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Abstract 

What are the key determinants of the direction of technological progress is of central 

importance for many problems in macroeconomics. In the existing literature, the changing relative 

production factor prices as suggested by Hicks (1932) and the relative market sizes as indicated by 

Acemoglu (2002) are considered as the two major determinants. However, by allowing for 

adjustment costs in factor accumulation processes to expand Acemoglu’s (2003) model, this paper 

argues that, at least in the steady-state equilibrium, the direction of technological progress may be 

due to neither of them, but to the relative size of material factor price elasticities, and is biased 

towards the factor with the relatively smaller elasticity. In addition, contrary to the Uzawa(1961) 

steady-state theorem, this paper demonstrates that along a steady-state equilibrium path, 

technological progress can simultaneously include labor- and capital-augmenting elements 

alongside with unchanged factor income shares. Furthermore, this paper identifies more general 

conditions for the existence of a steady-state equilibrium of which Uzawa’s theorem obtains as a 

special case. Based on these results, the paper argues that technological progress may have not 

included labor-augmentation during the preindustrial era because labor supply was infinitely 

elastic with respect to wages, and no capital-augmentation after the industrial revolution because 

of the high capital supply elasticity with respect to the interest rate. 
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1 Introduction 

According to the summary of Kaldor (1961), the stylized characteristics of economic 

growth in developed countries indicate that while per-capita output and physical capital have 

grown over time, the ratio of physical capital to output and the income shares of labor and 

physical capital have remained basically constant since the industrial revolution. These 

characteristics have been associated with the claim that technological progress is purely 

labor-augmenting. In contrast, Ashraf and Galor (2011) show that during the preindustrial era, 

technological progress had resulted in larger populations and higher density, but not in higher 

per-capita income. These characteristics indicate that technological progress included hardly any 

labor-augmentation before the industrial revolution. Why was the nature of technological progress 

so different before and after the industrial revolution? What are the determinants of the direction 

of technological progress and its change? This paper proposes a model which endogenizes the 

direction of technological progress in an attempt to provide some answers. 

The economy analyzed below uses a standard neoclassical production function with labor 

and capital. The quantity or quality growth rates of the respective factors are the result of 

intentional investments by economic agents. Technological progress is measured by the rate at 

which these inputs improve, and the direction of technological progress is represented by the 

relative pace of these improvements.  

The paper proves that under certain conditions there exists an equilibrium path regardless of 

whether decisions are made within a decentralized market environment or in a socially centralized 

manner. It provides very simple and clear conclusions concerning the direction of technological 

progress. Specifically, it shows that the direction of technological progress is neither determined 

by the change of relative factor prices as suggested by Hicks (1932) nor by the relative market size 

as argued by Acemoglu (2002). Rather, that direction depends on the relative supply elasticities of 

material factors with respect to their respective prices, and is biased towards the factor with the 

relatively smaller elasticity. That is, whether technological progress tends to be capital- or 

labor-augmenting is not determined by the change in the relative prices itself，but by the relative 

sensitivity of any material factor accumulation to its own price. The type of technology that 

augments the factor which is less sensitive to its price change will progress faster. 

The intuition behind this result is the following. A higher factor price encourages not only 

invention but also factor accumulation. If the supply elasticity of one of the factors is very large, it 

may not be optimal to develop an invention that economizes the use of that factor when its price is 

relatively increasing in the short run. Accordingly, technological progress is affected by the 

relative supply elasticities and not the change in the relative price per-se. To obtain balanced 

growth, it is necessary to invest more resources in the development of factor-saving technologies 

in the factor that has the smaller supply elasticity. If these elasticities are identical for the two 

factors, technological progress will be equally economical in both. In extreme cases, when a factor 

has infinite supply elasticity, it is not necessary to invest resources to develop any economizing 

technology for that factor. If both factors are supplied with infinite elasticities, there is no need to 

invest resources in innovation at all. 

With this intuition in mind, the paper gives the following answers to the aforementioned 

questions. In the pre-industrial era technological progress was not labor-augmenting because labor 
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supply was very elastic (as described by Malthus). After the industrial revolution, the demographic 

transition reduced the supply elasticity of labor. Moreover, land was replaced by reproducible 

physical capital. As the natural resources needed for the production of capital were almost 

unlimited, the elasticity of capital accumulation with respect to its price became very large. 

However, this situation is changing as more developing countries started industrializing, putting 

ever growing pressure on natural resources and the environment. Consequently, the model predicts 

that in the future technological progress will include more and more capital-augmenting elements. 

The paper also draws some conclusions that differ from those found in the existing 

literature. First, along a steady-state equilibrium path, technological progress can include both 

labor- and capital-augmenting elements while factor income shares remain unchanged. This stands 

in contrast the Uzawa (1961) theorem which says that only purely labor-augmenting elements can 

be present. Second, as capital augmentation can be consistent with stabile factor income shares, 

that technical change maybe not be the reason for the worldwide decline in labor shares during last 

few decades. 

The ideas in this paper are closely related to previous literature. As early as in 1932, Hicks 

(1932) wrote: "A change in the relative prices of the factors of production is itself a spur to 

invention, and to invention of a particular kind-directed to economizing the use of a factor which 

has become relatively expensive" (pp. 124-125). However, as noted by Kennedy (1964), 

innovation faced not only the incentive created by relative factor prices but also the constraints of 

the “innovation possibility frontier”. Based on Kennedy, Samuelson (1965) and Drandakis and 

Phelps (1966) built growth models to formalize the contribution of the induced innovations idea, 

whereby firms choose their technologies to maximize the current rate of cost reduction. However, 

this literature was criticized for its lack of micro-foundations. Consequently, for almost thirty 

years there was little research on the direction of technological progress. Only the work of 

Acemoglu (1998, 2002, 2003, 2007, and 2009) which studied the issue using the framework of 

endogenous technological change (as developed by Romer, 1990, and Aghion and Howitt, 1992) 

has renewed interest in this question. In contrast to the papers of the 1960s, Acemoglu’s models 

start from a microeconomic model of technical change, where innovations are carried out by 

profit-maximizing firms.  Funk (2002) and Irmen (2015) also study the determinants of 

technological progress within perfectly competitive environments. However, none of these papers 

takes into account the impact of adjustment costs. As a result, they are bound by the Uzawa (1961) 

theorem, whereby the steady-state direction of technological progress must be purely labor 

augmenting.  

Many have noted that the Uzawa theorem lacks economic intuition (Aghion and Howitt, 

1998, p16; Acemoglu, 2003, 2009; Jones, 2005; Jones and Scrimgeour, 2008). Schlicht (2006) 

provides a very simple proof of the theorem, from which it becomes clear that the absence of 

adjustment costs in the capital accumulation equation is the key to the result. However, the 

literature (Eisner and Strotz, 1963; Lucas, 1967; Foley and Sidrauski, 1970; Mussa, 1977) on 

adjustment costs points out that an investment function without such costs is not realistic, and 

leads to some counterfactual results when used to analyze macroeconomic problems. Adjustment 

costs for investment have been incorporated in macroeconomics textbooks and economic growth 

theory (Barro and Sala-i-Martin, 2004; Romer, 2006; Acemoglu, 2009), without addressing the 

impact of adjustment costs on the direction of technological progress. Sato and Ramachandran 

(2000) prove that if capital accumulation is a nonlinear function of investment, technological 
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progress is not purely labor-augmenting along a steady-state path. However, they do not point out 

the relationship between nonlinear investment and adjustment costs. Li and Huang (2012, 2015) 

and Irmen (2013) note that the use of nonlinear investment functions provides one form of 

modeling adjustment costs. The former using the Ramsey (1928) framework, and the latter using 

the Schlicht (2006) method prove that including adjustment costs in the capital accumulation 

process, technological progress can include both labor- and capital-augmenting elements in 

steady-state. However, these papers do not consider the role of adjustment costs under a growth 

model with endogenous technological progress, so they also do not discuss the determinants of the 

direction of technological progress. 

The rest of the paper is organized as follows. The second section describes the economic 

environment of the benchmark model, and analyses the behavior of households and firms; The third 

section provides the determinants of the direction of technological progress; The fourth section 

discusses the direction of technological progress when material factors have infinite supply 

elasticites; The fifth section derives the direction of technological progress in a social planning 

equilibrium; The sixth section discusses the direction of technological progress under assumptions 

that differ from those of the benchmark model; The seventh section concludes. 

2. Benchmark model 

2.1 Economic Environment 

The economic environment of the model is an extension of Acemoglu (2003). The economy 

consists of two kinds of material factors, denoted by K and L,
3
and three sectors of production; a 

final goods sector, an intermediate goods sector and a research and development (R&D) sector. 

The preference structure and production functions are identical to Acemoglu’s. However, the 

current analysis differs from that of Acemoglu’s in the factor accumulation functions and the 
innovation possibilities frontier. 

2.1.1 Final good production 

The aggregate production function is given by Y = [γY𝐿(𝜀−1)/𝜀 + (1 − γ)Y𝐾(𝜀−1)/𝜀]𝜀/(𝜀−1)     ,0 ≤ 𝜀 < ∞                        (1) 
where Y is an aggregate output produced from inputs produced by labor-intensive and capital- 

intensive processes, respectively YL and YK, and the factor-elasticity of substitution is given by ε，
with 0 < ε < +∞. 

The labor-intensive and capital-intensive inputs are produced competitively using identical 

constant elasticity of substitution (CES) production functions with corresponding intermediate 

inputs, X(i) and Z(i): 

Y𝐿 = [∫ 𝑋(𝑖)𝛽𝑑𝑖𝑁
0 ]1/𝛽  𝑎𝑛𝑑   Y𝐾 = [∫ 𝑍(𝑖)𝛽𝑑𝑖𝑀

0 ]1/𝛽 , 0 < β < 1                           (2) 
where the elasticity of substitution is given by v = 1/(1–β), where β determines the monopoly 

power of the intermediate product producers: the smaller β is, the greater the monopoly power 

                                                             
3According to the context of any application they can be respectively capital and labor, skilled and unskilled labor, 

physical capital and human capital, etc. 
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becomes. Here N and M represent the measure of different types of labor- and capital-intensive 

intermediate inputs, respectively. As will be seen below, an increase in N or in M corresponds to a 

labor- or capital-augmenting technical change. 

