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1 Introduction24

Adversarial justice has two stages: (i) information provision, where informa-25

tion is acquired and reported to the court; and (ii) decision-making, where26

a court makes a decision to resolve the dispute (Iossa and Palumbo, 2007).27

Much of the economic literature comparing adversarial to inquisitorial justice28

focuses on the first stage, where evidence is produced and reported by adver-29

saries, rather than an impartial third party (Milgrom and Roberts, 1986; Shin,30

1998; Dewatripont and Tirole, 1999; Froeb and Kobayashi, 2001; Daughety and31

Reinganum, 2000b; Skaperdas and Vaidya, 2012; Froeb and Kobayashi, 2012;32

Rantakari, 2016). Although these articles address different aspects of the ad-33

versarial system, they all find that competition between the adversaries plays34

a crucial role in the ability of a court to gather information.35

However, the adversarial system also differs from the inquisitorial in the36

second, decision-making stage: instead of having to choose between competing37

interpretations of evidence constructed by interested parties (“adversarial”), a38

court can instead appoint a neutral expert to interpret the evidence for them39

(“inquisitorial”). A shift to the second option is probably the most commonly40

called-for reform of the (adversarial) justice system in the United States (Fien-41

berg and Straf, 1991; Froeb and Kobayashi, 2001; Wagner, 2005), especially42

for scientific or statistical evidence where the court often lacks “knowledge43

and expertise . . . and therefore has to delegate the job to a qualified expert”44

(Ambrus et al., 2015). For example, antitrust merger trials often involve oppos-45

ing expert economists who construct oligopoly models to predict post-merger46

prices (Werden and Froeb, 1994; Tenn et al., 2010). Lay competition tribunals47
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are called on to assess the relative credibility of the two models, even though48

constructing a model would be beyond the tribunal’s capability.49

More generally, think about two litigants preparing for trial. Evidence has50

already been produced and discovered, and the opposing attorneys are devising51

strategies to win in court. As first-year law students are taught (Tanford,52

2009):53

It is your job to sort the information before trial, organize it, sim-54

plify it and present it to the jury in a simple model that explains55

what happened and why you are entitled to a favorable verdict.56

Remember that there is a lawyer on the other side who will be57

trying to sell the jury a story that contradicts yours. . . . If both58

sides do competent jobs, the jury will have to choose between two59

competing versions of events . . . .[emphasis added]60

In this paper, we characterize the resulting trial as a persuasion game.161

Unlike other persuasion games, where agents have private information and62

take actions to persuade a principal (i.e., by strategically revealing evidence),63

in our game, all the evidence is known, and litigants compete by proposing64

models to explain what it means.265

1Our persuasion game assumes symmetric information across all players. Scenarios in
which two agents with private information (and potentially competing interests) try to
influence a decision-making principal have been studied by Gilligan and Krehbiel (1989),
Glazer and Rubinstein (2001), Krishna and Morgan (2001a), Krishna and Morgan (2001b),
Gentzkow and Kamenica (2016), and Rantakari (2016).

2In the context of litigation, Mauet (2007:24) describes such a model or theory of a case
as a “simple story of ‘what really happened’.” This kind of decision-making could also be
motivated by institutional constraints, like the constitutional guarantees of the adversarial
process. The Case and Controversy Clause of the U.S. Constitution (art. III, sec. 2) limits
the court to deciding actual controversies, which are framed by the litigants.
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Deciding between the competing interpretations of the evidence is analo-66

gous to the statistical problem of “model selection,” where a researcher ob-67

serves data, and then tries to determine which of two models generated it. If68

we think of the court as a researcher and the evidence as data, then the adver-69

saries’ models can be parameterized as probability distributions that describe70

the evidence-generating process. The court measures the “credibility” of each71

model by its statistical likelihood and decides in favor of the most likely model.72

This decision rule puts adversaries on the horns of a dilemma: a model73

with a “location” (mean) further from the evidence is less likely to prevail but74

has a higher payoff if it does. We use distribution families that also have a75

“spread” (variance) parameter, which makes credibility (likelihood) a choice76

variable. For example, a player can reduce the likelihood penalty (credibility77

cost) of choosing a model with a location further from the evidence by also78

choosing a model with a bigger spread. A bigger spread makes it more likely79

that the evidence would be located far from the mean, which is equivalent to80

saying that evidence is not very informative about the mean.81

If the court can, through the process of discovery and rebuttal, perfectly82

rank the likelihoods of the two competing models, then competition between83

the adversaries forces each party to propose the same, most likely model. This84

is because any “shading” (i.e., interpretation of the evidence away from the85

most likely model) can be bested by a more likely model with a higher expected86

payoff. This leads to an equilibrium in which each party chooses the same,87

most likely model. In other words, competition between the adversaries leads88

the court to the best interpretation of the evidence, even though it has to89
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choose between interpretations constructed by interested parties. A similar90

result comes from final-offer arbitration, where parties make the same utility91

maximizing offer (Crawford, 1979).92

If, instead, the court measures likelihood with error and, as a result, cannot93

perfectly determine which party’s model is more likely to have generated the94

evidence, then each party shades its model away from the most likely model.95

Bias arises if the likelihood is not symmetric, which changes the tradeoff96

between credibility and payoff for each of the parties. As a result, each party97

“shades” its model away from the most likely model by differing amounts. In98

this case, equilibrium decisions are biased, and the bias favors the party with99

the less likely, and more extreme, interpretation. As such, there is no reason100

to expect the court’s decision to have desirable properties, even when based on101

evidence. However, bias disappears as the court gets better at distinguishing102

between the likelihoods of competing models, or as the amount of evidence103

grows.104

We present our main results using a simple litigation game. We introduce105

the model and notation in Section 2 and illustrate our main results using a106

parameterized version of the model in Section 3. In the Technical Appendix,107

we generalize the model and provide more formal statements of our results.108

We conclude this paper with a brief discussion in Section 4.109
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2 Litigation as a Persuasion Game110

Imagine that a plaintiff (P ) sues a defendant (D), and the issue before the111

court is the level of damages.3 Before trial, evidence z̄ = (z1, z2, ..., zn) is112

produced and discovered. We parameterize the evidence-generating process113

so that the level of damages corresponds to the mean µ
Z
≥ 0 of an unknown114

distribution Z belonging to some family F . Such a distribution Z can be115

interpreted as a model that explains the evidence and how it relates to the116

damages. We assume there is a unique model Z
ML

∈ F that best explains the117

evidence (has the highest likelihood given the evidence z̄):118

Z
ML

≡ argmax
Z∈F

L (Z|z̄) (1)

where L (Z|z̄) =
∏n

i=1 f(zi|Z). The level of damages associated with the most119

likely model is µ
ML

.120

In this litigation game, both parties simultaneously offer competing models,121

ZP ∈ F and ZD ∈ F , to explain the evidence and the respective level of122

damages. The court (as the decision-maker in this contest) evaluates the123

model likelihoods LP = Pr(ZP |z̄) and LD = Pr(ZD|z̄) and awards damages124

of µ
P
≥ 0 or µ

D
≥ 0. The expected payment from the defendant to the plaintiff125

is126

µ̂ = θµ
P
+
(
1− θ

)
µ
D

(2)

