Rubin (1949, 1950)

10 SEEMINGLY UNRELATED REGRESSION EQUATIONS (SURE)

A system of G linear regression models, without endogenous regressors,




y1 = X1β1 + u1

...
yi = Xiβi + ui

...
y

G
= X

G
β

G
+ u

G

where yi =
(n×1)




yi,1

yi,2

...
yi,t

...
yi,n




Xi =
(n×ki)




xi,1,1 xi,1,2 ... xi,1,ki

xi,2,1 xi,2,2 ... xi,2,ki

... ... ... ...
xi,t,1 xi,t,2 ... xi,t,ki

... ... ... ...
xi,n,1 xi,n,2 ... xi,n,ki




βi =
(ki×1)




βi,1

βi,2

...
βi,ki




ui =
(n×1)




ui,1

ui,2

...
ui,t

...
ui,n







E[ui,t] = 0 ∀ i, t
V ar[ui,t] = σ2

i = σi,i ∀ t
Cov[ui,t, uj,t] = σi,j ∀ t
Cov[ui,t1 , uj,t2 ] = 0 ∀ i, j, t1 6= t2

(10.53)

can be represented as a single linear regression model, y = Xβ + u with Gn observations, defining the vectors and matrices

y = Xβ + u y =
(Gn×1)




y1

y2

...
yi

...
yG




X =
[Gn×(k1+...+k

G
)]




X1 0 ... 0
0 X2 ... 0

... ... ... ...
0 ... Xi 0

... ... ... ...
0 0 ... X

G




β =
[(k1+...+k

G
)×1]




β1

β2

...
βi

...
βG




u =
(Gn×1)




u1

u2

...
ui

...
uG




(10.54)

where the vector of error terms, with Gn elements, has expected value zero and variance-covariance matrix

V ar(u) =
(Gn×Gn)

Σ ⊗
(G×G)

In =
(n×n)




σ1,1 0 .. 0
0 σ

1,1
.. 0

... ... .. ...
0 0 .. σ1,1

σ2,1 0 .. 0
0 σ

2,1
.. 0

... ... .. ...
0 0 .. σ2,1

... ... .. ...

... ... .. ...
σG,1 0 .. 0

0 σG,1 .. 0
... ... .. ...
0 0 .. σ

G,1

σ1,2 0 .. 0
0 σ1,2 .. 0

... ... .. ...
0 0 .. σ1,2

σ2,2 0 .. 0
0 σ2,2 .. 0

... ... .. ...
0 0 .. σ2,2

... ... .. ...

... ... .. ...
σ

G,2
0 .. 0

0 σG,2 .. 0
... ... .. ...
0 0 .. σ

G,2

..

..

..

..

..

..

..

..

..

..

..

..

..

..

σ1,G 0 .. 0
0 σ

1,G
.. 0

... ... .. ...
0 0 .. σ

1,G

σ2,G 0 .. 0
0 σ

2,G
.. 0

... ... .. ...
0 0 .. σ

2,G

... ... .. ...

... ... .. ...
σG,G 0 .. 0

0 σG,G .. 0
... ... .. ...
0 0 .. σ

G,G




(10.55)

whose inverse is Σ−1 ⊗ In .
There is no explicit relationship among equations, since there are no current endogenous variables on the right hand side
of the equations (no simultaneity). There is, however, a relationship due to the correlations among contemporaneous error
terms (or cross-equations correlations).
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10.1 An example of SURE model: Zellner (1962)

The model is a system of 2 equations, each with 3 explanatory variables (regressors). Dependent variables are annual gross
investments of two corporations, during the period 1935-1954.




IGE
t = β1,1 + β1,2 FGE

t−1 + β1,3 CGE
t−1 + u1,t

IW
t = β2,1 + β2,2 FW

t−1 + β2,3 CW
t−1 + u2,t

General Electric

Westinghouse
(10.56)

Ft−1 is the market value of the firm, defined as the total value of the outstanding stock at end-of-year market quotations.
Ct−1 is the existing capital stock.

10.2 GLS and Feasible GLS estimation of SURE models

If X does not contain random variables and Σ is known, the GLS estimator

β̇
GLS

= [X ′(Σ−1 ⊗ In)X]−1X ′(Σ−1 ⊗ In)y (10.57)

is BLUE (Aitken’s theorem), as well as consistent and asymptotically efficient. The variance-covariance matrix of the GLS
estimator is

V ar(β̇
GLS

) = E[(β̇
GLS

− β)(β̇
GLS

− β)′] = [X ′(Σ−1 ⊗ In)X]−1 (10.58)

If Σ is not known, a feasible GLS estimator can be obtained from the same equation, having previoulsy computed a consistent
estimate Σ̂. Σ̂ is usually computed from residuals of a preliminary OLS estimation; it is consistent, being OLS consistent
for a model without endogenous regressors. It is common practice to compute Σ̂ without degrees of freedom correction,
that is dividing by n the sums of squared residuals (variances) or the sums of cross products of contemporaneous residuals
(covariances).

β̇
F GLS

= [X ′(Σ̂−1 ⊗ In)X]−1X ′(Σ̂−1 ⊗ In)y (10.59)

If plimΣ̂ = Σ, both estimation errors (rescaled by
√

n) have the same asymptotic distribution (multivariate normal)

√
n

[
β̇

GLS
− β

]

√
n

[
β̇

F GLS
− β

]

=
[

X′(Σ−1⊗In )X
n

]−1

=

[
X′(Σ̂−1⊗In )X

n

]−1

X′(Σ−1⊗In )u√
n

X′(Σ̂−1⊗In )u√
n





distr
−−−−→n → ∞ N

{
0,

[
X ′(Σ−1 ⊗ In)X

n

]−1
}

(10.60)

Each estimation error, in fact, is the product of two terms: the first term of the product has the same limit, in the two cases;
the second term of the product has, in the two cases, the same asymptotic normal distribution.

10.3 Remarks and special cases

1. Kronecker product is a convenient algebraic operator that permits a closed form representation of the variance-
covariance matrix. Its use, however, is not recommended in the computational practice. Software algorithms should
avoid its use, because of its computational inefficiency.

Indicating with σ̂i,j the generic element of Σ̂−1, it is easier and faster to compute the matrix [X ′(Σ̂−1 ⊗ In)X] block
by block, the i, j − th block being σ̂i,jX ′

iXj (of dimensions ki × kj).

The vector X ′(Σ̂−1 ⊗ In)y would be analogously partitioned, the i − th sub-vector being X ′
i

∑G
j=1 σ̂i,jyj .

2. GLS (or Feasible GLS) obviously gives the same results as OLS (algebraically and numerically) when Σ (or Σ̂) is
diagonal (all cross equation covariances are zero).

3. Even if Σ (or Σ̂) is not diagonal (cross equation covariances are not zero), GLS (or Feasible GLS) gives the same results
as OLS (algebraically and numerically) if the explanatory variables (regressors) are the same in each equation. In such
a case, if we call Z the (n×k) matrix of explanatory variables common to all equations, then the block-diagonal matrix
X could be represented as X = I

G
⊗ Z (with dimensions Gn × Gk), and some straightforward algebra would give

β̇
F GLS

= [X ′(Σ̂−1 ⊗ I
n
)X]−1X ′(Σ̂−1 ⊗ I

n
)y = [(I

G
⊗ Z)′(Σ̂−1 ⊗ I

n
)(I

G
⊗ Z)]−1(I

G
⊗ Z)′(Σ̂−1 ⊗ I

n
)y

= {I
G
⊗ [(Z ′Z)−1Z ′]}y =




β̂
OLS1

...

β̂
OLSi

...

β̂
OLSG




(10.61)
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4. As a final remark, it can be shown that, with a simple transformation, current endogenous regressors appear explicitly,
while they seem to be absent from (10.53), thus explaining why the equations are unrelated only seemingly and not
really. If the contemporaneous error terms ut, in a 2 equations model, have a bivariate normal distribution

[
y1,t = x′

1,tβ1 + u1,t

y2,t = x′
2,tβ2 + u2,t

where

[
u1,t

u2,t

]
∼ N [0,Σ] therefore

[
u1,t ∼ N [0, σ1,1]

u2,t|u1,t ∼ N
[

σ1,2

σ1,1
u1,t, σ2,2 −

σ2
1,2

σ1,1

]

we can write 


u1,t =
√

σ1,1 e1,t

u2,t =
σ1,2

σ1,1
u1,t +

√
σ2,2 −

σ2
1,2

σ1,1
e2,t

where

[
e1,t

e2,t

]
∼ N [0, I

2
]

Replacing u1,t = y1,t − x′
1,tβ1 into the expression of u2,t, then the two equations become




y1,t = x′
1,tβ1 +

√
σ1,1 e1,t

y2,t = x′
2,tβ2 +

σ1,2

σ1,1
(y1,t − x′

1,tβ1) +

√
σ2,2 −

σ2
1,2

σ1,1
e2,t

where an endogenous regressor explicitly appears in the second equation. Notice that, after transformation, the error
terms are no more correlated; a system of this type is called “recursive”.

10.4 Iterative Feasible GLS and Maximum Likelihood

Feasible GLS (10.59) can be applied iteratively, each time re-computing an estimate of Σ from residuals of the last iteration.
Let β̇FGLS(m) be the coefficient estimates at the end of iteration m, u̇FGLS(m) the corresponding residuals and Σ̇FGLS(m)

the variance-covariance matrix computed from residuals. It is therefore y = Xβ̇FGLS(m) + u̇FGLS(m), that can be introduced
into equation (10.59) to replace y, obtaining

β̇
F GLS(m+1)

= [X ′(Σ̇−1
FGLS(m) ⊗ In)X]−1X ′(Σ̇−1

FGLS(m) ⊗ In)(Xβ̇FGLS(m) + u̇FGLS(m))

= β̇FGLS(m) + [X ′(Σ̇−1
FGLS(m) ⊗ In)X]−1X ′(Σ̇−1

FGLS(m) ⊗ In)u̇FGLS(m)

(10.62)

Convergence is achieved when β̇FGLS(m+1) = β̇FGLS(m), therefore when X ′(Σ̇−1
FGLS(m) ⊗ In)u̇FGLS(m) = 0. This expression

is the gradient of the concentrated log-likelihood, under the additional assumption that the error terms have a multivariate
normal distribution. Thus, iterative feasible GLS converges to maximum likelihood (ML). Proof is in Appendix (12).
Notice that (10.60) holds for each iteration, therefore the asymptotic efficiency is the same at each iteration, as well as when
convergence is achieved.

