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ABSTRACT. We examine a model in which multiple buyers with single-unit demand are

faced with an infinite sequence of auctions. New buyers arrive on the market probabilisti-

cally, and are each endowed with a constant private value. Moreover, objects also arrive on

the market at random times, so the number of competitors and the degree of informational

asymmetry among them may vary across from one auction to the next. We demonstrate

by way of a simple example the inefficiency of the second-price sealed-bid auction in this

setting, and therefore assume that each object is sold via ascending auction.

We then characterize an efficient and fully revealing equilibrium for the game in which

the objects are sold via ascending auctions. We show that each buyer’s bids and payoffs

depend only upon their rank amongst their competitors and the (revealed) values of those

with lower values. Furthermore, strategies are memoryless—bids depend only upon the

information revealed in the current auction, and not on any information that may have

been revealed in earlier periods. We then demonstrate that the sequential ascending auc-

tion serves as an indirect mechanism that is equivalent—in our setting—to the dynamic

marginal contribution mechanism introduced by Bergemann and Välimäki (2007) and gen-

eralized in Cavallo et al. (2007).
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1. INTRODUCTION

Many markets, most notably internet markets such as eBay, sell multiple objects via se-

quential auctions in which one object is sold at a time. In this paper, we examine a model

of such markets in which new buyers arrive on the market at random times. Each bidder

has an independently drawn private value for purchasing an object. In contrast to much

of the literature that makes use of sealed-bid auctions, we focus on the ascending auc-

tion. Although these two auctions are in many respects equivalent in a static setting with

private values, this equivalence does not hold in a dynamic environment, primarily due

to the information revelation inherent in the ascending auction format. The difference

between the two formats is further exacerbated in the sequential auction setting when we

allow for the entry of new buyers. In particular, the entry of a new buyer introduces an

additional informational asymmetry. We show, however, that this asymmetry is easily re-

solved when the ascending auction is used. In equilibrium, each buyer’s bids and payoffs

depend only on the buyer’s rank amongst their competitors and the (revealed) values of

those opponents with lower values. Furthermore, these strategies have the remarkable

property of being memoryless—in each auction conducted, bids are independent of any

information that may have been revealed in previous periods, despite the fact that all

private information is revealed in each and every auction.

We feel that this model serves as a useful abstraction of online auction sites such as

eBay or uBid, especially when considering the extensive market on these sites for indi-

vidual units of brand-new homogenous goods. Typically, a variety of auctions for iden-

tical items are open simultaneously, but may be ordered by their closing time. Thus,

abstracting away from intra-auction dynamics, a sequential auction model yields a good

approximation.1 With this in mind, many authors (see Sailer (2006) or Zeithammer (2006),

for instance) make use of the second-price sealed-bid auction, citing evidence from Roth

and Ockenfels (2002) and Bajari and Hortaçsu (2003) about the prevalence of “sniping”

(last-second bidding) in online auctions in defense of their modeling choice. However, as

shown by Cai et al. (2007), pure-strategy symmetric equilibria do not exist in sequential

sealed-bid auctions when buyer values are fixed across time and bids are made publicly

observable after each auction. As most online auctions bear a close resemblance to Eng-

lish auctions in regards to intra-auction dynamics as well as the visibility of submitted

bids (both during an auction and after an auction has closed), we believe that the ascend-

ing auction is better-suited than the sealed-bid second-price auction for modeling online

auction markets.2

1Nekipelov (2007) examines within-auction dynamics with an eye towards entry behavior in a model of
eBay auctions.
2Of course, either choice is a compromise, abstracting away from important real-world issues for the sake
of tractability.
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What is more, we feel that the sequential ascending auction is important for another,

independent, reason. Bergemann and Välimäki (2007) demonstrate the suitability of se-

quential ascending auctions as a simple way to provide for the truthful implementation

of the socially efficient allocation in some dynamic environments. In particular, they pro-

vide an example in which sequential ascending auctions are equivalent to their dynamic

marginal contribution mechanism. This equivalence fails to hold, however, in a more

complex setting with multiple-unit demand. Cavallo et al. (2007) generalize this dynamic

version of the classic Vickrey-Clarke-Groves mechanism to settings in which agents may

be “inaccessible” for periods of time. The present work complements these papers, as

we show that the sequential ascending auction serves as an (easily implemented and un-

derstood) indirect mechanism that is equivalent to the dynamic marginal contribution

mechanism, and is therefore an incentive compatible mechanism for inducing socially

efficient choices.

The present work is closely related to several papers in the sequential auctions litera-

ture. Milgrom and Weber (2000) examine the properties of a variety of auction formats

for the (simultaneous or sequential) sale of multiple objects with a fixed set of buyers

and objects.3 In regards to the ascending auction with private values, they show that, in

equilibrium, buyers bid exactly their values. However, they allow for neither discounting

nor the entry of new buyers, features that play a large role our model. The vast major-

ity of the literature following that work has chosen to focus on sealed-bid auctions; for

example, the previously mentioned Sailer (2006) and Zeithammer (2006) conduct empir-

ical studies of eBay auctions making use of sequential second-price sealed-bid auctions

and assumptions of an effectively static environment. Kittsteiner et al. (2004) examine the

role of discounting in sequential sealed-bid auctions, and prove a revenue equivalence

result for auctions in which the only information revealed is the valuations of bidders

who have already left the market, while Jeitschko (1998) considers a model of first-price

sealed-bid auctions in which winner’s bids are revealed, allowing the remaining buyers

to update their beliefs about their opponents’ valuations. On the other hand, Cai et al.

(2007) demonstrate the nonexistence of pure-strategy symmetric equilibria in sealed-bid

sequential auction models in which all bids are revealed. The only paper that we are

aware of that examines sequential ascending auctions is that of Caillaud and Mezzetti

(2004), who examine reserve prices in a model with only two auctions.

Certain elements within the bargaining with incomplete information literature are also

related to our model. Inderst (2008) considers a bargaining model in which a seller is

randomly visited by heterogeneous buyers. If the seller is currently engaged in bargain-

ing with one agent when another arrives, she may choose to switch from one buyer to

3Note that this work was originally completed in 1982 and was in wide circulation in working paper form
until its eventual publication in 2000.
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the other. However, this switch is permanent, implying that the arrival of a new buyer

either “restarts” the game or is completely irrelevant. Fuchs and Skrzypacz (2007) take

a different approach: they consider an incomplete information bargaining problem be-

tween a buyer and a seller, and allow for the possibility of the arrival of “events” which

end the game and yield a particular expected payoff to each agent. Their interpretation

is that these events may be viewed as triggers for some sort of multi-lateral mechanism

involving new entrants (a second-price auction, for example) for which the expected pay-

offs are a reduced-form representation. Thus, while both works are primarily concerned

with characterizing the endogenous option value that results from the potential arrival

of additional participants to the market, they do this in a framework of bilateral bargain-

ing which fails to capture the dynamic nature of competition among several current and

potential market participants. On the other hand, Nekipelov (2007) studies the role of

entry during an online ascending auction, while Said (2008) examines the role of buyer

entry between periods in a model of sequential second-price auctions in which objects are

stochastically equivalent. By way of comparison, the present work incorporates buyer

entry between ascending auctions in a more standard private values framework, and fur-

ther demonstrates the relationship between the endogenous option value arising from

participating in future auctions with the marginal contribution to social welfare.

The paper is organized as follows. We present our model in Section 2, and then provide

a simple example demonstrating the superiority of the ascending auction format over

the second-price sealed-bid auction in a dynamic setting with buyer entry in section 3.

Section 4 solves for the equilibrium in our model with buyer entry and demonstrates

some of its desirable properties. In section 5, we discuss the relationship between our

model and the dynamic Vickrey-Clarke-Groves mechanism and generalize our setting to

allow for the random arrival of objects. Finally, section 6 concludes.

2. THE MODEL

We consider a market in which time is discrete; periods are indexed by t ∈ N. There

is a finite number nt of risk-neutral buyers with single-unit demand in the market in any

given period t. Each buyer i ∈ {1, . . . , nt} has a valuation vi ∈ R+, where vi is drawn from

the distribution F with corresponding density f . We assume that valuations are private

information, and are independently and identically distributed across buyers. Moreover,

additional buyers may arrive on the market in each period. We will assume that at most

one buyer arrives at a time, and that this arrival occurs with some exogenously given

probability q ∈ [0, 1]. Finally, we assume that buyers discount the future exponentially

with discount factor δ ∈ (0, 1).
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In each period, there is exactly one object available for sale via an ascending auction.