3The results do not change if we fix the level of damages and let the court draw inference
about liability, modeled as a probability of a plaintiff win. In this case, expected damages
are the probability of a plaintiff win times the level of damages.
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where θ is the probability that the court finds in favor of the plaintiff. We127

assume that the court’s payoffs are directly linked to the accuracy of the128

decision.4 In other words, the court’s objective is to get it right, and it therefore129

decides in favor of the party whose model is best supported by the evidence.5130

Note that multiple models can generate the same level of damages (i.e.,131

different distributions have the same mean). Because the plaintiff’s payoffs132

are strictly increasing in µ̂, equation (2) implies that, for any given level of133

damages µ
P
, the plaintiff chooses the strongest model (i.e., with the highest134

likelihood) to maximize the value of θ and thus maximize µ̂. Likewise, the135

defendant (whose payoffs are strictly decreasing in µ̂) chooses the strongest136

model to minimize θ and thus minimize µ̂.6 Optimally chosen models trade137

off a higher payoff following a win for a lower probability of winning.7138

4This can, for instance, be due to career concerns, as in Farber and Bazerman
(1986:1506), who argue that arbitrators “attempt to make awards that maximize the prob-
ability they will be hired in subsequent cases” and compromise to maintain “acceptability
with both parties.” Iossa and Jullien (2012) take an approach similar in spirit. They as-
sume a judge maximizes an external evaluator’s posterior belief about the judge’s correct
(i.e., most credible) decision. Daughety and Reinganum (2000a) model the behavior of a
trial court that is constrained by “higher court review.” See Choi et al. (2012) for related
evidence on federal district judges.

5We interpret the expression in equation (2) as the expectation of the court’s decision,
wherein the court chooses one of the two proposed models by the litigants. Outside of liti-
gation, this approach is akin to final-offer arbitration (Wittman, 1986) or the “closed rule”
in legislation (Austen-Smith, 1993). Our results do not change if, instead, we assume the
court’s damages assessment is the weighted average of the litigants’ claims, where θ is the
weight of the plaintiff’s claim µ

P
. Outside of litigation, this is akin to conventional arbi-

tration, or an “open rule” in legislation, in which the legislative body can amend proposals
submitted.

6Viewed differently, among the models with the same likelihood, the plaintiff chooses the
model that is associated with the highest damages to maximize µ̂, whereas the defendant
chooses the model that is associated with the lowest damages to minimize µ̂. Pardo and
Allen (2008:234) cite evidence suggesting that “juries asume in most cases the parties have
put forward the explanation that best helps their case.”

7The approach taken by Kartik et al. (2007), Kartik (2009), or Emons and Fluet (2009)
is related but differs in one key feature. In their models, players try to sway a decision-maker
by tampering with the evidence at a direct cost, whereas in our setting, the facts are given
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2.1 A Perfect Court as an Inquisitorial Benchmark139

For our benchmark, we suppose the court can perfectly (i.e., without noise)140

rank-order the likelihoods of the parties’ proposed models. The probability of141

a plaintiff win in this case8 is142

θ =





1 for LP > LD

1/2 for LP = LD

0 for LP < LD,

(3)

and the expected payment from the defendant to the plaintiff is143

µ̂ =





µ
P

for LP > LD

1/2µ
P
+ 1/2µ

D
for LP = LD

µ
D

for LP < LD.

(4)

With these payoffs, in equilibrium, the adversaries both choose the same,144

most likely model: ZP = ZD = ZML. To see this, note that any model145

proposed by the plaintiff with damages higher (and a likelihood lower) than146

the most likely model ZML gives the defendant an opportunity to choose a more147

likely model (i.e., “closer” to ZML) with lower damages and thus a higher payoff148

for the defendant. A similar argument applies to the plaintiff.9 In equilibrium,149

and litigants try to influence the decision in their favor by tampering with the interpretation
of those facts.

8We assume the court has no ex ante bias favoring one of the two parties. If the likelihoods
are the same, the court tosses a fair coin.

9The defendant’s best response to a plaintiff’s model ZP with µ
P
> µ

ML
so that LP <

LML and θ = 1 is a model ZD with a mean µ
D
such that µ

ML
≥ µ

D
and LP < LD ≤ LML
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both parties choose the same, most likely model, and the court awards µ
ML

150

with probability one. Heuristically, the opposing interests of the parties allow151

the court to reach the best (most likely) interpretation of the evidence.152

This outcome of adversarial litigation with a perfect court is also the max-153

imum likelihood estimator whose well-known optimality properties (DeGroot,154

1970) make it an obvious choice for an inquisitorial court with the ability to155

interpret the evidence itself. The maximum likelihood estimator serves as the156

benchmark against which bias is measured. We use the term bias to measure157

deviations from the best (most likely) interpretation or model of the evidence,158

∆µ = µ̂ − µ
ML

. In our benchmark case of a perfect court, it does not mat-159

ter whether the court uses inquisitorial or adversarial decision-making because160

both result in the same, best outcome.161

2.2 Noisy Courts162

The characterization of adversarial justice with a perfect court is simple and163

results in an optimal decision, but it cannot explain the salient feature of the164

adversarial system: the competing interpretations of evidence put forward by165

the parties. Adding noise to the court’s decision-making means that the court166

sometimes makes errors by selecting the less likely alternative. Such errors167

make it optimal for the parties to shade their interpretations away from the168

most likely interpretation because there is some probability that a less likely169

claim will be chosen. We motivate the addition of noise with the limited ability170

so that θ = 0. In equilibrium, both parties’ choose the most likely model. A deviation
Z ′
s (so that µ′

s 6= µ
ML

) renders the resulting likelihood L ′
s < LML and the probability of

winning equal zero.
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of humans (and courts) to “detect signals,”10 as, for instance, in Mueller and171

Weidemann (2008).172

The perceived likelihoods of the proposed models are the product of signal173

and noise:174

L̃P = LP exp ξP and L̃D = LD exp ξD (5)

where ξP and ξD are independently extreme value distributed noise, with mean175

0 and scale 1/λ. The probability of a plaintiff win (i.e., the logit choice proba-176

bility for model P )11 is177

θ̃ = Pr(L̃P > L̃D) =
exp(λ logLP )

exp(λ logLP ) + exp(λ logLD)

=
L λ

P

L λ
P + L λ

D

. (6)

This is similar to the approach taken by McKelvey and Palfrey (1995) for mod-178

eling optimal strategies when players make errors in non-cooperative games,12179

and to that taken by McFadden (1974) for modeling consumer choice among180

discrete alternatives.181

The probability in equation (6) is also equivalent to Tullock’s general for-182

10For example, the statistician Irving J. Good, who worked with Alan Turing to break the
Enigma code, thought that a change in an odds ratio from evens to about 5:4 is about as
finely as humans can reasonably perceive their degree of belief in a hypothesis in everyday
use (Good, 1979).

11See Train (2009:36-37,74-75) for the formal steps of deriving expression (6) for a scale
parameter of λ = 1. Our distributional assumption for the random variable ξs is more
restrictive than necessary. For a more general characterization, it suffices to assume that
the random variable ξs (i.e., noise) belongs to the inverse exponential distribution (Jia,
2008).

