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Abstract

I construct an overlapping-generations model of money with Epstein and Zin (1989)

preferences and study how aggregate output uncertainty affects the optimal rate of

inflation. When money only serves as savings instruments, I find that the optimality of

Friedman Rule breaks up only if agents prefer late resolution of uncertainty. However, if

an additional role of money as a medium of exchange is introduced, then the Friedman

Rule becomes generally suboptimal regardless of agents’ preferences for the timing

of uncertainty resolution. The aggregate output uncertainty, nevertheless, crucially

determines the level of optimal inflation rate in this case.
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“Policy decisions under uncertainty must take into account a range of possible scenarios about

the state or structure of the economy, and those policy decisions may look quite different from

those that would be optimal under certainty.” Bernanke (2007)

1 Introduction

Does aggregate output uncertainty, i.e., mean-preserving variance changes to aggregate

output, matter for the level of optimal inflation rate? This question has probably never been

more important than it is now for monetary authorities. Unfortunately, the existing literature

has failed to provide a satisfactory answer to this question. For instance, the New-Keynesian

literature has indeed studied the effect of “model uncertainty”, i.e., uncertainty about the

parameters of the model, on the optimal inflation rate. However, because it heavily relies on

zero lower bound risks, one and potentially incomplete conclusion has been drawn, i.e., the

optimal inflation rate should increase in uncertainty to give more room for nominal interest

rate policy, e.g., Eggertsson and Woodford (2003), Billi (2011), and Coibion, Gorodnichenko,

and Wieland (2012).1

Moreover, micro-founded monetary theories have remained silent on the aforementioned

question. While they, from Bewley’s (1983) model of money to more recent search-based

ones, e.g., see Lagos, Rocheteau, and Wright (2016) for an introduction, have focused on

idiosyncratic uncertainty for the essentiality of money, aggregate uncertainty effects on the

optimal inflation rate have been largely ignored. In other words, we still lack a monetary

theory to analyze if aggregate output uncertainty has any effect on the optimal inflation rate,

and if so, how such effects arise.2

The objective of this paper is therefore to propose a simple model of money that enables

us to answer this question. In order to avoid the tractability problem associated with the

aggregate uncertainty, I first adopt a two-period overlapping-generations (OLG) model of

money. Second, I bring insights from a recent macro-finance literature that exploits an

aggregate uncertainty based intertemporal marginal rate of substitution (IMRS) as in Bansal

and Yaron (2004), i.e., Epstein and Zin (1989) (EZ) preferences. Two key advantages of

EZ preferences are that agents’ aversion to cross-sectional and intertemporal risks become

separated, and the certainty equivalent of future consumption value directly affects today’s

1 See also Bernanke (2010) and Mishkin (2011) for skeptical views on this proposed relationship.
2 Difficulties associated with these questions within heterogeneous models of money lie in tracking equi-

libria with aggregate shocks. The literature has barely started solving for equilibria with idiosyncratic risks
analytically, e.g., see Menzio et al. (2013) and Rocheteau, Weil, and Wong (2015a). To incorporate aggre-
gate shocks, one would seem to need different numerical mechanisms such as Krusell and Smith (1998). See
Chiu and Molico (2014) who have recently developed a similar numerical technique for solving heterogeneous
models of money under aggregate shocks.
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utility. These features imply that agents’ optimal intertemporal decision rules are directly

affected by aggregate uncertainty, and can be derived in closed form.

The baseline model then considers a simple pure-currency endowment economy. The

young receive fixed units of endowments, while the old receive an uncertain endowment.

Fiat money becomes essential here because of its role as a sole savings instrument. Focusing

only on a unique monetary stationary equilibrium, the model delivers interesting monetary

policy implications. When agents’ aversion to intertemporal risks are relatively greater,

the Friedman rule becomes no longer optimal. The reason is that agents oversave in an

attempt to minimize intertemporal inequality of consumption, i.e., uncertainty creates the

so-called dynamic inefficiency in this OLG framework, e.g., Diamond (1965). Inflation up to

a certain point can correct this inefficiency by creating another form of dynamic inefficiency,

i.e., intergenerational transfers of endowments from the old to the young via lower rate of

return on money savings.

On the contrary, when agents dislike cross-sectional risks more, the opposite result arises.

Agents become more willing to transfer endowments towards today since they mind future

consumption variation more than the intertemporal one. This implies that uncertainty and

inflation generate dynamic inefficiency in the same direction so that the Friedman rule never

achieves the social efficiency unless uncertainty vanishes, but guarantees the second best

welfare outcome.

Despite these new insights, two obvious caveats exist in making a case against the Fried-

man rule using the baseline model. First, most of the EZ preferences based macro-finance

literature is on the premise that agents’ aversion to cross-sectional risks is larger (or agents

prefer early resolution of uncertainty) in order to be consistent with empirical patterns for

asset prices, e.g., see Backus, Routledge, and Zin (2004) and Henriksen, Kydland, and Sustek

(2013). Second, the OLG model of money misses fundamental trading frictions that give

rise to a medium of exchange (MOE) role of money. Thus, any policy recommendation from

the OLG model is at best incomplete.

To address these concerns, I extend the baseline model to include decentralized trading

mechanism in which money endogenously emerges as an MOE. To formalize this idea, the

extended model adopts the Lucas’s (1972) island framework augmented with decentralized

markets. In the generalized model, an additional consumption good, referred to as special

good, is introduced to generate the additional MOE role for money. In consequence, young

agents now face a problem of portfolio choice between money savings and money holdings

for spending on the special good.

The extended model then delivers a richer set of policy implications, and opens the

possibility of breaking the Friedman rule regardless of agents’ preferences for the timing of
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uncertainty resolution. When agents’ aversion to intertemporal risks is relatively higher,

agents over-accumulate money savings for the same reason in the baseline model. This, in

turn, endogenously affects the agent’s optimal portfolio to the extent that cash balances

for the purpose of buying the special good get inefficiently reduced. Accordingly, welfare

effects of inflation become non-trivial as opposed to the baseline model. A higher inflation

lowers the rate of return on money savings, and therefore can mitigate the intertemporal

misallocations caused by the over-money-savings. We call this a positive redistributive effect

of inflation. On the contrary, a higher inflation simultaneously worsens the inefficiency

caused by under-cash-spending for the special good. We call this as a negative price effect of

inflation. Eventually, the optimal inflation rate depends on which effect relatively dominates.

Numerical examples show that a positive inflation up to a certain threshold can indeed

make the positive redistributive effect dominant if such distortions, i.e., over-money-savings

and under-cash-spending, were initially severe enough. Otherwise, the price distortion effect

always dominates. Consequently, the Friedman rule achieves the second best. These results

are intuitive because the marginal (positive) redistributive effect of inflation is bigger when

the intertemporal allocation is already severely distorted. This mechanism draws an inter-

esting implication on the link between the aggregate output uncertainty and the optimal

inflation rate. Since a higher uncertainty worsens intertemporal misallocations in the first

place, the positive redistributive effect of inflation gets stronger. Thus, the optimal inflation

rate ought to increase in the aggregate output uncertainty in this case.

By the same token, the trade-off between the price and redistributive effect of inflation

works the opposite way when agents’ aversion to cross-sectional risks is higher. The reason

is as follows. The aggregate uncertainty induces agents to under-accumulate money savings

for the same reason in the baseline model. This implies that a higher inflation worsens in-

tertemporal misallocations, causing a negative redistributive effect of inflation this time. At

the same time, the portfolio effect ensures that over-cash-spending prevails in equilibrium,

thereby making the price effect of a higher inflation positive this time. In consequence, two

interesting implications can be drawn here. First, unlike the baseline model, the Friedman

rule can be suboptimal even under the agent’s preferences for the early resolution of uncer-

tainty when the positive price effect of inflation is strong enough. The second, and more

interesting result, is that a higher aggregate output uncertainty can lead to a lower optimal

inflation rate in this case. This is due to the fact that the marginal negative redistributive

effect of inflation gets stronger as higher uncertainty distorts intertemporal misallocations

more.

I do not intend to throughly review a vast literature of money studying optimal monetary

policy. Interested readers may refer to many excellent review papers such as Kocherlakota
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(2005) and Antinolfi, Azariadis, and Bullard (2016). I only provide a brief review of studies

that are related to the current paper in terms of the methodology and contribution.

To begin with, there are indeed existing OLG models of money making a case against

the Friedman rule, e.g., Schreft and Smith (1997); Schreft and Smith (2002); Smith (2002);

Bhattacharya, Haslag, and Martin (2005). Basically, they introduce financial intermediation

and limited communication to bring about heterogeneity and the suboptimality of the Fried-

man rule.3 Unlike them, the suboptimality in this paper emerges through an interaction

between aggregate output uncertainty and optimal intertemporal decisions by agents.