The auction begins with the price at zero and all bidders participating in the auction. Each

bidder may choose to any price at which to drop out of the auction. This exit decision is

irreversible (in the current period), and is observable by all agents currently present in

the market. Finally, the auction ends whenever exactly 1 active bidder remains, and the

price paid by this winning bidder is the price at which the last exit occurred. Note that we

assume that the number of active bidders is commonly known throughout the auction.

With this in mind, each bidder’s strategy within a given period is not a single bid, but

rather a sequence of functions, each of which is contingent on the (observed) exit prices

of the bidders who have already dropped out of the current auction.

Throughout, we will denote by v̂ the ordered vector of realized buyer valuations, where

v̂1 > v̂2 > · · · > v̂nt
.

Furthermore, we will denote by Vj,k(v̂) the expected payoff of the buyer with the j-th

highest of k values. For example, if there are three bidders present, with v2 > v3 > v1,

then v̂ = {v2, v3, v1}, bidder 1’s payoff is V3,3(v̂), bidder 2’s payoff is V1,3(v̂), and bidder 3’s

payoff is V2,3(v̂).

3. A MOTIVATING EXAMPLE

Suppose that there are two buyers on the market with values v1, v2 ∈ [0, 1], where,

without loss of generality, we assume that v1 > v2. In addition, a third potential buyer

with value v3 ∼ F , where F is the uniform distribution on [0, 1] may enter the market

with probability q ∈ (0, 1). Each of these buyers wishes to purchase exactly one unit of

some object which is being sold via a sequence of three auctions. All buyers discount time

with discount factor δ ∈ (0, 1). Furthermore, we make the assumption that v1 and v2 are

commonly known amongst all buyers, which may be viewed as the result of information

being revealed via bidding behavior in some (unmodeled) previous periods. The new

entrant’s value, however, is her own private information. We will consider two versions

of this example; first, we assume that objects are sold via second-price auctions in which

the buyers’ bids are revealed after each round, and then we will assume that objects are

sold via ascending auctions.

We begin with the second-price auction. Note that in any round in which there is only

one bidder present, that bidder receives the object at a price of zero, regardless of her

bid. Therefore, if there are two bidders present in the second period, each bidder i has an

option value of δvi from losing. Thus, regardless of the information that each bidder has

about the other, it is weakly dominant for each bidder to submit a bid of their true value

less their option value—the optimal bid for each bidder i is (1 − δ)vi. Thus, denoting the

payoff of a bidder in the second round when there are two bidders present as U(vi, vj),
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we have

(3.1) U(vi, vj) =

{

vi − (1 − δ)vj if vi > vj,

δvi if vi ≤ vj.

Using this expression, we may write the payoff of a lone bidder with value vi as U(vi, 0).

Now consider the third bidder (when present). Under the assumption that bidder 1

bids a greater amount than bidder 2 (that is, that b1 > b2), the third bidder faces a choice

between winning the auction and receiving a payoff of v3 − b1 or losing the auction and

facing bidder 2 in the next period, yielding a payoff of δU(v3, v2). Thus, bidder 3 prefers

to win if, and only if, v3 − b1 ≥ δU(v3, v2), or, equivalently, b1 ≤ v3 − δU(v3, v2). She can

then win the auction if, and only if, it is optimal for her to do so by bidding

(3.2) b3(v3) = v3 − δU(v3, v2) =

{

(1 − δ)v3 + δ(1 − δ)v2 if v3 > v2,

(1 − δ2)v3 if v3 ≤ v2.

Note that b3 is strictly increasing in v3, and hence fully identifies bidder 3’s valuation in

the next period when bids are revealed. For convenience, we will denote by u1 and u2 the

values of bidder 3 that submit bids equal to those of bidders 1 and 2, respectively; that is,

u1 = b−1
3 (b1) and u2 = b−1

3 (b2).

Now consider the case of bidder 2’s bid in the first period of the game. If she submits

a winning bid in the first period, she receives a payoff of v2 − b∗, where b∗ is the highest

competing bid that she faces. On the other hand, if she loses the first-round auction, she

receives a payoff of δE[U(v2, v
∗)], where

v∗ =







0 with probability 1 − q,

v3 with probability qF (u1),

v1 with probability q (1 − F (u1)) .

Thus, bidder 2 prefers to win if, and only if, v2 − b∗ ≥ δE[U(v2, v
∗)]. She may then guaran-

tee that she wins only when it is desirable to do so by bidding

b2 = v2 − δE[U(v2, v
∗)]

= v2 − δ

[

(1 − q)v2 + δq (1 − F (u1)) v2

+q
∫ v2

0
(v2 − (1 − δ)v′) dF (v′) + q

∫ u1

v2
δv3 dF (v′)

]

= (1 − δ)(1 + δq)v2 − (1 − δ)δq
v2

2

2
.(3.3)

Finally, let us consider buyer 1’s bidding behavior in the first period of the game. Note

first that u2 < v2 < v1, implying that if bidder 1 loses today, she will definitely win the

auction in the next period. To see this, note that if bidder 3 enters and wins the first round,

bidder 1 faces v2 < v1 in the next period. On the other hand, if bidder 2 is the high bidder
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in the first round, then bidder 1 is either alone or faces v3 < u2 < v1 in the second round.

Thus, when the high opponent bid is b∗, winning yields bidder 1 a payoff of v1 − b∗, while

losing yields a payoff of δU(v1, v
∗), where

v∗ =







0 with probability 1 − q,

v3 with probability qF (u2),

v2 with probability q (1 − F (u2)) .

Thus, similar to the cases of bidders 2 and 3, bidder 1 may guarantee that she wins only

when it is desirable for her to do so by bidding

b1 = v1 − δE[U(v1, v
∗)] = v1 − δ

[

(1 − q)v1 + δq (1 − F (u2)) (v1 − (1 − δ)v2)

+q
∫ u2

0
(v1 − (1 − δ)v′) dF (v′)

]

.

Recall that u2 = b−1
3 (b2) < v2, implying that u2 = b2/(1 − δ2). Combining this with the

assumption that F (x) = x implies that

u2 =
b2

1 − δ2
=

1 + δq

1 + δ
v2 −

δq

1 + δ

v2
2

2
.

Thus, we may conclude that

b1 = (1 − δ)v1 + (1 − δ)δqv2

−
δ(1 − δ)(1 + δq)(1 + δ(2 − q))qv2

2

2(1 + δ)2
+

δ3(1 − δ)(1 − q)q2v3
2

2(1 + δ)2
+

δ3(1 − δ)q3v4
2

8(1 + δ)2
.

(3.4)

For clarity, Figure 1 plots the bids of all three buyers for fixed parameter values.4 The

key features to note are that u1 < v1 and u2 < v2; use of the second-price auction in this

context may lead to inefficient outcomes, as “low” values of bidder 3 may outbid bidders

1 and 2 despite their having higher values. This result is driven by two main features

of our setting: first, agents discount the future and hence the order in which objects are

allocated matters; and second, there is a fundamental asymmetry in information—not

only is bidder 3’s value private information, but the very presence of bidder 3 on the

market is information that is asymmetrically distributed amongst the buyers. Thus, in

addition to the nonexistence of symmetric equilibria in sequential second-price sealed-

bid auctions as demonstrated by Cai et al. (2007), allowing for random entry may induce

inefficient outcomes—even in the asymmetric equilibria.

We now demonstrate that the ascending auction does not share the inefficiency of the

second-price auction in this setting. Note that when there are only two bidders present,

the losing bidder is guaranteed a payoff of δvi in the next period. Therefore, bidders are

willing to remain active in an auction until the price reaches (1− δ)vi. Thus, the expected

4The qualitative features of the equilibrium do not depend on these parameter values.
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Figure 1: Bids when v1 = 2
3
, v2 = 1

3
, v3 ∼ U [0, 1], δ = 9

10
, and q = 1

4
.

payoff of a bidder when she has only one opponent present on the market is given by

U(vi, vj) from Equation 3.1.

When there are three bidders present, matters are slightly different. In particular, the

very nature of an ascending auction immediately reveals to all bidders the number of

participants. Thus, bidder 3 is unable to keep private her presence on the market. This

implies that the first bidder to drop out of the auction knows that they have the lowest

value among three bidders, and hence will receive an expected payoff of δ2vi. Thus, each

of the three bidders remains active until the price reaches

(1 − δ2)vi.

Denoting by v̂3 the lowest of the three values, the two remaining bidders now know that

they are guaranteed a payoff of U(vi, v̂3) in the following period, and are hence willing to

remain active until they are indifferent between winning at the current price and winning

the object in the following period; that is, until the price reaches

(1 − δ)vi + δ(1 − δ)v̂3.