11 FULL INFORMATION ESTIMATION METHODS (or System Estimation Methods)

Matrix Σ is completely ignored by limited information methods, but it may contain useful information, that may improve
the estimator’s efficiency. Full information methods take into account also this information.

11.1 Remark

It must be noticed that estimation concerns only the behavioural stochastic equations of the model (the first three equations,
in the example). What is called Σ in this section is therefore the variance-covariance matrix of the error terms, at time t, of
the stochastic equations only, excluding the identities. In the example, it is the 3×3 positive definite matrix previously called
Σ3 (equation 3.5), and not the full 7× 7 matrix that, being singular, could not be inverted. The whole system of 7 equations
must be considered when computing expected values of endogenous regressors (or reduced form coefficients, or simultaneous
solution of the system). For calculations involving residuals, like estimation of the Σ matrix, only the 3 stochastic equations
must be considered.

11.2 Efficient instrumental variables in the full information context

We first decompose the positive definite variance-covariance matrix as the product of a non-singular square matrix P with
its transpose: Σ⊗ In = P ′P , so that Σ−1 ⊗ In = P−1P ′−1. Equations, coefficients, variables and error terms are represented
as in section 10, but in some or all G equations the matrices of regressors, X1 , X2 , ..., XG , may contain current endogenous
variables. We build, therefore, the corresponding matrices of instrumental variables W1 , W2 , ..., WG , containing the same
variables, but with current endogenous variables replaced by their expected values (conditional expectations, to be more
precise).
The matrices of instrumental variables W1, W2, ..., WG are used as blocks of the matrix W , while the matrices of explanatory
variables (regressors) X1, X2, ..., XG are used as blocks of the matrix X
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W =
[Gn×(k1+...+k

G
)]




W1 0 ... 0
0 W2 ... 0

... ... ... ...
0 0 ... W

G


 =




E(X1) 0 ... 0
0 E(X2) ... 0
... ... ... ...
0 0 ... E(X

G
)


 = E




X1 0 ... 0
0 X2 ... 0

... ... ... ...
0 0 ... X

G


 = E(X) (11.63)

Analogously to section 10, we represent the whole system as a single equation y = Xβ + u and pre-multiply each term
by P ′−1, obtaining P ′−1y = P ′−1Xβ + P ′−1u. Defining q = P ′−1y, Q = P ′−1X and ε = P ′−1u, the equation becomes
q = Qβ + ε, where variables and errors terms have been transformed, but coefficients are still the same as in the model of
interest. Of course there will be correlation between explanatory variables Q and error terms ε.
Some simple algebra shows that the transformed error terms have zero mean and variance-covariance matrix I

Gn
, therefore

homoskedastic and not correlated. Thus, instrumental variable estimator of the transformed equation would be consistent
and asymptotically efficient, if instrumental variables are the expected values of regressors

H = E(Q) = E(P ′−1X) = P ′−1E(X) = P ′−1W (11.64)

and applying the instrumental variable formula we get

β̆ = [H ′Q]−1H ′q = [W ′P−1P ′−1X]−1W ′P−1P ′−1y = [W ′(Σ−1 ⊗ In)X]−1W ′(Σ−1 ⊗ In)y (11.65)

Analogously to equation (10.60), considering that W = E(X), the estimation error (rescaled by
√

n) is

√
n

[
β̆ − β

]
=

[
W ′(Σ−1 ⊗ In)X

n

]−1
W ′(Σ−1 ⊗ In)u√

n

distr
−−−−→n → ∞ N

{
0,

[
W ′(Σ−1 ⊗ In)W

n

]−1
}

(11.66)

To make the estimator feasible we replace Σ with an estimate, and fill matrix W with estimates of the expected values of
regressors. If the estimate of Σ is computed from residuals of a preliminary consistent (even if inefficient) estimation, and
estimates of expected values of regressors are computed using a preliminary consistent (even if inefficient) estimate of Π,
then the feasible estimator would have the same asymptotic distribution as the theoretical estimator (11.66), and would be
therefore asymptotically efficient.

11.3 3SLS - Three Stage Least Squares: Zellner and Theil (1962)

The structural form equations of the model are first estimated by two stage least squares (2SLS), obtaining a consistent
estimate of all the structural form coefficients (α̃1, ..., α̃12 in the example), and the corresponding residuals. Sums of squares
and sums of cross products of structural residuals are used to produce Σ̃, a consistent estimate of Σ, while second stage
coefficients are no more used.
Third stage is simply the application of the feasible full information estimator

β̆ = [W ′(Σ̃−1 ⊗ In)X]−1W ′(Σ̃−1 ⊗ In)y (11.67)

where the blocks of matrix W are the same computed at the end of the first stage, and already used in the second stage.

11.4 Iterative Three Stage Least Squares

The final formula of 3SLS (11.67) can be applied iteratively, each time re-computing an estimate of Σ from residuals of the
last iteration. Matrix W is not updated during the iterations, but remains fixed. Iterations continue till convergence is
achieved.

11.5 FIVE - Full information Instrumental Variables Efficient: Brundy and Jorgenson (1971), Dhrymes (1971)

The first stage is the same as in the corresponding limited information method (LIVE, section 9.2). First of all it produces,
for each equation, the new matrix of instrumental variables (the blocks of W ). Also residuals of the structural form equations
are used to produce a consistent estimate of Σ.
The next (final) stage is simply the application of the feasible full information estimator (analogous to 11.67).

11.6 FIML - Full Information Maximum Likelihood: Koopmans, Rubin and Leipnik (1950), Chernoff and Divinsky (1953)

11.7 FIML from iterative instrumental variables: Durbin (1963, 1988), Hausman (1974, 1975)

The last stage of FIVE can be applied iteratively, each time re-computing estimates of B and Γ, from which a new estimate
of Π and new matrices of instrumental variables are derived, and re-estimating Σ from structural form residuals. Let
β̆(m) be the coefficient estimates at the end of iteration m, W(m) the matrix of instrumental variables built by means of

such coefficients, ŭ(m) the corresponding residuals and Σ̆(m) the variance-covariance matrix computed from residuals. It is

therefore y = Xβ̆(m) + ŭ(m), that can be introduced into equation (11.67) to replace y, obtaining
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β̆
(m+1)

=
[
W ′

(m)

(
Σ̆−1

(m) ⊗ In

)
X

]−1

W ′
(m)

(
Σ̆−1

(m) ⊗ In

)(
Xβ̆(m) + ŭ(m)

)

= β̆(m) +
[
W ′

(m)

(
Σ̆−1

(m) ⊗ I
n

)
X

]−1

W ′
(m)

(
Σ̆−1

(m) ⊗ I
n

)
ŭ(m)

(11.68)

Convergence is achieved when β̆(m+1) = β̆(m), therefore when W ′
(m)

(
Σ̆−1

(m) ⊗ In

)
ŭ(m) = 0. This expression is the gradient of

the concentrated log-likelihood, under the additional assumption that the error terms have a multivariate normal distribution.
Proof is in Appendix (13) . Thus, iterative FIVE converges to full information maximum likelihood (FIML).
Notice that (10.60) holds for each iteration, therefore the asymptotic efficiency is the same at each iteration, as well as when
convergence is achieved.
This method for computing FIML estimates was proposed by Durbin in 1963 (published in 1988), discussed in Hausman
(1974, 1975), Hendry (1976), Calzolari and Sampoli (1993), and extended to nonlinear models in Amemiya (1977).

12 APPENDIX. Complements of linear algebra: some useful derivatives

Lemma: If A is a non-singular square matrix (n × n), then

∂ ln||A||
∂A

= A−1′ (12.69)

where ||A|| is the absolute value of the determinant and A−1′ is the transpose of the inverse matrix.
To prove it, it is enough to observe that the Laplace expansion of the determinant for a generic row (i) is

|A| = ai,1Ai,1 + ... + ai,jAi,j + ... + ai,nAi,n

where none of the cofactors Ai,1, Ai,2, etc. contains ai,j . Thus ∂|A|/∂ai,j = Ai,j . Application of the chain rule gives

∂ ln||A||
∂ai,j

=
∂ ln||A||

∂|A|
∂|A|
∂ai,j

=
1

|A|Ai,j

which is the j, i − th element of A−1.

13 APPENDIX
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14 APPENDIX. Data set and numerical results for Klein-I model

C I Wp X P K W 1 Wg T A G

1920 39.8 2.7 28.8 44.9 12.7 182.8 31.0 1.0 2.2 3.40 -11. 2.40
1921 41.9 -.20 25.5 45.6 12.4 182.6 28.2 1.0 2.7 7.70 -10. 3.90
1922 45.0 1.9 29.3 50.1 16.9 184.5 32.2 1.0 2.9 3.90 -9.0 3.20
1923 49.2 5.2 34.1 57.2 18.4 189.7 37.0 1.0 2.9 4.70 -8.0 2.80
1924 50.6 3.0 33.9 57.1 19.4 192.7 37.0 1.0 3.1 3.80 -7.0 3.50
1925 52.6 5.1 35.4 61.0 20.1 197.8 38.6 1.0 3.2 5.50 -6.0 3.30
1926 55.1 5.6 37.4 64.0 19.6 203.4 40.7 1.0 3.3 7.00 -5.0 3.30
1927 56.2 4.2 37.9 64.4 19.8 207.6 41.5 1.0 3.6 6.70 -4.0 4.00
1928 57.3 3.0 39.2 64.5 21.1 210.6 42.9 1.0 3.7 4.20 -3.0 4.20
1929 57.8 5.1 41.3 67.0 21.7 215.7 45.3 1.0 4.0 4.00 -2.0 4.10
1930 55.0 1.0 37.9 61.2 15.6 216.7 42.1 1.0 4.2 7.70 -1.0 5.20
1931 50.9 -3.4 34.5 53.4 11.4 213.3 39.3 1.0 4.8 7.50 .00 5.90
1932 45.6 -6.2 29.0 44.3 7.00 207.1 34.3 1.0 5.3 8.30 1.0 4.90
1933 46.5 -5.1 28.5 45.1 11.2 202.0 34.1 1.0 5.6 5.40 2.0 3.70
1934 48.7 -3.0 30.6 49.7 12.3 199.0 36.6 1.0 6.0 6.80 3.0 4.00
1935 51.3 -1.3 33.2 54.4 14.0 197.7 39.3 1.0 6.1 7.20 4.0 4.40
1936 57.7 2.1 36.8 62.7 17.6 199.8 44.2 1.0 7.4 8.30 5.0 2.90
1937 58.7 2.0 41.0 65.0 17.3 201.8 47.7 1.0 6.7 6.70 6.0 4.30
1938 57.5 -1.9 38.2 60.9 15.3 199.9 45.9 1.0 7.7 7.40 7.0 5.30
1939 61.6 1.3 41.6 69.5 19.0 201.2 49.4 1.0 7.8 8.90 8.0 6.60
1940 65.0 3.3 45.0 75.7 21.1 204.5 53.0 1.0 8.0 9.60 9.0 7.40
1941 69.7 4.9 53.3 88.4 23.5 209.4 61.8 1.0 8.5 11.6 10. 13.8

OLS estimation of stochastic structural equations. Estimation (sample) period: 1921 - 1941. Annual data

Consumption equation Investment equation Private wages equation

’C’ = 1., ’P’, ’P-1’, ’W’ ’I’ = 1., ’P’ ,’P-1’, ’K-1’ ’Wp’ = 1., ’X’, ’X-1’, ’A’

Coeff. Std.err t-Stud. Average Coeff. Std.err t-Stud. Average Coeff. Std.err t-Stud. Average
variab. variab. variab.