2.1.2 Intermediate input production 

Intermediate inputs are supplied by monopolists who hold the right to use the relevant patent, 

and are produced linearly from their respective factors: 𝑋(𝑖) = 𝐿(𝑖)  and  Z(i) = K(i)                                                                    (3) 
2.1.3 Accumulation of material factors 

While the above follows precisely the Acemoglu (2003) formulation, the following provides 

an extension. Specifically, we assume: 

{K̇ = b𝐾𝐼𝐾𝛼𝐾，b𝐾 > 0，0 ≤ 𝛼𝐾 ≤ 1 L̇ = b𝐿𝐼𝐿𝛼𝐿，  b𝐿 > 0，0 ≤ 𝛼𝐿 ≤ 1                                                       (4) 
where I𝐾 and I𝐿 are respectively resource investments needed to accumulate K and L.  

These material factors accumulation processes are the most important extension of 

Acemoglu (2003) model in this paper. Acemoglu assumes that 𝛼𝐾 = 1 which is the usual case of 

the neoclassical growth model. If 𝛼𝐿 = 1, then equation (4) implies a Malthusian specification.
4 

When 0 < 𝛼K < 1  and 0 < 𝛼L < 1 , the marginal returns of the investment processes are 

diminishing. This may reflect, among other things, that investment in either factor is associated 

with adjustment costs (Li and Huang, 2012, 2015; Irmen, 2013). 

2.1.4 The innovation possibilities frontier 

The technology innovation functions are given by 

{Ṁ = b𝑀𝐼𝑀𝛼𝑀，b𝑀 > 0， 0 ≤ 𝛼𝑀 ≤ 𝛽/(1 − 𝛽)  Ṅ = b𝑁𝐼𝑁𝛼𝑁，b𝑁 > 0，0 ≤ 𝛼𝑁 ≤ 𝛽/(1 − 𝛽)                                           (5) 
Where IM and IN are investments needed to develop new varieties M and N of the respective 

intermediate inputs. Function (5) describes the experimental equipment ideas put forward by 

Rivera-Natiz and Romer (1991). When αM = 1 and αN = 1, equation (5) is the same as equation 

(34) (without depreciation) of knowledge creation in Acemoglu (2003) . While αM and αN are 

not necessary equal to 1, their values are limited by the value of 𝛽. 

2.1.5 The representative household 

The representative household owns material factors such as capital and labor, as well as the 

indefinite rights over the use of patents of the production of intermediate goods. The household’s 

goal is to maximize the discounted flow of utility, given by:  U = ∫ 𝐶(𝑡)1−𝜃 − 11 − 𝜃 𝑒−𝜌𝑡𝑑𝑡∞
0                                                                 (6) 

where 𝐶(𝑡) is consumption at time t, ρ > 0 is the discount rate, and θ > 0 is a utility curvature 

coefficient of the household. 

2.1.6 Budget constraint 

The representative household’s income can be used either for consumption or for investment. 

The latter consists of four options: it can be used to increase the material factors, K and L, or the 

                                                             
4
 Suppose 𝛼L = 1 and let  𝐼L = 𝑠𝑌. Then equation (4) implies L̇/L = sb𝐿y，where sb𝐿 is exogenous. Defining y = Y/L to represent per capita income, one obtains that the labor growth rate is proportional to per capita income, 

which corresponds to the famous Malthusian assumption on population growth.  
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“number” of intermediate goods of either type. While the material factors K and L are rented in 

competitive factor markets, the representative household is a monopoly producer of the 

intermediate goods. Accordingly, the household faces the following budget constraint:  C + I𝐾 + I𝐿 + I𝑁 + I𝑀 = 𝑤𝐿 + 𝑟𝐾 +∫ 𝜋𝑋(𝑖)𝑑𝑖𝑁
0 +∫ 𝜋𝑍(𝑖)𝑑𝑖𝑀

0                           (7) 
Where I = I𝐾 + I𝐿 + I𝑁 + I𝑀 is total investment, w and r are market rental prices of L and K, 𝜋X(𝑖) and 𝜋Z(𝑖) are monopoly profits of the respective intermediate inputs. For the sake of 

simplicity, this paper will ignore corner solutions and assume that consumption and all 

investments are strictly positive, that is, C > 0,  I𝐾 > 0, I𝐿 > 0, I𝑁 > 0 and I𝑀 > 0. 

2.2 Enterprise behavior 

The analysis of enterprise behavior is similar to that of Acemoglu (2003), and only the main 

results are reported here. Through that analysis, one can obtain the prices of the material factors K 

and L, and the monopoly profits of each intermediate product. 

2.2.1 Demand for intermediate goods. 

The goods Y, YL and YK are traded in perfectly competitive markets. The final good Y serves 

as the numeraire, and 𝑝L and 𝑝K are respectively market prices of YL and YK. The demand for 

YL and YK are derived from profit maximization of the final good producers.  {p𝐾 = (1 − γ)[γ + (1 − γ)(Y𝐾/Y𝐿)(𝜀−1)/𝜀]1/(𝜀−1)(Y𝐾/Y𝐿)−1/𝜀p𝐿 = γ[γ + (1 − γ)(Y𝐾/Y𝐿)(𝜀−1)/𝜀]1/(𝜀−1)                                                    (8) 
Taking the prices, 𝑝Z(𝑖) and 𝑝X(𝑖), of the generic inputs, X(i) and Z(i), as given, demand for 

these inputs is obtained from profit maximization: 

{Z(i) = Y𝐾(p𝐾/p𝑍(𝑖))1/(1−𝛽)                 X(i) = Y𝐿(p𝐿/p𝑋(𝑖))1/(1−𝛽)                                                                              (9) 
2.2.2 Factor market clearing.  

Because intermediate goods are supplied by monopolists who hold the relevant patents, and 

are produced linearly from their respective factors (see equation 3), we can obtain the price of 

intermediate inputs from the profit maximization conditions of the monopolies:  {p𝑍(𝑖) = r/β                    p𝑋(𝑖) = w/β                                                                                                (10) 
Equations (10) indicate that each of the intermediate inputs has the same mark-up over 

marginal cost. Substituting (10) into (9), we find that all capital-intensive and all labor-intensive 

intermediate goods are produced in equal (respective) quantities.  {Z(i) = Z = Y𝐾(𝛽p𝐾/r)1/(1−𝛽)                  X(i) = X = Y𝐿(𝛽p𝐿/w)1/(1−𝛽)                                                                 (11) 
By the production functions of the intermediate inputs (3), the monopolists’ demand for 

labor and capital are respectively equal. The material factor market clearing condition implies: {Z(i) = K/M                   X(i) = L/N                                                                                                   (12) 
Substituting equations (12) into (2), we obtain the equilibrium quantities of labor-intensive 

and capital-intensive goods: 
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{  
  Y𝐿 = [∫ 𝑋(𝑖)𝛽𝑑𝑖𝑁

0 ]1/𝛽 = N(1−𝛽)/𝛽L    
Y𝐾 = [∫ 𝑍(𝑖)𝛽𝑑𝑖𝑀

0 ]1/𝛽 = 𝑀(1−𝛽)/𝛽𝐾                                                   (13) 
Finally, substituting equations (13) into (1), we obtain the amount of the final good 

produced: Y = [γ(N(1−𝛽)/𝛽L)(𝜀−1)/𝜀 + (1 − γ)(𝑀(1−𝛽)/𝛽𝐾)(𝜀−1)/𝜀]𝜀/(𝜀−1)       (14) 
In order to simplify notation, we follow Acemoglu (2003) by letting A ≡ N(1−β)/βand B ≡ M(1−β)/β, to obtain:  Y = [γ(AL)(𝜀−1)/𝜀 + (1 − γ)(𝐵𝐾)(𝜀−1)/𝜀]𝜀/(𝜀−1)                                 (15) 

Therefore, increasing the variety of capital-intensive or labor-intensive intermediate goods, M and 

N, implies progress of the capital-augmenting or labor-augmenting technologies B and A. 

Let k ≡ BK/AL be the ratio of effective capital to effective labor, then k = (𝑀(1−𝛽)/𝛽𝐾)/(N(1−𝛽)/𝛽L)                                                                (16) 
and (15) can be rewritten as:  f(k) ≡ Y/AL = [γ + (1 − γ)𝑘(𝜀−1)/𝜀]𝜀/(𝜀−1)                                         (17) 

Using equation (17), we transform the market prices of the capital-intensive and 

labor-intensive goods (8) into the following forms: {p𝐾 = f ′(k)                                                 p𝐿 = f(k) − kf′(k)                                                                                     (18) 
Substituting equation (18), (13), and (12) into (11), we have { r = 𝛽M(1−𝛽)/𝛽𝑓′(𝑘)                                        w = 𝛽N(1−𝛽)/𝛽[𝑓(𝑘) − 𝑘𝑓′(𝑘)]                                                              (19) 
Equations (19) indicate that the prices of the material factors are positively related to the 

respective “number” of the intermediate goods. 

By equations (19), (13) and (10), we find the monopoly profits of the intermediate goods 

producers: {π𝑍 = (𝑝𝑍 − 𝑟)Z = (1 − 𝛽)M(1−2𝛽)/𝛽𝐾𝑓′(𝑘)                                        π𝑋 = (𝑝𝑋 −𝑤)X = (1 − 𝛽)N(1−2𝛽)/𝛽𝐿[𝑓(𝑘) − 𝑘𝑓′(𝑘)]                      (20) 
Equations (20) show that there is a positive relationship between the monopoly profits of the 

intermediate inputs and the quantity of material factors. This implies that developing the 

technology using abundant factor will generate more monopoly profits. Acemoglu (2002) names it 

“the market size effect” in innovation. 

2.3 Consumer behavior 

Households maximize their objective (6) subject to the budget constraint (7), taking as given 

the factor accumulation and technological change processes (4) and (5).   