This paper also pertains to search-based models of money that emphasize redistributive

effects of inflation. Papers with analytically tractable models include but not limited to

Berensten, Camera, and Waller (2005); Menzio, Shi, and Sun (2013); Rocheteau et al.

(2015b); Rocheteau et al. (2015a), while the ones based on numerical methods are, for

example, Molico (1997); Kim and Lee (2008); Chiu and Molico (2010); Chiu and Molico

(2014). These papers generate stationary equilibria with non-degenerate distribution of

money holdings, thereby inducing inflation to enhance risk sharing, i.e., a case against the

Friedman rule.4 However, as already argued, they have yet to provide a framework for

the aggregate uncertainty based monetary policy analysis. In this aspect, the current model

contributes by proposing a very simple and tractable benchmark. Further, the current model

is novel because a portfolio decision of money holdings for a store of value and a medium of

exchange is considered.

There are different but similarly related empirical studies on the redistribution effects

of inflation. Doepke and Schneider (2006) show that inflation substantially affects nominal

wealth distribution through the role of money as a unit of account. On the contrary, the

current model emphasizes on other roles of money, i.e., as a store value and a medium of

exchange, for the wealth redistribution. Erosa and Ventura (2002) argue that inflation hurts

poor households more since they tend to over-hold cash relative to other forms of financial

assets. Unlike them, asymmetric inflation tax is levied upon different money holdings, i.e.,

either for savings and spending, rather than different households.

The remainder of the paper proceeds as follows. Section 2 describes the physical en-

vironment in the baseline model. Section 3 studies efficient and competitive equilibrium

allocations in the baseline model. Section 4 introduces additional environments and analy-

ses the constrained efficient and competitive equilibrium allocations. Section 5 concludes.

3 Haslag and Martin (2003) show that this suboptimality hinges upon the existence of some instruments
that allow intergenerational transfers.

4 Recent studies, e.g., Lagos and Zhang (2015), Geromichalos and Herrenbrueck (2016), and Geromichalos
and Jung (2016), explore such redistributive effects within secondary over-the-counter asset markets using
money as MOE.
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2 The baseline model

We consider a simple version of OLG model advocated by Wallace (1980). Time is infinite

and discrete. In each period t a unit measure of agents are born who live only two periods,

i.e., t and t + 1. An agent born in period t has preferences of Epstein and Zin (1989) (EZ)

type, U(ct, ct+1), given by the following form.

U(ct, ct+1) =
[
c1−ρ
t + [Rt(ct+1)]

1−ρ
] 1

1−ρ

where Rt(ct+1) =
(
Et

[
c1−γ
t+1

]) 1

1−γ , ρ > 0 .

Intuitively, EZ preferences are defined as a CES (Constant Elasticity of Substitution)

aggregate of current (known) consumption and a certainty equivalent Rt(ct+1) of tomorrow’s

consumption. Consequently, ρ and γ are interpreted as the inverse of the intertemporal

elasticity of substitution and the risk aversion parameter respectively. A key feature of the

EZ preferences is that the two parameters, ρ and γ, can be separated while ρ is always pinned

by γ, i,e., ρ = γ, in a standard time-separable CRRA (Constant Relative Risk Aversion)

utility case. In other words, this distinctive feature of the EZ preferences allows agents to

differ in terms of an aversion to cross-sectional and intertemporal risks. When agents have

a relatively higher degree of aversion to cross-sectional (intertemporal) risks, i.e., γ > ρ

(γ < ρ), they are often regarded as ones who have preferences for early (late) resolution of

uncertainty in the literature.

The rest of environments follows a standard OLG model of money closely. Agents in their

first period of life will be called young while we use the term old for those who are in their

second period of life. We also assume that a unit measure of initial old agents, who live only

for one period, exists in the very first period 1. We call these agents as initial old. Further,

they are assumed to be collectively endowed with M0 units of perfectly divisible, intrinsically

useless, and government issued fiat money. Importantly, an endowment economy is assumed.

All young agents receive fixed units of the perishable consumption good, x. However, old

agents have idiosyncratic endowment risks. That is when agents become old, they receive

i.i.d. endowment shocks, ε units of the consumption good. For simplicity, we assume that ε

follows a uniform distribution, U(y − b, y + b) where y ≥ b and x ≥ (y + b).

Time discounting and population growth are ruled out for simplicity. The government’s

policy is implemented through lump-sum money transfers to old agents in each period. We

denote τt as the lump-sum transfer that each old agents receives in period t, in terms of the

period t consumption good. We also let Mt denote the total money supply in period t. No

other forms of tax or transfers are assumed to be feasible. That is the lump-sum money
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transfers are the only available instrument for the government policy in this economy. Given

this restriction, the government budget constraint implies ϕt(Mt −Mt−1) = τt, ∀t where ϕt

denotes the real price of money in period t. Finally, the government is assumed to increase

or decrease money supply at a constant rate each period, i,e., Mt = µMt−1, ∀t with µ ≥ 1.5

In sum, the government budget constraint and the monetary policy rule implies the following

condition every period.

ϕtMt (1− 1/µ) = τt ∀t. (1)

3 Efficiency and competitive equilibrium

We first study a social planner problem in this economy. In doing so, we only focus on

stationary allocations, i.e., the planner is constrained in such a way that he/she can only

choose stationary allocations in this economy. Let (c∗y, c
∗

o) denote the stationary allocations

that the social planner chooses to maximize the welfare of agents born in generations ∀ t.

Then, it must be a solution to the following problem.

max
c∗y ,c

∗

o

[

(c∗y)
1−ρ + ([c∗o]

1−γ)
1−ρ

1−γ

] 1

1−ρ

(2)

s.t c∗y + c∗o = x+ y,

where the aggregate (resource) constraint indicates that total consumption of young agents

plus total consumption of old agents can not exceed the total endowment in each period.

Note that the expectation operator inside the EZ preferences is eliminated due to no uncer-

tainty on c∗o. The following lemma summarizes the socially optimal stationary allocations of

consumptions by young and old agents.

Lemma 1 The socially efficient stationary allocations satisfy the following condition.

c∗y = c∗o =
x+ y

2
.

Proof. The proof follows easily from the first order condition to the problem (2), and it is,

therefore, omitted.

The efficient stationary allocations are characterized by equal division of endowments

between young and old agents. This follows directly from that fact that the objective function

5 The Friedman rule corresponds, therefore, to µ = 1, i.e., zero inflation, in this economy.
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(indifference curve) is convex to the origin and the absolute slope of resource constraint equals

to one.

Next, we study the properties of a competitive equilibrium in this economy. First, an

agent born in period t faces the following problem.

max
ct,ct+1

[

(ct)
1−ρ + Et

[
(ct+1)

1−γ
] 1−ρ

1−γ

] 1

1−ρ

(3)

s.t ct + ϕtmt = x,

and ct+1 = ϕt+1mt + τt+1 + εt+1.

where mt denotes the nominal quantity of money held by an agent born in period t, and εt+1

denotes the stochastic endowment that the old receive. Intuitively, agents face uncertainty

with regard to endowments when they become old. Thus, fiat money serves as a savings

instrument for young agents. This admits intuitive explanation for the two constraints in

problem (3). The first one refers to a budget constraint for young agents in their first period

of life, and the second one simply says that consumption when old must be financed by

money savings from previous period, lump-sum money transfers by the government, and

idiosyncratic endowment shocks.

To simplify the above problem, substitute for the two constraints in the objective function.

This leads one to obtain

max
mt

U(x− ϕtmt, ϕt+1mt + τt+1 + εt+1).

Assuming an interior solution, the first-order condition is given by

ϕt

ϕt+1

=
U2(x− ϕtmt, ϕt+1mt + τt+1 + εt+1)

U1(x− ϕtmt, ϕt+1mt + τt+1 + εt+1)
≡ Qt,t+1,

where Uj(ct, ct+1), ∀j ∈ {1, 2} denotes the first partial derivative of the EZ utility function

with respect to the jth argument, and Qt,t+1 denotes the intertemporal marginal rate of

substitution (IMRS). Using the characteristics of the EZ preferences the following lemma

summarizes individual optimal choice by young agents.

Lemma 2 Let ϕt+1mt + τt+1 ≡ h(mt). Given aggregate real money prices {ϕt, ϕt+1} and

individual endowment shocks εt+1, the young agents’ individual optimal choice of mt must
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satisfy the following condition. ϕt/ϕt+1 = Qt,t+1(mt, εt+1) ∀t where

Qt,t+1(mt, εt+1) =

[

h(mt) + εt+1

x− ϕtmt

]
−ρ[

h(mt) + εt+1

Et [(h(mt) + εt+1)1−γ]
1

1−γ

]ρ−γ

,

and Et

[
(h(mt) + εt+1)

1−γ
]
=

(h(mt) + y + b)(2−γ) − (h(mt) + y − b)(2−γ)

2b(2− γ)
.