16.2366 1.30270 12.4638 1.00000 10.1258 5.46555 1.85266 1.00000 1.49704 1.27004 1.17875 1.00000
.192934 .091210 2.11527 16.8905 .479636 .097114 4.93886 16.8905 .439477 .032408 13.5609 60.0571
.089885 .090648 .991588 16.3762 .333039 .100859 3.30202 16.3762 .146090 .037423 3.90371 57.9857
.796219 .039944 19.9334 41.4810 -.111795 .026728 -4.18275 200.495 .130245 .031910 4.08160 .0

Coeff. of determin. (R**2) .981008 Coeff. of determin. (R**2) .931348 Coeff. of determin. (R**2) .987414
Standard error of equation 1.02554 Standard error of equation 1.00945 Standard error of equation .767149
Durbin-Watson statistic 1.36747 Durbin-Watson statistic 1.81018 Durbin-Watson statistic 1.95843

C ********************************************************************************************
C * Fortran code (part) for solution with Gauss-Seidel method *
C * (with simple changes, it could be used also for Jacobi method) *
C *
C List of endogenous variables *
C Y(1,t) = C Consumption. *
C Y(2,t) = I Investment. *
C Y(3,t) = Wp Private wages. *
C Y(4,t) = X Equilibrium demand (=National product + T) *
C Y(5,t) = P Profits. *
C Y(6,t) = K End-of-year Capital stock. *
C Y(7,t) = W Total wages (=Wp+Wg) *
C *
C List of exogenous variables *
C Z(1,t) = 1. Constant *
C Z(2,t) = Wg Government wages. *
C Z(3,t) = T Business taxes. *
C Z(4,t) = A Proxy for bargaining power of labour = time trend (1931=0) *
C Z(5,t) = G Government nonwage spending. *
C *
C List of equations *
C Consumption. *

Y(1,t) = A(1)*Z(1,t) + A(2)*Y(5,t) + A(3)*Y(5,t-1) + A(4)*Y(7,t) + U(1,t)
C *
C Investment *

Y(2,t) = A(5)*Z(1,t) + A(6)*Y(5,t) + A(7)*Y(5,t-1) + A(8)*Y(6,t-1) + U(2,t)
C *
C Private wages *

Y(3,t) = A(9)*Z(1,t) + A(10)*Y(4,t) + A(11)*Y(4,t-1) + A(12)*Z(4,t) + U(3,t)
C *
C Equilibrium demand *

Y(4,t) = Y(1,t) + Y(2,t) + Z(5,t)
C *
C Profits *

Y(5,t) = Y(4,t) - Z(3,t) - Y(3,t)
C *
C Capital stock *

Y(6,t) = Y(6,t-1) + Y(2,t)
C *
C Total wages *

Y(7,t) = Y(3,t) + Z(2,t)
C ********************************************************************************************
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7 Endogenous variables - 3 Stochastic equations - 5 Exogenous variables
12 Estimated coefficients - 1920 1941 Time range - 1921 1941 Sample period

******************************************************************
* One-Step-Ahead (Static) Solution - OLS structural coefficients *
******************************************************************
Year 1921 Year 1922

Variable Observed Computed % Error Variable Observed Computed % Error
Y(1)=C 41.9000 43.9284 4.84101 Y(1)=C 45.0000 48.1869 7.08189
Y(2)=I -.200000 -.211785 5.89235 Y(2)=I 1.90000 3.33087 75.3092
Y(3)=Wp 25.5000 27.6804 8.55070 Y(3)=Wp 29.3000 31.0337 5.91713
Y(4)=X 45.6000 47.6166 4.42236 Y(4)=X 50.1000 54.7177 9.21702
Y(5)=P 12.4000 12.2362 -1.32121 Y(5)=P 16.9000 19.7840 17.0651
Y(6)=K 182.600 182.588 -.645383e-2 Y(6)=K 184.500 185.931 .775542
Y(7)=W 28.2000 30.3804 7.73202 Y(7)=W 32.2000 33.9337 5.38422

.......................other years ........................

Output for Variable Y(1)=C for Years 1921 - 1941 Output for Variable Y(5)=P for Years 1921 - 1941

Year Observed Comput. % Error Observed Comput. Year Observed Comput. % Error Observed Comput.
Value Value %Change %Change Value Value %Change %Change

1921 41.9000 43.9284 4.84101 1921 12.4000 12.2362 -1.32121
1922 45.0000 48.1869 7.08189 7.39857 9.69411 1922 16.9000 19.7840 17.0651 36.2903 61.6846
1923 49.2000 50.3380 2.31309 9.33333 4.46427 1923 18.4000 19.9412 8.37594 8.87574 .794414
1924 50.6000 54.2978 7.30784 2.84553 7.86627 1924 19.4000 23.0849 18.9945 5.43478 15.7651
1925 52.6000 52.2601 -.646148 3.95257 -3.75271 1925 20.1000 18.8844 -6.04758 3.60825 -18.1958
1926 55.1000 50.6623 -8.05385 4.75285 -3.05739 1926 19.6000 14.3922 -26.5704 -2.48756 -23.7880
1927 56.2000 51.8835 -7.68067 1.99637 2.41034 1927 19.8000 14.8901 -24.7972 1.02041 3.45980
1928 57.3000 55.2600 -3.56019 1.95730 6.50794 1928 21.1000 20.4843 -2.91787 6.56566 37.5697
1929 57.8000 56.5899 -2.09352 .872600 2.40669 1929 21.7000 21.5775 -.564732 2.84360 5.33639
1930 55.0000 53.8983 -2.00304 -4.84429 -4.75636 1930 15.6000 14.3352 -8.10762 -28.1106 -33.5639
1931 50.9000 50.9713 .140127 -7.45455 -5.43060 1931 11.4000 12.2391 7.36033 -26.9231 -14.6223
1932 45.6000 45.7654 .362793 -10.4126 -10.2134 1932 7.00000 6.98673 -.189582 -38.5965 -42.9146
1933 46.5000 44.8969 -3.44754 1.97368 -1.89781 1933 11.2000 10.4154 -7.00577 60.0000 49.0734
1934 48.7000 48.9169 .445435 4.73118 8.95392 1934 12.3000 12.9839 5.55996 9.82143 24.6609
1935 51.3000 51.3647 .126210 5.33881 5.00403 1935 14.0000 14.0607 .433760 13.8211 8.29376
1936 57.7000 52.4316 -9.13068 12.4756 2.07701 1936 17.6000 11.6524 -33.7931 25.7143 -17.1280
1937 58.7000 58.9735 .465976 1.73310 12.4771 1937 17.3000 18.8319 8.85474 -1.70455 61.6135
1938 57.5000 61.6210 7.16703 -2.04429 4.48932 1938 15.3000 19.7851 29.3142 -11.5607 5.06162
1939 61.6000 60.4109 -1.93033 7.13043 -1.96382 1939 19.0000 18.0957 -4.75950 24.1830 -8.53863
1940 65.0000 65.0920 .141601 5.51948 7.74881 1940 21.1000 20.2771 -3.90017 11.0526 12.0546
1941 69.7000 76.1503 9.25439 7.23077 16.9887 1941 23.5000 29.7621 26.6471 11.3744 46.7770

.......................other variables ....................

RMSE RMSE MAPE H.Theil: Inequality Coefficients
(dimensionless) Applied Economic Forecasting (1966), p.59

Eq.(4.5) Eq.(4.6)

Y(1)=C .515210e-1 2.80319 3.72349 .964430 1.07951
Y(2)=I .569947 2.10341
Y(3)=Wp .561012e-1 2.06894 4.31788 .716739 .791919
Y(4)=X .787624e-1 4.80013 5.46199 .997709 1.08002
Y(5)=P .168088 2.92227 11.5514 1.08204 1.11706
Y(6)=K .104148e-1 2.10341 .730163 .728021 .785039
Y(7)=W .491070e-1 2.06894 3.81188 .705439 .811302
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**************************************************
* Dynamic Solution - OLS structural coefficients *
**************************************************
Year 1921 Year 1922

Variable Observed Computed % Error Variable Observed Computed % Error
Y(1)=C 41.9000 43.9284 4.84101 Y(1)=C 45.0000 48.2969 7.32655
Y(2)=I -.200000 -.211785 5.89235 Y(2)=I 1.90000 3.10527 63.4355
Y(3)=Wp 25.5000 27.6804 8.55070 Y(3)=Wp 29.3000 31.2776 6.74936
Y(4)=X 45.6000 47.6166 4.42236 Y(4)=X 50.1000 54.6022 8.98647
Y(5)=P 12.4000 12.2362 -1.32121 Y(5)=P 16.9000 19.4247 14.9388
Y(6)=K 182.600 182.588 -.645383e-2 Y(6)=K 184.500 185.693 .646878
Y(7)=W 28.2000 30.3804 7.73202 Y(7)=W 32.2000 34.1776 6.14150

.......................other years ........................

