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Abstract: Improving the efficiency either in the process of factor accumulation or 

in the process of production of final output is often considered as a main driving force 

for the sustainable growth of modern economies. However, this article proves that for 

the most important input, physical capital, total efficiency, i.e. the total efficiency 

gained in the process of accumulation and in the production process, must be zero 

along a stationary growth path.  
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1. Introduction 

Increasing the efficiency of inputs either in the process of factor accumulation or 

in the process of production of final products is considered as a main driving force for 

the sustainable growth of modern economies. Specifically, improving the efficiency 

of physical capital seems to be an important source of continued growth. 

Theoretically, reaching a stationary growth path is a basic requirement for economic 

growth models (Kaldor, 1961; Jones and Romer, 2010, p.225). However, by using a 

simple neoclassical growth model, this paper demonstrates that changes in the 

marginal product of capital and marginal efficiency of investment must sum to zero 

along a stationary growth path. That is, if the efficiency of physical capital 

accumulation is rising then it must be the case that capital becomes less efficient in 

the production process. In this sense, improving the overall efficiency of physical 

capital is unlikely to be the driving force for sustainable growth of modern 

economies!  

While this conclusion seems a bit surprising, it is an inherent implication if the 

modern economy is viewed as a dynamic circulatory system. On the one hand, 

physical capital is used as an input factor in the production of the final product; on the 

other hand, it is part of that final product which is used as investment to accumulate 

physical capital. To guarantee dynamic stability, the system must be characterized by 

negative feedback. Therefore, the change of marginal efficiencies of factor 

accumulation and the final production must be completely offset each other. 

Otherwise, if the marginal efficiency of capital in final production increases 

(decreases), the output will grow faster (slower) than capital. At the same time, if the 

marginal efficiency of investment increases (decreases), the capital will grow faster 

(slower) than output. This would form a positive feedback. That is, following 

production output grows at a rate that is greater (smaller) than that of capital. The 

growth rate of capital becomes even further greater (smaller) than that of output 

through the capital accumulation process. The positive feedback will lead to an 

infinite increase (decrease) of the growth rates of both the final product and capital, 

which contradicts stability. 

Although the existing literature does provide this conclusion from the perspective 

of the stability of dynamic circulation systems, it has arrived at this conclusion from 

other viewpoints. For example, Uzawa (1961) proved that when economic growth is 

on a stationary path and if the marginal efficiency of capital accumulation remains 

constant, then at the production stage there can be no capital-augmentation, ensuring 

that the marginal efficiency of capital remains unchanged.
①
 Irmen (2013a) showed 

                                                             

①
 Because Uzawa did not give economic interpretation as to why technological progress cannot 

be capital-promoting along a stationary growth path, it induced further discussion of the issue 
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that if the marginal efficiency of capital accumulation declines due to investment 

adjustment costs, then at the production stage must be characterized by 

capital-augmenting technological progress which improves the marginal efficiency of 

capital. Maliar and Maliar (2011) proved that if embodied technological progress 

causes the marginal efficiency of capital accumulation to increase, then at the 

production stage capital-augmenting technological progress must be negative.
②
 

The rest of the paper is organized as follows: Section 2 of this paper presents the 

neoclassical growth model; Section 3 discusses the constraints a steady-state 

equilibrium imposes on the change of efficiency in neoclassical economy; Section 4 

turns to the constraints a steady-state equilibrium imposes on the technological 

progress; Section 5 concludes. 

2. The Neoclassical Growth Model 

2.1. Technology and preferences 

The production function is： Y𝑡 = F[K𝑡, L𝑡, t],                                                                     (1) 

Where Y𝑡, K𝑡 , L𝑡 respectively represent output, the capital stock and labor, while t 

represents time. As usual, 𝐹𝐾 ≡ ∂Y𝑡/ ∂K𝑡 > 0  , 𝐹𝐿 ≡ ∂Y𝑡/ ∂L𝑡 > 0  respectively 

represent the marginal product of capital and labor. Labor grows at an exogenous 

rate n, so that L̇𝑡 = 𝑛𝐿𝑡. F(•,•) meets all other the standards of the neo-classical 

properties
③
. 