Proof. See the appendix.

A key point to note here is that uncertainty regarding future endowments directly affects

IMRS under ρ 6= γ as can be verified in Lemma 2. Intuitively, the EZ preferences depend on

the certainty equivalent of tomorrow’s consumption value instead of the expected value of

tomorrow’s consumption. This implies that whenever the variance of tomorrow’s consump-

tion changes, the certainty equivalent of tomorrow’s consumption value changes accordingly

which in turn affects the relative value of future consumption, i,e., IMRS. This particular

mechanism has far reaching implications on the welfare of this economy in equilibrium, to be

discussed in much detail later. Lastly, note that this mechanism disappears as long as ρ = γ,

i.e., under the standard time-separable CRRA utility case. In other words, uncertainty with

regard to aggregate output does not affect consumption allocations under a standard OLG

model of money with a conventional utility functional form.

Now, we describe competitive equilibrium, with a special focus on the effects of mone-

tary policy on welfare. First, we restrict attention to symmetric, monetary, and stationary

equilibrium where ϕt > 0, ∀t, all young agents in each period choose the same real money

balances, and the real variables of the model remain constant over time. Then, the definition

of symmetric, monetary, and stationary equilibrium is given by

Definition 1 A competitive, symmetric, monetary, and stationary equilibrium is a list

{Z, cy, co}, where Z = Zt = ϕtMt, ∀t and {cy, co} = {x − Z,Z + y}. The equilibrium

real money balance Z satisfies Lemma 2 given that ϕt/ϕt+1 = µ, εt+1 = E [ε] = y, and

ϕtmt = ϕt+1mt+1 + τt+1 = Z.

This definition gives rise to the following log-linearized equation that Z must satisfies,

i.e., G(Z, µ, x, y, b) = 0, where

G(Z, µ, x, y, b) ≡ ln (µ) + ρ {ln (Z + y)− ln (x− Z)} − (ρ− γ) ln (Z + y) (4)

−
γ − ρ

1− γ

{

ln

[
(Z + y + b)2−γ

(2− γ)
−

(Z + y − b)2−γ

(2− γ)

]

− ln (2b)

}

.
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Equation (4) allows us to conduct various comparative static analyses on stationary

welfare of the economy. In order to emphasize the effects of uncertainty regarding endowment

shocks, i.e., the variance of ε, we categorize the equilibrium into three different cases: 1. ρ =

γ, i.e., indifferent preferences for the resolution of uncertainty, 2. ρ > γ, i,e., preferences for

late resolution of uncertainty, and 3. ρ < γ, i.e., preferences for early resolution of uncertainty.

The first case where ρ = γ, i.e., the utility functional form is time-separable CRRA,

is straightforward. As in a standard OLG model of money, uncertainty, i.e., changes in

b, has no effects on the stationary allocation, and the Friedman Rule, achieves the social

efficiency. These can be easily understood by setting ρ = γ in eq.(4). Intuition is that ρ = γ

leads to complete equalization of expected future consumption and its certainty equivalent

value, which in turn implies no uncertainty effects on the IMRS. In addition, as soon as µ

exceeds one, i.e., positive inflation prevails in stationary equilibrium, the rate of return on

money savings decreases. Therefore, young agents save less and inefficiently consume too

much compared to the social optimum. In other words, money creation causes dynamic

inefficiency to the extent that intergenerational transfers of resources from the old to the

young harm the social welfare.

When agents’ level of aversion to cross-sectional and intertemporal risks differ, things

get a lot more interesting. First, the following proposition summarizes comparative static

analyses under the case where agents prefer late resolution of uncertainty, i.e., ρ > γ.

Proposition 1 Consider the second case where ρ > γ. Let ZEZ denote real money balances

in stationary equilibrium. Likewise, let ZSP denote the social planner’s (implied) resource

transfers from the young to the old, i.e., ZSP ≡ (x − y)/2. A unique stationary monetary

equilibrium exists, i.e., ∃! ZEZ, only if lnµ < µ̄, where

µ̄ =
γ − ρ

1− γ

{

ln

[
(y + b)2−γ − (y − b)2−γ

2b(2− γ)

]}

− γ ln y + ρ ln x.

The followings then hold true in the unique stationary monetary equilibrium: ZEZ > ZSP ,

∂ZEZ/∂µ < 0, and ∂ZEZ/∂b > 0. Lastly, there exists a unique money growth rate µ∗ greater

than one that achieves the social optimum, and µ∗ has the following closed form solution.

µ∗ =

[
x− y

2

]ρ−γ
[(

x+b
2

)2−γ
−

(
x−b
2

)2−γ

2b(2− γ)

] γ−ρ

1−γ

> 1,

where ∂µ∗/∂b > 0, ∂µ∗/∂y < 0, and ∂µ∗/∂(x− y) > 0.

Proof. See the appendix.
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Proposition 1 can be intuitively understood through the lens of agents’ uncertainty aver-

sion. Under the EZ preferences with ρ > γ agents’ aversion to intertemporal risks is greater

than that to cross-sectional risks. Loosely speaking, agents dislike intertemporal inequality

more than cross-sectional inequality among old agents. This in turn means that agents are

willing to transfer resources from the young to the old a lot more aggressively compared to

the social optimum, i.e., ZEZ > ZSP .

By the same token, the fact that higher uncertainty regarding future endowment shocks

leads agents to save more, i.e., ∂ZEZ/∂b > 0, can be easily explained. Under the EZ

preferences, agents’ utility comes from current consumption and the certainty equivalent

of future consumption. Since higher uncertainty, i.e., a higher b, reduces the certainty

equivalent value, other things being equal, the higher uncertainty would effectively lead

to more intertemporal inequality. Thus, under preferences for late resolution of uncertainty,

i.e., ρ > γ, agents would transfer more consumption to the old in response to a higher level

of uncertainty regarding future endowment shocks.

However, the effect of inflation on money savings would be completely opposite. The idea

is straightforward as in the first case. A higher money growth rate depresses the rate of return

on money savings, and therefore lowers equilibrium real money balances, i.e., ∂ZEZ/∂µ < 0.

In sum, uncertainty, i.e., b > 0, and inflation, i.e., µ > 1, both generate dynamic inefficiency

but in opposite direction. The former tends to generate over-money-savings while the latter

does generate under-money-savings.

This at the end of the day rationalizes why optimal inflation could be a positive level

in this framework. Dynamic inefficiency caused by uncertainty can be corrected by money

creation which also generates dynamic inefficiency but exactly in opposite direction. This

intuition can be applied to understand ∂µ∗/∂b > 0. Higher uncertainty leads to over-money-

savings to a greater extent. In order to offset this force, an opposite force generating more

under-money-savings, i,e., higher inflation, is needed. Furthermore, the optimal inflation

rate falls as the mean of future endowment shocks increases, i.e., ∂µ∗/∂y < 0. This result is

again intuitive. A higher y means less intertemporal inequality. Thus, under ρ > γ agents’

desire to save also gets weaker. Since ZEZ gets smaller and closer to ZSP , optimal inflation

rate should fall as well.

Next, we move on to the third case, ρ < γ. When agents prefer early resolution of

uncertainty, the economy behaves in somewhat opposite way to the second case. Proposition

2 summarizes comparative static analyses under the case where agents prefer early resolution

of uncertainty, i.e., ρ < γ.

Proposition 2 Consider the third case where ρ < γ. A unique stationary monetary equi-

librium exists, i.e., ∃! ZEZ only if lnµ < µ̄. When lnµ ≥ µ̄, stationary equilibrium is
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either non-monetary or monetary, but exhibits multiplicity. Focusing on the unique station-

ary monetary equilibrium, the followings then hold true: ZEZ < ZSP , ∂ZEZ/∂µ < 0, and

∂ZEZ/∂b < 0. Lastly, the Friedman rule, i.e., µ = 1, does not achieve the social optimum,

but does guarantee the second-best.

Proof. See the appendix.

In order to understand the Proposition 2 one needs to recall intuition from Proposition

1. First, ρ < γ effectively means that agents value uncertain future consumption a lot less

than certain current consumption, i.e., they dislike cross-sectional variation in consumption

among the old more than intertemporal variation in consumption. Thus, agents are less

willing to transfer resources from the young to the old compared to the social optimum, i.e.,

ZEZ < ZSP .

The effect of uncertainty on real money balances is also opposite to the second case.

Under ρ < γ, higher uncertainty, i.e., a higher b, makes agents value future consumption

less than the current one because they relatively dislike cross-sectional variation in future

consumption more. Thus, agents would reduce real money balances, i.e., less savings, in

response to a higher uncertainty, i.e., ∂ZEZ/∂b < 0.