Output for Variable Y(1)=C for Years 1921 - 1941 Output for Variable Y(5)=P for Years 1921 - 1941

Year Observed Comput. % Error Observed Comput. Year Observed Comput. % Error Observed Comput.
Value Value %Change %Change Value Value %Change %Change

1921 41.9000 43.9284 4.84101 1921 12.4000 12.2362 -1.32121
1922 45.0000 48.2969 7.32655 7.39857 9.94474 1922 16.9000 19.4247 14.9388 36.2903 58.7479
1923 49.2000 52.6653 7.04338 9.33333 9.04487 1923 18.4000 21.3681 16.1308 8.87574 10.0049
1924 50.6000 56.7956 12.2442 2.84553 7.84243 1924 19.4000 24.7105 27.3735 5.43478 15.6419
1925 52.6000 56.5272 7.46618 3.95257 -.472521 1925 20.1000 20.7666 3.31666 3.60825 -15.9601
1926 55.1000 50.3343 -8.64922 4.75285 -10.9557 1926 19.6000 12.6865 -35.2730 -2.48756 -38.9093
1927 56.2000 44.7342 -20.4017 1.99637 -11.1257 1927 19.8000 9.49425 -52.0493 1.02041 -25.1626
1928 57.3000 45.8225 -20.0305 1.95730 2.43285 1928 21.1000 15.0840 -28.5118 6.56566 58.8753
1929 57.8000 51.9065 -10.1963 .872600 13.2773 1929 21.7000 20.6943 -4.63478 2.84360 37.1933
1930 55.0000 54.6348 -.663984 -4.84429 5.25615 1930 15.6000 17.4354 11.7655 -28.1106 -15.7476
1931 50.9000 54.7874 7.63742 -7.45455 .279377 1931 11.4000 16.3514 43.4330 -26.9231 -6.21752
1932 45.6000 52.0730 14.1951 -10.4126 -4.95458 1932 7.00000 12.0939 72.7697 -38.5965 -26.0375
1933 46.5000 50.8066 9.26144 1.97368 -2.43195 1933 11.2000 14.2868 27.5607 60.0000 18.1324
1934 48.7000 52.2007 7.18824 4.73118 2.74394 1934 12.3000 14.7384 19.8247 9.82143 3.16130
1935 51.3000 53.4870 4.26324 5.33881 2.46428 1935 14.0000 14.9109 6.50634 13.8211 1.17003
1936 57.7000 52.8380 -8.42628 12.4756 -1.21340 1936 17.6000 11.2578 -36.0355 25.7143 -24.4997
1937 58.7000 52.9224 -9.84254 1.73310 .159720 1937 17.3000 14.4063 -16.7265 -1.70455 27.9679
1938 57.5000 58.9481 2.51836 -2.04429 11.3858 1938 15.3000 19.1891 25.4189 -11.5607 33.1992
1939 61.6000 64.1598 4.15560 7.13043 8.84133 1939 19.0000 20.8954 9.97560 24.1830 8.89185
1940 65.0000 66.7163 2.64050 5.51948 3.98454 1940 21.1000 20.6711 -2.03266 11.0526 -1.07323
1941 69.7000 75.4129 8.19646 7.23077 13.0352 1941 23.5000 28.2460 20.1958 11.3744 36.6449

.......................other variables ....................

RMSE RMSE MAPE H.Theil: Inequality Coefficients
(dimensionless) Eq.(4.5) Eq.(4.6)

Y(1)=C .978663e-1 5.32480 8.43754 1.30720 1.46318
Y(2)=I .974583 3.59673
Y(3)=Wp .130368 4.80780 11.3273 1.12286 1.24064
Y(4)=X .143506 8.74590 12.7101 1.27135 1.37625
Y(5)=P .249534 4.33823 22.6569 1.26513 1.30607
Y(6)=K .295700e-1 5.97202 2.22084 .963788 1.03927
Y(7)=W .114115 4.80780 9.99802 1.12412 1.29282
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Impact and Delay (Interim) Multipliers computed from OLS structural coefficients

Year 1938 from Year 1938 to 1939 from Year 1938 to 1940 from Year 1938 to 1941

Variable Multiplier Elasticity Multiplier Elasticity Multiplier Elasticity Multiplier Elasticity

Exogenous Z(2)=Wg .................... Dynamic solution ....................

Y(1)=C 2.13175 .266378 1.50454 .180569 .705218 .833886e-1 -.124064 -.130379e-1
Y(2)=I .783850 2.14272 .898356 2.03129 .191302 .558909 -.349000 -.473862
Y(3)=Wp 1.28134 .231860 1.48196 .251788 .745038 .123286 -.769281e-1 -.108615e-1
Y(4)=X 2.91560 .321922 2.40289 .249480 .896520 .918535e-1 -.473064 -.392769e-1
Y(5)=P 1.63426 .636025 .920937 .355570 .151481 .613186e-1 -.396136 -.114650
Y(6)=K .783850 .294973e-1 1.68221 .622673e-1 1.87351 .684808e-1 1.52451 .542633e-1
Y(7)=W 2.28134 .349559 1.48196 .214816 .745038 .105200 -.769281e-1 -.939688e-2

Exogenous Z(3)=T .................... Dynamic solution ....................

Y(1)=C -1.32106 -.158645 -1.98022 -.228400 -1.15120 -.130820 .644746e-1 .651168e-2
Y(2)=I -1.14176 -2.99949 -1.40183 -3.04620 -.409872 -1.15083 .451388 .589003
Y(3)=Wp -1.08235 -.188223 -1.84613 -.301441 -1.18014 -.187676 -.134738e-2 -.182825e-3
Y(4)=X -2.46282 -.261334 -3.38205 -.337460 -1.56107 -.153709 .515862 .411616e-1
Y(5)=P -2.38047 -.890341 -1.53592 -.569909 -.380933 -.148191 .517210 .143860
Y(6)=K -1.14176 -.412918e-1 -2.54359 -.904833e-1 -2.95346 -.103749 -2.50207 -.855888e-1
Y(7)=W -1.08235 -.159383 -1.84613 -.257179 -1.18014 -.160144 -.134738e-2 -.158172e-3

Exogenous Z(5)=G .................... Dynamic solution ....................

Y(1)=C 1.67734 .144267 1.88960 .156098 .885708 .720874e-1 -.155816 -.112710e-1
Y(2)=I .984465 1.85233 1.12828 1.75600 .240263 .483163 -.438321 -.409642
Y(3)=Wp 1.60928 .200438 1.86124 .217665 .935720 .106578 -.966167e-1 -.938948e-2
Y(4)=X 3.66181 .278293 3.01788 .215670 1.12597 .794051e-1 -.594138 -.339539e-1
Y(5)=P 2.05253 .549829 1.15664 .307381 .190251 .530085e-1 -.497521 -.991123e-1
Y(6)=K .984465 .254997e-1 2.11274 .538286e-1 2.35301 .592000e-1 1.91468 .469093e-1
Y(7)=W 1.60928 .169726 1.86124 .185703 .935720 .909426e-1 -.966167e-1 -.812338e-2

Dynamic reduced form matrix. Modulus of Eigenvalue Period

Eig(1)= 0.788362 11.7601
Eig(2)= 0.788362 -11.7601
Eig(3)= 0.355372

Alternative Estimates of structural form coefficients

OLS 2SLS LIVE (2 iter. from OLS)
1 P P-1 W 1 P P-1 W 1 P P-1 W

16.2366 .192934 .089885 .796219 16.5548 .017302 .216234 .810183 16.8014 -.115631 .312132 .820507

1 P P-1 K-1 1 P P-1 K-1 1 P P-1 K-1
10.1258 .479636 .333039 -.111795 20.2782 .150222 .615944 -.157788 21.6005 .107318 .652790 -.163778

1 X X-1 A 1 X X-1 A 1 X X-1 A
1.49704 .439477 .146090 .130245 1.50030 .438859 .146674 .130396 1.60111 .419711 .164768 .135058

I.I.V. (10 iter. from OLS) 3SLS Iterative 3SLS
1 P P-1 W 1 P P-1 W 1 P P-1 W

16.7858 -.117503 .312609 .821456 16.4408 .124890 .163144 .790081 16.5590 .164510 .176564 .765801

1 P P-1 K-1 1 P P-1 K-1 1 P P-1 K-1
21.6064 .107126 .652955 -.163805 28.1778 -.013079 .755724 -.194848 42.8963 -.356532 1.01130 -.260200

1 X X-1 A 1 X X-1 A 1 X X-1 A
1.59635 .420614 .163914 .134838 1.79722 .400492 .181291 .149674 2.62477 .374779 .193651 .167926

FIVE (2 iter. from OLS) FIML
1 P P-1 W 1 P P-1 W

16.4570 .091267 .198055 .789598 18.3433 -.232389 .385673 .801844

1 P P-1 K-1 1 P P-1 K-1
24.7860 .029683 .717039 -.178374 27.2639 -.801006 1.05185 -.148099

1 X X-1 A 1 X X-1 A
1.93827 .383522 .196435 .157667 5.79429 .234118 .284677 .234835

Variance-covariance matrices estimated from structural form residuals (without degrees of freedom correction)

OLS 2SLS LIVE (2 iter. from OLS) I.I.V. (10 iter. from OLS)
.851402 1.04406 1.44650 1.45233
.049497 .824891 .437848 1.38318 .726600 1.53808 .729292 1.53882

-.380815 .121170 .476417 -.385228 .192606 .476427 -.339635 .273549 .486842 -.341982 .270234 .485911

3SLS Iterative 3SLS FIVE (2 iter. from OLS) FIML
.891760 .914909 .937914 2.10415
.411319 2.09305 .641739 4.55536 .442160 1.86804 3.87902 12.7715

-.393615 .403046 .520027 -.434985 .734498 .605649 -.379888 .452247 .565780 .481696 3.85748 1.80112
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Identification: Matrices of ‘‘Exclusion Restrictions’’ for the three stochastic equations

Phi1(15,10) Phi2(15,10) Phi3(15,10)
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

A non-linear version of the Klein-I model (Belsley, 1980): the first structural equation (consumption) is replaced by

lnCt = α1 + α2 lnPt + α3 lnPt−1 + α4 lnWt + u1,t Consumption (14.70)

while all the other equations are the same as (2.1).