The corresponding Euler conditions are given by equations (21) (see Appendix A): 
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{  
  Ċ/C = [𝛼𝐾𝑏𝐾𝐼𝐾𝛼𝐾−1𝑟 − (𝛼𝐾 − 1)𝐼𝐾̇/𝐼𝐾 − 𝜌]/𝜃       Ċ/C = [𝛼𝐿𝑏𝐿𝐼𝐿𝛼𝐿−1𝑤 − (𝛼𝐿 − 1)𝐼𝐿̇/𝐼𝐿 − 𝜌]/𝜃         Ċ/C = [𝛼𝑀𝑏𝑀𝐼𝑀𝛼𝑀−1𝜋𝑍 − (𝛼𝑀 − 1)𝐼𝑀̇/𝐼𝑀 − 𝜌]/𝜃 Ċ/C = [𝛼𝑁𝑏𝑁𝐼𝑁𝛼𝑁−1𝜋𝑋 − (𝛼𝑁 − 1)𝐼𝑁̇/𝐼𝑁 − 𝜌]/𝜃                                       (21) 

Equations (21) reflect the conditions of the optimal allocation of income among 

consumption and the four kinds of investment. The first equation in (21) is the necessary condition 

for the optimal allocation between physic capital investment and consumption. It is worth noting 

that when αK = bK = 1, the equation simplifies to the familiar form Ċ/C = (r − ρ)/θ. In that 

environment a constant value of Ċ/C implies that r must be constant. However, if 0 < 𝛼K < 1, 

the rate r cannot be constant when Ċ/C and 𝐼K̇/𝐼K are constant, unless ṙ/r = (1 − αK)𝐼K̇/𝐼K. 

Thus steady-state growth does not necessarily imply a constant market rental price of capital. The 

second equation in (21) is the necessary condition for the optimal allocation between labor 

investment and consumption. The third equation in (21) is the necessary condition for the optimal 

allocation between investments in new varieties of capital-intensive intermediates and 

consumption, and the fourth equation in (21) is the necessary condition for the optimal allocation 

between investments in new varieties of labor-intensive intermediates and consumption. The 

optimal allocation is achieved when the four equations hold simultaneously. As long as one 

equation of the formula (21) is not satisfied, the household can obtain a higher level of utility by 

reallocating its income among consumption and investments. 
Finally, the transversality condition is  lim𝑡→∞K(t) exp [−∫ r(υ)dυ𝑡

0 ] = 0                                                          (22) 
2.4. Market Equilibrium and Steady-State Equilibrium 

2.4.1．Market Equilibrium 

Definition 1: A market equilibrium is obtained when households maximize life-time utility 

and producers maximize profits, the factor and product markets clear and households meet the 

Euler equations. 

Substituting (18), (19) into the family of Euler equations (21), we obtain the market 

equilibrium Euler equations: 

{  
  Ċ/C = [𝛼𝐾𝑏𝐾𝐼𝐾𝛼𝐾−1𝛽𝑀(1−𝛽)/𝛽𝑓′(𝑘) − (𝛼𝐾 − 1)𝐼𝐾̇/𝐼𝐾 − 𝜌]/𝜃                                       Ċ/C = [𝛼𝐿𝑏𝐿𝐼𝐿𝛼𝐿−1𝛽𝑁(1−𝛽)/𝛽[𝑓(𝑘) − 𝑘𝑓′(𝑘)] − (𝛼𝐿 − 1)𝐼𝐿̇/𝐼𝐿 − 𝜌]/𝜃                      Ċ/C = [𝛼𝑀𝑏𝑀𝐼𝑀𝛼𝑀−1(1− 𝛽)𝑀(1−2𝛽)/𝛽𝐾𝑓′(𝑘) − (𝛼𝑀 − 1)𝐼𝑀̇/𝐼𝑀 − 𝜌]/𝜃                    Ċ/C = [𝛼𝑁𝑏𝑁𝐼𝑁𝛼𝑁−1(1 − 𝛽)𝑁(1−2𝛽)/𝛽𝐿[𝑓(𝑘) − 𝑘𝑓′(𝑘)] − (𝛼𝑁 − 1)𝐼𝑁̇/𝐼𝑁 − 𝜌]/𝜃  (23) 

2.4.2．Definition and Existence of Steady-State Equilibrium 

Definition 2: A steady-state growth equilibrium (hereafter SSGE) is a market equilibrium in 

which the growth rates of the endogenous variables (Y, C, I, IK, IL, IM, IN, K, L, M, N) are 

nonnegative constants.  

The definition is identical to that of most of existing literature (Barro and Sala-i-Martin, 

2004; Schlicht, 2006), but slightly different from the definition of a balanced growth path in 

Acemoglu (2003). Specifically, Definition 2 does not require that the growth rate of K be equal to 

that of Y and does not require r and K/Y to be constant.  

Notice that in this model, not only the material factors K and L but also labor- and 
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capital-augmenting technological progress are endogenous. Therefore the model nests several 

economic models in existing growth literature. From the point of view of labor growth, it 

encompasses the Malthusian model. From the capital accumulation point of view, it includes the 

neoclassical growth model. Finally, from the point of view of technological progress, it 

incorporates a two dimensional endogenous technological progress a-la Romer (1990).  

The conditions required for the existence of a steady-state equilibrium are given in 

Proposition 1. 

Proposition 1: An SSGE exists only if {αK + [(1 − β)/β]αM = 1αL + [(1 − β)/β]αN = 1                                (24) 

Proof: See Appendix B. 

Because 𝛼K、 𝛼L、 𝛼M、𝛼N and β all are exogenous parameters, conditions (24) indicate that 

the model’s steady-state equilibrium is a knife edge path. Specifically, the first equation of (24) 

jointly constrains the parameters of the physical capital accumulation and the 

capital-augmentation functions, while the second equation constrains the analogous parameters of 

the labor factor.
5
 Knife-edge conditions are common in the growth  

From the proposition we can get the follow 2 Lemmas. 

Lemma 1: In an SSGE,  Ḃ/B = (1 − 𝛼𝐾)Ẏ/Y                                                                                    (25) 
Proof: See Appendix C. 

Lemma 1 shows that if Ẏ/Y > 0, along an SSGE, a necessary condition for Ḃ/B > 0 is 𝛼𝐾 < 1. Otherwise, if 𝛼𝐾 = 1, then Ḃ/B must be 0. The Uzawa (1961) theorem is a special case 

of Lemma 1.
6
 

Lemma 2: In an SSGE,  Ȧ/A = (1 − 𝛼𝐿)Ẏ/Y                                                                                     (26) 
Proof: See Appendix C. 

Lemma 2 shows that if Ẏ/Y > 0, in an SSGE, a necessary condition for Ȧ/A > 0 is αL < 1. Otherwise, if αL = 1 then Ȧ/A must be 0. As the Malthusian model also assumes that αL = 1, there is an analogy to the Uzawa steady-state theorem, implying that in this case a 

steady-state equilibrium cannot include a labor-augmenting element (Li and Jiuli, 2016).  

2.4.3. The results of steady-state growth equilibrium 

In the sequel we assume that conditions (24) are satisfied. Define sN ≡ IN/Y, sM ≡ IM/Y, sK ≡ IK/Y, sL ≡ IL/Y, and sC ≡ C/Y. The budget constraint becomes: 

    sC + sN + sM + sK + sL = 1                             (27) 

Using (4), (5), (16), (17) and (27), the Euler equations (23) can be re-written as： 

                                                             
5 Knife-edge conditions are commonly found in the growth literature. See, e.g., Jones (1995); Christiaans (2004); 

Growiec (2010). 
6 Under the standard assumption that K̇ = I − δK, we have 𝛼𝐾 = 1, so that Ḃ/B must be 0 which is Uzawa’s 

theorem. 
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{  
  
   
 𝐶̇C = 𝜌𝛽𝛼𝐾2𝑘𝑓′(𝑘)/[𝑠𝐾𝑓(𝑘)] + 1 − 𝛼𝐾 − 𝜃                             𝐶̇C = 𝜌𝛽𝛼𝐿2[𝑓(𝑘) − 𝑘𝑓′(𝑘)]/[𝑠𝐿𝑓(𝑘)] + 1 − 𝛼𝐿 − 𝜃              𝐶̇C = 𝜌(1 − 𝛽)𝛼𝑀2𝑘𝑓′(𝑘)/[𝑠𝑀𝑓(𝑘)] + 1 − 𝛼𝑀 −𝜃                𝐶̇C = 𝜌(1 − 𝛽)𝛼𝑁2[𝑓(𝑘) − 𝑘𝑓′(𝑘)]/[𝑠𝑁𝑓(𝑘)] + 1 − 𝛼𝑁 − 𝜃

                  (28) 
(see Appendix D). 

On the other hand, as shown in Appendix E, from equation (4) and (5) we also obtain 

{ 
 𝐶̇C = (b𝑀𝑠𝑀𝛼𝑀/𝛼𝑀)1−𝛽(b𝐾𝑠𝐾𝛼𝐾/𝛼𝐾)𝛽[𝑓(𝑘)/𝑘]𝛽     𝐶̇C = (b𝑁𝑠𝑁𝛼𝑁/𝛼𝑁)1−𝛽(b𝐿𝑠𝐿𝛼𝐿/𝛼𝐿)𝛽[𝑓(𝑘)]𝛽                                           (29) 

The seven equations in (27), (28) and (29) can be solved for the seven steady-state 

equilibrium variables (Ċ/C)∗, k∗, sC∗ , sK∗ , sL∗ , sM∗ , sN∗ . These variables are determined by the 

underlying parameters ρ, θ, β, γ, η, αL, αK, αN, αM, bL, bK, bN, bM.  

Specifically, we can obtain (Ẏ/𝑌)∗ = (İ/𝐼)∗ = (İ𝐾/𝐼𝐾)∗ = (İ𝐿/𝐼𝐿)∗ = (İ𝑀/𝐼𝑀)∗ = (İ𝑁/𝐼𝑁)∗ = g        (30) 
where g = g(ρ, θ, β, γ, ε, α𝐿 , α𝐾, α𝑁, α𝑀, b𝐿, b𝐾, b𝑁 , b𝑀). 
From (30), (4) and (5) we obtain 

{  
  (K̇/K)∗ = α𝐾g(L̇/L)∗ = α𝐿g (Ṁ/M)∗ = α𝑀g(Ṅ/N)∗ = α𝑁g                                                                                          (31) 

Finally, equations (31) and the definition of B and A imply: {(Ḃ/B)∗ = [(1 − β)/β]α𝑀g = (1 − α𝐾)g     (Ȧ/A)∗ = [(1 − β)/β]α𝑁g = (1 − α𝐿)g                                               (32) 
If  [(1 − β)/β]αM > 0  (or α𝐾 < 1 ) and [(1− β)/β]αN > 0  (or α𝐿 < 1 ), then 

technological progress will include both labor- and capital-augmenting elements along the 

steady-state equilibrium path. 