12The notion of a perfect court without errors, λ → ∞, corresponds to a perfectly rational
decision-maker, whereas a noisy court with finite λ is said to be boundedly rational.
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mula for the contest success function in rent-seeking contests (Tullock, 1980),183

with the likelihoods Ls playing the role of “effort.” In our game, a party exerts184

higher effort by choosing a model Zs with a higher likelihood, which results in185

a higher chance of winning.13 This increase in the success probability, however,186

comes at the cost of a lower payoff following a win, because a higher likeli-187

hood Ls implies a location parameter µs closer to the maximum-likelihood188

location µ
ML

. Unlike the standard Tullock contest, payoffs (damages) are not189

exogenous but rather are chosen optimally by the parties.14190

In Table 1, we summarize three special cases of the contest success function191

in equation (6), for different values of the noise parameter λ.15 For λ =192

0, adversarial decision-making is uninformative, and the court’s decision is193

equivalent to a toss of a fair coin where the probability of a plaintiff win is194

θ̃ = 1/2. In this case, the court’s decision is independent of both the players’195

proposed models as well as the evidence.16 For λ = 1, equation (6) becomes196

the lottery version of the general Tullock contest success function. In addition,197

it is equivalent to Bayesian hypothesis testing for a court that assigns equal198

13Others have modeled effort in litigation as the number of arguments presented in court
(Katz, 1988), litigation expenditure (Hirshleifer and Osborne, 2001), or quality of the case
(Baye et al., 2005).

14For contests with endogenous payoffs that depend on parties’ efforts, see, for instance,
Chung (1996), Skaperdas (1996), Konrad and Schlesinger (1997), Kaplan et al. (2002), or
Ambrus et al. (2015). Chowdhury and Sheremeta (2011) provide a generalized version of
the Tullock contest that nests a range of contest models, including one in which, as in our
paper, a party i’s effort affects only party i’s but not party j’s payoff.

15Alternative interpretations of the noise parameter λ are found in Skaperdas and Vaidya
(2012:473) (measure of the “sensitivity of the court to the evidence”) and in Hirshleifer and
Osborne (2001) (measure of effectiveness of “legal effort” relative to the (subjective) “power
of truth”).

16This case corresponds to broad jury instructions in Hirshleifer and Osborne (2001:174).
In this scenario, the litigants’ “power of advocacy” (i.e., persuasion) is diminished, and the
outcome of litigation is based entirely on an objective fault parameter, independent of the
litigants’ proposed models.
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Table 1: Litigation Contest Success Function With Noisy Court

λ = 0 Coin toss; uninformative decision-making
λ = 1 Tullock lottery; Bayesian hypothesis testing
λ → ∞ Perfect Court benchmark; all-pay auction

prior weight to the competing models of the parties (Saks and Neufeld, 2011;199

Cheng, 2013). After seeing the evidence, the court updates its beliefs about200

which party is correct using Bayes’ rule. The posterior odds are equal to the201

prior odds times the likelihood ratio,202

θ̃

1− θ̃
=

γ

1− γ
·
LP

LD

where γ is the prior weight the court places on the plaintiff’s model (before203

seeing the evidence). Setting the prior weight γ = 1/2 (so that the court is204

unbiased from an ex ante point of view) and rearranging, we get:205

θ̃ =
LP

LP + LD

(7)

which is equivalent to equation (6) for λ = 1.206

For the third scenario in Table 1, as λ → ∞, the court can perfectly assess207

the relative likelihoods of the parties’ models, and so awards the item to the208

more likely model with probability one. This is our benchmark case of a perfect209

court and is essentially a first-price all-pay auction (Baye et al., 1996).210

The court’s decision is an estimator of the mean, a likelihood-weighted211
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average of the means of the parties’ models,212

µ̂(ZP , ZD) = θ̃µ
P
+
(
1− θ̃

)
µ
D
=

L λ
P · µ

P
+ L λ

D · µ
D

L λ
P + L λ

D

. (8)

The estimator depends on the evidence and on λ, the variance of the noise in213

the court’s assessment of likelihood.214

This award µ̂ = µ̂(ZP , ZD) also minimizes a quadratic loss function, that215

is, the weighted sum of the squared deviations of decision µ̂ from the parties’216

proposed damages µs: wP (µ
P
+ µ̂)2 − wD (µ

D
− µ̂)2. This latter approach is217

similar to the one used by Farber and Bazerman (1986) to determine the “ap-218

propriate” or “ideal” award in conventional arbitration. Unlike their approach,219

however, our weights are endogenous and driven by the tradeoff of a higher220

payoff following a win for a lower probability of winning.221

The court’s decision is simply a binomial random variate with probability222

p = θ̃ and variance223

Var(µ̂) = θ̃
(
1− θ̃

)(
µ
P
− µ

D

)2
. (9)

The further apart the locations of the adversaries’ models are, and the closer224

θ̃ is to 1/2, the larger the variance of the court’s decision is.17225

17This assumes that the court chooses either µ
P

or µ
D
. None of our results on bias

change if the court splits the baby by awarding the expected value of the estimate instead,
θ̃µ

P
+
(
1− θ̃

)
µ
D
. The variance of the expected value is, of course, zero.

13



3 Equilibrium Results226

We relegate the formal results of the persuasion game to the Technical Ap-227

pendix. In this Section, we illustrate our main results for a parameterized228

version of the model. Evidence z̄ is a vector of n independent draws zi ∈ (0, 1)229

with sample mean µ̄ from the same Beta(α, β) distribution with mean µ =230

E(zi) = α/(α + β) and variance σ2 = Var(zi) = αβ/[(α + β)2(1 + α + β)].231

Each party s = P,D chooses a model Zs = (αs, βs) (i.e., the parameters232

for the Beta distribution) to explain the evidence vector z̄, with any desired233

mean 0 < µs < 1 and any variance σ2
s = µs(1 − µs)/(1 + αs + βs) with234

0 < σ2
s < µs(1 − µs). A Nash equilibrium in pure strategies of this zero-sum235

game is a strategy profile (Z∗
P , Z

∗
D) such that each party chooses an optimal236

model, given the model chosen by its rival:237

Plaintiff: µ̂(Z∗
P , Z

∗
D) ≥ µ̂(ZP , Z

∗
D) ∀ZP = (αP , βP ) ∈ R

2
+

Defendant: µ̂(Z∗
P , Z

∗
D) ≤ µ̂(Z∗

P , ZD) ∀ZD = (αD, βD) ∈ R
2
+





(10)

To illustrate our results, we show three different types of experiments: first, we238

fix an evidence vector z̄ = (1/5, 1/2). We characterize the parties’ equilibrium239

models and show how they affect the court’s decision. Second, we show how240

quickly the court’s decision-making improves as the “decision noise” shrinks241

to zero. Third, we show how quickly the court’s decision-making improves as242

the amount of evidence grows, or alternatively, as “sampling noise” shrinks to243

zero. In statistics, the third experiment determines the “consistency” of an244

estimator.245
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In Figure 1, we assume that the variance of the court’s decision noise is246