Alternative Estimates of structural form coefficients

OLS I.I.V. (9 iter. from OLS) NL-FIML

1 P P-1 W 1 P P-1 W 1 P P-1 W

1.42867 .054133 .017128 .634552 1.43554 .002594 .051195 .646111 1.42365 .048579 .031093 .629689

1 P P-1 K-1 1 P P-1 K-1 1 P P-1 K-1

10.1258 .479636 .333039 -.111795 22.2134 .087431 .669869 -.166555 33.0054 -.248046 .884421 -.209644

1 X X-1 A 1 X X-1 A 1 X X-1 A

1.49704 .439477 .146090 .130245 1.58788 .422223 .162394 .134446 2.85672 .331213 .234773 .163017

******************************************************************

* One-Step-Ahead (Static) Solution - OLS structural coefficients *

******************************************************************

RMSE RMSE MAPE H.Theil: Inequality Coefficients

(dimensionless) Eq.(4.5) Eq.(4.6)

Y(1)=C .466356e-1 2.53716 3.67048 .937936 1.04986

Y(2)=I .559567 2.06510

Y(3)=Wp .532651e-1 1.96435 4.34570 .710552 .785083

Y(4)=X .742997e-1 4.52815 5.56905 .993299 1.07525

Y(5)=P .159150 2.76688 12.9225 1.10505 1.14081

Y(6)=K .102252e-1 2.06510 .771039 .722178 .778739

Y(7)=W .466245e-1 1.96435 3.82079 .700030 .805081

Y(8)=lnC .115287e-1 .045921 .925162 .911714 1.00951

**************************************************

* Dynamic Solution - OLS structural coefficients *

**************************************************

RMSE RMSE MAPE H.Theil: Inequality Coefficients

(dimensionless) Eq.(4.5) Eq.(4.6)

Y(1)=C .978162e-1 5.32206 8.24905 1.32330 1.48121

Y(2)=I .976774 3.60481

Y(3)=Wp .131097 4.83458 11.1280 1.14688 1.26718

Y(4)=X .143958 8.77346 12.6106 1.29005 1.39649

Y(5)=P .250216 4.35009 24.0321 1.29237 1.33419

Y(6)=K .314611e-1 6.35397 2.35760 .964979 1.04057

Y(7)=W .114750 4.83458 9.77070 1.14692 1.31904

Y(8)=lnC .258048e-1 .102785 2.09962 1.33017 1.47285
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15 APPENDIX. Multivariate normal distribution (with explict p.d.f.)

1. Transformation of univariate random variables: if the random variable x, with probability density function f(x), is
transformed into the random variable y = y(x), if the transformation is continuously differentiable and invertible
[x = x(y)], then the p.d.f. of y is g(y) = f [x(y)] |dx(y)/dy|.

2. Transformation of multivariate random variables: if the (k× 1) random vector x, with joint p.d.f. f(x), is transformed
into the (k × 1) random vector y = y(x), if the transformation is continuously differentiable and invertible [x = x(y)]
with non-singular square Jacobian matrix ∂x(y)/∂y′, then the joint p.d.f. of y is g(y) = f [x(y)] ‖∂x(y)/∂y′‖ (where
‖ · · · ‖ means absolute value of determinant).

3. Let µ be a (k×1) constant vector and Σ a symmetric (k×k) positive definite constant matrix, that can be decomposed
as Σ = P ′P , with P a non-singular (k×k) constant matrix. The determinant of P is the square root of the determinant
of Σ: |P | = |Σ|1/2. Let z be a (k × 1) random vector whose expectation is zero and the variance-covariance matrix is
the identity matrix: E(z) = 0, V ar(z) = Ik. Whatever the probability distribution of z, the (k × 1) random vector
x = P ′z + µ has expectation µ and variance-covariance matrix Σ = P ′P . Being P non-singular, the transformation
from z to x is continuously differentiable and invertible [z = P ′−1(x − µ)] with non-singular square Jacobian matrix
∂z(x)/∂x′ = P ′−1.

4. If the elements of the (k × 1) random vector z are independent standard normal variables [zi are i.i.d. N(0, 1)], we say
that the vector z has a multivariate normal distribution: z ∼ N(0, Ik). The joint p.d.f. of the elements of z is the

product of the univariate density functions: f(z) =
∏k

i=1
1

(2π)1/2 exp
[
− z2

i

2

]
= 1

(2π)k/2 exp
[
− 1

2

∑k
i=1 z2

i

]
. It is positive

everywhere, and its integral is 1, being the product of k integrals, each = 1. With vector notation, the same p.d.f. can
be written f(z) = 1

(2π)k/2 exp
[
− 1

2z′z
]
.

5. Using the result on the transformation of random vectors (2), the (k × 1) random vector x = P ′z + µ has p.d.f.
f(x) = 1

(2π)k/2‖P‖exp
[
− 1

2 (x − µ)′P−1P ′−1(x − µ)
]
= 1

(2π)k/2‖Σ‖1/2 exp
[
− 1

2 (x − µ)′Σ−1(x − µ)
]
. We say that the (k×1)

random vector x has a multivariate normal distribution N(µ,Σ). Using the result in (3), µ is the expectation and Σ is
the variance-covariance matrix of x.

Warning. This definition requires Σ to be positive definite. It is possible to define multivariate normal distributions
also when Σ is positive semi definite and singular, but these distributions do not admit an explicit p.d.f.

6. If x ∼ N(µ,Σ) and Σ is block-diagonal, the corresponding sub-vectors of x are independent multivariate normal vectors.
Thus, uncorrelated sub-vectors are independent; moreover, each sub-vector has a marginal distribution multivariate
normal. The proof follows considering that Σ−1 is also block-diagonal, and |Σ| is obtained multiplying the determinants
of the diagonal blocks. Thus, the joint p.d.f. f(x) is the product of functions that are exactly the marginal densities
of the sub-vectors. In particular, if Σ is diagonal, all the elements of x are independent normal variables.

Warning. The above properties depend on the joint density of the elements of x being normal. If it is only known that
the marginal densities of the elements are normal, then the joint density needs not be normal and may even not exist.
Thus, uncorrelated normal variables need not be independent if they are not jointly multivariate normal.

7. If the (k × 1) random vector x ∼ N(µ,Σ) and A is a (k × k) non-singular constant matrix, the (k × 1) random vector
y = Ax has a multivariate normal distribution y ∼ N(Aµ,AΣA′). The proof is simply based on the explicit p.d.f.
expression of the transformed vector y, considering that A is the Jacobian matrix of the linear transformation.

8. Particular case: decomposing the positive definite matrix Σ = P ′P , with P square and non-singular, the linear
transformation z = P ′−1(x − µ) ∼ N(0, Ik) (vector of independent standard normal variables).

9. If the (k × 1) random vector x ∼ N(µ,Σ), any sub-vector of x has a marginal distribution multivariate normal,
with means, variances and covariances obtained by taking the corresponding elements of µ and Σ. To prove it, let
x be arbitrarily decomposed into two sub-vectors x1 and x2; let µ be correspondingly decomposed into µ1 and µ2;
let Σ be correspondingly decomposed into Σ1,1, Σ1,2, Σ2,1 = Σ′

1,2, Σ2,2 (where Σ1,1 and Σ2,2 are square blocks),

and A a (k × k) matrix, correspondingly decomposed into blocks A1,1 = I, A1,2 = −Σ1,2Σ
−1
2,2, A2,1 = 0, A2,2 = I.

Thus, Aµ has two sub-vectors µ1 − Σ1,2Σ
−1
2,2µ2 and µ2, while AΣA′ is block-diagonal, the two square diagonal blocks

being Σ1,1 − Σ1,2Σ
−1
2,2Σ2,1 and Σ2,2. The linear transformation y = Ax produces the multivariate normal vector

y ∼ N(Aµ,AΣA′) whose variance-covariance matrix is block-diagonal. Thus the two sub-vectors: y1 and y2 are
independent multivariate normal vectors: y1 ∼ N [µ1 − Σ1,2Σ

−1
2,2µ2, Σ1,1 − Σ1,2Σ

−1
2,2Σ2,1] and y2 ∼ N [µ2,Σ2,2]. But

x2 = y2; thus the arbitrary sub-vector x2 has the multivariate normal distribution N(µ2, Σ2,2).

10. Particular case: any element of a multivariate normal vector has univariate normal distribution, whose mean and
variance are, respectively, the corresponding element of µ and the corresponding diagonal element of Σ.

11. If the (k × 1) random vector x ∼ N(µ,Σ) and D is a (p × k) constant matrix of rank p ≤ k, then the (p × 1) vector
y = Dx ∼ N(Dµ, DΣD′). To prove it, one should add k − p rows to the matrix D, producing a full-rank (k × k)
matrix. Multiplying such a matrix by x produces a multivariate normal vector, whose first sub-vector is Dx.
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Warning. The result (11) is a particular case of a more general result, that holds also when p > k or when the rank
of D is < p, and that we state without proof. Any linear transformation of a multivariate normal is a multivariate

normal. This property, however, requires to deal also with multivariate normal distributions that do not admit an
explicit p.d.f., due to singularity of the variance-covariance matrix (e.g. Rao, 1973, 8a).

12. The conditional distribution of x1|x2 is multivariate normal x1|x2 ∼ N [µ1 + Σ1,2Σ
−1
2,2(x2 − µ2), Σ1,1 −Σ1,2Σ

−1
2,2Σ2,1].

From (9) it follows that, being the Jacobian of the linear transformation |A| = 1, the expression of the p.d.f. of x
is equal to the expression of the p.d.f. of y, when y in the expression is replaced with Ax. Thus f(x) = g(y), thus
f(x2)f(x1|x2) = g(y2)g(y1|y2) = g(y2)g(y1) = f(x2)g(y1), being x2 = y2 and being y1 and y2 independent. Thus
f(x1|x2) = g(y1), when y1 in the expression of g is replaced with the first sub-vector of Ax. Writing explicitly the
expression of the p.d.f. of y1 ∼ N [µ1 −Σ1,2Σ

−1
2,2µ2, Σ1,1 −Σ1,2Σ

−1
2,2Σ2,1], and replacing in the expression of the p.d.f.

y1 with x1 −Σ1,2Σ
−1
2,2x2 (first sub-vector of Ax), produces the explicit expression of the p.d.f. of a multivariate normal

with mean µ1 + Σ1,2Σ
−1
2,2(x2 − µ2) and variance-covariance matrix Σ1,1 − Σ1,2Σ

−1
2,2Σ2,1.

Remark. The conditional mean of x1|x2 is a linear function of x2; the conditional variance is independent of x2.

16 APPENDIX. Some useful asymptotic results

1. If plim θ̂n = θ0 and g is a continuous function, then plim g(θ̂n) = g(θ0). This result extends to continuous functions
a result proved by Slutsky (1925) for rational functions (e.g. Rao, 1973, 2c.4.xiii). It holds either in univariate or in
multivariate cases.

2. δ-method (univariate case e.g. Rao, 1973, 6a.2.i): if
√

n(θ̂n − θ0) is asymptotically ∼ N [0, σ2], and g is a continuously

differentiable function with nonzero first derivative in θ0, then
√

n[g(θ̂n) − g(θ0)] is asymptotically ∼ N [0, g′2(θ0)σ
2].

The proof follows from a first order Taylor expansion of g(θ̂n) with origin θ0, recalling that the residual is op(θ̂n − θ0).