Capital accumulates according to:  K̇𝑡 = G[I𝑡] − δK𝑡                                                                      (2) 

Where δ represents the depreciation rate, I𝑡 is investment and G(•) describes how 
investment transforms into new capital, where GI ≡ 𝜕𝐺/𝜕𝐼 > 0 is the marginal 

efficiency of capital accumulation is greater than zero. However, ∂GI/𝜕𝑡 may be 

equal to zero, but also may be either less than or greater than zero. This makes 

                                                                                                                                                                               

involving many economists, ranging from the induced innovation literatures in the 1960s which 

assumed that technological progress is exogenous (Fellner, 1961; von Weizsäacker, 1962; 

Kennedy, 1964; Samuelson, 1965; Drandakis and Phelps, 1966）to the recent discussion of 

endogenous technological progress (Acemoglu, 2003, 2009; Barro and Sala-i-Martin, 2004; Jones, 

2005; Jones and Scrimgeour, 2008; Irmen 2013a, 2013b, 2015, 2017). 

②
 Other literatures discussing embodied technological progress when steady-state growth are 

Sheshinski (1967), Krusell et al. (2000). He and Liu (2008) and Grossman et al. (2016), but these 

literatures did not point out that embodied technological progress and capital-promoting technological 

progress must be equal to zero.  

③
 That is, in addition to the above, constant returns to scale, diminishing marginal product, Inada 

conditions and each factor is essential (Barro and Sala-i-Martin, 2004, chapter 1). 
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equation (2) includes three common capital accumulation functions in the existing 

literature. For example, K̇𝑡 = I𝑡∅ − δK𝑡 is a simple form of equation (2) (Irmen, 

2013), and there are GI = ∅I𝑡∅−1,∂GI/𝜕𝑡＝∅(∅ − 1)I𝑡∅−2dIt/𝑑𝑡. When ∅ = 1，it is 

the standard neoclassical model of capital accumulation function, and ∂GI/𝜕𝑡＝0; ∅ < 1 , may be interpreted as there is investment adjustment costs, and then ∂GI/𝜕𝑡 < 0 for dIt/𝑑𝑡 > 0; ∅ > 1，it becomes the vintages of capital model, and 

the embodied technological progress is I𝑡∅−1, with ∂GI/𝜕𝑡 > 0 when dIt/𝑑𝑡 > 0. 

The representative consumers have concave preferences over consumption, 

where the degree of concavity, as measured by the relative risk aversion, is constant. 

Their lifetime utility can be expressed as ∫ C𝑡1−θ1 − θ e−ρtdt∞
t=0 ,                                                                        (3) 

where C𝑡 represents consumption at time t，θ represents the relative risk coefficient，ρ represents the discount rate. 

The budget constraint of the representative consumer is： C𝑡 + I𝑡 = r𝑡K𝑡 + w𝑡L𝑡                                                                  (4) 

Here r𝑡 represents the market price of capital, w𝑡 is the market wage of labor, and 

the following constraints apply: C𝑡 > 0, I𝑡 > 0. 

 

2.2 Market Equilibrium 

The Euler equation of the model may be obtained by using the optimal control 

method
④
 ĊC = 〔GIr − ĠIGI − ρ − δ 〕/θ.                                                                 (5) 

Equation (5) states that the marginal efficiency of investment GI influences the 

Euler equation of consumer. The familiar form, Ċ/C = 〔r − ρ − δ 〕/θ , is obtained 

only when GI＝1, and ∂GI/𝜕𝑡 = 0.
⑤
 

In the competitive market, r =  ∂Y ∂K⁄  is implied by the profit maximization. 