λ = 1, which makes the court’s decision equivalent to Bayesian hypothesis247

testing, where the court updates its prior belief (about relative merits of the248

two sides) with the likelihood to form a posterior. This assumption allows249

us to graph the court’s posterior belief as a weighted average of the parties’250

models, where the weights are proportional to the likelihoods of each model.251

Note that we are not saying the court uses Bayesian inference, only that for252

λ = 1, the final assessment of the court µ̂ is also the mean of a posterior belief,253

as if formed by Bayesian inference.254

Result 1. Both parties “shade” the evidence in their favor so that 0 < µ∗
D
<255

µ
ML

< µ∗
P
< 1.256

In Figure 1, we plot the parties’ equilibrium models, represented by the257

density functions f(z;αs, βs), and the respective means µs when the evidence258

sample consists of two draws, z̄ = (1/5, 1/2). The plaintiff chooses a model with259

a mean that is above the maximum likelihood estimate, while the defendant260

chooses one with a mean that is below it.261

For λ > 0, the plaintiff engages in payoff moderation (e.g., Konrad, 2009),262

essentially trading off a higher payoff following a win for a lower probability of263

winning.18 In panel (a) of Figure 2, for example, we plot the likelihood ratio of264

the plaintiff’s model relative to that of the defendant. The graph shows that,265

in equilibrium, the plaintiff is willing to accept a lower likelihood of winning,266

18Payoff moderation means that neither player chooses a model with extreme means so
that µs ∈ (0, 1). Without the likelihood penalty of shading when λ = 0 so that the court
sides with the plaintiff 50% of the time, irrespective of the parties’ claims, the parties
construct models with the most extreme claims possible so that µs ∈ {0, 1}.
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Figure 1: Parties’ Equilibrium Claims in the Litigation Game

This figure illustrates the equilibrium of the litigation game for evidence z̄ = (1/5, 1/2), indicated by two cross
marks on the horizontal axis. Pieces of evidence zi ∈ (0, 1) are random draws from a Beta(α, β) distribution
with density function f(z;α, β) = 1

B(α,β)
z1−α(1 − z)1−β , where B(α, β) is the Beta function. The dashed

curve represents the density f(z;αP , βP ) of the plaintiff’s equilibrium model; the dotted curve represents
the density f(z;αD, βD) of the defendant’s equilibrium model. The means of the two models are depicted
by the dotted and dashed vertical lines. The mean of the maximum likelihood µ

ML
is represented by the

vertical dotted-dashed line. The court’s equilibrium decision µ̂ is depicted by the solid vertical line. The
equilibrium is characterized by the following parameters:

αP βP µ
P

σ2
P αD βD µ

D
σ2
D θ̃ µ̂ µ

ML

2.397 2.326 0.507 0.044 2.026 5.981 0.253 0.021 0.430 0.362 0.349

0 0.2 0.4 0.6 0.8 1
0

1

2

3

µ
ML

µ̂

µ∗

P
µ∗

D

z

f(z;α, β)

Plaintiff

Defendant

Court
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Figure 2: Payoff Moderation as a Best Response

The figure illustrates the plaintiff’s best response in the litigation game for evidence z̄ = (1/5, 1/2), indicated
by two cross marks on the horizontal axis. In panel (a), we fix the defendant’s equilibrium model Z∗

D and
plot the likelihood ratio LP /LD for given values of µ

P
. In panel (b), we fix the defendant’s equilibrium

model Z∗

D and derive the plaintiff’s optimal response. We plot the court’s decision µ̂ for given values of
mean µ

P
of the plaintiff’s model. In both panels, the vertical lines depict the mean µ∗

D
of the defendant’s

equilibrium model (dotted) and the mean µ∗

P
of the plaintiff’s equilibrium model (dashed), as well as the

mean of the maximum likelihood (solid).
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relative to the most likely model in exchange for a higher payoff following a267

win. Panel (b) of Figure 2 plots the profit function of the plaintiff’s location,268

for a fixed value of Z∗
D, the equilibrium model for the defendant. As in panel269

(a), we see that in equilibrium, the plaintiff optimally chooses a mean µ
P
above270

maximum likelihood mean, but strictly less than unity, µ
ML

< µ∗
P
< 1.271

Result 2. The party with less favorable evidence follows an “obfuscation strat-272

egy” and chooses a model with (i) a location further away from the most likely273

model and (ii) with a spread larger than its rival’s.274

For example, the evidence vector z̄ = (1/5, 1/2) in Figure 1 favors the de-275

fendant. In this case, the plaintiff optimally chooses a model with a location276

further from the most likely model |µ∗
P
− µ

ML
| = 0.158 > 0.096 = |µ∗

D
− µ

ML
|,277

and with a higher variance, σ∗
P = 0.044 > 0.021 = σ2

D. We easily see this in278
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Figure 1 by comparing the spread of the density of the plaintiff’s model (large)279

to that of the defendant’s (small). A model with a larger spread is more likely280

to generate evidence further away from its mean.281

The intuition for this result is simple. As long as the sample mean µ̄ 6= 0.5,282

the likelihood is asymmetric, which changes the tradeoff between the proba-283

bility of winning and payoff following a win. For the disfavored party, it lowers284

the likelihood penalty, or “credibility cost,” of claiming a model with a loca-285

tion further from the evidence. Anyone who has participated in litigation or286

has experience in political campaigns will recognize this as analogous to what287

is known as an “obfuscation strategy.” When the evidence goes against you,288

your best move is to claim that the evidence is not very informative. The de-289

fendant’s best response is to choose a model with a mean closer to the evidence290

and with a smaller spread. This might be called an “elucidation strategy,” as291

the defendant is essentially claiming that the evidence is informative about292

the mean.293

Result 3. The court’s assessment of liability is biased in favor of the party294

with, on average, less favorable evidence.295

We illustrate this result in Figure 1, where the evidence favors the defen-296

dant, µ̄ < 1/2, and the court’s decision is just above the maximum likelihood297

estimate, µ̂ > µ
ML

. This “bias” favors the plaintiff who, in equilibrium, offers298

a more extreme interpretation of the evidence.19 However, the court’s bias is299

19The general characterization of this result in Theorem A3 in the Technical Appendix
does not explicitly refer to less or more favorable evidence but to the “credibility cost” of
shading the model location away from the most likely model location. For Result 3, if the
evidence is closer to the lower range of the Beta(α, β) distribution (so that the evidence is
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small compared to the widely disparate models of the parties, which give the300

court’s estimator a big variance, as computed in equation (9).301

Result 4. As court noise disappears, λ → ∞, (i) the parties’ models con-302

verge to the maximum likelihood estimator, µs → µ
ML

, for s = P,D, as does303

the court’s estimator, µ̂ → µ
ML

; and (ii) the probability of a plaintiff win ap-304

proaches 50%, θ̃ → 1/2. The court’s estimator converges faster than do the305

models of the parties.306

For Results 1, 2, and 3, we have kept the court noise parameter constant.307

For Result 4, we vary λ to show how an improvement in the court’s assessment308

of credibility affects the parties’ strategies and the court’s decision. First, note309

that, for λ = 0, adversarial decision-making is uninformative, as the court310

sides with the plaintiff half the time (i.e., θ̃ = 1/2) regardless of the parties’311

claims. This eliminates the credibility cost of an extreme claim, so the parties312

construct models with the most extreme claims possible: µ
D
= 0 and µ

P
= 1.313

As λ increases, the credibility cost of shading their models away from the most314

likely model increases, so the parties shade less.315

We illustrate the convergence in panel (a) of Figure 3, where we plot the316

court’s equilibrium assessment as a function of court’s decision noise param-317

eter. While both the competing models of the adversaries and the court’s318

estimator converge to the maximum likelihood estimate, the court’s estima-319

tor converges faster than do the competing models of the parties.20 As a320

less favorable for the plaintiff), then there is more “room” to explain the evidence with a
larger µ than with a smaller µ. This translates into lower credibility costs for the plaintiff,
resulting in a bias in favor of the plaintiff.