2.4.4. Factor shares along the steady-state growth equilibrium path 

Let 𝜑𝐿 ≡ wL/Y  , 𝜑𝐾 ≡ rK/Y  , 𝜑𝑁 ≡ π𝑁N/Y , 𝜑𝑀 ≡ π𝑀M/Y  respectively represent 

labor, capital and monopoly profit shares of the labor-intensive and capital-intensive intermediate 

goods producers in total output. Let  𝜑 ≡ 𝜑𝐾/𝜑𝐿 denote the ratio of capital to labor share. 

Using the production function (17) we obtain 
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{  
   
   
  φ𝐿 = βγγ + (1 − γ)(k∗)(𝜀−1)/𝜀       φ𝐾 = β(1 − γ)(k∗)(𝜀−1)/𝜀γ + (1 − γ)(k∗)(𝜀−1)/𝜀      φ𝑁 = (1 − β)γγ + (1 − γ)(k∗)(𝜀−1)/𝜀      φ𝑀 = (1 − β)(1 − γ)(k∗)(𝜀−1)/𝜀γ + (1 − γ)(k∗)(𝜀−1)/𝜀φ = 1 − γγ (k∗)(𝜀−1)/𝜀             

                                                                   (33) 

Notice that because k∗ is a constant along the steady state equilibrium path these shares 

are also constant. This fact implies that the labor share can remain unchanged even if 

technological progress includes capital-augmentation. 

The last observation is related to the extensive discussion that has recently developed over 

the global decline in labor shares and increased income inequality (e.g., Karabarbounis and 

Neiman, 2013; Piketty 2014). Some authors have argued that the bias of technological progress 

towards capital-augmentation is an important cause of these phenomena. However, the result 

above implies that there is no necessary connection between capital-augmentation and declining 

labor shares. Nevertheless, as equations (34) imply, the total share of innovation monopoly profits 

is (1 − β). That share may continue to increase, thereby exerting an important impact on income 

distribution. In particular, if workers cannot extract some of these monopoly profits, their share in 

total income may continue to decline.  

2.4.5. Numerical calculation of steady-state growth equilibrium 

Given the non-linearity of equation (27)-(29), we select 5 sets of parameter values as 

examples and use Matlab program to solve the system as reported in Table 1. The results 

show that there indeed exists an optimal allocation of resources in each set of parameters to 

achieve steady-state equilibrium, reported in table 1. 

Table 1: Solutions of steady state equilibria 

  Set 1 Set 2 Set 3 Set 4 Set 5 

V
ar

ia
b

le
s 

𝑠𝑐 0.8882 0.8778 0.8830 0.8764 0.8830 𝑠𝐾 0.0279 0.0201 0.0401 0.0228 0.0287 𝑠𝐿 0.0279 0.0410 0.0287 0.0178 0.0401 𝑠𝑀 0.0279 0.0410 0.0195 0.0465 0.0287 𝑠𝑁 0.0279 0.0201 0.0287 0.0365 0.0195 𝑘∗ 1.0000 1.0000 1.0914 1.2754 0.9162 𝐶̇/𝐶 0.0234 0.0251 0.0242 0.0254 0.0242 𝐾̇/𝐾 0.0117 0.0100 0.0145 0.0102 0.0121 𝐿̇/𝐿 0.0117 0.0151 0.0121 0.0102 0.0145 𝐵̇/𝐵 0.0117 0.0151 0.0097 0.0152 0.0121 𝐴̇/𝐴 0.0117 0.0100 0.0121 0.0152 0.0097 

P
ar

am
e
te

rs
 γ 0.5 0.5 0.5 0.4 0.5 

ε 1.2 1.2 1.2 0.6 1.2 α𝐿 0.50 0.60 0.50 0.4 0.60 α𝐾 0.50 0.40 0.60 0.4 0.50 
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Except for the parameters γ, ε , α𝐿 and α𝐾 which vary across the equilibria, the rest of the 

parameters are held constant at ρ=0.05、θ=0.6、β=0.5、b𝐿 = b𝐾 = b𝑁 = b𝑀 = 0.07. Technological 

progress is Hicks neutral in the first and the fourth set. The second set and the fifth set are biased 

to more capital-augmentation while the third is biased to more labor-augmentation. The numerical 

results demonstrate not only the existence of equilibria, but also that technological progress can 

include both labor- and capital-augmenting elements, depending on whether the value of ε is 

greater or less than one.  

3. Determinants of the direction of technological progress 

Definition 3: The direction of technological progress is the ratio between the rate of 

capital-augmentation to that of labor-augmentation, i.e. DT ≡ (Ḃ/B)/(Ȧ/A).  

When Ȧ/A  > 0 and Ḃ/B＝ 0 then DT＝ 0， and technological progress is purely 

labor-augmenting (i.e. Harrod-neutral)；when Ȧ/A＝0 and Ḃ/B > 0，then DT→+∞，and 

technological progress is purely capital-augmenting (i.e. Solow-neutral)；when Ȧ/A＝Ḃ/B > 0，

DT＝1，and technological progress is Hicks-neutral.  

Figure 1 shows different directions of technological progress:  

 

 

 

 

 

 

  

 

 

 

Clearly, the axes represent Harrod-neutral (horizontal) and Solow-neutral (vertical) technical 

change. The diagonal  Ḣ/H line represents the location of Hicks-neutral technical changes. The 

ray Ṫ1/T1 indicates technical progress which is close to Harrod-neutrality, while Ṫ2/T2 is close 

to Solow-neutrality. Different types of technical changes may be associated with the same growth 

rates but different directions. They may also have the same direction but different growth rates. 

In a steady-state equilibrium, we obtain： DT ≡ Ḃ/BȦ/A = 𝛼𝑀𝛼𝑁                                                                                 (34)  
Using this condition in equation (24) we also get: DT ≡ Ḃ/BȦ/A = 1 − 𝛼𝐾1 − 𝛼𝐿                                                                           (35) 
Equations (34) and (35) show that the direction of technological progress is determined by 

the exponents of the innovation investment functions, namely αM and αN, or of the material 

factors accumulation functions, namely αK and αL. In order to interpret equation (35), we define 

next the price elasticities of labor and capital supply, and then discuss the relationship between 

these elasticities and the direction of technological progress. 

O 

Ṫ1/T1 
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Ṫ2/T2 
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45° 

Figure 1: Direction of technological progress 
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Definition 4: The price elasticity of any variable X is given by  εX,p ≡ Ẋ/XṗX/pX                                                                                          (36) 
Lemma 3: In a SSGE the price elasticity of capital and labor are given by: {εK,r = αK/(1 − αK)εL,w = αL/(1 − αL)                                                                              (37) 𝑤ℎ𝑒𝑟𝑒 εK,r and εL,w represent the price elasticity of capital and labor respectively. 

Proof: See Appendix F. 

Equations (37) indicate that the price elasticities of capital and labor are determined by the 

exponents of the material factor accumulation functions, namely, αK and αL. When αK = 1, the 

price elasticity of capital is infinite, when αL=1, the price elasticity of labor is infinite. Using 

formula (32) and (37), we obtain: 

 {Ḃ/B = g/(1 + εK,r)Ȧ/A = g/(1 + εL,w)                                                                         (38) 
Which directly implies: DT = Ḃ/BȦ/A = (1 + εL,w)(1 + εK,r)                                                                  (39) 

The interpretation of equation (39) is summarized as Proposition 2. 

Proposition 2: Along a steady-state growth equilibrium path, the direction of technological 

progress is determined by the relative price elasticities of the factor accumulation processes and is 

biased towards the factor with the relatively smaller elasticity. 

Proposition 2 shows that the key determinant of the direction of technological progress is 

neither the change in relative price nor the relative size of markets, but the relative size of the 

price elasticities of the material factors. The change in the relative price of the material factors 

does not determine the direction of technological progress per-se. This is so because a change in 

the relative price will not only induce economizing on the factor that became more expensive, but 

also increased accumulation of it. If the supply elasticity of that factor is bigger than that of the 

other, the relative price change cannot continue in long run. Therefore, it is not reasonable to 

invest too many resources in developing new technologies that economize the use of that factor in 

long run. 

4. The direction of technological progress under infinite supply elasticities of material 

factors 

Based on the above conclusions, this section turns to a historical perspective on the direction 

of technological progress. 

4.1 Why was there no labor-augmentation in the preindustrial era? 

According to the empirical work of Ashraf and Galor (2011), in the preindustrial era 

technological progress brought about only an increase in population and its density while per 

capita income was nearly unchanged for thousands of years. This indicates that the technological 

progress did not include labor-augmenting elements. According to the model presented above, this 

is due to the very high elasticity of population with respect to wages in those times  

Specifically, suppose that the population growth follows the Malthusian mechanism, as 

follows:  
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L̇/L = ay − b                                   (40) 

where L̇/L represents the rate of population growth, y represents  per capita income, and “a” 

and “b” are positive exogenous parameters. 

Since the wage depends on per capita income, namely w = αy，with 0 < α ≤ 1, we obtain εL,w = L̇/Lẇ/w = (a/α)w− bẇ/w                                                              (41) 
If ẇ/w ≥ 0, as time progresses we get: 

lim𝑡→∞εL,w = lim𝑡→∞ (a/α)w0exp [∫ (𝑤̇𝜏/𝑤𝜏)𝑑𝜏𝑡𝜏＝0 ] − bẇ/w = ∞                           (42) 
Therefore, in a Malthusian world the supply elasticity of labor becomes exceedingly large. 

Consequently, we obtain from equation (38) that in the preindustrial era Ȧ/A = g/(1 + εL,w) = 0 

i.e. technological progress did not include the labor-augmenting element. 

4.2. Why is technological progress purely labor-augmenting after the industrial 

revolution? 

According to the summary of Kaldor (1961), since the industrial revolution per-capita 

capital and income continue to rise, but the productivity of capital has remained nearly remained. 

These characteristics indicate that technological progress is purely labor-augmenting. Indeed, by 

assuming that type of technical change the neoclassical growth model gets a steady-state growth 

path that meet the “Kaldor facts”. However, that model cannot explain why technological progress 

must be purely labor-augmenting. The above structure implies that it is because the price elasticity 

of capital accumulation is infinite.  