Using this relationship in equation (5) we obtain: θ ĊC = GI ∂Y∂K − ĠIGI − ρ − δ                                                                (6) 

 

3 Efficiency changes and the Existence of a Stationary Growth Path 

                                                             
④

 The derivation procedure is shown in the Appendix. 

⑤
 Therefore Ċ/C = 〔r − ρ − δ 〕/θ cannot be used to argue that the direction of technical change 

must be Harold neutral in a steady-state equilibrium (Acemoglu, 2009, ch15). 
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Definition 1: Along a stationary equilibrium growth path the growth rates of Y, 

K, L, C, I as well as ĠI/GI are all constant.  

By Definition 1, if a stationary equilibrium growth path exists, by taking the 

time-derivative of both sides of equation (6), we get: ∂ (GI ∂Y∂K) /𝜕𝑡 = 0                                                                     (7) 

Using 𝐹𝐾 ≡ ∂Y𝑡/ ∂K𝑡，equation (7) implies: ĠIGI ＋ ḞKF𝐾 = 0                                                                             (8) 

Since equation (8) is derived under the assumption that a stationary equilibrium 

growth path exists, it is a necessary condition for that existence. Since ĠI/GI is the 

rate at which the marginal efficiency of investment in capital accumulation changes, 

and ḞK/F𝐾 is the rate at which the marginal product of capital changes, equation 

(8) reflects the constraint imposed on the two aspects of efficiency change of 

physical capital. This condition can be summarized as Proposition 1. 

Proposition 1: For the neoclassical economy, along a stationary equilibrium 

growth path the rates at which the marginal efficiency of investment in capital 

accumulation and the marginal production of capital in products change cancel each 

other out. 

Why can a neoclassical economy’s stationary equilibrium growth path be 

realized only when the changes of the marginal efficiency of investment and capital 

just cancel each other out? The reason is that neoclassical economy is a dynamic 

circulatory system which consists of two links of factor accumulation and production. 

The size of ĠI/GI determines the change of  K̇𝑡/𝐾𝑡 relative to  Ẏ𝑡/𝑌𝑡 in the factor 

accumulation link, and the size of ḞK/F𝐾 determines the change of  Ẏ𝑡/𝑌𝑡 relative 

to  K̇𝑡/𝐾𝑡 in the production link. If ḞK/F𝐾 is greater (smaller) than 0, the production 

link makes  Ẏ𝑡/𝑌𝑡 greater (smaller) than K̇𝑡/𝐾𝑡. Moreover, if at the same time ĠI/GI 
is also greater (smaller) than 0, then, together with the capital accumulation link,  K̇𝑡/𝐾𝑡 will be greater (smaller) than  Ẏ𝑡/𝑌𝑡. Thus, a positive feedback is formed in 

the dynamic circulatory system which makes  Ẏt/Yt and  K̇t/Kt infinitely rise or fall, 

and no stationary path can emerge. A stationary path requires that the dynamic 

circulatory system be a negative feedback one, that is ḞK/FK and ĠI/GI must cancel 

each other out.  

 

4 Technical changes and the Existence of a Stationary Path 

Neoclassical economic technical change may occur at two links: in the 

production of final output, called factor-augmented technical change, or in the 

accumulation of capital, called embodied technical change. 
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The production function including factor-augmentation can be expressed as Y𝑡 = H[B𝑡K𝑡, A𝑡L𝑡],                                                                     (9) 

where Bt and At expresses capital and labor augmentation respectively.  

The capital accumulation function of embodied technical change can be 

expressed as 
⑥
  K̇𝑡 = q𝑡I𝑡 − δK𝑡                                                                            (10) 

where I𝑡 = Y𝑡 − C𝑡，and q𝑡 represents embodied technology.  