20Note, however, that this convergence is not the usual convergence in probability, which
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Figure 3: Effect of Court Noise

This figure illustrates the relationship between decision-making noise and the equilibrium in the litigation
game with evidence z̄ = (1/5, 1/2). In panel (a), we plot the means of the models for the plaintiff (dashed
curve) and the defendant (dotted curve), the court’s equilibrium decision (solid curve), and the mean of
the maximum likelihood model (dotted-dashed curve) against the noise parameter λ. In panel (b), we plot
the probability of a plaintiff win, θ̃ against λ. In panel (c), we plot the variance of the court’s estimator,
Var(µ̂) = θ̃(1− θ̃) (µ

P
− µ

D
)2 in equation (9) against λ. The horizontal axes are on a logarithmic scale.
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court is better able to assess credibility, the parties choose models closer to321

the maximum likelihood estimator, but on either side of it. In this sense, the322

parties’ models tend to cancel each other out, which has a salutary effect on323

the adversarial court’s decision-making.324

In panel (b) of Figure 3, we plot the probability θ̃ of a plaintiff win as325

λ → ∞. As court noise disappears, the parties choose models that have326

the same likelihoods (as their models converge to the maximum likelihood327

estimator), so the probability of a win approaches 1/2. This limit corresponds328

to the 50% probability of a trial win found by Priest and Klein (1984), albeit329

for a different reason. Their explanation is built around a selection bias story330

driven by overconfidence (Nalebuff, 1987). In our model, the equilibrium 50%331

tells us whether or not an estimator is “consistent.” Rather, it is convergence to the best
(i.e., most likely) interpretation of the evidence. There is still sampling error because the
maximum likelihood estimator still has variance, but the adversarial court will reach the
same, most likely explanation as an inquisitorial court.
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Figure 4: Effect of More Evidence

This figure illustrates the results for varying evidence sample sizes n. Evidence zi ∈ (0, 1) are independent
draws from a Beta(1, 2) with µ = 1/3 and σ2 = 1/18. For evidence sample sizes n ∈ {2, . . . , 100}, we draw
250 random evidence samples. In panel (a), we plot the sample mean for the bias ∆µ = µ̂−µ

ML
against n.

In panel (b), we plot the sample mean for plaintiff probability to win θ̃ against n. In panel (c), we plot the
sample mean for variance of the court’s decision, Var(µ̂) = θ̃(1 − θ̃) (µ

P
− µ

D
)2 in equation (9), against n.

The horizontal axes are on a logarithmic scale.
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win rate is driven by competition between the parties.21332

In panel (c) of Figure 3, we plot the variance Var(µ̂) of the court’s decision333

as λ → ∞. The first part of the expression for the variance in equation (9)334

approaches 1/4 because θ̃ → 1/2. The second part of the expression approaches335

zero because both µ
P
→ µ

ML
and µ

D
→ µ

ML
. The reduction in variance will336

benefit risk averse parties, and potentially reduce the option value of suits337

(Bebchuk and Klement, 2012).338

Result 5. As the amount of evidence increases, n → ∞, the court’s estimator339

converges in probability to the true µ = α/α+β, as do the models of the parties,340

µs → α/α+β for s = P,D.341

As the evidence sample size n increases, the maximum likelihood estimator342

converges in probability to the true mean µ = α/α+β of the Beta(α, β) process343

21Note, however, that because, for λ → ∞, the parties’ claims are the same, conver-
gence of the plaintiff’s probability to win when court noise disappears is without practical
consequence in our model.
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by the law of large numbers. Because the likelihood collapses onto α/α+β, the344

likelihood penalty (credibility cost) of deviating from α/α+β increases and the345

parties shade their models less, which implies that µs → α/α+β for s = P,D.346

We illustrate Result 5 in Figure 4. In panel (a), we plot the decision347

bias ∆µ = µ̂ − µ
ML

against the evidence sample size n. The decision bias in348

this graph is the mean of the decision bias for 250 random evidence samples349

for each n, drawn from a Beta(1, 2) distribution. Decision bias disappears as350

both parties’ models converge to the mean for the evidence generating process,351

µ = α/α+β = 1/3.352

In panel (b) of Figure 4, we plot the probability of a plaintiff win as n → ∞.353

In this case, the limit corresponds to 50% probability (i.e., θ̃ → 1/2). As the354

likelihood collapses, it becomes symmetric in a neighborhood around the true355

mean, so the parties choose locations equidistant from, and on either side of the356

true mean. Symmetry gives these equidistant locations the same likelihood,357

implying θ̃ → 1/2.22358

In panel (c) of Figure 4, we plot the variance Var(µ̂) of the court’s decision359

as n → ∞. The first part of the expression for the variance in equation (9)360

approaches 1/4 because θ̃ → 1/2 as n → ∞. The second part of the expression361

for the variance Var(µ̂) approaches zero because both µs → α/α+β for s = P,D.362

The reduction in variance associated with better court decisions benefits risk-363

averse parties and can reduce the number of suits with a negative expected364

value.23365

22As with the convergence result for the noise parameter λ, because, for n → ∞, the
parties’ claims are the same, convergence of the plaintiff’s probability to win is without
practical consequence in our model.

23For a thorough discussion of negative-expected-value suits see Bebchuk and Klement
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4 Discussion366

In this paper, we model adversarial decision-making by turning scientific in-367

quiry upside down. Instead of objective truth seekers who formulate hypothe-368

ses and then gather evidence to test them, we study self-interested parties who369

strategically choose models to influence a decision-maker—after the evidence370

has already been produced and discovered. Nevertheless, we show that, under371

certain conditions, the decision-maker (e.g., a court) can still reach the best372

(most likely) interpretation of the evidence.373

We model court decision-making using the metaphor of statistical model374

selection, where models are proposed by interested parties. This metaphor is375

rich in that it allows us to identify conditions under which decision-making is376

likely to be biased away from the best explanation—even when decisions are377

based on evidence, as for instance in Pfeffer and Sutton (2006). The metaphor378

also suggests ways to mitigate bias, for example, by reducing court noise, or379

by increasing the amount of information available.380

Our work can be viewed as opening up the “black box” of court decision-381

making, as in Daughety and Reinganum (2000a), after all the evidence has382

been produced and discovered. As such, the model captures the trial sub-383

game that can be appended onto games of evidence production or revelation.24384

Whether and how this kind of strategic framing of the evidence would affect385

the outcome of the larger game is a question for future research.386

(2012).
24See Gilligan and Krehbiel (1997), Froeb and Kobayashi (1996, 2001, 2012), Daughety

and Reinganum (2000b), or Yilankaya (2002) and Milgrom and Roberts (1986), or Shin
(1994).
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In addition to the implications relating to litigation and arbitration, our387

model can be applied to the problem of delegating decision rights to subordi-388

nates who can end up disagreeing with one another or recommending opposing389

courses of action. Typically, managers higher up in the hierarchy are respon-390

sible for resolving these disagreements. Fama and Jensen (1983) call this the391

separation of “decision management” by subordinates from “decision control”392

by a superior. Our results suggest that, even if superiors resolve disagreements393

by appealing to evidence, the superior’s decisions are likely to be noisy and394

potentially biased if the alternatives are strategically chosen by subordinates.395