Notice that these cutoff prices are strictly increasing in each bidder’s value, and hence are

both efficient and fully revealing.5 Thus, we have established that the ascending auction

does not suffer from the same shortcomings as the second-price auction in this relatively

simple setting. Thus, we will focus exclusively on the ascending auction from this point

forward.

5In addition, it is straightforward to verify that these strategies do, in fact, constitute an equilibrium. Con-
ditional on participation, no bidder wishes to deviate from these strategies. Furthermore, no bidder wishes
to postpone their participation to a future period.
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4. EQUILIBRIUM ANALYSIS

4.1. Preliminaries and Equilibrium Strategies. One of the most remarkable features of

the equilibrium that we construct in this model is that buyer’s bids and payoffs do not

depend upon the valuations of higher-ranked bidders (neither in expectation nor realiza-

tion), even if that information is publicly available. Recall that v̂ is the ordered vector of

realized buyer valuations, where

v̂1 > · · · > v̂n,

and that we denote by Vk,n(v̂) the expected payoff of the buyer with the k-th highest of

n values. To show the property described above, we will show that (abusing notation

slightly) we may write

Vk,n(v̂1, . . . , v̂n) = Vk,n(v̂k, . . . , v̂n).

A formal statement of this result may be found in the subsequent section; in the meantime,

we will describe the equilibrium taking this property as a given.

So, suppose that an auction is in progress with n bidders, where v̂ ∈ R
n
+ denotes the

(ordered) vector of realized buyer valuations. When all bidders are still active, a bidder

with valuation vi who drops out of the bidding learns (and reveals) that, in equilibrium,

she has the lowest value; that is, that v̂n = vi. Therefore, her expected payoff in the next

period is Vn−1,n−1(vi), as at the beginning of the next period, there will be n − 1 bidders

remaining (the current periods n bidders less the winning buyer) and she will have the

lowest value. Therefore, each bidder i should remain in the auction until the current price

p is such that

vi − p = δVn−1,n−1(vi).

At this price, bidder i is indifferent between purchasing the object today and waiting until

the next period when i will be the lowest-valued buyer. Thus, when no one has dropped

out, bidder i will remain in the auction until the price reaches

(4.1) βn,n(vi) := vi − δVn−1,n−1(vi).

Once someone drops out of the auction, the remaining n−1 bidders learn the realization

of v̂n and that they are not the lowest-valued competitor.6 Therefore, the next bidder (with

value vi) to drop out reveals herself to be the second-lowest of the n bidders; therefore,

her expected payoff in the next period is Vn−2,n−1(vi, v̂n), as she will be the second-lowest

of the n − 1 buyers remaining in the following period. Thus, each bidder i who has not

already dropped out should remain in the auction until the current price p is such that

she is indifferent between purchasing the object in the present period and waiting until

6This of course requires βn,n to be a strictly increasing function, something that we will verify in short order.
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the next period

vi − p = δVn−2,n−1(vi, v̂n).

Thus, when no one has dropped out, bidder i remains in the auction until the price reaches

(4.2) βn−1,n(vi, v̂n) := vi − δVn−2,n−1(vi, v̂n).

Proceeding inductively, we define for each k = 2, . . . , n the bidding function

(4.3) βk,n(vi, v̂k+1, . . . , v̂n) := vi − δVk−1,n−1(vi, v̂k+1, . . . , v̂n).

These bidding functions define the drop-out points for a bidder with value vi when there

are k buyers still active in the auction. Notice that this implies that the final price in this

auction will be

β2,n(v̂2, . . . , v̂n) = v̂2 − δV1,n−1(v̂2, . . . , v̂n).

Keep in mind, however, that we must verify that these bid functions are strictly mono-

tone (so that values are revealed), and also that these bidding strategies in fact form an

equilibrium. This requires a characterization of the expected payoff functions Vj,k.

4.2. The Payoff Functions. As a preview of our results, consider first the case of a lone

buyer present on the market at the beginning of a period with valuation v1, and that

a second buyer may arrive with probability q. Once the price clock starts rising, it is

immediately revealed whether there are one or two bidders present. Thus, there is no

asymmetric information regarding the number of active bidders.

Note that if the second bidder does not arrive, the lone bidder receives the object for

free. In the case of two bidders present, however, each bidder i = 1, 2 will stay in the

auction until the price rises to β2,2(vi) = vi − δV1,1(vi). Thus,

V1,1(v1) = (1 − q)v1 + q

[∫ v1

0

(v1 − β2,2(v
′)) dF (v′) +

∫
∞

vi

δV1,1(v1) dF (v′)

]

.

The first term in this expression is bidder 1’s payoff if she is alone on the market. The sec-

ond term is her expected payoff if a second bidder arrives, and is the sum of her expected

winnings if the second bidder has a lower value than her and her expected continuation

payoff if she loses the auction. Differentiation of this expression with respect to v1 and

then substituting for β2,2(v1) yields

V ′

1,1(v1) = (1 − q) + q (f(v1)v1 + F (v1) − f(v1)β2,2(v1))

− δq
(
(1 − F (v1))V

′

1,1(v1) − f(v1)V1,1(v1)
)

=
1 − q(1 − F (v1))

1 − δq(1 − F (v1))
.
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Note that we may rewrite this expression as
∞∑

t=0

(δq(1 − F (v1)))
t [1 − q(1 − F (v1))],

which is the summation of the expected per-period gain from a marginal increase in v1,

discounted by the probability of that gain being realized in any given period.

Furthermore, note that V1,1(0) = 0, implying that

(4.4) V1,1(vi) = V1,1(0) +

∫ vi

0

V1,1(v
′) dv′ =

∫ vi

0

1 − q(1 − F (v′))

1 − δq(1 − F (v′))
dv′.

Note that the integrand above is strictly positive for all v′ ∈ R+. Hence, V1,1 is strictly

increasing, as is β2,2.

We will now proceed to characterize Vj,k inductively for all k ∈ N and all j ∈ {1, . . . , k}

via a series of propositions.

Proposition 1 (Existence and uniqueness of Vj,k).

Fix any k > 1, and suppose that the expected payoff to a buyer when a period starts with k − 1

bidders present depends only on the rank of that bidder and the values of those with values lower

than her; that is, given (known) values v̂ ∈ R
k−1
+ , the j-th highest of the k − 1 bidders receives

expected payoff Vj,k−1(v̂j, . . . , v̂k−1). Then the expected payoff of the j-th highest of k bidders,

for all j = 1, . . . , k, is given by Vj,k(v̂j, . . . , v̂k). Furthermore, given {Vj,k−1}
k
j=1, the functions

{Vj,k}
k
j=1 are uniquely determined.

Proof. The proof may be found in the appendix.

Thus, the strategies in Equation 4.3 lead to well-defined and unique value functions

for the buyers. In addition, following these strategies implies that these expected payoffs

are not dependent upon history—they do not depend upon the values or prices paid

in previous periods—but rather depend only upon the values of those ranked below a

bidder.

We may also use the indifference inherent in the definition of our conjectured equi-

librium strategy in order to illustrate the link between the various payoff functions. In

particular, we have the following

Proposition 2 (Relationship between Vl,k and V1,k).

Fix any k ∈ N. Then for all l = 1, . . . , k, the expected payoff to the l-th ranked of k buyer is equal

to that of the highest-ranked buyer when she is tied with l − 1 of her opponents; that is,

Vl,k(v̂l, . . . , v̂k) = V1,k(v̂l, . . . , v̂l, v̂l+1, . . . , v̂k).

Proof. The proof may be found in the appendix.
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As mentioned above, this result makes heavy use of the indifference conditions built

into the bidding strategies described in Equation 4.3, and in particular the indifference of

the buyer with the second-highest value. This bidder drops out at a price at which she is

indifferent between winning immediately or waiting one period. Unsurprisingly, when

the top two buyers have the same value, they must receive the same payoff, regardless

of the tie-breaking rule used to determine which one of the two should receive the ob-

ject when they drop out simultaneously. The intuition behind the relationship between

lower-ranked buyers’ payoff functions is analogous. Moreover, Proposition 2 implies that

knowledge of the functions {V1,k}
∞

k=1 is sufficient to determine the remaining value func-

tions. Thus, define the functions µ : R+ → [1 − q, 1] and η : R+ → [1 − δq, 1] by

µ(v) = 1 − q(1 − F (v)),

η(v) = 1 − δq(1 − F (v)).
(4.5)

We have the following

Theorem 1 (Characterization of Vl,k).