A higher inflation would still reduce real money balances as in the second case, i.e.,

∂ZEZ/∂µ < 0. This is because changes in the rate of return on money savings does not affect

agents’ aversion to either cross-sectional or intertemporal risks. To sum up, a higher inflation

and a higher level of uncertainty both leads to under-money-savings when agents prefer early

resolution of uncertainty. In other words, money creation and uncertainty generates dynamic

inefficiency in the same direction. This inevitably implies that even Friedman rule does

not achieve the social efficiency under uncertainty, but guarantees the second best welfare

outcome.

Figure 1 illustrates numerical examples on how the welfare of this economy responds to

changes in inflation rate at stationary equilibrium. The steady-state welfare is defined as

the sum of all agents’ net utilities in the unique stationary monetary equilibrium. The left

panel corresponds to the second case, i.e., ρ > γ, while the right panel shows the result in

the third case, i.e., ρ < γ.

Lessons from this simple model is clear. Welfare effects of inflation critically hinges upon

how agents perceive uncertainty risks. Monetary authority can achieve the first-best through

money creation only if people prefer late resolution of uncertainty. Otherwise, the first-best

is not feasible, but to achieve the second-best they should pursue a Laissez-Faire policy, i.e.,

zero money growth. A final point is that most macro-finance literature heavily based upon

the EZ preferences assumes ρ < γ because the latter generates asset pricing implications
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consistent with empirical observations (see Bansal and Yaron (2004) and related literature).

However, this does not necessarily have to mean that the Friedman rule is always the best

policy to pursue even after taking account of uncertainty effects, which is a topic of the next

section.

Figure 1: Numerical examples for welfare analysis in the baseline model

4 The extended model

Critiques against the OLG model of money often point that it is not explicit about

monetary exchange, potentially the most important source of the essentiality of money. To

put it differently, money does not serve a medium of exchange (MOE) role in the OLG model.

To remedy this deficiency search models with microfoundations of monetary exchange have

emerged and recently become the workhorse paradigm for monetary theory (see Lagos et al.

(2016) for a survey of recent search based monetary theories). For this reason we modify

model environments to incorporate additional role of money as MOE, and study if this

modification alters any welfare implications of inflation.

To begin with, we adopt a modified version of the Lucas’s (1972) island model. The

economy consists of one main island at the center and a unit measure of periphery islands.

An agent called seller is born in each periphery island each period, and live for only one

period. We assume that each seller is endowed with a technology to produce special goods

with linear disutility of labor. These special goods are perishable with a one-period life and

are not portable across islands. In addition, sellers can move around islands without any

physical frictions, and get the linear utility from consuming general goods, endowed only to
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agents called household who lives at the main island.

Household in this economy, to some extent, resembles the agent in the previous model.

Each period, a unit measure of household is born in the main island, and lives only for two

periods. Each young household is endowed with fixed units of perishable and not-portable-

across-islands general good, x. Yet, old households receive random units of general good,

ε following a uniform distribution, U(y − b, y + b) where y ≥ b and x ≥ (y + b). Unlike

the previous economy, this household consists of two individuals called worker and shopper.

Workers are not allowed to leave the main island, and get the utility only from general

goods consumed. Shoppers are free to move around islands, and young shoppers never

get the consumption utility. Yet, old shoppers get the utility only from consuming special

goods, which they need to acquire from sellers living in periphery islands. Lastly, the rest

of environments are identical to the previous model. Monetary policy is implemented in the

same manner as the previous model, i.e., lump-sum money transfers to old households in the

main island with a constant growth rate, µ ≥ 1. Time discounting and population growth

are ruled out.

Altogether, these features of the economy creates the motivation for bilateral trading

between shoppers and sellers every period. Following standard search based monetary the-

ories, we assume limited commitment and anonymity within bilateral meetings. This rules

out any kind of credit arrangement between shoppers and sellers. That is in each period

only old shoppers leave the main island and search for sellers living in periphery islands.

For simplicity we assume a perfect matching, i.e., every periphery island receives only one

old shopper each period. Barter is not feasible in this framework since general goods are

not portable across islands. This consequently gives rise to money serving an additional

MOE role in this economy. To avoid complexity we adopt take-it-or-leave-it offer by (old)

shoppers to sellers as pricing protocol within a pair-wise trade. Assuming old shoppers can

never come back to the main island once they leave, bargaining solutions are trivial. Old

shopper always gives up all of her real balances brought up to the meeting, and young seller

produces exactly the same amount of special goods as the real money balances he or she

receives.

Lastly, a household born in period t has preferences of Epstein and Zin (1989) (EZ) type,

U(ct, st+1, ct+1), given by the following form.

U(ct, st+1, ct+1) =
[
c1−ρ
t + s1−ρ

t+1 + [Rt(ct+1)]
1−ρ

] 1

1−ρ

where Rt(ct+1) =
(
Et

[
c1−γ
t+1

]) 1

1−γ , ρ > 0.

ct and ct+1 denote the amount of general goods consumed by the worker in period t and
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t + 1, while st+1 denotes the amount of special goods consumed by the shopper in period

t+ 1. Figure 2 illustrates the timing of key events.

Figure 2: Timing of Events

Period t Period t+ 1

• Young households are born in the main island,
and choose a portfolio of money savings and
cash holdings for purchasing special goods.

• A seller is born in each periphery island,
and trade with an old shopper using cash.

• After the bargaining is done, the seller moves
to the main island and consumes general goods
and then die.

• Old workers consume general goods
using money savings, and then die.

• Old shoppers visit sellers and trade using cash
as MOE. They consume special goods and die.

• Sellers repeat the same action as in period t.

4.1 Efficiency and competitive equilibrium

As in the previous model, we only focus on stationary allocations. Let (c∗y, s
∗, c∗o, n

∗)

denote the stationary allocations (general goods consumed by young workers, special goods

consumed by old shoppers, general goods consumed by old workers, and general goods con-

sumed by sellers respectively) that the social planner chooses to maximize the welfare of

agents born in generations ∀t. Yet, unlike the previous model, we call the social planner’s

solution as the constrained efficient stationary allocation because we assume that the planner

here is subject to restrictions of the physical environment, such as the trading protocol in

each periphery island. Then, the planner’s solution solves for the following problem.

max
c∗y ,c

∗

o

{[

(c∗y)
1−ρ + (s∗)1−ρ + ([c∗o]

1−γ)
1−ρ

1−γ

] 1

1−ρ

+ [n∗ − s∗]

}

(5)

s.t c∗y + c∗o + n∗ = x+ y

and s∗ = n∗,

where the first aggregate (resource) constraint implies that total general goods consumed by

households and sellers must be same as total endowments of the general good in each period.

The second aggregate (resource) constraint simply tells that total special goods consumed

by (old) shoppers equal to total special goods produced by sellers each period. Note that

the latter equals to the former due to the take-it-or-leave-it offer, which also explains the

second linear part in the objective function. The following lemma summarizes the socially

optimal stationary allocations of consumptions by households and sellers.
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Lemma 3 The constrained efficient stationary allocations satisfy the following condition.

c∗y = s∗ = c∗o = n∗ =
x+ y

3
.

Proof. The proof follows easily from the first order condition to the problem (5), and it is,

therefore, omitted.

Intuition behind this constrained efficient stationary allocation follows from the previous

model in a similar way.

We proceed to competitive equilibrium analysis. Unlike the previous model, a young

household needs to acquire money balances not only for smooth general good consumption

but also for purchasing special goods when old. This gives rise to a portfolio choice problem

for the young household, i.e., mc
t (money savings for general good consumption) and ms

t

(cash holdings for purchasing special goods).6 Then, the problem faced by a household born

in period t is given by

max
mc

t ,m
s
t

U(x− ϕtm
c
t − ϕtm

s
t , ϕt+1m

s
t + τ st+1, ϕt+1m

c
t + τ ct+1 + εt+1),

where the first, second, and third input refers to ct, st+1, and ct+1 respectively. Note that

τ kt+1 = (mk
t /mt)τt+1, k ∈ {c, s} where mt denotes total money balances held by the young

household. τt+1 denotes the lump-sum transfer that the young household is expected to

receive in period t+ 1, and satisfies eq.(1).