Taking the standard assumption of neoclassical growth model, the capital accumulation 

function is given by: K̇ = sY − δK                                     (43) 

where s ≡ (Y − C)/Y represents saving rate. Under a constant returns to scale production 

function,  Y/K = r/α，where α ≡ 𝜕𝑌𝜕𝐾 𝐾𝑌 represents the elasticity of output with respect to capital. 

From here we get:  εK,r = K̇/Kṙ/r = sY/K − δṙ/r = (s/α)r − δṙ/r                                                 (44) 
With ṙ/r ≥ 0, in the limit this implies:  

lim𝑡→∞εK,r = lim𝑡→∞ (s/α)r0exp [∫ (𝑟̇𝜏/𝑟𝜏)𝑑𝜏𝑡𝜏＝0 ] − δṙ/r = ∞                                   (45) 
Accordingly, from equation (38) we obtain Ḃ/B = g/(1 + εK,r)＝0，namely, technological 

progress must be purely labor-augmenting. 

4.3. Why was technological progress in the non-agricultural sector slow during the 

rapid development period of the Chinese economy? 

Since the Chinese economy has been reformed and opened, it has rapidly grown for more 

than 30 years. Empirical research (e.g. Young, 2003) found that the total factor productivity 

growth in the non-agricultural sector was very slow during this period, a fact that has often been 

criticized. However, given the above results, when an economy endowed with a large amount of 

surplus labor, then it is an optimal choice within a market economy to opt for a low growth in total 
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factor productivity, because both supply elasticities of capital and labor are very large. 

Specifically, when εL,w＝∞ and εK,r＝∞, equation (38) shows that Ḃ/B and Ȧ/A both 

are both equal to zero in steady-state. With unlimited supply of labor, the optimal choice should be 

to make full use of the surplus labor and accumulate capital to induce economic growth. That 

growth is then mainly driven by increases in factor quantities rather than their qualities. 

4.4. Will technological progress remain labor-augmenting in the future? 

The Uzawa (1961) steady-state theorem says that technological progress must be purely 

labor-augmenting in the steady-state growth path of the neoclassical growth model. However, this 

theorem is neither in line with economic intuition, nor can it explain why technological progress 

did not include labor-augmentation element in the preindustrial era. In addition, it is also 

unreasonable to expect that technological progress will be purely labor-augmenting in the future 

and not change with the changing environment. 

For a long time after the industrial revolution, the supply elasticity of capital was very large, 

inducing (as we have seen) labor-augmenting technological progress. Land has been replaced by 

capital, removing the constraint on economic growth due to limited land. In the neoclassical 

growth model, physical capital is completely renewable. However, in reality, that creation of such 

capital requires non-renewable resources. for nearly two hundred years, because only a few 

countries experienced industrialization, the pressure on these resources was low and their capital 

supply elasticity could be viewed to have been nearly infinite. However, with many developing 

countries like China starting o industrialize, the constraint imposed by the nonrenewable natural 

resources and ecological environment on the accumulation of physical capital become tighter and 

tighter. Therefore, the elasticity of supply elasticity of capital is likely to decline, changing the mix 

of technological progress. 

5. The direction of technological progress in social planning equilibrium 

The previous benchmark model gives the equilibrium of decisions in a decentralized market. 

Due to the externality of innovation, the decentralized equilibrium is not Pareto optimal. Does the 

direction of technological progress also deviate from the Pareto optimal one? The following will 

answer the question by solving the social planning program. 

Assume that the social planner maximizes the utility of the representative household under 

the constraints of the production function and social resource constraint. In the social planning 

program the decision on the production of the intermediate inputs should be based on marginal 

cost pricing and not on the monopoly pricing. Therefore, investment in innovation depends on the 

marginal revenue and not the monopoly profits. From the production function (15), the marginal 

revenue of K, L, M and N are as follows: 

{  
  𝜕𝑌/ ∂K = 𝑀(1−𝛽)/𝛽𝑓′(𝑘)                                                    𝜕𝑌/ ∂L = 𝑁(1−𝛽)/𝛽[𝑓(𝑘) − 𝑘𝑓′(𝑘)]                                𝜕𝑌/ ∂M = 𝑀(1−2𝛽)/𝛽𝐾𝑓′(𝑘)                                                𝜕𝑌/ ∂N = 𝑁(1−2𝛽)/𝛽𝐿[𝑓(𝑘) − 𝑘𝑓′(𝑘)]                                               (46)  

The social resource constraint is  

    C + 𝐼𝐾 + 𝐼𝐿 + 𝐼𝑁 + 𝐼𝑀 = 𝑌                              (47) 

The social welfare function is the utility function of household (6). Using the optimal 
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control technique, we obtain the social Euler equations as follow, 

{   
  
   𝐶̇C = {𝛼𝐾𝑏𝐾𝐼𝐾𝛼𝐾−1𝑀(1−𝛽)/𝛽𝑓′(𝑘) − (𝛼𝐾 − 1)𝐼𝐾̇/𝐼𝐾 − 𝜌}/𝜃                                                 𝐶̇C = {𝛼𝐿𝑏𝐿𝐼𝐿𝛼𝐿−1𝑁(1−𝛽)/𝛽[𝑓(𝑘) − 𝑘𝑓′(𝑘)] − (𝛼𝐿 − 1)𝐼𝐿̇/𝐼𝐿 − 𝜌}/𝜃                                 𝐶̇C = {[(1 − 𝛽)/𝛽]𝛼𝑀𝑏𝑀𝐼𝑀𝛼𝑀−1𝑀(1−2𝛽)/𝛽𝐾𝑓′(𝑘) − (𝛼𝑀 − 1)𝐼𝑀̇/𝐼𝑀 − 𝜌}/𝜃                 𝐶̇C = {[(1 − 𝛽)/𝛽]𝛼𝑁𝑏𝑁𝐼𝑁𝛼𝑁−1𝑁(1−2𝛽)/𝛽𝐿[𝑓(𝑘) − 𝑘𝑓′(𝑘)] − (𝛼𝑁 − 1)𝐼𝑁̇/𝐼𝑁 − 𝜌}/𝜃 

 (48)  
By comparing the Euler equations of the social planner to those of the decentralized 

equilibrium, we observe that the social marginal revenue of the factors equals the price of 

intermediate varieties multiplied by a factor of 1/β. since β < 1, if the innovation of intermediates 

and accumulation of material factors by society will higher than by that of the decentralized agents. 

Therefore, the decentralized equilibrium is not Pareto optimal.  

In order to arrive at a Pareto optimal result in the decentralized environment, it is necessary 

to subsidize both capital and labor, which is different from Romer (1990) where 

labor-augmentation is admissible. The rate to subsidy is the market prices of capital and labor 

multiplied by 1/β. Because the intermediate goods are produced by both capital and labor, the 

Pareto optimal allocation cannot be achieved by subsidizing the monopoly profits of the 

intermediate goods producers.  

Since the rate of output growth in the two environments is different, the rates of both capital- 

and labor-augmentation are also different. However, the direction of technological progress are the 

same because the ratio between the capital- and labor-augmentations rates is still 
Ḃ/BȦ/A = 1−𝛼𝐾1−𝛼𝐿 =(1+εL,w)(1+εK,r). Therefore, although the structure of market affects the resources allocation, it does not 

affect the direction of technological progress which is determined by the relative size of the 

elasticities of material factors which reflect the relative scarcity of endowments in the dynamic 

process. 

6. Discussion and Extensions 

In the benchmark model, the innovation of new varieties of intermediate goods and the 

accumulation of material factors are both the results of investment. However, Acemoglu (2003) 

discussed one case in which new varieties of intermediate goods is created by the R&D efforts of 

scientists, and in Acemoglu (2009) (chapter 15) he presents another case where the growth rates of 

both capital and labor are exogenous. In addition, in the benchmark model, labor-intensive and 

capital- intensive products YL and YK are produced only by labor-intensive intermediates X(i) or 

capital-intensive intermediates Z(i) respectively, and the intermediary goods X(i) and Z(i) are 

produced linearly only by L and K respectively. However, Acemoglu (2002, 2003) also discussed 

the case where the YL and YK are produced by the intermediary goods and material factors, 

using the appropriate Cobb-Douglas functions. The effects of these cases on the direction of 

technological progress of are discussed in following. 

6.1. Innovation Possibilities Frontier 



17 

 

Acemoglu (2003) discussed the case of the following innovation possibilities frontier: {Ṅ = dlM𝜂N1−𝜂Sl − δN   Ṁ = dkM𝜂N1−𝜂Sk − δM   ，where  Sl＋Sk＝S                                         (49) 
where S represents the total amount of scientists which is given exogenously but suffices to meet 

the needs for the two intermediate goods departments. Sl and Sk represent, respectlively, the 

scientists who carry the R&D of the labor-and capital-intensive intermediate goods. Their sum is 

equal to S. Other assumptions of benchmark model are unchanged. 

From equation (49) we can obtain { Ṅ/N = dl(M/N)𝜂Sl − δ   Ṁ/M = dk(M/N)𝜂Sk − δ                                                                             (50) 
The rates of technological progress are constant in steady-state equilibrium. Therefore, if 

such equilibrium exists, there is a Sl∗ that satisfies: (M/N)∗ = dk(S − Sl∗)/(dlSl∗)                                                                (51) 
Substituting this into equation equations (50), we obtain: Ṁ/M = Ṅ/N = dl[dk(S − Sl∗)/(dlSl∗)]𝜂Sl∗ − δ                                    (52) 
Because 

M(1−𝛽)/𝛽K𝑁(1−𝛽)/𝛽𝐿  is a constant in steady-state, equation (52) requires K̇/K = L̇/L, and for a 

steady- state equilibrium to exist, there is again a knife-edge condition: α𝐿 = α𝐾                                                                                                       (53) 
Since R&D investment does not use resources, the household budget constraint is modified 

as: wL + rK+w𝑆𝑆 = 𝐶 + 𝐼𝐾 + 𝐼𝐿                                                                 (54) 
Unlike the benchmark model, the income of the household includes the rental revenue of 

capital and the wages of labor and scientists. The expenditures consist of consumption and 

investment in the accumulation of material factors. The household allocates income to maximize 

intertemporal utility.  