For all k ∈ N and all l = 1, . . . , k,

(4.6) Vl,k(v̂) = δl−1

∫ v̂l

0

µl(v′)

ηl(v′)
dv′ − (1 − δ)

k∑

j=l+1

δj−2

∫ v̂j

0

µj−1(v′)

ηj(v′)
dv′.

Proof. Note that we may write V1,k(v̂) as

V1,k(v̂) = (1 − q) [v̂1 − β2,k(v̂2, . . . , v̂k)]

+ q

[
k−1∑

j=0

∫ v̂k−j

v̂k−j+1

(

v̂1 − β2,k+1(ˆ̂v−1(v
′))
)

dF (v′) +

∫
∞

v̂1

δV1,k(v̂) dF (v′)

]

.
(4.7)

We will denote by V
(j)
1,k the partial derivative of V1,k with respect to its j-th argument.

Differentiation with respect to v̂1 then implies that

V
(1)
1,k (v̂) = 1 − q(1 − F (v̂1)) + δq(1 − F (v̂1))V

(1)
1,k (v̂) =

µ(v̂1)

η(v̂1)
.

Notice that this result is independent of k. Furthermore, note that this implies that V j
1,k(v̂)

does not depend on v̂1 for any j 6= 1; equivalently,

V
(1,j)
1,k (v̂) = 0 for all v̂ ∈ R

k
+ and j 6= 1.
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Differentiating Equation 4.7 with respect to v̂2 now leads to

V
(2)
1,k (v̂) = − (1 − q(1 − F (v̂2)) + δ(1 − q)V

(1)
1,k−1(v̂2, . . . , v̂k) + δq(1 − F (v̂1))V

(2)
1,k (v̂)

+ δq

k−2∑

j=0

∫ v̂k−j

v̂k−j+1

V
(1)
1,k (ˆ̂v−1(v

′)) dF (v′) + δq

∫ v̂1

v̂2

V
(2)
1,k (v′, v̂2, . . . , v̂k) dF (v′).

Note first that
∫ v̂1

v̂2

V
(2)
1,k (v′, v̂2, . . . , v̂k) dF (v′) = (F (v̂1) − F (v̂2)) V

(2)
1,k (v̂)

since V
(1,2)
1,k = 0. Moreover,

k−2∑

j=0

∫ v̂k−j

v̂k−j+1

V
(1)
1,k (ˆ̂v−1(v

′)) dF (v′) =

∫ v̂2

0

µ(v̂2)

η(v̂2)
dF (v′) = F (v̂2)

µ(v̂2)

η(v̂2)
.

Thus, we have

V
(2)
1,k (v̂) =

−µ(v̂2) + δµ(v̂2)
µ(v̂2)
η(v̂2)

η(v̂2)
= −

µ(v̂2) (η(v̂2) − δµ(v̂2))

η2(v̂2)
= −(1 − δ)

µ(v̂2)

η2(v̂2)
.

Note that, as with V
(1)
1,k , V

(2)
1,k depends only on the second argument of V1,k. Thus,

V
(2,j)
1,k (v̂) = 0 for all v̂ ∈ R

k−1
+ and j 6= 2.

Proceeding inductively, fix any l ∈ {3, . . . , k} for arbitrary k ∈ N, and suppose that

V
(j)
1,k (v̂) = −(1 − δ)δj−2µj−1(v̂j)

ηj(v̂j)

for all j = 2, . . . , l − 1. Differentiating Equation 4.7 with respect to v̂l yields

V
(l)
1,k(v̂) = δ(1 − q)V

(l−1)
1,k−1(v̂2, . . . , v̂k) + δq

k−l∑

j=0

∫ v̂k−j

v̂k−j+1

V
(l−1)
1,k (ˆ̂v−1(v

′)) dF (v′)

+ δq

k−1∑

j=k−l+1

∫ v̂k−j

v̂k−j+1

V
(l)
1,k(ˆ̂v−1(v

′)) dF (v′) + δq(1 − F (v̂1))V
(l)
1,k(v̂).

Since V
(l−1)
1,k does not depend on any of its arguments but the (l − 1)-th,

k−l∑

j=0

∫ v̂k−j

v̂k−j+1

V
(l−1)
1,k (ˆ̂v−1(v

′) dF (v′) = F (v̂l)V
(l−1)
1,k−1(v̂−1).

In addition, V
(l,j)
1,k = 0 for all j < l implies that

k−1∑

j=k−l+1

∫ v̂k−j

v̂k−j+1

V
(l)
1,k(ˆ̂v−1(v

′)) dF (v′) = (F (v̂1) − F (v̂l)) V
(l)
1,k(v̂).
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Thus, we have

V
(l)
1,k(v̂) = δ(1 − q)V

(l−1)
1,k−1(v̂−1) + δqF (v̂l)V

(l−1)
1,k−1(v̂−1) + δq(1 − F (v̂l))V

(l)
1,k(v̂)

=
δµ(v̂k)

[

−(1 − δ)δl−3 µl−2(v̂l)
ηl−1(v̂l)

]

η(v̂l)
= −(1 − δ)δl−2µl−1(v̂l)

ηl(v̂l)
.

By induction, the above expression holds for all l = 2, . . . , k, where k ∈ N is arbitrary.

We may then apply the boundary condition V1,k(0) = 0 in order to show that

V1,k(v̂) = V1,k(0) +
k∑

j=1

∫ v̂j

0

V
(j)
1,k (v′) dv′

j

=

∫ v̂1

0

µ(v′)

η(v′)
dv′ − (1 − δ)

k∑

j=2

δj−2

∫ v̂j

0

µj−1(v′)

ηj(v′)
dv′.(4.8)

Applying Proposition 2 and some arithmetic manipulation to the above expression then

yields the desired result that

(4.9) Vl,k(v̂) = δl−1

∫ v̂l

0

µl(v′)

ηl(v′)
dv′ − (1 − δ)

k∑

j=l+1

δj−2

∫ v̂j

0

µj−1(v′)

ηj(v′)
dv′.

To better understand this result, let us consider two “corner” cases. In particular, notice

that if q = 0 (that is, if no new buyers ever arrive on the market), then

Vl,k(v̂) =
k∑

j=l

δj−1(v̂j − v̂j+1) for all l = 1, . . . , k and any k ∈ N,

where we define v̂k+1 = 0. Thus, the expected payoff to a buyer in this case is the dis-

counted difference between consecutively ranked valuations. Note that this is also ex-

actly the externality imposed by the l-th buyer on all those ranked below her when there

is no entry, as she postpones each one’s receipt of an object by exactly one period. On the

other hand, if δ = 1 and buyers are “infinitely patient,” then for any q, we have

Vl,k(v̂) = v̂l for all l = 1, . . . , k and any k ∈ N.

In this case, buyers care only about their eventual receipt of an object, but not about

the timing of that event. Therefore, their bids are all equal to zero, and any random

assignment of objects leaves the buyers equally well off.

4.3. Equilibrium. With the characterization derived in Theorem 1, we may now refor-

mulate the bidding strategies from Equation 4.3 as

(4.10) βl,k(vi, v̂l+1, . . . , v̂k) = vi − δl−1

∫ vi

0

µl−1(v′)

ηl−1(v′)
dv′ + (1 − δ)

k∑

j=l+1

δj−2

∫ v̂j

0

µj−2(v′)

ηj−1(v′)
dv′.
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This expression allows us to demonstrate the properties of bids in the following

Proposition 3 (Information revelation and consistency of βl,k).

The buyers’ bids βl,k, where k ∈ N and l ∈ {1, . . . , k}, are strictly increasing in each buyers’ own

valuation. Furthermore, when the buyers use these bidding functions, the exit of a lower-ranked

bidder does not induce the immediate exit of any higher-ranked bidders.

Proof. See the appendix.

Note that this proposition verifies our previous assumption that buyers’ values are re-

vealed after each round—since the bidding functions are strictly increasing in each buy-

ers’ own private valuation, the price at which they drop out of the auction is an invertible

function, thereby allowing the inference of their value by their competitors. Further-

more, since the bidding functions are “consistent,” a higher-ranked bidder remains in the

auction instead of immediately exiting after a lower-ranked bidder drops out, thereby

allowing the other buyers to (eventually) deduce their value.

Finally, it remains to be shown that the bidding strategies described in Equation 4.10

are in fact an equilibrium of this model. We have the following

Theorem 2 (Equilibrium verification).