Assuming an interior solution, the FOC comprises of a system of two equations given by

ϕt

ϕt+1

=
U3(x− ϕtm

c
t − ϕtm

s
t , ϕt+1m

s
t + τ st+1, ϕt+1m

c
t + τ ct+1 + εt+1)

U1(x− ϕtmc
t − ϕtms

t , ϕt+1ms
t + τ st+1, ϕt+1mc

t + τ ct+1 + εt+1)
≡ Qt,t+1, (6)

1 =
U3(x− ϕtm

c
t − ϕtm

s
t , ϕt+1m

s
t + τ st+1, ϕt+1m

c
t + τ ct+1 + εt+1)

U2(x− ϕtmc
t − ϕtms

t , ϕt+1ms
t + τ st+1, ϕt+1mc

t + τ ct+1 + εt+1)
, (7)

where Uj(ct, st+1, ct+1), ∀j ∈ {1, 2, 3} denotes the first partial derivative of the EZ utility

function with respect to the jth argument, and Qt,t+1 in eq.(6) denotes the intertemporal

marginal rate of substitution (IMRS) for general goods. Equation (7) implies the intra-

temporal optimality between st+1 and ct+1. Using the characteristics of the EZ preferences

the following lemma summarizes individual optimal choice by the young household.

Lemma 4 Let ϕt+1m
c
t + τ ct+1 ≡ h(mc

t) and ϕt+1m
s
t + τ st+1 ≡ h(ms

t). Given aggregate real

money prices {ϕt, ϕt+1} and individual endowment shocks εt+1, the young household’s optimal

6 We assume the endowment shocks are realized after shoppers leave the main island in order for a
household to choose a portfolio ex-ante.
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portfolio choice of {mc
t ,m

s
t} must satisfy the following conditions

1.
ϕt

ϕt+1

= Qt,t+1(m
c
t ,m

s
t , εt+1) ∀t,

2. h(ms
t) = [x− ϕtm

c
t − ϕtm

s
t ]
γ/ρ

[

Et

[
(h(mc

t) + εt+1)
1−γ

] 1

1−γ

](ρ−γ)/ρ

∀t,

where Qt,t+1(m
c
t ,m

s
t , εt+1) =

[

h(mc
t) + εt+1

x− ϕtmc
t − ϕtms

t

]
−ρ[

h(mc
t) + εt+1

Et [(h(mc
t) + εt+1)1−γ]

1

1−γ

]ρ−γ

,

and Et

[
(h(mc

t) + εt+1)
1−γ

]
=

(h(mc
t) + y + b)(2−γ) − (h(mc

t) + y − b)(2−γ)

2b(2− γ)
.

Proof. Proof for the intertemporal optimality follows easily from Proof for Lemma 2. The

intra-temporal optimality can be easily derived from the fact that U2 = U
ρ

s−ρ
t+1.

Interpretation of Lemma 4 follows similarly from Lemma 2 except for the second intra-

temporal optimality. Now we directly proceed to competitive equilibrium. As before, we

restrict attention to the symmetric monetary, and stationary equilibrium, which is defined

as follows.

Definition 2 A competitive, symmetric, monetary, and stationary equilibrium is a list

{Zc, Zs, n, s, cy, co}, where Zc
t ≡ ϕtm

c
t = h(mc

t) = Zc ∀t, Zs
t ≡ ϕtm

s
t = h(ms

t) = Zs ∀t,

Zs + Zc = ϕtMt ∀t, and {cy, co, s, n} = {x − Zs − Zc, Zc + y, Zs, Zs}. The equilibrium real

money balances {Zc, Zs} satisfy Lemma 4 given that ϕt/ϕt+1 = µ and εt+1 = E [ε] = y.

Following this definition, a system of two log-linearized equations that {Zc, Zs} must

satisfy emerges.

ln (µ)− ρ ln (x− Zc − Zs) + γ ln (Zc + y) = (γ − ρ) ln (R(Zc + y)) (8)

ln (Zs) = (γ/ρ) ln (Zc + y) + {(ρ− γ)/ρ} ln (R(Zc + y)), (9)

where ln (R(Zc + y)) =
1

1− γ

{

ln

[
(Zc + y + b)2−γ

2b(2− γ)
−

(Zc + y − b)2−γ

2b(2− γ)

]}

.

As in the previous model, we conduct comparative static analyses based on the three

cases regarding agents’ preferences for uncertainty resolution. The first case where ρ = γ

admits the same welfare implication of inflation as before. When agents are indifferent to the

timing of uncertainty resolution, the Friedman rule achieves the constrained efficiency. This

can be easily verified by setting ρ = γ in eq.(8) and (9). The idea is that a higher inflation

lowers the rate of return on real money balances used both as a savings instrument and a

MOE for purchasing the special good. Thus, money creation generates dynamic inefficiency
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in a sense that households save less and under-consume special goods compared to the social

optimum.

Next, we consider the second case ρ > γ, which brings about a much richer set of

comparative static analyses on stationary allocations. The next proposition summarizes

such results.

Proposition 3 Consider the second case where ρ > γ. Let Zc
EZ and Zs

EZ denote real money

balances held for savings and purchasing special goods respectively in stationary equilibrium.

Likewise, let cy,EZ denote general goos consumed by young workers in stationary equilibrium.

A unique stationary monetary equilibrium exists, i.e., ∃! Zc
EZ and ∃! Zs

EZ, only if lnµ < π̄,

π̄ =
γ − ρ

1− γ

{

ln

[
(y + b)2−γ − (y − b)2−γ

2b(2− γ)

]}

− γ ln y + ρ ln (x− f(0)), and

f(0) = exp

{
γ

ρ
ln (y) +

ρ− γ

ρ(1− γ)

{

ln

[
(y + b)2−γ − (y − b)2−γ

2b(2− γ)

]}}

.

The followings then hold true in the unique stationary monetary equilibrium: ∂Zc
EZ/∂b > 0,

∂Zs
EZ/∂b < 0, ∂Zs

EZ/µ < 0, ∂Zc
EZ/µ < 0, ∂cy,EZ/∂b < 0, and ∂cy,EZ/∂µ > 0. Lastly, the

Friedman rule does not achieve the constrained efficiency due to uncertain endowments to

old workers. Furthermore, even the second-best is not generally guaranteed by the Friedman

rule. That is the optimal inflation rate that achieves the second-best critically depends upon

structural parameters of the economy such as x, y, and b.

Proof. See the appendix.

Focusing on the unique stationary monetary equilibrium, uncertainty effects are similar

to the previous model. Since households dislike intertemporal inequality in terms of general

good consumption to a greater extent, they accumulate more money savings in response to a

higher b, i.e., ∂Zc
EZ/∂b > 0. This in turn means that young workers under-consume general

goods in equilibrium. Given that households equalize the marginal utility from consuming

general goods when young and special goods when old, cash holdings for special goods must

fall as well when b goes up, i.e., ∂Zs
EZ/∂b < 0.

As before, inflation leads to lower real money balances used for both savings and pur-

chasing special goods due to a lower rate of return on money holdings, i.e., ∂Zs
EZ/µ < 0

and ∂Zc
EZ/µ < 0. What is distinct from the previous model is that money creation and

uncertainty create dynamic inefficiency in opposite direction only in terms of general goods

consumed in equilibrium, i.e., ∂Zc
EZ/∂b > 0 and ∂Zc

EZ/µ < 0. On the contrary, inflation

and uncertainty change the equilibrium special good consumption in the same direction,

∂Zs
EZ/∂b < 0 and ∂Zc

EZ/µ < 0. This implies that money creation can never correct the
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dynamic inefficiency caused by a lower Zs
EZ with a positive b. This intuitively explains why

the Friedman rule can never achieve the constrained efficiency whenever uncertainty prevails

in this economy.

What’s more interesting is that the optimal (second-best) inflation rate in this case is

usually not the Friedman rule. This follows from two offsetting welfare effects of inflation.

This economy faces a fundamental trade-off between a negative price effect and a positive

redistributive effect of inflation. The former refers to the ability of inflation affecting self-

insurance through changes in the rate of return on currency, while the latter revolves around

the ability of inflation providing risk sharing among agents through intergenerational trans-

fers of money. For instance, the price effect of inflation on welfare is always negative since a

higher inflation always leads to lower rates of return on both money savings and cash hold-

ings for purchasing special goods. Therefore, other things being equal, the Friedman rule is

the best policy to pursue. However, inflation also has a redistributive effect. This welfare

effect could be positive as long as the level of µ is under a certain threshold level. This can

be intuitively understood by the fact that cy,EZ < cy and co,EZ > co in equilibrium, and a

higher inflation can move both cy,EZ and co,EZ closer to the constrained efficient allocation

up to a certain level, i.e., µ ↑⇒ cy,EZ ↑ and co,EZ ↓. In sum, when the distribution effect

dominates the price effect, the social welfare could increase up to a certain inflation rate,

µop. Otherwise, zero inflation guarantees the second best.