3. δ-method (multivariate case e.g. Rao, 1973, 6a.2.iii): if the vector
√

n(θ̂n − θ0) is asymptotically multivariate normal
∼ N [0,Σ], and g is a vector of continuously differentiable functions whose first derivatives are not all = 0 in θ0, then√

n[g(θ̂n) − g(θ0)] has an asymptotic multivariate normal distribution ∼ N [0, GΣG′], where G is the Jacobian matrix
∂g/∂θ′ computed in θ0.
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17 APPENDIX. Probability density, score, information, likelihood

Let xi be a random variable or vector (r.v.), whose probability density function (continuous) is characterized by a parameter
(vector) θ: f(xi, θ). For any θ, f is a function whose integral is ≡ 1.

∫ +∞

−∞
f(xi, θ) dxi ≡ 1 ∀θ (17.71)

Thus, differentiating (17.71) w.r.t. θ we get

∂

∂θ

[∫ +∞

−∞
f(xi, θ) dxi

]
≡ 0 ∀θ (17.72)

We assume that f satisfies some regularity conditions that permit differentiation under integral (for instance, it is twice
differentiable w.r.t. θ and the limits of integration are not functions of θ). So, (17.72) can be written

∫ +∞

−∞

∂f(xi, θ)

∂θ
dxi ≡ 0 ∀θ (17.73)

Integration will be confined to the region where f assumes nonzero (positive) values. Thus (17.73) can be written

∫
∂lnf(xi, θ)

∂θ
f(xi, θ)dxi ≡ 0 ∀θ (17.74)

Remark. The proofs of this chapter are based on a double interpretation of the function f(xi, θ). It must be considered a
probability density function, but at the same time, being a transformation of the r.v. xi, it is a random variable itself, with
expectation and variance. The same double interpretation holds for the logarithm of f(xi, θ), as well as its derivatives.

The derivative (vector of derivatives) ∂lnf(xi, θ)/∂θ (gradient of the log-density) is usually called the score. If derivative
(vector) is computed at the true parameter value, so that f(xi, θ) is the probability density of the r.v. xi, equation (17.74)
is the expectation of the r.v. score

E

[
∂lnf(xi, θ)

∂θ

]
=

∫
∂lnf(xi, θ)

∂θ
f(xi, θ)dxi = 0 (17.75)

Thus the expectation of the score is zero. The variance-covariance matrix of the score, ℑ(θ), is called information matrix

(more precisely, Fisher’s information measure on θ contained in the r.v. xi)

ℑ(θ) = V ar

[
∂lnf(xi, θ)

∂θ

]
= E

[
∂lnf(xi, θ)

∂θ

∂lnf(xi, θ)

∂θ′

]
(17.76)

Further differentiation of (17.74) gives

∫ [
∂2lnf(xi, θ)

∂θ∂θ′
f(xi, θ) +

∂lnf(xi, θ)

∂θ

∂f(xi, θ)

∂θ′

]
dxi ≡ 0 ∀θ

that is ∫
∂2lnf(xi, θ)

∂θ∂θ′
f(xi, θ)dxi +

∫
∂lnf(xi, θ)

∂θ

∂lnf(xi, θ)

∂θ′
f(xi, θ)dxi ≡ 0 ∀θ (17.77)

Again, if derivatives are computed at the true parameter value, so that f(xi, θ) is the probability density of the r.v. xi, the
two terms in equation (17.77) are expectations, so

E

[
∂2lnf(xi, θ)

∂θ∂θ′

]
+ E

[
∂lnf(xi, θ)

∂θ

∂lnf(xi, θ)

∂θ′

]
≡ 0 ∀θ (17.78)

The second term of the sum is the information matrix (17.76). Thus, from (17.78) we get an alternative expression for the
information matrix

ℑ(θ) = E

[
−∂2lnf(xi, θ)

∂θ∂θ′

]
(17.79)

that is the expected Hessian of the log-density, with the opposite sign.
If x1, x2, ..., xn are independent draws from the same distribution (random sample), the joint density of the sample is
f(x1, x2, ..., xn, θ) = f(x1, θ)f(x2, θ)...f(xn, θ); to simplify notations, it will simply be indicated as f(x, θ). The log-density
of the sample will be therefore the sum of the log-densities, while its first and second derivatives as well as their expectations
will be sums of the corresponding derivatives or expectations. As a straightforward consequence, the expectation of the score
of the sample will be zero, while the information in the whole sample will be nℑ(θ)

E

[
∂lnf(x, θ)

∂θ

]
= 0
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nℑ(θ) = V ar

[
∂lnf(x, θ)

∂θ

]
= E

[
∂lnf(x, θ)

∂θ

∂lnf(x, θ)

∂θ′

]
= E

[
−∂2lnf(x, θ)

∂θ∂θ′

]
(17.80)

Remark. If f(xi, θ) (and therefore f(x, θ)) is a family of strictly positive functions whose integral is identically = 1 for any
θ, but for no value of θ it is the probability density function of the r.v. xi, all the above identities involving integrals (eqs.
17.71 - 17.74 and 17.78) are still valid, but they cannot be interpreted as expected values. This remark will be important
when dealing with quasi-likelihood (or pseudo-likelihood).

17.1 Cramér-Rao inequality

Let θ be a single parameter, x1, x2, ..., xn independent draws (random sample; each xi can be a single variable or a vector),
and let f(x, θ) indicate the joint probability density of the whole sample. Let t(x) be an estimator of the parameter θ (of
course, t will be a function of the sample, and not of the parameter itself). Its expectation

E [t(x)] =

∫
t(x)f(x, θ)dx (17.81)

of course, will be a function of the parameter θ and not of the sample.
Under the usual regularity conditions, differentiating (17.81) we get

∂E [t(x)]

∂θ
=

∫
t(x)

∂f(x, θ)

∂θ
dx =

∫
t(x)

∂lnf(x, θ)

∂θ
f(x, θ)dx = E

[
t(x)

∂lnf(x, θ)

∂θ

]
= Cov

[
t(x),

∂lnf(x, θ)

∂θ

]
(17.82)

Since the squared covariance cannot exceed the product of the two variances, we have
[
∂E [t(x)]

∂θ

]2

≤ V ar [t(x)]V ar

[
∂lnf(x, θ)

∂θ

]
= V ar [t(x)] [nℑ(θ)] (17.83)

If the expected value of the estimator is a regular function of θ

E [t(x)] = h(θ) so that
∂E [t(x)]

∂θ
=

∂h(θ)

∂θ

the Cramér-Rao inequality follows from (17.83)

V ar [t(x)] ≥
[
∂h(θ)

∂θ

]2

[nℑ(θ)]
−1

(17.84)

In the particular case of an unbiased estimator, E[t(x)] = h(θ) = θ; thus ∂h(θ)/∂θ = 1, thus the Cramér-Rao inequality
becomes

V ar [t(x)] ≥ [nℑ(θ)]
−1

(17.85)

An unbiased estimator is efficient if its variance is the lower bound of the inequality: [nℑ(θ)]
−1

.

17.1.1 Multidimensional Cramér-Rao inequality

When θ is a (k × 1) vector of parameters, analogously to (17.82) we have

∂E [t(x)]

∂θ′
= E

[
t(x)

∂lnf(x, θ)

∂θ′

]
= Cov

[
t(x),

∂lnf(x, θ)

∂θ′

]

thus we can write as follows the variance-covariance matrix of the (2k × 1) vector

V ar




t(x)

∂lnf(x,θ)
∂θ


 =


 V ar[t(x)] Cov

[
t(x), ∂lnf(x,θ)

∂θ′

]

Cov
[
t(x)′, ∂lnf(x,θ)

∂θ

]
nℑ(θ)


 =




V ar[t(x)] ∂E[t(x)]
∂θ′

∂E[t(x)′]
∂θ nℑ(θ)


 (17.86)

which is positive semi definite, being a variance-covariance matrix (2k× 2k). Thus, pre- and post-multiplication by a matrix
and its transpose still provides a positive semi definite matrix. In particular, if the information matrix is non-singular (i.e. the

derivatives of the log-density are not linearly dependent), pre-multiplication by the (k×2k) matrix
[
Ik ; −∂E[t(x)]

∂θ′
[nℑ(θ)]−1

]

and post-multiplication by its transpose produces

[
Ik ; −∂E[t(x)]

∂θ′
[nℑ(θ)]−1

] 


V ar[t(x)] ∂E[t(x)]
∂θ′

∂E[t(x)′]
∂θ nℑ(θ)




[
Ik

−[nℑ(θ)]−1 ∂E[t(x)′]
∂θ

]
= V ar [t(x)] −

[
∂E [t(x)]

∂θ′

]
[nℑ(θ)]

−1

[
∂E [t(x)′]

∂θ

]

which is a positive semi definite matrix, implying the Cramér-Rao inequality

V ar [t(x)] ≥
[
∂E [t(x)]

∂θ′

]
[nℑ(θ)]

−1

[
∂E [t(x)′]

∂θ

]
(17.87)

where V ar must be interpreted as the variance-covariance matrix of the estimator t(x). The inequality is valid if the estimator
is biased, but its expected value is a regular function of θ (analogously to eq.17.84).
For unbiased estimators, where E[t(x)] = θ, the inequality still has the form of equation (17.85),
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17.2 Maximum Likelihood estimator: consistency (simplified proof)

When the sample x1, x2, ..., xn is observed, the function of θ defined by L(x, θ) = f(x, θ) is called the likelihood of θ given
the observations.

Remark. Textbooks in probability and statistics often adopt two different notations: f(x|θ) = f(x1, θ)f(x2, θ)...f(xn, θ) when
considering the probability density function, to put into evidence that the r.v. is x, while θ is a given parameter (vector);
L(θ|x) when considering the likelihood, thus evidencing a function of θ, while x is a realized value of a set of observations. Of
course they clearly specify that L(θ|x) = f(x|θ). These different notations are unnecessary for the purposes of this chapter,
which thus adopts standard mathematical notations (f(x, θ) or L(x, θ)) to indicate functions of x and θ.

Under suitable regularity conditions, maximum likelihood yields an estimator which is consistent, asymptitically normal with
mean equal to the true parameter value and variance-covariance matrix equal to the inverse of the information matrix.
To simplify the proof, we consider θ a single parameter. The sample x1, x2, ..., xn, ... is made of independent draws from
the same population; the density of each xi belongs to the family of density functions f(xi, θ) for a particular value θ = θ0;
θ0 can be called the true parameter value.
Regularity conditions are requested to ensure that

1. differentiation can be done under integral for any θ belonging to an interval (or a compact set) that contains the true

θ0 as an interior point;

2. the score, evaluated at θ0, has positive finite variance ℑ(θ0);

3. the residual of a first order Taylor expansion of the score is bounded by a function of xi with finite expectation (for
instance, this condition could be satisfied assuming boundedness of the third derivative of the log-likelihood).