The budget constraint can be reformulated as: sC + sK + sL = 1                                                                                    (55) 
From the Euler equation we can obtain the following equations in the steady-state 

{  
  𝐶̇C = 𝜌𝛼𝐾2𝑘𝑓′(𝑘)/[𝑠𝐾𝑓(𝑘)] + 1 − 𝛼𝐾 − 𝜃                 𝐶̇C = 𝜌𝛼𝐿2[𝑓(𝑘) − 𝑘𝑓′(𝑘)]/[𝑠𝐿𝑓(𝑘)] + 1 − 𝛼𝐿 − 𝜃                                                (56) 

When  α𝐿 = α𝐾, we obtain from the above: 𝑠𝐾/𝑠𝐿 = 𝑘𝑓′(𝑘)/[𝑓(𝑘) − 𝑘𝑓′(𝑘)]                                                                           (57) 
Because of K̇/K = L̇/L and α𝐿 = α𝐾 in steady-state， the material factors accumulation 

function (4) imply:
7
 𝐾𝐿 = b𝐾s𝐾𝛼𝐾b𝐿s𝐿𝛼𝐿                                                                                             (58) 

Substituting equations (51) and (58) into k ≡ M(1−𝛽)/𝛽K𝑁(1−𝛽)/𝛽𝐿  ,we obtain: 

                                                             
7 See Appendix G. 

 



18 

 

k = b𝐾s𝐾𝛼𝐾b𝐿s𝐿𝛼𝐿 [𝑑𝑘(𝑆 − 𝑆𝑙∗)(𝑑𝑙𝑆𝑙∗) ](1−𝛽)/𝛽                                                           (59) 
Finally, from Y = N(1−𝛽)/𝛽Lf(k) and the steady-state growth rates of Y, C, N and L, we get: 𝐶̇C = 11 − 𝛼𝐿 1 − 𝛽𝛽 {𝑑𝑙𝑆𝑙∗ [𝑑𝑘(𝑆 − 𝑆𝑙∗)𝑑𝑙𝑆𝑙∗ ]𝜂 − δ}                                                 (60) 
In sum, the model generates six independent equations, (55)- (60), with six independent 

unknown variables, i.e. sC、𝑠𝐿、𝑠𝐾、𝐶̇/𝐶、𝑘 and 𝑆𝑙∗. In addition we have to impose α𝐿 = α𝐾 < 1, 

which is a specific case of the steady state equilibrium condition in the benchmark model.  

Equation (52) shows that the technological progress is Hicks neutral. From α𝐿 = α𝐾 we can 

obtain 𝜀𝐿 = 𝜀𝐾, therefore the direction of technological progress is still determined by DT =(1 + 𝜀𝐿)/(1 + 𝜀𝐾) . Acemoglu (2003) argues that if the innovation possibilities frontier is 

specified as in equations (49), the model will have no steady-state equilibrium. The discussion 

above shows that this is due to Acemoglu’s assumption that because he assumes α𝐾 = 1 and α𝐿 ≠ α𝐾, and not because of equation (49). 

6.2. Exogenous capital and labor growth rates 

Aemoglu (2009, chapter 15) suggests another model with exogenous capital and labor 

growth rates. He argues that the technological progress will be labor-augmenting. However, it 

seems that the steady-state technological progress cannot be labor-augmenting. 

Keep all assumptions unchanged except that growth rates of material factors are:  {K̇/K = b𝐾 > 0L̇/L = b𝐿 > 0                                                                                      (61) 𝑤ℎ𝑒𝑟𝑒 b𝐾 and b𝐿 are exogenously given. 

Since the accumulation of material factors does not require resources, the budget constraint 

equation is modified as follows: wL + rK +∫ 𝜋𝑋(𝑖)𝑑𝑖𝑁
0 +∫ 𝜋𝑍(𝑖)𝑑𝑖𝑀

0 = 𝐶 + 𝐼𝑁 + 𝐼𝑀                                 (62) 
Given equations (65), the necessary condition for the existence of a steady-state becomes: 𝑏𝐿1 − [(1 − 𝛽)/𝛽]𝛼𝑁＝ 𝑏𝐾1 − [(1 − 𝛽)/𝛽]𝛼𝑀                                              (63) 
When equation (66) holds, the consumption growth rate is: 𝐶̇𝐶 = 𝑏𝐿1 − [(1 − 𝛽)/𝛽]𝛼𝑁＝ 𝑏𝐾1 − [(1 − 𝛽)/𝛽]𝛼𝑀                                     (64) 
Moreover, the steady state Euler equations become:

8
 

{  
  𝐶̇C = 𝜌(1 − 𝛽)𝛼𝑁2[𝑓(𝑘) − 𝑘𝑓′(𝑘)]/[𝑠𝑁𝑓(𝑘)] + 1 − 𝛼𝑁 − 𝜃𝐶̇C = 𝜌(1 − 𝛽)𝛼𝑀2𝑘𝑓′(𝑘)/[𝑠𝑀𝑓(𝑘)] + 1 − 𝛼𝑀 − 𝜃                                  (65) 

The budget constraint can be rewritten as: sC + sN + sM = 1                                                                                     (66) 
Equation (5) of the steady-state innovation possibilities frontier yields:

9
 

                                                             

8
Notice that it is no longer the case that 𝐶̇/𝐶 = (𝑟 − 𝜌)/𝜃. Here not only are the accumulation 

processes of material factors exogenous, but also innovation does not require resource investment 

since the new intermediate goods are created by special scientists who have no alternative costs. 

Therefore, the household has no choice but to consume its entire income.  
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f(k)𝛼𝑁−𝛼𝑀 = 𝛼𝑁𝑏𝑀𝛼𝑀𝑏𝑁 𝑆𝑀𝛼𝑀𝑆𝑁𝛼𝑁 𝑁𝑇/𝑀𝑇(𝑁𝑇(1−𝛽)/𝛽𝐿𝑇)𝛼𝑁−𝛼𝑀                                      (67) 𝑤ℎ𝑒𝑟𝑒 𝑁𝑇、𝑀𝑇 and 𝐿𝑇 are the initial value of the steady-state equilibrium path. These do not 

affect the growth rates of the endogenous variables and can be set at any positive value. Given 

these values, there are five independent equations, (63)-(68), and five variables, 𝐶̇/𝐶、𝑘、𝑠𝐶、𝑠𝑁、𝑠𝑀, which yields the equilibrium solution.  

The capital- and labor-augmentation rates are: 

{  
  𝐵̇𝐵 = [(1 − 𝛽)/𝛽]𝛼𝑀1 − [(1− 𝛽)/𝛽]𝛼𝑀 𝑏𝐾     𝐴̇𝐴 = [(1− 𝛽)/𝛽]𝛼𝑁1 − [(1 − 𝛽)/𝛽]𝛼𝑁 𝑏𝐿                                                                        (68) 

The supply elasticities of capital and labor are given by: 

{  
  𝜀𝐾 = 𝐾̇/𝐾𝑟̇/𝑟 = 𝐾̇/𝐾𝐵̇/𝐵 = 1 − [(1 − 𝛽)/𝛽]𝛼𝑀[(1 − 𝛽)/𝛽]𝛼𝑀𝜀𝐿 = 𝐿̇/𝐿𝑤̇/𝑤 = 𝐿̇/𝐿𝐴̇/𝐴 = 1 − [(1 − 𝛽)/𝛽]𝛼𝑁[(1 − 𝛽)/𝛽]𝛼𝑁                                                 (69) 

From equations (63), (68) and (69) we can obtain the direction of technological progress as 

follow: DT = [(1 − 𝛽)/𝛽]𝛼𝑀[(1 − 𝛽)/𝛽]𝛼𝑁 ＝
1 + 𝜀𝐿1 + 𝜀𝐾                                                          (70) 

Equation (68) shows that technological progress will include both labor- and 

capital-augmenting elements when the accumulation rates of both capital and labor are exogenous. 

Therefore, though a steady-state equilibrium path exists, balanced growth does not. 

6.3. Different forms of technological progress 

Acemoglu (2002, 2003) suggests yet another form of technological progress in which 

labor-intensive and capital-intensive products are produced using the following functions: 

{  
  Y𝐿 = 11 − 𝛽 [∫ 𝑋(𝑖)1−𝛽𝑑𝑖𝑁

0 ]𝐿𝛽
Y𝐾 = 11 − 𝛽 [∫ 𝑍(𝑖)1−𝛽𝑑𝑖𝑀

0 ]𝐾𝛽   ,0 < 𝛽 < 1                                     (71) 
If we keep the material factor accumulation and innovation functions and the innovation 

possibilities frontier as in the benchmark model, the necessary conditions for the existence of a 

steady-state equilibrium become:  {αK + αM = 1αL + αN = 1                                                                                   (72) 
If equations (72) are met, there is a unique solution of the steady state equilibrium 

conditions. The technological progress can include both labor- and capital-augmenting elements, 

and its direction is still determined by DT = (1 + 𝜀𝐿)/(1 + 𝜀𝐾). 

                                                                                                                                                                               
9 See Appendix H. 
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7. Conclusions 

What determines the direction of technological progress? This is one of the central issues of 

the theory of economic growth. By developing a growth model with not only endogenous 

accumulation of material factors (capital and labor) but also endogenous labor- and 

capital-augmenting technological progress, this paper proves that the determinants of the direction 

of technological progress are neither the change in the relative prices of the factors of production 

as suggested by Hicks (1932) nor the relative size of markets as advocated by Acemoglu (2002). 

Instead, it is the relative size of the supply elasticities of material factors with respect to their 

respective prices, and is biased towards the factor with the relatively smaller elasticity.  

The paper provides new insights concerning the switch in the direction of economic growth 

between the preindustrial era and the period following the industrial revolution. Specifically, 

empirical studies by Kaldor (1961) and Ashraf and Galor (2011) show that technological progress 

before the industrial revolution was nearly completely devoid of labor-augmenting elements, 

while after the industrial revolution it was almost purely labor-augmenting. The paper argues that 

these facts may be due to the very high labor supply elasticity in a Malthusian world on the one 

hand, and a very high renewable capital supply elasticity after the industrial revolution. 

Concerning things to come, the model predicts that technological progress will include more and 

more capital-augmenting element when the elasticity of the capital supply starts decreasing 

because of constraints on the use of non-reproducible resources and the environment become 

binding.    

Finally, this paper also sheds some light on another important issue in current macroeconomics. 