Figure 3: Numerical examples for welfare analysis in the extended model with ρ > γ

Conditions under which the distribution effect dominates generally depend upon param-

eters of the economy. Figure 3 illustrates a couple of numerical examples. The left panel

shows the case where the ratio between x and y is relatively small and the level of uncertainty
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b is relatively high, while the right panel shows the opposite case. As seen, the former case

implies a positive optimal inflation rate, on the other hand, the Friedman rule is optimal in

the latter. Intuition behind this goes as follows. The distribution effect generally dominates

the price effect whenever co,EZ − cy,EZ is larger because the marginal effect of a higher in-

flation on reducing co,EZ − cy,EZ gets bigger. Loosely speaking, when the intergenerational

distribution of {cy,EZ , co,EZ} was so distorted to begin with, the positive redistributive effect

of inflation becomes much more powerful. Thus, the distribution effect can dominate the

price effect when inflation is relatively low. Since a lower (x/y) and a higher b both mean

a more distorted intergenerational distribution of the general good consumption, a higher

inflation can enhance social welfare up to a threshold point. Furthermore, it turns out that

this threshold point, i.e., µop is increasing in the level of uncertainty once the µop is positive.

This is again because a higher b leads to a more distorted distribution of {cy,EZ , co,EZ},

strengthening the positive redistributive effect of inflation.

Using the intuition so far, it follows easily that the third case, ρ < γ, brings about

opposite comparative static analyses on stationary allocations in general. First, Proposition

4 summarizes such results.

Proposition 4 Consider the third case where ρ < γ. A unique stationary monetary equi-

librium exists, i.e., ∃! Zc
EZ and ∃! Zs

EZ, only if lnµ < π̄. The followings then hold true in

the unique stationary monetary equilibrium: ∂Zc
EZ/∂b < 0, ∂Zs

EZ/∂b > 0, ∂Zs
EZ/µ < 0,

∂Zc
EZ/µ < 0, ∂cy,EZ/∂b > 0, and ∂cy,EZ/∂µ > 0. Lastly, the Friedman rule does not achieve

the constrained efficiency due to uncertainty-induced dynamic inefficiency. Furthermore,

even the second-best is not generally guaranteed by the Friedman rule. That is the optimal

inflation rate that achieves the second-best critically depends upon structural parameters of

the economy such as x, y, and b.

Proof. See the appendix.

Uncertainty effects on the stationary allocation are exactly opposite to the second case.

Since households don’t mind intertemporal inequality in terms of general good consumption

much, but are very averse to cross-section variation in the general good consumption when

old, they accumulate less money savings in response to a higher b, i.e., ∂Zc
EZ/∂b < 0. This

in turn means that young workers over-consume general goods in equilibrium. Given that

households equalize the marginal utility from consuming general goods when young and

special goods when old, cash holdings for special goods must increase as well when b goes

up, i.e., ∂Zs
EZ/∂b > 0.

Inflation effects on the stationary allocation are same as before, i.e., ∂Zs
EZ/µ < 0 and

∂Zc
EZ/µ < 0, for obvious reasons. Interestingly, money creation here cannot restore the
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constrained efficiency due to a different reason than the one in the second case economy.

That is a higher b in this case causes dynamic inefficiency through lowering Zc
EZ below the

socially efficient level. However, a higher µ also lowers Zc
EZ . In sum, the third case economy

suffers from under-savings, but a higher inflation can only make things worse at least in

this respect, i.e., a negative redistributive effect of inflation prevails. Thus, the constrained

efficiency can never be achieved here.

What is crucial is that a positive level of inflation can achieve the second best under

certain parameter values of the economy. This is in sharp contrast to the baseline model

where the Friedman rule always leads to the second-best welfare outcome whenever ρ < γ.

The outcome stems from the addition of special goods in the extended model. Recall that

in the baseline model, the welfare effect of inflation was always negative because money

creation and uncertainty generate dynamic inefficiency in the same direction. However, this

is not the case here because at least a higher inflation can correct over-consumptions of the

special good to some extent, i.e., ∂Zs
EZ/∂b > 0 and ∂Zs

EZ/µ < 0. In sum, there’s a room for

the price effect of inflation on welfare could be positive. This in turn means that the social

welfare could increase up to a certain level of inflation rate when the positive price effect

dominates the aforementioned negative redistributive effect.

Figure 4: Numerical examples for welfare analysis in the extended model with ρ < γ

Figure 4 illustrate such examples in a numerical exercise. As opposed to Figure 3, the

left panel shows the case where the ratio between x and y is relatively high and the level

of uncertainty b is relatively low, while the right panel shows the opposite case. As can be

witnessed, the former case implies a positive optimal inflation rate, on the other hand, the

Friedman rule is optimal in the latter. Intuition behind this is exactly opposite to that in the
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second case. The positive price effect generally dominates the negative redistributive effect

when cy,EZ − co,EZ is larger and/or b is lower because the marginal (negative) redistributive

effect of a higher inflation on raising cy,EZ − co,EZ gets smaller. Loosely speaking, when

the intergenerational distribution of {cy,EZ , co,EZ} was relatively less distorted in the first

place through a higher ratio between x and y and/or too much spending on special goods

prevails in the first place, the positive price effect of inflation dominates. Thus, a higher

inflation can enhance social welfare up to a threshold point. Lastly, a lower b implies a

less distorted intergenerational distribution of the general good consumption, weakening the

negative redistributive effect of inflation. Thus, the optimal inflation rate ought to decrease

in aggregate output uncertainty once the former is positive. To sum up, the relationship

between the optimal inflation rate and aggregate output uncertainty generally turns out to

become positive (negative) when agents prefer late (early) resolution of uncertainty.

5 Conclusion

By exploiting a pure currency OLG model of money with the EZ preferences, this paper

delivers a new set of monetary policy implications, especially in terms of a link between

aggregate output uncertainty and the optimal inflation rate. I show that agents’ preferences

for the timing of uncertainty resolution and the initial condition for intertemporal misallo-

cations crucially determine such relationship. I do admit limitations of this model for policy

recommendations because economies considered here are extreme, e.g., too low transactional

frequency and the infeasibility of any sort of taxation. Yet, I do believe that lessons from

this study remain valid as a good benchmark for further studies, and it should be relatively

easy to integrate real and more complex features of monetary economies into the model.

For example, following Kocherlakota (2005) and Wallace (2014), one could extend this

model to include alternative instruments for intergenerational transfers, and study if such

modifications alter the nature of the optimal monetary policy under aggregate uncertainty.

Also, one could add other forms of institutions that mitigate various trading frictions such

as financial assets and over-the-counter markets. This could allow us to study how liquidity

properties of such additional institutions as well as the optimal monetary policy interact with

aggregate uncertainty, and potentially to help us understand many asset pricing anomalies.7

Lastly, although not emphasized here, one could study dynamics and/or multiplicity in this

framework. This dimension of research could potentially enrich types of multiple equilibria

that the OLG model usually exhibits, e.g., Boldrin and Woodford (1990).

7 Lagos (2010), Geromichalos, Herrenbrueck, and Salyer (2013), and Geromichalos, Lee, Lee, and Oikawa
(2015) are in similar spirits in this sense.
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Appendix

Proof for Lemma 2

Since U(ct, ct+1) is homogeneous of degree 1, Euler’s theorem holds. Then using eq.(2),

U =
∂U

∂ct
+ Et

[
∂U

∂ct+1

ct+1

]

where

∂U

∂ct
=

1

1− ρ
Uρ(1− ρ)c−ρ

t = Uρc−ρ
t (10)

∂U

∂ct+1

=
∂U

∂Rt(ct+1)

∂Rt(ct+1)

∂ct+1

(11)

=Uρ [Rt(ct+1)]
−ρ [Rt(ct+1)]

γ c−γ
t+1

=Uρ [Rt(ct+1)]
γ−ρ c−γ

t+1.

Using eq.(10) and (11), IMRS or Qt,t+1, which equals to U2/U1, has the following closed form

solution.

Qt,t+1 ≡
Uρ [Rt(ct+1)]

γ−ρ c−γ
t+1

Uρc−ρ
t

=

[
ct+1

ct

]
−ρ [

ct+1

Rt(ct+1)

]ρ−γ

.

Replacing ct+1 and ct with ϕt+1mt + τt+1 + εt+1 and ϕtmt respectively brings about

Qt,t+1(mt, εt+1) in Lemma 2. Lastly, Et [(ϕt+1mt + τt+1 + εt+1)
1−γ] can be easily computed

using U(y − b, y + b).

Et

[
(h(mt) + εt+1)

1−γ
]
=

∫ y+b

y−b

(h(mt) + εt+1)
1−γ 1

2b
dεt+1 (12)

=
1

2b(2− γ)
(h(mt) + y + b)(2−γ) − (h(mt) + y − b)(2−γ).

Q.E.D.