Applying first order Taylor expansion to the score, with initial point θ0 we get

∂lnf(xi, θ)

∂θ
=

[
∂lnf(xi, θ)

∂θ

]

θ0

+

[
∂2lnf(xi, θ)

∂θ2

]

θ0

(θ − θ0) + Res(xi, θ, θ0)

Summing for i = 1, 2, ..., n and dividing by n (averaging) we get

1

n

∂lnL(x, θ)

∂θ
=

1

n

n∑

i=1

∂lnf(xi, θ)

∂θ
=

1

n

n∑

i=1

[
∂lnf(xi, θ)

∂θ

]

θ0

+
1

n

n∑

i=1

[
∂2lnf(xi, θ)

∂θ2

]

θ0

(θ − θ0) +
1

n

n∑

i=1

Res(xi, θ, θ0) (17.88)

Some suitable form of the weak law of large numbers (WLLN) ensures that

plim
1

n

n∑

i=1

[
∂lnf(xi, θ)

∂θ

]

θ0

= 0 and plim
1

n

n∑

i=1

[
∂2lnf(xi, θ)

∂θ2

]

θ0

= −ℑ(θ0) (17.89)

thus, for a conveniently large n, the first term on the right hand side of (17.88) will be negligible, while the second term will
be negative if (θ − θ0) is positive, and will be positive if (θ − θ0) is negative. Concerning the residual term, for large n and
small (θ − θ0), regularity conditions and Taylor expansion properties ensure that its contribution is negligible with respect
to the other terms. The consequence is that, when n is large enough, analysing an arbitrarily small interval around θ0, the
left hand side of (17.88) is positive on the left of θ0, negative on the right: thus, arbitrarily close to θ0 there is a point where

the log-likelihood has a local maximum (and the score is zero). This value will be indicated with θ̂. It is called the maximum

likelihood estimator of θ.

Remark. The (simplified) proof given above ensures the existence of a consistent root of the likelihood equation; it does not
enable us to identify it (for instance, in case of multiple roots). It can be shown that the consistent root corresponds to the
supremum of the likelihood with probability 1 (see Rao, 1973, 5f.2, who refers to papers by Wald, 1949, Le Cam, 1953, 1956,
and Bahadur, 1958).

17.3 Maximum Likelihood estimator: asymptotic normality

Considering again θ a vector of parameters, if (17.88) is computed at θ̂, the left hand side is zero. Multiplying by
√

n we get

√
n(θ̂ − θ0) =

[
− 1

n

n∑

i=1

∂2lnf(xi, θ)

∂θ∂θ′

]−1

θ0

{
1√
n

n∑

i=1

[
∂lnf(xi, θ)

∂θ

]

θ0

+
1√
n

n∑

i=1

Res(xi, θ̂, θ0)

}
(17.90)

When n → ∞ (and therefore θ̂ → θ0) still the contribution of the residual term becomes negligible. Concerning the term
with second order derivatives, it converges in probability to the information matrix ℑ(θ0) (17.89), while some suitable form
of the Central Limit Theorem (CLT) ensures that

1√
n

n∑

i=1

[
∂lnf(xi, θ)

∂θ

]

θ0

distr
−−−−→n → ∞ N [0,ℑ(θ0)] (17.91)

thus, from (17.90) and (17.91) we get
√

n(θ̂ − θ0)
distr
−−−−→n → ∞ N

[
0,ℑ(θ0)

−1
]

(17.92)
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17.4 Maximum Likelihood: estimation of the (asymptotic) variance-covariance matrix

The practical consequence of (17.92) is that, when n is large enough,
√

n(θ̂ − θ0) has approximately a normal distribution

with zero mean and ℑ(θ0)
−1 variance-covariance matrix. Thus (θ̂ − θ0) has approximately a normal distribution with zero

mean and ℑ(θ0)
−1/n variance-covariance matrix, that is

θ̂ approx. ∼ N
[
θ0,ℑ(θ0)

−1/n
]

Practical estimation of the information matrix can be done in two different ways, using the sample analogues of the expec-

tations on the right hand sides of (17.76) or (17.79): each expectation is replaced by the sample average, and derivatives are

computed at θ̂

1. Hessian estimator of ℑ = 1
n

∑n
i=1

[
−∂2lnf(xi,θ)

∂θ∂θ′

]
θ̂

= 1
n

[
−∂2lnL(x,θ)

∂θ∂θ′

]
θ̂

2. Outer Product estimator of ℑ = 1
n

∑n
i=1

[
∂lnf(xi,θ)

∂θ
∂lnf(xi,θ)

∂θ′

]
θ̂

As a consequence, also the practical estimation of the variance-covariance matrix of θ̂ can be done in two different ways:
using the Hessian or using the Outer Product matrix

1. V̂ ar(θ̂) = (H)−1 =
[
−∂2lnL(x,θ)

∂θ∂θ′

]−1

θ̂

2. V̂ ar(θ̂) = (OP )−1 =
{∑n

i=1

[
∂lnf(xi,θ)

∂θ
∂lnf(xi,θ)

∂θ′

]
θ̂

}−1

17.5 Misspecification, Pseudo-Likelihood and “sandwich matrix” (simplified proof)

The sample x1, x2, ..., xn, ... is made of independent draws from the same population. We believe that the density of
each xi belongs to the family of density functions f(xi, θ), so we build the presumed likelihood and maximize it, obtaining

θ̂. However, it may happen that the density of the r.v. does not belong to to the family of density functions f(xi, θ), so
our presumed likelihood is in fact misspecified: it will be called pseudo-likelihood or quasi-likelihood, and the derivative of
the logartithm will be called pseudo-score. The integral (17.74) is still zero, but for no value of θ such an integral can be
considered the expectation of the pseudo-score, as f(xi, θ) is not the density of xi.
We assume that the true density of xi belongs to a regular (but unknown) family of density functions g(xi, θ), and we still
call θ0 the true parameter value. Unlike (17.75), the expectation of the pseudo-score in θ0 can be nonzero

E

[
∂lnf(xi, θ)

∂θ

]

θ0

=

∫
∂lnf(xi, θ)

∂θ

∣∣∣∣
θ0

g(xi, θ0)dx 6= 0 (17.93)

It may happen that the expectation is zero if evaluated at a different value of the parameter (vector): such a value, θ⋆, is
called pseudo-true-value

E

[
∂lnf(xi, θ)

∂θ

]

θ⋆

= 0 (17.94)

Performing analogously to (17.88) the Taylor expansion with initial value θ⋆ rather than θ0

1

n

∂lnL(x, θ)

∂θ
=

1

n

n∑

i=1

∂lnf(xi, θ)

∂θ
=

1

n

n∑

i=1

[
∂lnf(xi, θ)

∂θ

]

θ⋆

+
1

n

n∑

i=1

[
∂2lnf(xi, θ)

∂θ∂θ′

]

θ⋆

(θ − θ⋆) +
1

n

n∑

i=1

Res(xi, θ, θ
⋆) (17.95)

and then computing it at θ̂, the left hand side is zero. Multiplying by
√

n we get

√
n(θ̂ − θ⋆) =

[
− 1

n

n∑

i=1

∂2lnf(xi, θ)

∂θ∂θ′

]−1

θ⋆

{
1√
n

n∑

i=1

[
∂lnf(xi, θ)

∂θ

]

θ⋆

+
1√
n

n∑

i=1

Res(xi, θ̂, θ
⋆)

}
(17.96)

We still assume (without proof) that, under suitable regularity conditions, when n → ∞ the contribution of the residual
term becomes negligible. As in section (17.3), we first apply (some suitable form of) the Law of Large Numbers to the term
with second order derivatives, whose probability limit will be a constant matrix (let’s call A). Then we apply (some suitable
form of) the Central Limit Theorem to the term with first order derivatives, each of which has expected value zero (according
to 17.94), and call B the variance-covariance matrix of the asymptotic normal distribution

1√
n

n∑

i=1

[
∂lnf(xi, θ)

∂θ

]

θ⋆

distr
−−−−→n → ∞ N [0, B] (17.97)

thus √
n(θ̂ − θ⋆)

distr
−−−−→n → ∞ N

[
0, A−1BA−1

]
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While in section (17.3) A and B were both equal to the information matrix, here they can be different. The asymptotic
variance-covariance matrix A−1BA−1 can be called sandwich matrix. An obvious way of estimating A and B is to use the
Hessian and the matrix of outer products, respectively. Thus, practical estimation of the variance-covariance matrix of θ̂ can
be done as

V̂ ar(θ̂) = H−1 OP H−1 (17.98)

with the same expressions for H and OP as in section (17.4). This expression provides a robust estimator of the variance-

covariance matrix of the pseudo-maximum-likelihood parameters θ̂.

17.6 Linear regression model with normal error terms: maximum likelihood and ordinary least squares

With the usual symbols, let the model and the vector of parameters be

y = Xβ + u u ∼ N(0, σ2In) θ =

[
β
σ2

]

Being the Jacobian of the transformation ∂ui/∂yi = 1 (so that the density f(yi, θ) = f(ui, θ)) the log-likelihood is

lnL(y, θ) = −n

2
ln(2π) − n

2
ln(σ2) − 1

2σ2
(y − Xβ)′(y − Xβ)

the score is
∂lnL(y, θ)

∂θ
=

[ ∂lnL
∂β

∂lnL
∂σ2

]
=

[
− 1

σ2 (X ′Xβ − X ′y)
− n

2σ2 + 1
2σ4 (y − Xβ)′(y − Xβ)

]

the Hessian matrix is

H(θ) =
∂2lnL(y, θ)

∂θ∂θ′
=

[
− 1

σ2 X ′X 1
σ4 (X ′Xβ − X ′y)

1
σ4 (β′X ′X − y′X) n

2σ4 − 1
σ6 (y − Xβ)′(y − Xβ)

]
(17.99)

The expectation of the off-diagonal blocks of the Hessian matrix is zero, and the expectation of the last block is n/(2σ4) −
(1/σ6)nσ2 = −n/(2σ4) So, the information matrix is

nℑ(θ) = E[−H(θ)] =

[
1

σ2 X ′X 0
0 n

2σ4

]

and its inverse (the Cramér-Rao bound for the covariance matrix of any unbiased estimator) is

[nℑ(θ)]−1 =

[
σ2(X ′X)−1 0

0 2σ4

n

]

The covariance matrix of coefficients estimated by OLS is (X ′X)−1σ2, so OLS coefficients attain the Cramér-Rao bound.
But the OLS estimator of σ2 does not attain the bound. In fact, remembering that σ̂2/σ2 is a random variable χ2

n−k divided
by n − k, and that the variance of the χ2

n−k is 2(n − k), we get:

V ar(σ̂2) =

[
σ2

n − k

]2

V ar
(
χ2

n−k

)
=

2σ4

n − k

which is larger than the Cramér-Rao bound (however, it is not possible to find an unbiased estimator of σ2 with a smaller
variance; see Rao, 1973, 5a.2).