Suppose that in each period, buyers bid according to the cutoff strategies

βl,k(vi, v̂l+1, . . . , v̂k) = vi − δl−1

∫ vi

0

µl−1(v′)

ηl−1(v′)
dv′ + (1 − δ)

k∑

j=l+1

δj−2

∫ v̂j

0

µj−2(v′)

ηj−1(v′)
dv′,

where k ∈ N is the number of bidders present on the market, and l ∈ {2, . . . , k} is the number

of active bidders remaining in the current period. This strategy profile forms a Markov perfect

equilibrium of this game.

Proof. Consider any period with k ∈ N buyers on the market, and fix an arbitrary bidder

i. Suppose that all bidders other than i are using the conjectured strategy. We must show

that bidder i has no incentive to make a one-shot deviation from the collection of bidding

functions {βl,k}
k

l=2.

Note first that if vi 6= v̂1, dropping out of the auction early has no bearing on expected

future payoffs due to the memorylessness of the bidding strategies—in each period, the

process of information revelation is repeated, and hence a one-shot deviation to an early

exit will not affect the bidding behavior in future periods. On the other hand, suppose that

vi = v̂1; that is, bidder i has the highest realized valuation among those bidders present on

the market. Following the conjectured equilibrium leads to a payoff of v̂1−β2,k(v̂2, . . . , v̂k),

while deviating and exiting at a lower price leads to the second-ranked bidder winning
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and a payoff to i of δV1,k−1(v̂1, v̂3, . . . , v̂k). Letting ŵ = (v̂3, . . . , v̂k), we then have

v̂1 − β2,k(v̂2, ŵ) − δV1,k−1(v̂1, ŵ) = v̂1 − v̂2 + δ (V1,k−1(v2, ŵ) − V1,k−1(v1, ŵ))

= v̂1 − v̂2 + δ

(∫ v̂2

0

µ(v′)

η(v′)
dv′ −

∫ v̂1

0

µ(v′)

η(v′)
dv′

)

=

∫ v̂1

v̂2

η(v′) − δµ(v′)

η(v′)
dv′ =

∫ v̂1

v̂2

(1 − δ)

η(v′)
dv′.

Since v̂1 > v̂2 and η(v′) > 0 for all v′ ∈ R+, the above expression is strictly positive. Thus,

deviating and exiting the auction early leads to a strict decrease in utility if the realized

values are such that bidder i has the highest value, and does not affect payoffs otherwise.

On the other hand, bidder i also has available to her the option of remaining in the auc-

tion beyond the cutoffs specified in the conjectured equilibrium. If the realized values are

such that vi = v̂1, delaying exit will have no effect, as the other bidders will drop out of the

auction earlier than i. If, on the other hand, vi = v̂l for some l > 1, then delaying exit may

have an effect on i’s payoffs. To be precise, if i exits before the eventual winner, her payoff

will remain unchanged (again, because behavior in future periods does not depend upon

the information revealed in the current period). Thus, in order to influence her payoff, i

must remain present in the auction until all other bidders have dropped out, thereby win-

ning the auction. Winning the auction yields a payoff of v̂l − β2,k(v̂1, . . . , v̂l−1, v̂l+1, . . . , v̂k),

while following the strategy in Equation 4.10 leads to an expected payoff of δVl−1,k−1.

Letting ŵ = (v̂l+1, . . . , v̂k) and v̂−l = (v̂1, . . . , v̂l−1, ŵ), we have

v̂l − β2,k(v̂−l) − δVl−1,k−1(v̂l, ŵ) = v̂l − v̂1 + δ (V1,k(v̂1, . . . , v̂l−1, ŵ) − Vl−1,k−1(v̂l, ŵ))

= v̂l − v̂1 + δ (V1,k(v̂1, . . . , v̂l−1, ŵ) − V1,k−1(v̂l, . . . , v̂l, ŵ))

= v̂l − v̂1 + δ

(
∫ v̂1

v̂l

µ(v′)

η(v′)
dv′

− (1 − δ)
l−1∑

j=2

δj−2

∫ v̂j

v̂l

µj−1(v′)

ηj(v′)
dv′

)

=

∫ v̂1

v̂l

δµ(v′) − η(v′)

η(v′)
dv′ − (1 − δ)

l−1∑

j=2

δj−1

∫ v̂j

v̂l

µj−1(v′)

ηj(v′)
dv′

= −(1 − δ)
l−1∑

j=1

δj−1

∫ v̂j

v̂l

µj−1(v′)

ηj(v′)
dv′ < 0,

where the second line follows from Proposition 2, the third from Theorem 1, and the final

inequality from the fact that µ(v), η(v) > 0 for all v ∈ R+. Hence, deviating and exiting

the auction later than prescribed has no effect if i has the highest value, but may leads to

a strict decrease in utility if the realized values are such that vi < v̂1.
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Thus, we may conclude that bidder i has no incentive to make a one-shot deviation

from the collection of bidding functions {βl,k}
k

l=2 regardless of the realized values. Fur-

thermore, the choice of k throughout was arbitrary, implying that bidding according to

Equation 4.10 forms a Markov perfect equilibrium.

5. DYNAMIC VICKREY-CLARKE-GROVES MECHANISM

Bergemann and Välimäki (2007) develop the dynamic contribution mechanism (also

referred to as the dynamic Vickrey-Clarke-Groves mechanism), a direct mechanism that

implements the socially efficient allocation in a dynamic private value environment in

which agents receive private information over time. In particular, the mechanism that

they propose, agents receive in each period their marginal contribution to the social wel-

fare in a dynamic generalization of the standard Vickrey-Clarke-Groves Mechanism. In

this mechanism, the truthtelling strategy is incentive compatible and forms an ex-post

equilibrium. Moreover, the authors show that the sequential ascending auction yields an

identical implementation in the case of a scheduling problem with a fixed set of indepen-

dent tasks. Cavallo et al. (2007) pushes their model one step further, demonstrating that

dynamic VCG truthfully implements the socially efficient allocation in more general dy-

namic settings. In this section, we show that the equilibrium in the sequential ascending

auction discussed above is equivalent to the truthtelling equilibrium of the dynamic VCG

mechanism. In addition, we use the result of Cavallo et al. (2007) to characterize equi-

librium in the sequential ascending auction when objects are no longer available with

certainty in every period, and hence there may be (effectively) multiple new entrants par-

ticipating in a given auction.

5.1. Constant Availability of Objects. We first consider the model examined above in

which exactly one object is available for sale in every period. It is immediately obvious

that the socially efficient policy is to allocate each object to the buyer with the highest

valuation present on the market.7

Let us define W0 to be the expected value to the social planner when there are no buyers

present on the market. Then, letting v̄ denote the expected value of the distribution F , we

have

W0 = q

∫
∞

0

(v′ + δW0) dF (v′) + (1 − q)δW0 =
qv̄

1 − δ
.

Denoting by Wn(v̂) the expected value to the social planner when there are n buyers with

values v̂1 > · · · > v̂n, we may recursively solve for the planner’s value function. In

particular, we have the following

7Since a new object arrives in every period and future entrants’ values are independent of the current state,
there is no benefit to not allocating the object in any particular period. Furthermore, allocating an object to
a lower-valued buyer is inefficient due to the fact that the common discount factor δ is smaller than one.
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Proposition 4 (Planner’s payoff function).

The social planner’s payoff at the beginning of a period in which there are n buyers present on the

market with values v̂1 > · · · > v̂n is given by

(5.1) Wn(v̂) = W0 +
n∑

j=1

δj−1

∫ v̂j

0

(
µ(v′)

η(v′)

)j

dv′.

Proof. The proof is similar to that of Theorem 1, and may therefore be found in the appen-

dix.

Effectively, this theorem yields an analogue to the social planner’s payoff in the case of

a fixed number of buyers without any entry. With n buyers whose values are given by

v1 > · · · > vn, the efficient allocation yields a value to the planner given by
n∑

j=1

δj−1vj.

In our setting, however, potential entrants can and do rearrange the efficient allocation,

postponing the time at which buyers with lower valuations receive an object. Thus, their

contribution to social welfare must take this effect into account. So, consider the buyer

with the highest valuation v̂1. If we increase his valuation by some infintesimal amount,

the planner gains an equal amount with probability 1 − q(1 − F (v̂1)), the probability that

no new entrant arrives with a higher value. On the other hand, with the complementary

probability q(1 − F (v̂1)), assignment of the object to our buyer (and the realization of the

planner’s gain) is postponed. Thus, the benefit from the increase in v̂1 is

(1 − q(1 − F (v̂1))) + q(1 − F (v̂1))δ [(1 − q(1 − F (v̂1))) + q(1 − F (v̂1))δ · · · ]

=
∞∑

m=0

(δq(1 − F (v̂1)))
m (1 − q(1 − F (v̂1)) =

1 − q(1 − F (v̂1))

1 − δq(1 − F (v̂1))
.