From the point of view of our model, when innovations are carried out by profit-maximizing firms, 

the role of innovation in economic growth becomes more and more important. As a result, the 

share of profits of innovating monopolies may rise. If workers cannot extract a part of these profits, 

the labor share may be declining, which may explain the global decline in labor shares over the 

last decades. On the contrary, there is no necessary connection between capital-augmentation and 

declining labor shares. 

 

 

 

 

 

 

 

 

Appendix A： The process of derivation of the Euler equations (21) 

Let the Hamilton associated with the optimization problem be: H = U(C)e−𝜌𝑡 + 𝜆𝐾𝑏𝐾𝐼𝐾𝛼𝐾 + 𝜆𝐿𝑏𝐿𝐼𝐿𝛼𝐿 + 𝜆𝑀𝑏𝑀𝐼𝑀𝛼𝑀 + 𝜆𝑁𝑏𝑁𝐼𝑁𝛼𝑁 +𝜇[𝑤𝐿 + 𝑟𝐾 + 𝜋𝑋𝑁 + 𝜋𝑍𝑀−𝐶 − (𝐼𝐾 + 𝐼𝐿 + 𝐼𝑁 + 𝐼𝑀)                       (𝐴1) 
The first-order conditions are: 



21 

 

{   
   C−θ𝑒−𝜌𝑡 = 𝜆𝑀𝛼𝑀𝑏𝑀𝐼𝑀𝛼𝑀−1C−θ𝑒−𝜌𝑡 = 𝜆𝐾𝛼𝐾𝑏𝐾𝐼𝐾𝛼𝐾−1  C−θ𝑒−𝜌𝑡 = 𝜆𝐿𝛼𝐿𝑏𝐿𝐼𝐿𝛼𝐿−1    C−θ𝑒−𝜌𝑡 = 𝜆𝑁𝛼𝑁𝑏𝑁𝐼𝑁𝛼𝑁−1  C−θ𝑒−𝜌𝑡 = 𝜇                          

                                                                           (𝐴2) 
Taking log-derivatives of both sides of (A2) over time, we obtain 

{  
   
   
  −θ Ċ𝐶 − ρ = 𝜆̇𝑀𝜆𝑀 + (𝛼𝑀 − 1) 𝐼𝑀̇𝐼𝑀  −θ Ċ𝐶 − ρ = 𝜆̇𝐾𝜆𝐾 + (𝛼𝐾 − 1) 𝐼𝐾̇𝐼𝐾   −θ Ċ𝐶 − ρ = 𝜆̇𝐿𝜆𝐿 + (𝛼𝐿 − 1) 𝐼𝐿̇𝐼𝐿 −θ Ċ𝐶 − ρ = 𝜆̇𝑁𝜆𝑁 + (𝛼𝑁 − 1) 𝐼𝑁̇𝐼𝑁 −θ Ċ𝐶 − ρ = 𝜇̇𝜇                              

                                                                   (𝐴3) 

The motion equations of λ are:  

{  
  λ̇𝑀 = −𝜕𝐻/𝜕𝑀 = −μπ𝑍λ̇𝐾 = −𝜕𝐻/𝜕𝐾 = −μr   λ̇𝑁 = −𝜕𝐻/𝜕𝑁 = −μπ𝑋λ̇𝐿 = −𝜕𝐻/𝜕𝐿 = −μw                                                                                 (𝐴4) 

Based on (A2) and (A4),  

{  
  λ̇𝑀/𝜆𝑀 = −π𝑍𝛼𝑀𝑏𝑀𝐼𝑀𝛼𝑀−1  λ̇𝐾/𝜆𝐾 = −r𝛼𝐾𝑏𝐾𝐼𝐾𝛼𝐾−1      λ̇𝑁/𝜆𝑁 = −π𝑋𝛼𝑁𝑏𝑁𝐼𝑁𝛼𝑁−1    λ̇𝐿/𝜆𝐿 = −w𝛼𝐿𝑏𝐿𝐼𝐿𝛼𝐿−1                                                                               (𝐴5) 

Using (A5) in (A3), we obtain the Euler equations (21).  

{  
  
   
 Ċ𝐶 = 1θ {π𝑍𝛼𝑀𝑏𝑀𝐼𝑀𝛼𝑀−1 − (𝛼𝑀 − 1) 𝐼𝑀̇𝐼𝑀 − ρ}Ċ𝐶 = 1θ {r𝛼𝐾𝑏𝐾𝐼𝐾𝛼𝐾−1 − (𝛼𝐾 − 1) 𝐼𝐾̇𝐼𝐾 − ρ}     Ċ𝐶 = 1θ {w𝛼𝐿𝑏𝐿𝐼𝐿𝛼𝐿−1 − (𝛼𝐿 − 1) 𝐼𝐿̇𝐼𝐿 − ρ}      Ċ𝐶 = 1θ{π𝑋𝛼𝑁𝑏𝑁𝐼𝑁𝛼𝑁−1 − (𝛼𝑁 − 1) 𝐼𝑁̇𝐼𝑁 − ρ}

                                              (21) 
Appendix B: process of derivation of equation (24) 

Proof: First, from the budget constraint (7) and the definition of a steady-state growth 

equilibrium, we obtain Ẏ𝑌 = İ𝐼 = 𝐼𝑀̇𝐼𝑀 = 𝐼𝑁̇𝐼𝑁 = 𝐼𝐿̇𝐼𝐿 = 𝐼𝐾̇𝐼𝐾 = Ċ𝐶                                                                 (B1) 
Then, according to the factor accumulation functions (4) and the innovation possibilities 

frontier (5), the following must hold in steady-state 
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{K̇/𝐾 = 𝛼𝐾𝐼𝐾̇/𝐼𝐾L̇/𝐿 = 𝛼𝐿𝐼𝐿̇/𝐼𝐿                                                                                          (𝐵2) {Ṁ/𝑀 = 𝛼𝑀𝐼𝑀̇/𝐼𝑀L̇/𝐿 = 𝛼𝑁𝐼𝑁̇/𝐼𝑁                                                                                       (𝐵3) 
Using the intensive form of the production function (17), we obtain Y = N(1−𝛽)/𝛽Lf(k) = M(1−𝛽)/𝛽Kf(k)/k                                                      (B4) 

In a steady-state growth equilibrium, due to the fact that k is constant, we obtain: {K̇/𝐾 + (1 − 𝛽)/𝛽Ṁ/𝑀 = Ẏ/𝑌  L̇/𝐿 + (1 − 𝛽)/𝛽Ṅ/𝑁 = Ẏ/𝑌                                                                (𝐵5) 
Substitute (B1), (B2) and (B3) into (B5), if Ẏ/Y > 0 then we can obtain the necessary 

condition to exist a steady-state equilibrium equation (24) {αK + [(1 − β)/β]αM = 1αL + [(1 − β)/β]αN = 1                                  (24) 

Appendix C: the process of derivation of the lemma 1 and lemma 2. 

From the definition of labor- and capital-augmenting technological progress we can obtain {Ḃ/B = [(1− 𝛽)/𝛽]Ṁ/MȦ/A = [(1 − 𝛽)/𝛽]Ṅ/N                                                                           (𝐶1) 
Insert (B1) and (B3) into (C1) obtain： {Ḃ/B = [(1 − 𝛽)/𝛽]𝛼𝑀Ẏ/YȦ/A = [(1 − 𝛽)/𝛽]𝛼𝑁Ẏ/Y                                                                        (𝐶2) 
From equation (24)  and  (C2) we can obtain： {Ḃ/B = (1 − 𝛼𝐾)Ẏ/YȦ/A = (1 − 𝛼𝐿)Ẏ/Y                                                                                   (𝐶3) 
Appendix D: the process of derivation of equation (28) 

From the Euler equations (23) we can obtain 

{  
  
   
 Ċ𝐶 = [𝛼𝐾𝑏𝐾 𝐼𝐾𝛼𝐾𝐾 𝑌𝐼𝐾𝑀(1−𝛽)/𝛽𝐾𝑌 𝛽𝑓′(𝑘) − (𝛼𝐾 − 1) 𝐼𝐾̇𝐼𝐾 −𝜌] /𝜃                                       Ċ𝐶 = [𝛼𝐿𝑏𝐿 𝐼𝐿𝛼𝐿𝐿 𝑌𝐼𝐿𝑁(1−𝛽)/𝛽𝐿𝑌 𝛽[𝑓(𝑘) − 𝑘𝑓′(𝑘)] − (𝛼𝐿 − 1) 𝐼𝐿̇𝐼𝐿 − 𝜌]/𝜃                      Ċ𝐶 = [𝛼𝑀𝑏𝑀 𝐼𝑀𝛼𝑀𝑀 𝑌𝐼𝑀𝑀(1−𝛽)/𝛽𝐾𝑌 (1 − 𝛽)𝑓′(𝑘) − (𝛼𝑀 − 1) 𝐼𝑀̇𝐼𝑀 − 𝜌]/𝜃                    Ċ𝐶 = [𝛼𝑁𝑏𝑁 𝐼𝑁𝛼𝑁𝑁 𝑌𝐼𝑁𝑁(1−𝛽)/𝛽𝐿𝑌 (1 − 𝛽)[𝑓(𝑘) − 𝑘𝑓′(𝑘)] − (𝛼𝑁 − 1) 𝐼𝑁̇𝐼𝑁 − 𝜌]/𝜃  

(D1) 
Using the function (4) and (5) obtain 

{  
  𝐾̇/𝐾 = 𝑏𝐾𝐼𝐾𝛼𝐾/𝐾  𝐿̇/𝐿 = 𝑏𝐿𝐼𝐿𝛼𝐿/𝐿  𝑀̇/𝑀 = 𝑏𝑀𝐼𝑀𝛼𝑀/𝑀  𝑁̇/𝑁 = 𝑏𝑁𝐼𝑁𝛼𝑁/𝑁                                                                                          (𝐷2) 

Substitute (D2), sN ≡ IN/Y ,  sM ≡ IM/Y ,  sK ≡ IK/Y , sL ≡ IL/Y , k = (M(1−β)/βK)/(N(1−β)/βL) and f(k) ≡ Y/(N(1−β)/βL) into (D1) obtain 
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{  
  