From the functions (9) and (10), we can get {F𝐾 = B𝑡H1[B𝑡K𝑡, A𝑡L𝑡] = B𝑡ℎ′(𝑘𝑡)𝐺𝐼 = q𝑡                                                                                       (11) 

where 𝑘𝑡 ≡ B𝑡K𝑡/A𝑡L𝑡, ℎ(𝑘𝑡) = H[B𝑡K𝑡/A𝑡L𝑡 , 1]. 
Along a stationary path BK/AL is a constant. From equations (8) and (11) we 

can now obtain the technology-related condition required by the existence of a 

stationary equilibrium growth path： ḂB + q̇q = 0                                                                             (12) 

The implication of equation (12) can be summarized by Proposition 2. 

Proposition 2: The existence of a stationary equilibrium growth path requires 

that the capital-augmentation in the production of final goods and the embodied 

technical change in factor accumulation cancel each other out. 

Proposition 2 indicates that along a stationary equilibrium growth path there 

cannot be technical progress at both the production and accumulation links of the 

economy. Specifically, if technology can only progress and cannot regress, then both �̇�B and 
�̇�q  must be zero.  

Existing papers do not explicitly take equation (12) as a constraint on the 

characteristics of stationary growth paths. However, Uzawa’s (1961) Theorem 

pointed out that with q̇q ＝0, the stationary growth path must have 
ḂB = 0. Irmen (2013) 

assumes qt = It∅−1  and ∅ < 1  to certify that when 
q̇q < 0 , steady-state growth 

must have 
�̇�B > 0；papers on embodied technical change indicate that when 

�̇�q > 0, 

steady-state growth must have 
�̇�B < 0 (Maliar and Maliar, 2011; Grossman et al., 

2016). 

 

5 Conclusion 

                                                             

⑥
In some papers, the embodied technical change is formulated as Y𝑡 = C𝑡 + I𝑡/𝑞𝑡, K̇𝑡 = I𝑡 − δK𝑡. 

This formulation is equivalent to the one above. 
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Although increased efficiency or technical change are usually considered as the 

engines of sustained economic growth, the existing literature rarely pays attention to 

the constraints the existence of stationary growth paths imposes on the total efficiency 

increases or technical change. These constraints emerge because the neoclassical 

economy is a dynamic circulatory system. Using a simple neoclassical growth model, 

this paper demonstrates that the existence of a stationary growth path implies that 

efficiency gains or technical change in the two links of capital accumulation and final 

output production must cancel each other out. Consequently, one of the most 

important inputs of a modern economy, physical capital, may not realize a total 

efficiency gain.  

In contrast, labor efficiency may increase or labor-augmented technical change 

may exist along a stationary growth path. This is the case since labor does not 

constitute a closed dynamic loop in the neoclassical economy. Even though labor is an 

input in the production process, the growth of labor does not require produced 

resources as an input.  

Is it the case that if labor growth also requires investment of produced resources, 

any gain of labor efficiency in the production process must come at the expense of the 

efficiency of labor accumulation? And can the whole economy realize a total 

efficiency increase in two links of production and factor accumulation? The impact 

constraints imposed by stationary growth on efficiency gains and technical progress 

have on long-term development and short-term stabilization are a valuable topic for 

further research. 

 

Reference 

Acemoglu, Daron, 2003, “Labor- and Capital-Augmenting Technical Change,” Journal of 

European Economic Association, Vol. 1(1): 1-37. 

Acemoglu, Daron, 2009, Introduction to Modern Economic Growth, Princeton, NJ: Princeton 

University Press. 

Barro, Robert J., and Xavier Sala-i-Martin, 2004, Economic Growth, New York: 

McGraw-Hill. 

Drandakis, Emmanuel. M., and Edmund S. Phelps,1966, “A Model of Induced Invention, 

Growth, and Distribution,” Economic Journal, Vol. 76(304): 823-840. 

Fellner, William, 1961, “Two Propositions in the Theory of Induced Innovations,” Economic 

Journal, Vol. 71 (282): 305-308. 