Integrating this ratio therefore captures the total contribution (relative to assigning the

object to a buyer with value 0) of the high-value buyer. Analogous reasoning follows for

the remaining buyers.

We may then use this result to provide an interpretation for the buyer payoff functions

characterized in Theorem 1. In particular, each buyer’s expected payoff at any point in

time is simply her marginal contribution to the social welfare. This is stated formally as

Theorem 3 (Relationship between V and W ).

For any n ∈ N and any k ∈ {1, . . . , n}, the expected payoff of the k-th ranked buyer is equal to

her marginal contribution to the social welfare; that is,

(5.2) Vk,n(v̂) = Wn(v̂) − Wn−1(v̂−k).
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Proof. The proof proceeds via straightforward arithmetic:

Wn(v̂) − Wn−1(v̂−k) =

[

W0 +
n∑

j=1

δj−1

∫ v̂j

0

µj(v′)

ηj(v′)
dv′

]

−

[

W0 +
k−1∑

j=1

δj−1

∫ v̂j

0

µj(v′)

ηj(v′)
dv′ +

n∑

j=k+1

δj−2

∫ v̂j

0

µj−1(v′)

ηj−1(v′)
dv′

]

= δk−1

∫ v̂k

0

µk(v′)

ηk(v′)
dv′ +

n∑

j=k+1

δj−2

∫ v̂j

0

(

δ
µj(v′)

ηj(v′)
−

µj−1(v′)

ηj−1(v′)

)

dv′

= δk−1

∫ v̂k

0

µk(v′)

ηk(v′)
dv′ − (1 − δ)

n∑

j=k+1

δj−2

∫ v̂j

0

µj−1(v′)

ηj(v′)
dv′

= Vk,n(v̂).

Note that we may rewrite this marginal contribution to social welfare in terms of the

revised scheduling of future assignments. In particular, the removal of the k-th highest

buyer from the market does not affect the order in which those with higher values receive

objects. However, all those who would receive objects after the k-th highest buyer now

receive objects one period prior to when they otherwise would have. Thus, we may write

Vk,n(v̂) =
n∑

j=k

δj−1

∫ v̂j

0

µj(v′)

ηj(v′)
dv′ −

n∑

j=k+1

δj−2

∫ v̂j

0

µj−1(v′)

ηj−1(v′)
dv′

=
n∑

j=k

δj−1

(∫ v̂j

0

µj(v′)

ηj(v′)
dv′ −

∫ v̂j+1

0

µj(v′)

ηj(v′)
dv′

)

=
n∑

j=k

δj−1

∫ v̂j

v̂j+1

µj(v′)

ηj(v′)
dv′,(5.3)

where v̂n+1 is defined to be equal to zero. Thus, the marginal contribution of a buyer,

and hence their expected payoff in the equilibrium of the sequential ascending auction

game, is exactly the difference in the scheduling of object assignments to those bidders

who have lower values.

Moreover, this demonstrates the equivalence between the dynamic marginal contri-

bution mechanism and the sequential ascending auction in this setting. Not only are

continuation payoffs identical in the two settings, but the timing of payments and object

allocations are also the same.

5.2. Random Arrival of Objects. We now consider a generalization of the setting of the

previous sections. Instead of a single object arriving with certainty in every period, we

now allow the arrival of objects to be probabilistic. In particular, at most one object arrives

on the market in each period with probability p ∈ (0, 1). Thus, the number of buyers

present on the market may increase between auctions, as it is possible for multiple new
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buyers to arrive before another object becomes available for sale.8 Notice that the socially

efficient policy remains unchanged from the previous section—when available, objects

should be allocated to the highest-valued buyer currently present on the market.

Once again, we denote by Wn(v̂) the expected value to the social planner when there

are n buyers present at the beginning of a period with (ordered) values v̂1 > · · · > v̂n. Wn

must satisfy the relationship given by

Wn(v̂) = pq

[
n−1∑

j=0

∫ v̂n−j

v̂n−j+1

(v̂1 + δWn(ˆ̂v−1(v
′))) dF (v′) +

∫
∞

v̂1

(v′ + δWn(v̂)) dF (v′)

]

+ p(1 − q) [v̂1 + δWn−1(v̂−1)] + (1 − p)q

[
n∑

j=0

δ

∫ v̂n−j

v̂n−j+1

Wn+1(ˆ̂v(v′)) dF (v′)

]

(5.4)

+ (1 − p)(1 − q) [δWn(v̂)] .

Define λ : R+ → [0, 1] by

λ(v) =
1 − δ [pq(1 − F (v)) + (1 − p)(1 − q(1 − F (v)))]

2δ(1 − p)q(1 − F (v))

−

√

1 − 2δ [pq(1 − F (v)) + (1 − p)(1 − q(1 − F (v)))] + δ2 (1 − p − q(1 − F (v)))2

2δ(1 − p)q(1 − F (v))
.

Then we have the following

Proposition 5 (Planner’s payoffs with random object arrivals).

The social planner’s expected payoff at the beginning of a period in which there are n buyers present

on the market with values v̂1 > · · · > v̂n and objects arrive randomly is given by

(5.5) Wn(v̂) = W0 + δ−1

n∑

j=1

∫ v̂j

0

λj(v′) dv′,

where W0 is a constant equal to the planner’s payoff when no buyers are present on the market.

Proof. The proof may be found in the appendix.

Thus, as in the case in which objects arrive deterministically in every period, the plan-

ner’s expected payoff is an additively separable sum of contributions from each buyer

present on the market, where the magnitude of each contribution is inversely propor-

tional to the buyer’s rank amongst her competitors (and hence the amount of time before

the contribution is realized). Although λ is not as straightforward to interpret as the ratio
µ

η
, it reflects the anticipated marginal benefit from increasing the value of the highest-

ranked buyer, taking into account the fact that multiple new entrants may arrive before

8Note that this assumption not only leads to a more general competitive environment amongst buyers, but
also leads to a greater expected delay before the assignment of an object to any given market participant.
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the next object arrives, thereby delaying the realization of the increase to the social welfare

from the increase in v̂1.

Notice that our setting satisfies the conditions discussed by Cavallo et al. (2007) for

the incentive compatible and truthful implementation of the socially efficient policy by

the dynamic marginal contribution mechanism.9 Thus, using the social planner’s payoffs

from Proposition 5, we may construct contingent transfers such that truthful revelation

of private values is an ex post equilibrium in this dynamic game. In particular, at every

point in time, each buyer receives a transfer equal to their “flow marginal contribution”

in that period. This is defined as the social welfare excluding the player in question when

making the allocation that is efficient given her existence, less the total welfare of all other

players when acting as though the player in question is not present on the market.

To make this clearer, consider a buyer i with value vi who is present on the market,

and suppose that there are n other buyers present on the market with (ordered) values

v̂1 > · · · > v̂n. Let us suppose first that vi > v̂1. Thus, if an object is available, the

efficient policy involves assigning the object to buyer i, yielding her a flow payoff of vi.

Furthermore, i should receive a transfer equal to her marginal contribution to the social

welfare, less the current-period utility she receives; this transfer may be written as

(5.6) (0 + δWn(v̂))
︸ ︷︷ ︸

Others’ welfare with i

− (v̂1 + δWn−1(v̂−1))
︸ ︷︷ ︸

Social welfare excluding i

= −v̂1 + δ (Wn(v̂) − Wn−1(v̂−1)) .

On the other hand, if an object is not available, i cannot be allocated an object in the

current period. Therefore, i receives a payoff of

(0 + δWn(v̂))
︸ ︷︷ ︸

Others’ welfare with i

− (0 + δWn(v̂))
︸ ︷︷ ︸

Social welfare excluding i

= 0.

Suppose on the other hand that i does not have the highest value. If an object is avail-

able, she will not receive it; however, she will receive a transfer of

(v̂1 + δWn−1(v̂−1))
︸ ︷︷ ︸

Others’ welfare with i

− (v̂1 + δWn−1(v̂−1))
︸ ︷︷ ︸

Social welfare excluding i

= 0.

If no object is available, i still does not receive an object, and is given a transfer of

(0 + δWn(v̂))
︸ ︷︷ ︸

Others’ welfare with i

− (0 + δWn(v̂))
︸ ︷︷ ︸

Social welfare excluding i

= 0.

In future periods, i (again) receives no transfers until she is eventually the highest-ranked

buyer, as her flow marginal contribution remains zero until that point.