   
 Ċ𝐶 = [𝛼𝐾 1𝑠𝐾 𝑘𝑓′(𝑘)𝑓(𝑘) 𝛽 K̇𝐾 − (𝛼𝐾 − 1) 𝐼𝐾̇𝐼𝐾 − 𝜌]/𝜃                                       Ċ𝐶 = [𝛼𝐿 L̇𝐿 1𝑠𝐿 [𝑓(𝑘) − 𝑘𝑓′(𝑘)]𝑓(𝑘) 𝛽 − (𝛼𝐿 − 1) 𝐼𝐿̇𝐼𝐿 − 𝜌]/𝜃                      Ċ𝐶 = [𝛼𝑀 Ṁ𝑀 1𝑠𝑀 𝑘𝑓′(𝑘)𝑓(𝑘) (1 − 𝛽) − (𝛼𝑀 − 1) 𝐼𝑀̇𝐼𝑀 − 𝜌]/𝜃                    Ċ𝐶 = [𝛼𝑁 Ṅ𝑁 1𝑠𝑁 [𝑓(𝑘) − 𝑘𝑓′(𝑘)]𝑓(𝑘) (1 − 𝛽) − (𝛼𝑁 − 1) 𝐼𝑁̇𝐼𝑁 − 𝜌]/𝜃  

      (D3) 
Insert (B1), (B2) and (B3) into (D3) obtain 

{  
  
   
 Ċ𝐶 = [𝛼𝐾2𝛽 1𝑠𝐾 𝑘𝑓′(𝑘)𝑓(𝑘) Ċ𝐶 − (𝛼𝐾 − 1) Ċ𝐶 − 𝜌]/𝜃                                       Ċ𝐶 = [𝛼𝐿2𝛽 1𝑠𝐿 𝑓(𝑘) − 𝑘𝑓′(𝑘)𝑓(𝑘) Ċ𝐶 − (𝛼𝐿 − 1) Ċ𝐶 − 𝜌]/𝜃                          Ċ𝐶 = [𝛼𝑀2(1 − 𝛽) 1𝑠𝑀 𝑘𝑓′(𝑘)𝑓(𝑘) Ċ𝐶 − (𝛼𝑀 − 1) Ċ𝐶 − 𝜌] /𝜃                         Ċ𝐶 = [𝛼𝑁2(1− 𝛽) 1𝑠𝑁 𝑓(𝑘) − 𝑘𝑓′(𝑘)𝑓(𝑘) Ċ𝐶 − (𝛼𝑁 − 1) Ċ𝐶 − 𝜌]/𝜃             

        (D4) 
Rearrange (D4) we can obtain equation (28). 

Appendix E: the process of derivation of equation (29). 

Using the definition of investment rate obtain 

{  
  I𝐾 = s𝐾Y = s𝐾M(1−𝛽)/𝛽Kf(k)/k    I𝐿 = s𝐿Y = s𝐿N(1−𝛽)/𝛽Lf(k)           I𝑀 = s𝑀Y = s𝑀M(1−𝛽)/𝛽Kf(k)/k   I𝑁 = s𝑁Y = s𝑁N(1−𝛽)/𝛽Lf(k)                                                                    (E1) 

Insert (E1) into (D2) obtain 

{   
  
   𝐾̇𝐾 = 𝑏𝐾[s𝐾f(k)/k]𝛼𝐾  M

𝛼𝐾(1−𝛽)/𝛽𝐾1−𝛼𝐾         𝐿̇𝐿 = 𝑏𝐿[s𝐿f(k)]𝛼𝐿N𝛼𝐿(1−𝛽)/𝛽𝐿1−𝛼𝐿                 𝑀̇𝑀 = 𝑏𝑀[s𝑀f(k)/k]𝛼𝑀 𝐾𝛼𝑀𝑀1−𝛼𝑀(1−𝛽)/𝛽  𝑁̇𝑁 = 𝑏𝑁[s𝑁f(k)]𝛼𝑁 𝐿𝛼𝑁𝑁1−𝛼𝑁(1−𝛽)/𝛽         
                                                   (𝐸2) 

Using equation (24) {αK + [(1 − β)/β]αM = 1αL + [(1 − β)/β]αN = 1  in equation (E2) obtain 

{   
  
   𝐾̇𝐾 = 𝑏𝐾[s𝐾f(k)/k]𝛼𝐾  (M𝛼𝐾𝐾𝛼𝑀)(1−𝛽)/𝛽        𝐿̇𝐿 = 𝑏𝐿[s𝐿f(k)]𝛼𝐿 (N𝛼𝐿𝐿𝛼𝑁)(1−𝛽)/𝛽                𝑀̇𝑀 = 𝑏𝑀[s𝑀f(k)/k]𝛼𝑀 𝐾𝛼𝑀𝑀𝛼𝐾                           𝑁̇𝑁 = 𝑏𝑁[s𝑁f(k)]𝛼𝑁 𝐿𝛼𝑁𝑁𝛼𝐿                                  

                                            (𝐸3) 
Using (B1), (B2), (B3) and (D3) obtain 
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{   
  
   𝛼𝐾 𝐶̇𝐶 = 𝑏𝐾[s𝐾f(k)/k]𝛼𝐾  (M𝛼𝐾𝐾𝛼𝑀)(1−𝛽)/𝛽        𝛼𝐿 𝐶̇𝐶 = 𝑏𝐿[s𝐿f(k)]𝛼𝐿 (N𝛼𝐿𝐿𝛼𝑁)(1−𝛽)/𝛽                𝛼𝑀 𝐶̇𝐶 = 𝑏𝑀[s𝑀f(k)/k]𝛼𝑀 𝐾𝛼𝑀𝑀𝛼𝐾                           𝛼𝑁 𝐶̇𝐶 = 𝑏𝑁[s𝑁f(k)]𝛼𝑁 𝐿𝛼𝑁𝑁𝛼𝐿                                  

                                          (𝐸4) 
Using the first and the third equation in formula (E4) to remove M𝛼𝐾/𝐾𝛼𝑀，using the 

second and fourth equation in (E4) to remove N𝛼𝐿/𝐿𝛼𝑁 we can obtain equations (29)。 

Appendix F: the process of derivation of equations (37) 

Proof: first, from the equations (19) { r = βM(1−𝛽)/𝛽f ′(k)                 w = βN(1−𝛽)/𝛽[f(k) − kf ′(k)] in steady-state to get  

{ ṙ/r = [(1− β)/β]Ṁ/Mẇ/w = [(1− β)/β]Ṅ/N                             (F1) 

Substitute (F1) into equation (34) obtain： 

 {εK,r = (K̇/K)/{[(1 − β)/β]Ṁ/M}εL,w = (L̇/L)/{[(1− β)/β]Ṅ/N}                       (F2) 

Substitute (B2) and (B3) into (F2) to obtain： {εK,r = αK/{[(1 − β)/β]αM}εL,w = αL/{[(1 − β)/β]αN}                           (F3) 

From the equations (24) we obtain {[(1 − β)/β]αM = 1 − αK[(1 − β)/β]αN = 1 − αL                              (F4) 

Substitute (F4) into (F3) to obtain equations (37) {εK,r = αK/(1 − αK)εL,w = αL/(1 − αL)                                 (37) 

 

Appendix G: the process of derivation of equation (57) 

From the function of accumulation of material factors equations (4) obtain 

{ 
 K̇K = b𝐾𝐼𝐾𝛼𝐾K = b𝐾 [𝑠𝐾𝑌]𝛼𝐾𝐾    L̇L = b𝐿𝐼𝐿𝛼𝐿L = b𝐿 [𝑠𝐿𝑌]𝛼𝐿𝐿                                                                  (𝐺1) 

From the relationship between growth rate of C, K and L we can obtain 

{ 
 𝛼𝐾 ĊC = b𝐾 [𝑠𝐾𝑌]𝛼𝐾𝐾    𝛼𝐿 ĊC = b𝐿 [𝑠𝐿𝑌]𝛼𝐿𝐿                                                                            (𝐺2) 

Because 𝛼𝐾 = 𝛼𝐿 in the case, from (G2) we can obtain b𝐾 [𝑠𝐾𝑌]𝛼𝐾𝐾 = b𝐿 [𝑠𝐿𝑌]𝛼𝐿𝐿                                                             (𝐺3) 
Rearrange (G3) we can get equation (57). 
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Appendix H: the process of derivation of equation (67). 

From innovation possibilities frontier equation (5) we obtain 

{ 
 ṀM = b𝑀𝐼𝑀𝛼𝑀M = b𝑀 [𝑠𝑀𝑓(𝑘)𝑘 ]𝛼𝑀 𝐾𝛼𝑀𝑀1−𝛼𝑀(1−𝛽)/𝛽   ṄN = b𝑁𝐼𝑁𝛼𝑁N = b𝑁[𝑠𝑁𝑓(𝑘)]𝛼𝑁 𝐿𝛼𝑁𝑁1−𝛼𝑁(1−𝛽)/𝛽                                                    (𝐻1) 

From the growth rates of N, M and C in steady-state we can obtain 

{  
  𝛼𝑀 ĊC = b𝑀𝐼𝑀𝛼𝑀M = b𝑀 [𝑠𝑀𝑓(𝑘)𝑘 ]𝛼𝑀 𝐾𝛼𝑀𝑀1−𝛼𝑀(1−𝛽)/𝛽   𝛼𝑁 ĊC = b𝑁𝐼𝑁𝛼𝑁N = b𝑁[𝑠𝑁𝑓(𝑘)]𝛼𝑁 𝐿𝛼𝑁𝑁1−𝛼𝑁(1−𝛽)/𝛽                                                     (𝐻2) 

From equation (H2) we can obtain  𝛼𝑀𝛼𝑁 = b𝑀b𝑁  [𝑠𝑀]𝛼𝑀𝑓(𝑘)𝛼𝑀−𝛼𝑁[𝑠𝑁]𝛼𝑁 1(𝑁(1−𝛽)/𝛽𝐿)𝛼𝑁−𝛼𝑀 𝑁𝑀                                         (𝐻3) 
Rearrange equation (H3) to obtain (67) f(k)𝛼𝑁−𝛼𝑀 = 𝛼𝑁𝑏𝑀𝛼𝑀𝑏𝑁 𝑠𝑀𝛼𝑀𝑠𝑁𝛼𝑁 𝑁𝑇/𝑀𝑇(𝑁𝑇(1−𝛽)/𝛽𝐿𝑇)𝛼𝑁−𝛼𝑀                                         (67) 
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