Grossman, Gene M., Elhanan Helpman, Ezra Oberfield, and Thomas Sampson. 2016, 

“Balanced Growth Despite Uzawa”. NBER Working Paper No. 21861 

He, Hui and Liu, Zheng, 2008. .”Investment-Speciic Technological Change, Skill 

Accumulation, and Wage Inequality,” Review of Economic Dynamics, 11(2), 314-34. 

Irmen, Andreas, 2013a，“Adjustment Cost in a Variant of Uzawa’s Steady-State Growth 

Theorem”, Economics Bulletin, Vol 33 (4), pp. 2860-2873. 

－－2013b，“A Generalized Steady-State Growth Theorem,” CESifo Working Paper No. 

4477, CESifo Group Munich. 

－－ 2017， “Capital- and Labor-Saving Technical Change in an Aging Economy,” 

http://scholar.harvard.edu/helpman/publications/balanced-growth-despite-uzawa


8 

 

International Economic Review, forthcoming. 

Irmen, A., and A. Tabakovic 2015, “Endogenous Capital- and Labor-Augmenting Technical 

Change in the Neoclassical Growth Model,” CESifo Working Paper No. 5643, CESifo Group 

Munich. 

Jones, Charles I., 2005, “The Shape of Production Functions and the Direction of Technical 
Change,” Quarterly Journal of Economics, Vol. 120 (2): 517–549. 

Jones, Charles I., and Dean Scrimgeour, 2008 ,“A New Proof of Uzawa’s Steady-State 

Growth Theorem,” Review of Economics and Statistics, Vol. 90 (1): 180-182. 

Jones, Charles I. and Romer, Paul M., 2010. ”The New Kaldor Facts: Ideas, Institutions, 

Population, and Human Capital,” American Economic Journal: Macroeconomics 2(1), 224-45. 

Kaldor, N. ,1961, “Capital Accumulation and Economic Growth,” in The Theory of Capital, 

ed. by F. A. Lutz, and D. C. Hague, pp. 177–222. Macmillan & Co. LTD., New York: St. Martin’s 
Press. 

Kennedy, Charles M., 1964, “Induced Bias in Innovation and the Theory of Distribution,” 
Economic Journal, Vol. 74 (295): 541-547. 

Krusell, Per, Ohanian, Lee E., Rios-Rull, José-Victor, and Violante, Giovanni L., 

2000. ”Capital-Skill Complementarity and Inequality: A Macroeconomic 

Analysis,” .Econometrica 68(5), 1029-63. 

Maliar, Lilia and Maliar, Serguei, 2011. ”Capital-Skill Complementarity and Balanced 

Growth,” Economica 78(310), 240-59. 

Samuelson, Paul A.,1965, “A Theory of Induced Innovation along Kennedy-Weizsäcker 

Lines,” Review of Economics and Statistics, Vol. 47 (4): 343-356. 

Sheshinski, Eytan, 1967. ”Balanced Growth and Stability in the Johansen Vintage Model,” 
Review of Economic Studies 34(2), 239-48. 

Uzawa, Hirofumi, 1961, “Neutral Inventions and the Stability of Growth Equilibrium,” 

Review of Economic Studies, Vol. 28 (2): 117-124. 

von Weizsäcker,, C. C. 1962, “A New Technical Progress Function,” German Economic 

Review (2010), 11, 248–265. 

 

Appendix: Derivation of Euler equation (5) 

Construct a Hamiltonian as follows: 

H(C, K, λ) = C𝑡1−θ1 − θ e−ρt + λ𝑡{G[rK𝑡 + wL𝑡 − C𝑡, 𝑡] − δK𝑡} .                  (A1) λ𝑡 is the covariant, and the general transversality condition is : limt→∞ λ𝑡K𝑡 = 0.                                                                               (A2) 

The first-order conditions of (A1) are： 

{∂H∂C = C−θe−ρt − λGI = 0                      λ̇ = − ∂H∂K = −λ(GIr − δ)                  .                                        (A3) 

Using the first equation of (A3) to obtain the consumption, together with the 

second equation, we obtain the Euler equation (5). 