This can be thought of as another kind of agency cost.396
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Technical Appendix548

A The General Persuasion Game549

A.1 Introduction550

The results presented in the main text obviously depend on the specific dis-551

tribution chosen. In this appendix, we generalize the game to any arbitrary552

distribution. We use the generalized game to identify the properties of a dis-553

tribution (locations and likelihood) that give rise to our results.554

A.2 Problem555

We consider an unobservable evidence-generating process that is characterized556

by its theoretical mean. A principal is charged with making an assessment557

about the type of this unknown process. We assume that the principal does558

not have the capability or capacity to make her own assessment of the type.559

Instead, she solicits advice from agents with vested and opposing interests.560

The principal’s objective is to make the best possible assessment of the type561

of the process. She therefore follows the advice of the agent who is most562

credible, given a publicly observable sample drawn from the unknown process.563

We assume that the principal’s assessment of an agent’s advice is noisy so that564

her decision comes with error.565
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A.3 Notation566

We refer to the unknown process by its theoretical mean as type y ∈ R.567

A principal is charged with making an assessment ŷ ∈ R of the unknown568

type of the process. We denote by ŷ the principal’s decision in this game of569

persuasion. The principal’s objective is to make the best assessment given570

an available (and publicly observable) sample of evidence drawn according to571

the unknown process. We refer to the objectively best assessment as ȳ. By572

assumption, the principal does not have access to this assessment but rather573

solicits advice from outside experts.574

The principal solicits advice from two agents, i = L,R. Each agent’s advice575

is modeled as an interpretation that characterizes the sample as coming from576

a process of type yi with credibility χi ≥ 0. The principal assesses the agents’577

advice and chooses the most credible of the two. We assume this assessment578

of credibility is noisy and refer to it as χ̃i = χi exp ξi for i = L,R, where ξi are579

independently extreme value (or Gumbel) distributed with mean 0 and scale580

1/λ.25 The principal therefore follows agent R’s advice if χ̃R > χ̃L and agent581

L’s otherwise. If χ̃L = χ̃R, then the principal flips a fair coin. This is akin to582

the structure of the logit choice model. The principal sides with agent R with583

probability584

θ̃ = Pr(χ̃R > χ̃L) =
exp(λ logχR)

exp(λ logχR) + exp(λ logχL)
=

χλ
R

χλ
R + χλ

L

. (A1)

25The structure in Jia (2008) is less restrictive, requiring the random variable ξi to belong
to the inverse exponential distribution.
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We define the incredibility of agent R’s advice as585

xR =
1

χλ
R

(A2)

and of agent L’s advice as586

xL = −
1

χλ
L

. (A3)

An agent’s advice strategy can thus be represented by a pair ai = (xi, yi) ∈ Ai587

with a proposed type yi ∈ R and an incredibility of that advice of xL ∈ R
− for588

agent L and xL ∈ R
+ for agent R. Because we measure agent L’s incredibility589

with a negative number, in (x, y)-space, agent L’s strategy space AL is to590

the left of the y-axis, whereas agent R’s strategy space AR is to the right of591

the y-axis. Advice located further from the y-axis is less credible (i.e., more592

incredible).593

We further limit the agent’s strategy space to be a compact and convex594

subset of R2 so that AL ⊂ R
− × R and AR ⊂ R

+ × R. We assume the set595

of feasible strategies is characterized by a type-credibility tradeoff. In other596

words, the further advice yi is from the objectively best assessment ȳ, the597

less credible this advice will be with a value of χi, or, alternatively, the more598

incredible the advice will be with a higher value of |xi|. Extreme advice with599

very high (or low) type yi and low incredibility |xi| is therefore not feasible,600

and the strategy space is convex.601

Using the expressions for agent’s incredibility, the probability that the prin-602
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cipal follows agent R’s advice in equation (A1) can be rewritten as603

θ̃(xL, xR) =
xL

xR − xL

. (A4)

The principal’s assessment of the process type is yR when she follows agent604

R’s advice and yL when she follows L’s advice. In expectations, the principal’s605

assessment26 and decision is thus606

ŷ(aL, aR) = θ̃(xL, xR)yR +
(
1− θ̃(xL, xR)

)
yL (A5)

=
xRyL − xLyR

xR − xL

.

It is the credibility-weighted sum of the agent’s location advice.607

We can further rewrite the expression in equation (A5) as608

ŷ(aL, aR) = yL −m(aL, aR)xL = yR −m(aL, aR)xR (A6)

where609

m(aL, aR) =
yR − yL
xR − xL

(A7)

is the slope of the line connecting the two points aL = (xL, yL) and aR =610

(xR, yR) in (x, y)-space.611

The two agents have vested and opposing interests. We assume that the612

26This expected assessment ŷ is also the outcome of a decision-maker who minimizes
a quadratic loss function −wR (yR − ŷ)

2
− wL (yL − ŷ)

2
, that is, the weighted sum of the

squared deviations of assessment ŷ from the agent’s proposed types yi.
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agents’ payoffs are directly affected by the principal’s assessment of type.613

Agent L prefers low values of ŷ, whereas agent R prefers high values. For given614

yR > yL, the expression for the principal’s expected decision in equation (A5)615

implies that both agents will choose the most credible interpretations given616

their advice types yi. For agent L, this means the highest possible xL ∈ R
−;617

and for agent R the lowest possible xR ∈ R
+. We define these “incredibility618

frontiers” as619

x̂L(yL, ·) = max {x : (x, yL) ∈ AL} (A8)

and620

x̂R(yR, ·) = min {x : (x, yR) ∈ AR} (A9)

where aL = (x̂L(y), y) dominates any other strategy for agent L with a given621

y value, and similarly for aR = (x̂R(y), y). These incredibility frontiers are the622

hulls of Ai facing the y-axis in (x, y)-space.623

An incredibility frontier x̂i(yi, ·) depends on the agent’s advice type yi as624

well as environmental characteristics (e.g., evidence sample, a potential prior625

bias by the principal, the noise parameter λ, or the expertise of the agent)626

captured by the properties of the agent’s strategy space Ai. This strategy627

space Ai and thus the agent’s incredibility frontier does not depend on the628

other agent’s strategy.629

36



A.4 Equilibrium Concept630

A persuasion game is a simultaneous-move, non-cooperative game between631

two agents i = L,R providing strategic advice ai ∈ Ai to maximize payoffs632

πL = −ŷ(aL, aR) for agent L and πR = ŷ(aL, aR) for agent R with ŷ(aL, aR)633

defined in equation (A6). A Nash equilibrium in this game is a strategy profile634

(a∗L, a
∗
R) such that635

ŷ(a∗L, a
∗
R) ≤ ŷ(aL, a

∗
R) ∀aL ∈ AL for agent L

ŷ(a∗L, a
∗
R) ≥ ŷ(a∗L, aR) ∀aR ∈ AR for agent R





. (A10)