Proof for Proposition 1

We first prove the existence and uniqueness of ZEZ . The FOC in equilibrium becomes
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as follows.

lnµ− ρ ln (x− Z) + γ ln (Z + y) =
γ − ρ

1− γ

{

ln

[
(Z + y + b)2−γ − (Z + y − b)2−γ

2b(2− γ)

]}

LHS(Z) =RHS(Z).

It’s easy to see that LHS ′ > 0, and limZ→x = ∞. Now, RHS ′ has the following form.

RHS ′ = (γ − ρ)

{
(Z + y + b)1−γ − (Z + y − b)1−γ

1− γ

}

︸ ︷︷ ︸

>0

{
(Z + y + b)2−γ − (Z + y − b)2−γ

2− γ

}

︸ ︷︷ ︸

>0

.

This implies that RHS ′ < 0 (RHS ′ > 0) if ρ > γ (ρ < γ). Since the case 2 is based on

ρ > γ, RHS ′ < 0. Thus, as long as LHS(0) ≤ RHS(0), ∃!ZEZ . This proves the existence

and uniqueness under lnµ < µ̄.

Next, we prove why ZEZ > ZSP . For this it suffices to show, first, ZEZ |b=0,µ=1 is equal

to or greater than ZSP , and second, ∂ZEZ/∂b > 0. The first condition is easy to show from

eq.(4). That is Z + y = x − Z, which implies ZEZ = (x − y)/2 ≡ ZSP . Second condition

requires us to use Implicit Function Theorem (IFT) as follows.

∂ZEZ

∂b
= −

∂G/∂b

∂G/∂ZEZ

,

where

∂G

∂ZEZ

=
ρ

x− ZEZ

+
γ

ZEZ + y
−RHS ′ > 0 if ρ > γ.

and

∂G

∂b
=−

γ − ρ

1− γ

{

(2− γ)
(ZEZ + y + b)1−γ − (ZEZ + y − b)1−γ

(ZEZ + y + b)2−γ − (ZEZ + y − b)2−γ
−

1

b

}

≡ −
γ − ρ

1− γ
H.

Now, we prove that H is always positive (negative) given that γ > 1 (γ < 1). First, given

γ > 1 and U(y − b, y + b),

Et

[
(ZEZ + εt+1)

1−γ
]
<

(ZEZ + y − b)1−γ + (ZEZ + y − b)1−γ

2
.
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From eq.(12), this inequality can be re-expressed as below.

(ZEZ + y − b)2−γ + (ZEZ + y − b)2−γ

2b(2− γ)
<

(ZEZ + y − b)1−γ + (ZEZ + y − b)1−γ

2
,

1

b
< (2− γ)

(ZEZ + y + b)1−γ − (ZEZ + y − b)1−γ

(ZEZ + y + b)2−γ − (ZEZ + y − b)2−γ
.

When γ < 1, all inequality signs so far get reversed. This proves why H > 0(H < 0) when

γ > 1(γ < 1). Consequently,

∂G

∂b

{

> 0 if ρ < γ

< 0 if ρ > γ.
(13)

Combine this with ∂G/∂ZEZ > 0 under ρ > γ. Then, finally ∂ZEZ/∂b > 0, and ZEZ > ZSP .

∂ZEZ/∂µ < 0 can be easily proved using the IFT as below.

∂ZEZ

∂µ
= −

∂G/∂µ

∂G/∂ZEZ

= −
1/µ

ρ
x−ZEZ

+ γ
ZEZ+y

−RHS ′
< 0, if ρ > γ.

Lastly, µ∗ is µ such that G((x − y)/2, µ, x, y, b) = 0. The fact that µ∗ > 1 comes from

ZEZ |µ=1 > ZSP and ∂ZEZ/∂µ < 0. Given the closed form solution to µ∗ as well as ρ > γ,

∂µ∗/∂b > 0 and ∂µ∗/∂y < 0 are straightforward. Q.E.D.

Proof for Proposition 2

When ρ < γ, RHS ′ > 0 and RHS(x) is a finite real number. Thus, as long as LHS(0) ≤

RHS(0), ∃!ZEZ . This proves the existence and uniqueness under lnµ < µ̄. If instead

LHS(0) ≥ RHS(0) then, depending on the slope of RHS there could be multiple ZEZ or

non ZEZ , and therefore, multiple monetary equilibrium or non-monetary equilibrium.

Next, we prove why ZEZ < ZSP under the unique stationary monetary equilibrium case.

For this it suffices to show, first, ZEZ |b=0,µ=1 is equal to or less than ZSP , and second,

∂ZEZ/∂b < 0. The first condition is easy to show from eq.(4). That is Z + y = x−Z, which

implies ZEZ = (x − y)/2 ≡ ZSP . Second condition requires us to use Implicit Function

Theorem (IFT) as follows.

∂ZEZ

∂b
= −

∂G/∂b

∂G/∂ZEZ

,

Since we know ∂G/∂b > 0 from eq.(13) we only need to know the sign of ∂G/∂ZEZ . But we

know for sure that ∂ZEZ/∂µ < 0 since a higher µ would only shift the LHS upward. This
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implies ∂G/∂ZEZ > 0 because

∂ZEZ

∂µ
= −

∂G/∂µ

∂G/∂ZEZ

= −
1/µ

∂G/∂ZEZ

< 0.

Thus, ∂ZEZ/∂b < 0, and therefore ZEZ < ZSP . Finally, the fact that the Friedman rule

does not achieve the ZSP under b > 0 can be easily seen through ZEZ |b=0,µ=1 = ZSP and

∂ZEZ/∂b < 0. Further, due to ∂ZEZ/∂µ < 0 the Friedman rule achieves the second-best.

Q.E.D.

Proof for Proposition 3

We begin with proving the existence and uniqueness of {Zc
EZ , Z

s
EZ}. We define a function

f(Zc
EZ) such that f(Zc

EZ) equals to Zs
EZ solving for eq.(9) given Zc

EZ . Given that the LHS of

e.q.(9) is increasing in Zs
EZ and the RHS of eq.(9) is invariant to Zs

EZ , it is easy to see that

this function f(Zc
EZ) exists only if ρ ln (x− Zc

EZ) > γ ln (Zc
EZ + y) + (ρ− γ) lnR(Zc

EZ + y),

which in turn holds true as long as eq.(8) holds true. This also implies that f(Zc
EZ) <

x, ∀Zc
EZ ≤ x. Next, we prove f ′(Zc

EZ) > 0. For this, it suffices to show that the RHS of

eq.(9) increases in Zc
EZ . Since ρ > γ and the certainty equivalent of future consumption

value, i.e., R(y + Zc
EZ), is decreasing in Zc

EZ , the RHS of eq.(9) is indeed increasing in Zc
EZ .

Lastly, by replacing Zc
EZ with 0 one can get

f(0) = exp

{
γ

ρ
ln (y) +

ρ− γ

ρ
ln [R(y)]

}

> 0.

By replacing R(y) with structural parameters as in eq.(12), one can finally get f(0) in

Proposition 3.

Similar to f(Zc
EZ), we also define g(Z

s
EZ) such that g(Zs

EZ) equals to Z
c
EZ solving for eq.(8)

given Zs
EZ . Note that the LHS of eq.(8) is increasing in Zc

EZ with LHS|Zc
EZ

=x−Zs
EZ

→ ∞

and the RHS of eq.(8) is decreasing in Zc. Therefore, the function g(Zs
EZ) exists only if

lnµ < (γ − ρ) ln (R(y))− γ ln (y) + ρ ln (x− Zs
EZ |Zc

EZ
=0). (14)

By replacing R(y) and Zs
EZ |Zc

EZ
=0 with the one in the f(Zc

EZ) and f(0) respectively, one

could finally get the π̄ in Proposition 3. Next, we prove g′(Zs
EZ) < 0. For this, it suffices

to show that the LHS of eq.(8) increases in Zs
EZ , which is trivial. Moreover, g(0) is a finite

real number and less than x due to eq.(14) and LHS|Zc
EZ

=x−Zs
EZ

→ ∞ from eq.(8). Also,

g−1(0) > f(0) due to eq.(14) and the fact that g−1(0) must satisfy the following.

lnµ = (γ − ρ) ln (R(y))− γ ln (y) + ρ ln (x− g−1(0)).
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The fact that g−1(0) < x is trivial. In sum, this proves that ∃! Zc
EZ and ∃! Zs

EZ , only if

lnµ < π̄. Graphically, the unique equilibrium can be illustrated as below. Figure 5 greatly

Figure 5: A unique stationary equilibrium

Zc
EZ

0

Zs
EZ

x

g−1(0)

f(0)

xg(0)

f(Zc
EZ)

g(Zs
EZ)

helps us understand various comparative static analyses intuitively. First, g(Zs
EZ) shifts

inward in response to an increase in µ. This is easily understood since the LHS of eq.(8)

increases in µ, which in turn causes Zc
EZ to fall given every level of Zs

EZ . Plus, changes in µ

have no effect on the f(Zc
EZ). Altogether, this confirms ∂Zs

EZ/µ < 0 and ∂Zc
EZ/µ < 0.

g(Zs
EZ) shifts outward in response to an increase in b. Again, this can be understood

from eq.(8). Only the RHS of the equation increases in b due to ρ > γ and the fact that

R(y) falls as b increases. f(Zc
EZ) also shifts outward as b increases. From the RHS of the

eq.(9) with ρ > γ and ∂R(y)/∂b < 0 one can easily see that Zs
EZ should fall given every level

of Zc
EZ when b increases. This proves ∂Zc

EZ/∂b > 0.