9In particular, their Theorem 6 applies to the present model.
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Thus, a buyer’s expected continuation payoff at every point in time in this dynamic

Vickrey-Clarke-Groves mechanism is given by her marginal contribution to the social

welfare. Therefore, by choosing bidding functions that yield continuation payoffs equal

to these marginal contributions, we will have constructed an equilibrium of the sequential

ascending auction game. So, letting Vk,n denote the expected payoff to a buyer with the

k-th highest of the n values present at the beginning of a period, we define

(5.7) Vk,n(v̂) := Wn(v̂) − Wn−1(v̂−k) = δ−1

n∑

j=k

∫ v̂j

v̂j+1

λj(v′) dv′

In addition, denoting by βk,n the drop-out point of a bidder when there are k active bid-

ders in an auction with n buyers, define

βk,n(vi, v̂k+1, . . . , v̂n) := vi − δVk−1,n−1(vi, v̂k+1, . . . , v̂n).

We have the following

Theorem 4 (Auction equilibrium with random object arrivals).

Suppose that in each period in which an object is available, buyers bid according to the cutoff

strategies

(5.8) βk,n(vi, v̂k+1, . . . , v̂k) = vi −

∫ vi

v̂k+1

λk−1(v′) dv′ −
n∑

j=k+1

∫ v̂j

v̂j+1

λj−1(v′) dv′,

where n ∈ N is the number of buyers present on the market, and k ∈ {2, . . . , n} is the number of

active bidders remaining in the current period, and v̂n+1 = 0. Then this strategy profile forms an

efficient and fully revealing Markov perfect equilibrium of this game.10

Proof. Note first that βk,n is strictly increasing in vi for all k and n; in particular, since

λ(v′) ∈ (0, 1) for all v′ ∈ R+,

∂

∂vi

βk,n(vi, v̂k+1, . . . , v̂n) = 1 − λk−1(vi) > 0.

Furthermore, notice that

βk,n(vi, v̂k+1, . . . , v̂n) − βk+1,n(v̂k+1, . . . , v̂n) = vi − v̂k+1 −

∫ vi

v̂k+1

λk−1(v′) dv′

=

∫ vi

v̂k+1

dv′ −

∫ vi

v̂k+1

λk−1(v′) dv′

=

∫ vi

v̂k+1

(
1 − λk−1(v′)

)
dv′ > 0

10Notice that we have constructed equilibrium strategies in the sequential auction game by using the pay-
offs of the dynamic marginal contribution mechanism. A simple adaptation of this argument provides an
alternate proof of Theorem 2.
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whenever vi > v̂k+1. Thus, a lower-ranked bidder’s exit from an auction does not in-

duce the immediate exit of a higher-ranked bidder, implying that following the bidding

strategies in Equation 5.8 is efficient and fully revealing of all private information.

Note that in the sequential ascending auction game, buyers do not make any payments

unless they win an auction. Moreover, when they do win, they make a payment equal to

the drop-out point of their last remaining opponent in that auction. Following the bidding

strategies defined in Equation 5.8 implies that a bidder with value vi > v̂1 > · · · > v̂n,

when engaged in an auction, will win the auction and make a payment of

β2,n+1(v̂) = v̂1 − δV1,n(v̂) = v̂1 − δ (Wn(v̂) − Wn−1(v̂−1)) ,

where the second equality comes from the definition of Vk,n in Equation 5.7. Notice that

this payment is exactly the dynamic Vickrey-Clarke-Groves transfer described in Equa-

tion 5.6. Thus, following the bidding strategies of Equation 5.8 yields exactly the payoffs

of truthful reporting in the direct mechanism.

Finally, suppose that some player i with value vi has an incentive to deviate from the

bidding strategy. Since the cutoff bids are fully revealing, this is equivalent to i bidding as

though her value were v′

i 6= vi. Since the bidding strategies yield the same payoffs as the

dynamic Vickrey-Clarke-Groves mechanism, this implies that player i has an incentive to

misreport her type to the social planner. However, truthtelling is incentive compatible in

every period of that direct mechanism, a contradiction. Thus, no player has an incentive

to deviate—all players bidding according to the cutoff values given by Equation 5.8 is a

Markov perfect equilibrium of the sequential ascending auction game.

Not only does Theorem 4 characterize an efficient, fully revealing, and symmetric equi-

librium of the sequential ascending auction game, it also generalizes the equivalence re-

sult of the previous subsection; in a setting with random arrivals of both buyers and ob-

jects, the sequential ascending auction serves as a straightforward and intuitive indirect

mechanism that is equivalent to the dynamic marginal contribution mechanism.

6. DISCUSSION

This paper solves for a Markov perfect equilibrium in a model of online auctions.

In particular, we show that in sequential ascending auctions, objects are allocated effi-

ciently in a manner that employs the truthful revelation of private information. More-

over, the bidding strategy employed by buyers in this equilibrium has the remarkable

property of being robust to the random entry of new buyers whose valuations are pri-

vate information—in each period, all private information is revealed anew, and hence

there is no incentive for new entrants to attempt to manipulate the outcome of future
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periods by altering the information that they (truthfully) reveal upon their entry. Further-

more, we show that the sequential ascending auction in this setting is equivalent to the

dynamic marginal contribution mechanism developed and characterized by Bergemann

and Välimäki (2007) and Cavallo et al. (2007).

There are several interesting avenues for future research in this area. For example,

it would be desirable to have a fully developed model of seller behavior and competi-

tion in “overlapping” auctions, as well as introducing some notion of endogenous arrival

and entry deterrence. Another important question regards the usefulness of sequential

ascending auctions as an indirect mechanism that implements socially efficient policies

when agents are not constrained to have single-unit demand. Bergemann and Välimäki

(2007) provide an example that demonstrates the failure of the sequential ascending auc-

tion in implementing the efficient policy in one such setting; it would be useful to under-

stand how this example may be generalized. These questions are, however, left for future

work.
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APPENDIX

In order to prove Proposition 1, we will make heavy use of the following result regard-

ing closed subsets of the set of continuous real-valued functions on a Euclidean space. So,

let C(Rn
+) denote the set of all continuous real-valued functions on R

n
+ endowed with the

sup-metric topology. Furthermore, let Ck(R
n
+) denote the set of all continuous real-valued

functions on R
n
+ that do not depend on their first k ≤ n arguments. We have the following

Lemma 1 (Ck(R
n
+) is closed).

For any k ≤ n, Ck(R
n
+) is a closed subset of C(Rn

+).

Proof. Fix any convergent sequence {fm}
∞

m=1 in Ck(R
n
+), and let f ∗ ∈ C(Rn

+) denote the

limit of this sequence. Suppose that there exist distinct x, y ∈ R
n
+ such that xi = yi for

i = k + 1, k + 2, . . . , n, but

ǫ := |f ∗(x) − f ∗(y)| > 0.

Since uniform convergence implies point-wise convergence and fm converges to f ∗,

there exists Mx ∈ N such that |fm(x) − f ∗(x)| < ǫ
2

for all m > Mx. SImilarly, there exists

My ∈ N such that |fm(y)−f ∗(y)| < ǫ
2

for all m > My. Therefore, for any m > max{Mx, My},

ǫ = |f ∗(x) − f ∗(y)| ≤ |f ∗(x) − fm(x)| + |fm(x) − fm(y)| + |fm(y) − f ∗(y)|

<
ǫ

2
+ 0 +

ǫ

2
= ǫ,

a contradiction. Note that the first inequality above follows from the triangle inequality,

and the second is due to the fact that fm ∈ Ck(R
n
+) implies fm(x) = fm(y). Thus, we must

have f ∗(x) = f ∗(y); that is, f ∗ ∈ Ck(R
n
+).

Proof of Proposition 1. Let v̂ ∈ R
k
+ denote the ordered vector of values of those bidders

present at the beginning of the period, and suppose that they are commonly known. Fur-

thermore, suppose that all buyers use the bidding strategies described in Equation 4.3. If

there are no entrants, then the highest-valued buyer (without loss of generality, bidder 1)

wins the object, and pays the price

β2,k(v̂2, . . . , v̂k) = v̂2 − δV1,k−1(v̂2, . . . , v̂k).