From the expression for the principal’s decision in equation (A6), we can636

conclude that, because agent L’s incredibility is by definition negative, xL < 0,637

if m(a′L, a
′
R) > m(aL, aR), then either m(a′L, aR) > m(aL, aR) or m(aL, a

′
R) >638

m(aL, aR). In other words, if a strategy profile (aL, aR) does not result in a639

maximum for m, at least one of the agents can unilaterally move to increase640

the slope.641

Lemma A1. Both agents present advice ai to maximize the slope m(aL, aR).642

An immediate implication of Lemma A1 is that, if it exists, a Nash equi-643

librium (a∗L, a
∗
R) in this game determines a line of maximum slope m(a∗L, a

∗
R).644

A.5 Equilibrium Results645

In the sequel, we present our main results from the general persuasion game646

and relate them back to the model presented in the main text of the paper.647
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A.5.1 Nash Equilibrium648

By Lemma A1, in equilibrium, the advice strategy profile (a∗L, a
∗
R) ∈ AL ×AR649

will be such that slope m(aL, aR) is maximized. As AL is all on or above the650

line with slope m connecting aL and aR, and AR is all on or below that line,651

it follows that there is a unique line with this maximum slope, m∗. Agents652

L and R can choose any points along this line in AL and AR, or any mixed653

strategies between such points (as a mixture of pure strategies), but the value654

of the game ŷ∗ ≡ ŷ(a∗L, a
∗
R) is the y-intercept of the line of maximum slope655

between the choice sets. We summarize these results in Theorem A1.656

Theorem A1. A pure strategy Nash equilibrium of the persuasion game will657

exist if, and only if, the slope function m(aL, aR) has a maximum value on658

AL × AR, that is, when there is a unique common line of support below AL659

and above AR. If this line meets AL or AR in more than one point, then there660

are also mixed strategy equilibria that are mixtures of pure strategies along this661

line, and result in the same assessment ŷ for the game.662

Two properties of this result are worth mentioning. First, if the projections663

of AL and AR onto the y-axis are bounded, then there is a maximum slope664

line. More generally, if a line of positive slope cuts off a bounded region of665

AL below the line and a bounded region of AR above the line, then there is a666

maximum slope line. This is true if the incredibility grows faster than linearly667

for large positive and large negative values.668

Second, if x̂L and x̂R are strictly concave, differentiable functions, de-669

fined on a convex subset of the real line, with unbounded derivatives, then670
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these functions have unique maxima and minima, respectively, and define671

the relevant frontiers of the strategy sets. These assumptions also guaran-672

tee the existence of a unique Nash equilibrium solution a∗L = (x̂L(y
∗
L), y

∗
L) and673

a∗R = (x̂R(y
∗
R), y

∗
R), and the line through these points is simultaneously tangent674

to both the L and R curves.675

In Figure A1, we relate the general game to our litigation game in the676

main test by using the specific parameterization of the game in the main677

text. The unobservable type is the theoretical mean of the Beta(α, β) dis-678

tribution, y = µ, and the inverse credibility is the reciprocal likelihood or679

“incredibility,” x = 1/L λ. Agent L is the defendant D (preferring low-680

valued outcomes) and agent R is the plaintiff (preferring high-valued out-681

comes), where AL is the set
(
−1/L λ

D, µD

)
and AR is the set

(
1/L λ

P , µP

)
, both682

defined over all possible Beta(α, β) distribution functions. This means, there683

are multiple parameterizations to obtain a fixed µ = α/ (α + β) and varying684

σ2 = µ (1− µ) / (1 + α + β). Alternatively, there are multiple parameteriza-685

tions (and thus likelihoods) to obtain a fixed σ2 and varying µ (Leonard and686

Hsu, 1999).687

With this set up, the x-axis in Figure A1 measures incredibility 1/L λ as688

a function of the type µ plotted on the y-axis. The dashed lines represent the689

reciprocal likelihoods of various types, for various fixed values of variance σ2.690

This gives a family of overlapping curves, the envelope of which is also drawn,691

and whose union defines the AR set to the right, and which is mirrored in the692

AL set to the left. The line of maximum slope is drawn between the points693

in these sets, defining the optimal advice strategies for the two sides. The694
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Figure A1: Advice in the Simple Litigation Game

In Figure A1, we illustrate the geometrical characterization of the agents’ equilibrium strategies. Choice set
AL for agent L is to the left of the vertical axis; choice set AR for agent R is to the right of the axis. Each
dashed line represents the reciprocal likelihood for varying proposed type y, holding the variance fixed. The
solid curve represents the envelope of the family of these overlapping curves. The bullet point on the vertical
axis represents the equilibrium decision ŷ. The bullet points on the envelopes of AL and AR represent the
agents’ advice a∗i . The most credible type ȳ is marked by the horizontal line between the peaks of the
envelopes of AL and AR.
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1/L λ = “incredibility”
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y-intercept of the line is denoted by a dot on the vertical axis. It represents695

the equilibrium assessment ŷ∗ of the game. This assessment is slightly above696

the maximum likelihood (i.e., minimum incredibility) value ȳ, marked by a697

horizontal line between the “peaks” of the two sets, AL and AR.698

A.5.2 Payoff Shading699

We have denoted the objectively best assessment of the type as ȳ. Suppose that700

this type ȳ is also the most credible advice the agents can give. That means, the701

maximum of x̂L < 0 and the minimum of x̂R > 0 (i.e., the points where these702
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come closest to the y-axis) are at the same ȳ. This then implies that that the703

strategy (x̂L(yL), yL) for L with yL > ȳ is dominated by (x̂L(ȳ), ȳ). Similarly,704

a strategy (x̂R(yR), yR) for R with yR < ȳ is dominated by (x̂R(ȳ), ȳ). Because705

the incredibility functions x̂i cannot be differentiable and have a corner at ȳ,706

agents will “shade” their advice, with L offering a type y∗L less than the most707

likely ȳ, and R offering a type y∗R greater than this ȳ.708

Theorem A2. In equilibrium, the agents shade and present advice a∗i with709

types y∗i on either side of the most credible type ȳ. The Nash equilibrium710

advice strategies with proposed types y∗L and y∗R satisfy y∗L < ȳ < y∗R.711

The result in Theorem A2 is analogous to Result 1 in the main text. The712

agents shade their advice in their favor. Moreover, if the incredibility functions713

x̂i are strictly concave with |x̂i(y)| > |x̂i(ȳ)| increasing in |y − ȳ|, then the714

equilibrium types presented by the agents are finite, y∗L > −∞ and y∗R < ∞.715

The agents therefore engage in payoff moderation (Konrad, 2009).716

A.5.3 Bias717

If the shape of the incredibility function is not symmetric about the most718

credible ȳ, but instead favors one side over the other with less incredibility719

for equal offsets from ȳ, then the equilibrium assessment will be biased from ȳ720

in the direction of that side. In other words, |ŷ∗ − ȳ| > 0. We illustrate this721

in Figure A1 where the likelihood function for the litigation game example722

decreases more slowly for Beta(α, β) distributions having µ greater than the723

maximum likelihood estimate (ȳ = µ
ML

) than it does for µ less than this value.724

Heuristically, if the evidence is closer to the lower range of the Beta(α, β)725

41



distribution, then there is more “room” to explain the evidence with a larger726

µ than with a smaller µ.727

It may be that the principal holds a biased prior or that there are differences728

in the capabilities of the agents such that one side offering the theory with type729

ȳ would be viewed more favorably than the other offering what should amount730

to the same most credible theory. We set aside this sort of asymmetry between731

the sides and assume:732

x̂L(ȳ) = −x̂R(ȳ). (A11)