As for the ∂Zs
EZ/∂b, the graphical interpretation is limited since both curves shifts out-

ward. Thus, we exploit the Cramer’s rule. First, we define V (b, Zc
EZ , Z

s
EZ) as LHS of eq.(8)

minus RHS of eq.(8), while W (b, Zc
EZ , Z

s
EZ) as LHS of eq.(9) minus RHS of eq.(9).

∂Zs
EZ

∂b
=

∣
∣
∣
∣
∣

−∂V
∂b

∂V
∂Zc

EZ

−∂W
∂b

∂W
∂Zc

EZ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

− ∂V
∂Zs

EZ

∂V
∂Zc

EZ

− ∂W
∂Zs

EZ

∂W
∂Zc

EZ

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

⊕ ⊕

⊖ ⊖

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

⊕ ⊕

⊕ ⊖

∣
∣
∣
∣
∣

=
−∂V

∂b
∂W

∂Zc
EZ

+ ∂V
∂Zc

EZ

∂W
∂b

⊖
< 0, if ρ > γ. (15)
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Equation (15) follows from below.

∂V

∂b
= (ρ− γ)

∂R(b)/∂b

R(b)

{

> 0 if ρ < γ

< 0 if ρ > γ.

∂W

∂b
= −

(ρ− γ)

ρ

∂R(b)/∂b

R(b)

{

< 0 if ρ < γ

> 0 if ρ > γ.

∂V

∂Zc
EZ

=
ρ

x− Zc
EZ − Zs

EZ

+
γ

Zc
EZ + y

+ (ρ− γ)
∂R(Zc

EZ)/∂Z
c
EZ

R(Zc
EZ)

{

ambiguous if ρ < γ

> 0 if ρ > γ.

∂W

∂Zc
EZ

= −
γ

ρ(Zc
EZ + y)

−
(ρ− γ)

ρ

∂R(Zc
EZ)/∂Z

c
EZ

R(Zc
EZ)

{

ambiguous if ρ < γ

< 0 if ρ > γ.

∂V

∂Zs
EZ

=
ρ

x− Zc
EZ − Zs

EZ

.

∂W

∂Zs
EZ

=
1

Zs
EZ

.

−
∂V

∂b

∂W

∂Zc
EZ

+
∂V

∂Zc
EZ

∂W

∂b
= −(ρ− γ)

∂R(b)/∂b

(x− Zc
EZ − Zs

EZ)R(b)

{

< 0 if ρ < γ

> 0 if ρ > γ.

As for the effect of inflation on general goods consumed by young workers, ∂cy,EZ/∂µ >

0 follows easily from ∂Zs
EZ/µ < 0 and ∂Zc

EZ/µ < 0. ∂cy,EZ/∂b < 0 follows from two

facts. First, a higher inflation reduces special goods consumed by old shoppers in stationary

equilibrium, i.e., ∂Zs
EZ/∂µ < 0. Second, the marginal utility from consuming general goods

by young workers should equal to that from consuming special goods by old shoppers in

stationary equilibrium, i.e., eq.(8) and (9).

Lastly, the fact that the Friedman rule couldn’t achieve the constrained efficient allocation

can be understood with Figure 5. The constrained efficient allocation can be thought of a

point where g and f functions intercept each other when µ = 1 and b = 0. As explained

before, as soon as b exceeds 0, both g and f functions shift outwards. However, changes in

µ can only shift the g curve in Figure 5. Thus, the initial equilibrium point can never be

restored by changes in µ in any direction. To figure out the (second-best) optimal inflation

rate in this case, we construct a social welfare function, W , as the sum (with equal weights)

of all agents’ net utilities in a unique stationary monetary equilibrium.

W =
(
c1−ρ
y,EZ + s1−ρ

EZ + c1−ρ
o,EZ

)1/(1−ρ)
.
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Then the first derivative of W with respect to µ is given by

∂W

∂µ
=

(
c1−ρ
y,EZ + s1−ρ

EZ + c1−ρ
o,EZ

)1/(1−ρ)






s−ρ
EZ

∂sEZ

∂µ
︸ ︷︷ ︸

<0

+c−ρ
y,EZ

∂cy,EZ

∂µ
︸ ︷︷ ︸

>0

+c−ρ
o,EZ

∂co,EZ

∂µ
︸ ︷︷ ︸

<0






,

and ambiguous. Q.E.D.

Proof for Proposition 4

Similar to Proposition 3, we begin with a proof for the existence and uniqueness of

{Zc
EZ , Z

s
EZ}. Now, we define f(Zc

EZ) as before. Following the proof for Proposition 3,

f(Zc
EZ) exists, and f(Zc

EZ) < x, ∀Zc
EZ ≤ x. For f ′(Zc

EZ) > 0, one would have to confirm

that the RHS of eq.(9) is increasing in Zc
EZ even if ρ < γ. This is easy to show since

ln (Zc
EZ) > ln (R(Zc

EZ + y)). The properties of g(Zs
EZ) are same as in Proposition 3. In sum,

this proves that ∃! Zc
EZ and ∃! Zs

EZ , only if lnµ < π̄. Graphically, the unique equilibrium

can be still illustrated by Figure 5.

Now, we prove various comparative static analyses. First, the fact that g(Zs
EZ) shifts

inward in response to an increase in µ and ∂Zs
EZ/µ < 0 and ∂Zc

EZ/µ < 0 follows the same

proof as in Proposition 3.

What is different from the previous proposition is that g(Zs
EZ), this time, shifts inward

in response to an increase in b. Again, this can be understood from eq.(8). Only the RHS of

the equation decreases in b due to ρ < γ and the fact that R(y) falls as b increases. f(Zc
EZ)

also shifts inward as b increases. From the RHS of the eq.(9) with ρ < γ and ∂R(y)/∂b < 0

one can easily see that Zs
EZ should increase given every level of Zc

EZ when b increases. This

proves ∂Zc
EZ/∂b < 0.

As for the ∂Zs
EZ/∂b, the graphical interpretation is limited since both curves shifts in-

ward. Thus, we exploit the Cramer’s rule. As in the proof for Proposition 3, we define

V (b, Zc
EZ , Z

s
EZ) as LHS of eq.(8) minus RHS of eq.(8), while W (b, Zc

EZ , Z
s
EZ) as LHS of

eq.(9) minus RHS of eq.(9).

∂Zs
EZ

∂b
=

∣
∣
∣
∣
∣

−∂V
∂b

∂V
∂Zc

EZ

−∂W
∂b

∂W
∂Zc

EZ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

− ∂V
∂Zs

EZ

∂V
∂Zc

EZ

− ∂W
∂Zs

EZ

∂W
∂Zc

EZ

∣
∣
∣
∣
∣

=
−∂V

∂b
∂W

∂Zc
EZ

+ ∂V
∂Zc

EZ

∂W
∂b

∂V
∂Zs

EZ

∂W
∂Zc

EZ

− ∂W
∂Zs

EZ

∂V
∂Zc

EZ

> 0, if ρ < γ. (16)

In eq.(16), the numerator becomes negative if ρ < γ. This follows from the previous propo-
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sition’s proof. The denominator is given by

∂V

∂Zs
EZ

∂W

∂Zc
EZ

−
∂W

∂Zs
EZ

∂V

∂Zc
EZ

=
−ρ

Zs
EZ(x− Zc

EZ − Zs
EZ)

−
1

x− Zc
EZ − Zs

EZ

[
γ

Zc
EZ + y

−
∂R(Zc

EZ + y)/∂Zc
EZ

R(Zc
EZ + y)

(γ − ρ)

]

−
1

Zs
EZ

[
γ

Zc
EZ + y

−
∂R(Zc

EZ + y)/∂Zc
EZ

R(Zc
EZ + y)

(γ − ρ)

]

< 0 if R(Zc
EZ + y) > (∂R(Zc

EZ + y)/∂Zc
EZ)(Z

c
EZ + y)

where the last condition holds due to the concavity of the R function. Lastly, proofs for state-

ments regarding the optimal inflation rate are identical to those in the proof for Proposition

3. Q.E.D.
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