Remark. If the Hessian (17.99) is estimated, that is it is computed at the OLS estimated parameters β̂ and σ̂2, the off

diagonal blocks are zero (X ′Xβ̂ − X ′y = −X ′û = 0).

Remark. Obviously, the good properties of the OLS estimator just described are no more valid if some elements of xi are
correlated with ui. In principle, the likelihood should be re-specified, to take explicitly into account the correlation, and
maximum likelihood would be different from the simple OLS estimator.

17.7 Nonlinear regression model: maximum likelihood and nonlinear least squares

Let the model and the vector of parameters be

yi = q(xi, β) + ui ui i.i.d. N(0, σ2) i = 1, 2, ..., n θ =

[
β
σ2

]
(17.100)

where q is a nonlinear function of the explanatory variables xi and of the coefficients β, satisfying some regularity conditions
(continuity and differentiability). Almost all properties of the linear regression with normal errors apply to the nonlinear
regression as well. The only difference is that, unlike the linear case, estimation of coefficients usually requires the application
of a numerical technique (e.g. Newton-Raphson or similar), as it cannot be done in closed form.
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Being the Jacobian of the transformation ∂ui/∂yi = 1 (so that the density f(yi, θ) = f(ui, θ)) the log-likelihood is

lnL(y, θ) = −n

2
ln(2π) − n

2
ln(σ2) − 1

2σ2

n∑

i=1

[yi − q(xi, β)]
2

(17.101)

the score is
∂lnL(y, θ)

∂θ
=

[ ∂lnL
∂β

∂lnL
∂σ2

]
=

[
1

σ2

∑n
i=1 [yi − q(xi, β)] ∂q(xi,β)

β

− n
2σ2 + 1

2σ4

∑n
i=1 [yi − q(xi, β)]

2

]
(17.102)

thus the system of first order conditions is
[

1
σ2

∑n
i=1 [yi − q(xi, β)] ∂q(xi,β)

β = 0

− n
2σ2 + 1

2σ4

∑n
i=1 [yi − q(xi, β)]

2
= 0

(17.103)

Solution of the last equation gives

σ2 =
1

n

n∑

i=1

[yi − q(xi, β)]
2

(17.104)

that can be substituted into (17.101) producing the concentrated log-likelihood

lnL(y, β) = −n

2
ln(2π) − n

2
− n

2
ln

{
1

n

n∑

i=1

[yi − q(xi, β)]
2

}
(17.105)

There is no more the parameter σ2, so the concentrated log-likelihood has to be maximized only with respect to the coefficients
β. From equation (17.105) it is clear that the maximum of the concentrated log-likelihood is the minimum of the sum of
squared errors [yi − q(xi, β)]2; thus maximum likelihood is nonlinear least squares.
After β has been estimated minimizing (with some numerical technique) the sum of squared errors, the estimate of σ2 is
obtained from (17.104); it is the average of the squared residuals, analogously to the linear regression case.

Remark. Rather than minimizing the sum of squared residuals, one could minimize “n/2 ln of the average of the squared
residuals” (as in equation 17.105), using the Newton-Raphson procedure (at least in the last iterations). The coefficient
estimates would obviously be the same, but there would be no need of any further calculation to estimate the variance-
covariance matrix of the coefficients: it would simply be the inverse of the last iteration’s Hessian matrix.
However, from a computational viewpoint, convergence of the Newton-Raphson procedure is usually faster when the method
is applied to the sum of squared residuals. Thus, it might be more convenient to split the procedure in two parts: first
compute coefficients minimizing the sum of squared residuals; then, when convergence has been achieved, compute (and
invert) the Hessian of “n/2 ln of the average of the squared residuals” as an estimate of the coefficients variance-covariance
matrix.

17.8 Nonlinear regression model with autocorrelated errors

We consider the same case as (17.100) when the error terms have a stationary AR(1) structure

yt = q(xt, β) + ut ut = ρut−1 + εt εt i.i.d. N(0, σ2) t = 2, ..., n (17.106)

where the vector of parameters is

θ =




β
ρ
σ2


 |ρ| < 1 V ar(ut) =

σ2

1 − ρ2
(17.107)

Subtracting from (17.106) its lagged value, we get

yt − ρyt−1 = q(xt, β) − ρq(xt−1, β) + εt εt i.i.d. N(0, σ2) t = 2, ..., n (17.108)

that can be treated as a nonlinear regression model with i.i.d. normal errors. Thus, to maximize the concentrated log-
likelihood with respect to the coefficients (β and ρ), one has to minimize the sum of squared errors of the transformed model
(17.108)

n∑

t=1

{[yt − ρyt−1] − [q(xt, β) − ρq(xt−1, β)]}2
(17.109)

After β̂ and ρ̂ have been computed from minimization of (17.109), the estimate σ̂2 is obtained, as usual, as the average of
the squared residuals of (17.108).

Remark. The same argument of the previous section can be applied here as well. Rather than minimizing the sum of
squared residuals (17.109), one could minimize “n/2 ln of the average of the squared residuals” using the Newton-Raphson
procedure. This would produce the same estimates of β and ρ, and the estimate of their variance-covariance matrix would
be the inverse of the last iteration’s Hessian matrix. From a computational viewpoint, however, it is usually more convenient
to first compute the estimates of β and ρ; then, after convergence of the iterative maximization procedure has been achieved,
compute (and invert) the Hessian of “n/2 ln of the average of the squared residuals” as an estimate of the coefficients
variance-covariance matrix.
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18 APPENDIX. Complements of linear algebra: Kronecker product

Let A be an m × n matrix and B a p × q matrix; the Kronecker product of the two matrices is a matrix with dimensions
mp × nq; using a block-representation, this product can be defined as follows

A ⊗ B =




a1,1B | a1,2B | a1,3B | ... | a1,nB |
a2,1B | a2,2B | a2,3B | ... | a2,nB |
a3,1B | a3,2B | a3,3B | ... | a3,nB |

... | ... | ... | ... | ... |
a

m,1
B | a

m,2
B | a

m,3
B | ... | a

m,n
B |


 (18.110)

The Kronecker product is distributive with respect to the sum; that is
(A + C) ⊗ B = A ⊗ B + C ⊗ B, if A and C have the same dimensions;
A ⊗ (B + D) = A ⊗ B + A ⊗ D, if B and D have the same dimensions (the proof is straightforward).
The transpose of the Kronecker product is the Kronecker product of the two transposed matrices:
(A ⊗ B)′ = A′ ⊗ B′

(the proof is straightforward, looking at the block-representation 18.110).
If A and C are conformable for the ordinary multiplication of matrices (rows by columns), and B and D are also conformable
for the multiplication, then

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD) (18.111)

To prove it, first of all it must be verified the equality of the dimensions of the matrices on both sides. Then, the equality
is proved by writing the explicit expression of a generic element of the matrix on the left hand side and of the corre-
sponding element of the matrix on the right hand side (for simplicity, one can write explicitly the element (1, 1) which is
(A ⊗ B)1.(C ⊗ D).1 for the matrix on the left hand side, and (AC)1,1(BD)1,1 = (A1.C.1)(B1.D.1) for the matrix on the right
hand side, easily verifying their equality; equality for all the other corresponding elements could be proved in the same way).
If A and B are two non-singular square matrices, the inverse of the Kronecker product is the Kronecker product of the two
inverted matrices:
(A ⊗ B)

−1
= A−1 ⊗ B−1

The proof follows straightforwardly from the above theorem, observing that if A has dimensions m×m and B has dimensions
n × n,
(A−1 ⊗ B−1)(A ⊗ B) = (A−1A) ⊗ (B−1B) = Im ⊗ In = Imn.
In particular, if Σ is a (k × k) nonsingular matrix, then

(Σ ⊗ In)
−1

= Σ−1 ⊗ In.

19 APPENDIX. Two useful derivatives

19.1 Derivatives of a determinant

Let A be a non-singular square matrix (n × n), |A| its determinant and ||A|| the absolute value of the determinant. Then

∂ln||A||
∂A

= (A′)−1

To prove it, first consider the derivative of the determinant with respect to ai,j (the i, j − th element of the matrix), having
expanded the determinant according to the cofactors of the i − th row

|A| = ai,1Ai,1 + ai,2Ai,2 + ... + ai,nAi,n

No cofactor depends on ai,j . Thus ∂|A|/∂ai,j = Ai,j . Then, applying the chain rule for derivatives

∂ln||A||
∂ai,j

=
∂ln||A||

∂|A|
∂|A|
∂ai,j

=
Ai,j

|A|
which is the j, i − th element of A−1.

19.2 Derivatives of the elements of an inverse

Let A be a non-singular square matrix (n × n), ai,j its i, j − th element and ah,k the h, k − th element of A−1. Then

∂ah,k

∂ai,j
= −ah,iaj,k

(Theil, 1971, p.33 suggests as a simple mnemonic rule the familiar traffic sign “no U turn anytime”, where the “no” is
represented by the minus sign and the “U” indicates the order in which the indices on the left hand side appear on the right:
down from h to i, then up from j to k).
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The proof follows in a straightforward way from the more general case, where all the elements of the matrix are functions of a
scalar variable (say x). Now, considering the matrix A(x) and its inverse A−1(x), the product A(x) A−1(x) = In (constant)
thus all derivatives are zero

∂A(x) A−1(x)

∂x
=

∂A(x)

∂x
A−1(x) + A(x)

∂A−1(x)

∂x
= 0 Thus

∂A−1(x)

∂x
= −A−1(x)

∂A(x)

∂x
A−1(x)

In the particular case where x = ai,j (i, j − th element of A), then all derivatives of the elements of A are zero, except for the
i, j − th element, whose derivative is = 1. So the matrix ∂A(x)/∂x has all elements = 0, with the exception of the i, j − th
element which is 1. The h, k − th element of product is thus the product of the h, i − th and j, k − th elements of A−1.
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