This assumption means that either player can offer up this best theory with733

the same resulting weight. It implies that the identity of the agent does not734

matter735

Because, by Theorem A2, agent L shades down, yL < ȳ, and agent R shades736

up, yR > ȳ, values of x̂L for yL > ȳ and values of x̂R for yR < ȳ are observed737

only off equilibrium. For the properties of the equilibrium decision ŷ∗ we can738

therefore ignore these values. This means that we may as well take a single739

function x̂ describing both parties’ incredibility functions: x̂(y) = −x̂L(y) for740

y ≤ ȳ and x̂(y) = x̂R(y) for y ≥ ȳ. The bias of the principal’s decision relative741

to ȳ is then determined by how quickly the incredibility increases for y > ȳ as742

compared to y < ȳ as a function of the difference from the most credible type743

ȳ. In Theorem A3 below, we make use of the following definitions:744

Definition A1 (Symmetry). The incredibility function x̂(y) is symmetric745

about y = ȳ if, for every δ > 0, x̂(ȳ − δ) = x̂(ȳ + δ).746
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Definition A2 (Credibility Costs). Agent L has lower credibility costs in x̂747

(and agent R has higher credibility costs) if, for every δ > 0, x̂(ȳ−δ) < x̂(ȳ+δ);748

that is, advice aL with type shaded down by δ is more credible than advice aR749

with type shaded up by an equal amount δ. Analogously for agent R.750

Definition A3 (Monotonic Credibility Costs). Agent L has monotonically751

lower credibility costs (and agent R has monotonically higher credibility costs)752

if x̂(ȳ + δ) − x̂(ȳ − δ) is a strictly increasing function for δ > 0. Analogously753

for agent R.754

Theorem A3. For the general persuasion game with equilibrium strategies755

a∗L = (−x̂(y∗L), y
∗
L) and a∗R = (x̂(y∗R), y

∗
R) and equilibrium assessment ŷ∗ =756

ŷ(a∗L, a
∗
R), the following bias properties hold:757

1. If x̂(y) is symmetric, then y∗R − ȳ = ȳ − y∗L and ŷ∗ = ȳ.758

2. If agent L has lower credibility costs, then ŷ∗ < ȳ, and the equilibrium759

assessment is biased down. If agent R has lower credibility costs, then760

ŷ∗ > ȳ, and the equilibrium assessment is biased up.761

3. If agent L has monotonically lower credibility costs, then agent L’s ad-762

vice a∗L exhibits more shading than agent R’s advice, ȳ − y∗L > y∗R − ȳ.763

Analogously for agent R.764

Proof. 1. Suppose x̂(y) is symmetric (Definition A1). If y∗R = ȳ + δ, then765

for y′L = ȳ − δ and a′L = (−x̂(y′L), y
′
L), x̂(y′L) = x̂(y∗R) so that ŷ∗ ≤766

ŷ(a′L, a
∗
R) = ȳ since L can do no worse than respond to a∗R with strategy767

a′L. Similarly if y∗L = ȳ − δ, taking y′R = ȳ + δ shows ŷ∗ ≥ ȳ. Hence768

ŷ∗ = ȳ, and the same δ = y∗R − ȳ = ȳ − y∗L.769
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2. With lower credibility costs (Definition A2) for agent L, x̂(ȳ − δ) <770

x̂(ȳ + δ) for all δ > 0. If y∗R = ȳ + δ, then take y′L = ȳ − δ and771

a′L = (−x̂(y′L), y
′
L). Because x̂(ȳ − δ) < x̂(ȳ + δ), ŷ∗ ≤ ŷ(a′L, a

∗
R) < ȳ.772

Analogously for agent R.773

3. With monotonically lower credibility costs (Definition A3) for agent L,774

x̂(ȳ + δ) − x̂(ȳ − δ) is strictly increasing. Then, for δ = y∗R − ȳ, the775

derivative −x̂′(ȳ − δ) < x̂′(ȳ + δ) = x̂′(y∗R) = −x̂′(y∗L) because the max-776

imum slope line is tangent to both incredibility curves at the equilib-777

rium solution. But x̂′(y) is strictly increasing so y∗L < ȳ − δ, that is,778

δ = y∗R − ȳ < ȳ − y∗L. The analogous arguments hold when R has lower779

credibility costs. Q.E.D.780

A.5.4 Convergence as n → ∞781

The illustration in Figure A1 is based on an evidence sample with only two782

values: z̄ = (1/5, 1/2). In other words, there is not a lot of evidence constraining783

the agents’ advice. With more evidence, the likelihood function has a narrower784

peak, so advice away from the maximum likelihood become much less credible.785

In general, as the sample size n increases, we expect the credibility function x̂786

to collapse on ȳ for the true process generating the evidence.787

More specifically, suppose a family of incredibility functions denoted by788

x̂(y|n) are parameterized by a variable n denoting the amount of evidence789

available. Suppose that the most credible ȳ is the same for all incredibility790

functions x̂(y|n). Scaling the incredibility by a constant factor does nothing to791

change the outcome of the game. We thus assume that these functions are all792
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normalized to one, x̂(ȳ|n) = 1. The notion of narrowing incredibility functions793

is then captured formally as a hypothesis of the following consistency result.794

Theorem A4. Let the equilibrium assessment in the persuasion game with795

incredibility function x̂(y|n) be denoted by ŷ∗n. Suppose that for every ǫ > 0,796

for all sufficiently large n, and any y we have x̂(y|n) > |y − ȳ|/ǫ. Then797

lim
n→∞

ŷ∗n = ȳ.798

Proof. Suppose ǫ > 0 is given and take N so for all n ≥ N and any y we799

have x̂(y|n) > |y − ȳ|/ǫ. Let a∗L = (x̂(y∗L|n), y
∗
L) and a∗R = (x̂(y∗R|n), y

∗
R) be800

equilibrium strategies for the persuasion game with x̂(y|n). Let a′L = (−1, ȳ)801

be the maximally credible strategy for agent L. Then802

ŷ∗n = ŷ(a∗L, a
∗
R) ≤ ŷ(a′L, a

∗
R) =

x̂(ŷ∗|n)ȳ + ŷ∗

x̂(ŷ∗|n) + 1
< ȳ +

ŷ∗ − ȳ

x̂(ŷ∗|n)
< ȳ + ǫ.

On the other hand, taking a′R = (1, ȳ) shows ŷ∗n ≥ ŷ(a∗L, a
′
R) > ȳ− ǫ in similar803

fashion. Hence, for every ǫ > 0, for all sufficiently large n, |ŷ∗n − ȳ| < ǫ, that804

is, lim
n→∞

ŷ∗n = ȳ. Q.E.D.805

This result is stronger than what we illustrate with Result 5 in the main text806

where we show that the bias decreases with more evidence. In Theorem A4,807

we show that the equilibrium assessment converges to the most credible assess-808

ment ȳ. In other words, any bias in assessments away from the most credible809

ȳ due to the adversarial process disappears with increasing evidence. Advice810

that deviates from the most credible explanation simply faces an increasing811

credibility penalty the more evidence there is. The argument gives a bound for812
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the deviation of ŷ∗n from ȳ, but the argument cannot tell us that this bias de-813

creases monotonically with n without much more detailed assumptions about814

the dependence of x̂(y|n) on n.815
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