On the other hand, if a new entrant enters with value v′, bidder 1 may no longer win

the object. Furthermore, even if she does win, the price she pays will depend upon the

realization of v′. In particular, we may write the expected payoff of bidder 1 as

V1,k(v̂) = (1 − q) [v̂1 − β2,k(v̂2, . . . , v̂k)]

+ q

[
k−1∑

j=0

∫ v̂k−j

v̂k−j+1

(

v̂1 − β2,k+1(ˆ̂v−1(v
′))
)

dF (v′) +

∫
∞

v̂1

δV1,k(v̂) dF (v′)

]

,
(A.1)
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where ˆ̂v(v′) is the ordered vector of values including the new entrant, and we define

v̂k+1 := 0. The first term (multiplied by 1− q) is bidder 1’s payoff when no entrant arrives,

while the second term is the (probability-weighted) sum of the payoffs for each possible

realized ranking of the entrant.

Substituting the definition of β2,k and β2,k+1 from Equation 4.3 and simplifying, we see

that V1,k is defined as the fixed point of the operator T1,k : C(Rk
+) → C(Rk

+) defined by

[T1,k(W )](v̂) := (1 − q) [v̂1 − v̂2 + δV1,k−1(v̂2, . . . , v̂k))]

+ q

[
∫ v̂1

0

v̂1 dF (v′) −

∫ v̂2

0

v̂2 dF (v′) −

∫ v̂1

v̂2

v′ dF (v′)

+ δ
k−1∑

j=0

∫ v̂k−j

v̂k−j+1

W (ˆ̂v−1(v
′)) dF (v′) +

∫
∞

v̂1

δW (v̂) dF (v′)

]

.

(A.2)

Fix any W,W ′ ∈ C(Rk
+) such that W ≥ W ′. Then

[T1,k(W ) − T1,k(W
′)](v̂) = δq

[ ∑k−1
j=0

∫ v̂k−j

v̂k−j+1
[W − W ′](ˆ̂v−1(v

′)) dF (v′)

+(1 − F (v̂1))[W − W ′](v̂)

]

≥ 0.

In addition, for any W ∈ C(Rk
+) and any α ∈ R++,

[T1,k(W + α)](v̂) = [T1,k(W )](v̂) + δqα.

Thus, T1,k satisfies the monotonicity and discounting conditions of Blackwell’s Contrac-

tion Lemma, and hence we may apply the Banach Fixed Point Theorem to show that V1,k

is the unique fixed point of T1,k.11

Now consider V2,n. Suppose (again without loss of generality) that bidder 1 has the

second-highest of the k values; that is, that v̂2 = v1. If there are no new entrants, then

bidder 1 loses the auction, but has the highest value in the next period. On the other

hand, if a new entrant arrives, bidder 1 will still lose the auction. However, in the next

period, her ranking depends on the realization of the new entrant’s value. Thus, we may

write her payoff as the fixed point of the operator T2,k : C(Rk
+) → C(Rk

+) defined by

[T2,k(W )](v̂) = δ(1 − q)V1,k−1(v̂2, . . . , v̂k) + q

[
k−2∑

j=0

∫ v̂k−j

v̂k−j+1

δV1,k(ˆ̂v−1(v
′)) dF (v′)

+

∫ v̂1

v̂2

δW (ˆ̂v−1(v
′)) dF (v′) +

∫
∞

v̂1

δW (v̂) dF (v′)

]

.

(A.3)

Applying exactly the same technique and steps as with T1,n, we see that T2,n is a contrac-

tion mapping on C(Rk
+). Notice that T2,k in fact maps elements of C1(R

k
+) into C1(R

k
+)

11See Section C.6 of Ok (2007) for precise statements of the results we are applying.
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itself; thus, applying Lemma 1, the unique fixed point of T2,n does not depend upon

its first argument. We may therefore, with a slight abuse of notation, write V2,k(v̂) =

V2,k(v̂2, . . . , v̂k).

Now consider any arbitrary l such that 1 < l ≤ k, and suppose that Vl−1,k ∈ Cl−2(R
k
+).

Then Vl,k is given by a fixed point of the operator Tl,k : C(Rk
+) → C(Rk

+), where Tl,k is

defined by

[Tl,k(W )](v̂) = δ(1 − q)Vl−1,k−1(v̂l, . . . , v̂k) + q

[
k−l∑

j=0

∫ v̂k−j

v̂k−j+1

δVl−1,k(ˆ̂v−1(v
′)) dF (v′)

+
k−1∑

j=k−l+1

∫ v̂k−j

v̂k−j+1

δW (ˆ̂v−1(v
′)) dF (v′) +

∫
∞

v̂1

δW (v̂) dF (v′)

]

.

(A.4)

We may again apply Blackwell’s Contraction Lemma and the Banach Fixed Point Theo-

rem to show that Vl,k is the unique fixed point of Tl,k. Furthermore, it is straightforward

to show that Tl,k maps elements of Cl−1(R
k
+) back into Cl−1(R

k
+). Therefore, again using

Lemma 1, we may write Vl,k(v̂) = Vl,k(v̂l, . . . , v̂k).

Thus, by induction, the bidding strategies in Equation 4.3 lead to unique value func-

tions
{

{Vj,k}
k

j=1

}
∞

k=1
such that, for all k and all j ≤ k, Vj,k ∈ Cj−1(R

k
+).

Proof of Proposition 2. Recall from Equation A.2 in the proof of Proposition 1 that V1,k is

defined as the unique fixed point of

[T1,k(W )](v̂) := (1 − q) [v̂1 − v̂2 + δV1,k−1(v̂2, . . . , v̂k))]

+ q

[
∫ v̂1

0

v̂1 dF (v′) −

∫ v̂2

0

v̂2 dF (v′) −

∫ v̂1

v̂2

v′ dF (v′)

+ δ
k−1∑

j=0

∫ v̂k−j

v̂k−j+1

W (ˆ̂v−1(v
′)) dF (v′) +

∫
∞

v̂1

δW (v̂) dF (v′)

]

.

Let ŵ := v̂−1. Then

V1,k(ŵ) = [T1,k(V1,k)](ŵ) = δ(1 − q)V1,k−1(v̂2, . . . , v̂k)

+ δq

[
k−2∑

j=0

∫ v̂k−j

v̂k−j+1

V1,k( ˆ̂w(v′)) dF (v′) +

∫
∞

v̂2

δV1,k(ŵ) dF (v′)

]

.

However, this is identical to the definition of T2,k given in Equation A.3, implying that,

for all k ∈ N, V1,k(v̂2, v̂2, . . . , v̂k) = V2,k(v̂2, . . . , v̂k).

Fix l > 1, and suppose that Vl−1,k(v̂l, v̂l, . . . , v̂k) = Vl,k(v̂l, . . . , v̂k) for all k ≥ l. Redefine

ŵ := ( ˆl + 1, ˆl + 1, . . . , v̂k), and consider Vl,k(ŵ). Recalling from Equation A.4 the definition
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of Tl,k, we have

Vl,k(ŵ) = [Tl,k(Vl,k)](ŵ) = δ(1 − q)Vl−1,k−1(v̂l+1, v̂l+1, . . . , v̂k)

+ q

[
k−l∑

j=0

∫ v̂k−j

v̂k−j+1

δVl−1,k( ˆ̂w(v′)) dF (v′)

+
k−1∑

j=k−l+1

∫ v̂k−j

v̂k−j+1

δVl,k( ˆ̂w(v′)) dF (v′) +

∫
∞

v̂1

δVl,k(ŵ) dF (v′)

]

= δ(1 − q)Vl,k−1(v̂l+1, . . . , v̂k)

+ q

[
k−l−1∑

j=0

∫ v̂k−j

v̂k−j+1

δVl,k( ˆ̂w(v′)) dF (v′) +

∫
∞

v̂l+1

δVl,k(ŵ) dF (v′)

]

.

The above is a reformulation of the expression for Tl+1,k, taking into account that the

fixed point of this operator lies in Cl(R
k
+). Since Vl,k(ŵ) is a fixed point of the operator,

the uniqueness result from Proposition 1 implies that Vl+1,k(v̂l+1, . . . , v̂k) = Vl,k(ŵ) for all

k ≥ l + 1.

Thus, by induction on l, we have established that, for arbitrary k ∈ N and for all l =

1, . . . , k, Vl,k(v̂l, . . . , v̂k) = V1,k(v̂l, . . . , v̂l, v̂l+1, . . . , v̂k).

Proof of Proposition 3. To prove the first part of this proposition, it suffices to simply differ-

entiate the bid function βl,k with respect to the bidder’s value vi. In particular, we have,

for all k ∈ N and l ∈ {1, . . . , k},

∂

∂vi

βl,k(vi, v̂l+1, . . . , v̂k) = 1 −

(

δ
µ(vi)

η(vi)

)l−1

.

However, δ ∈ (0, 1) implies µ(v)
η(v)

∈ (0, 1), and hence ∂
∂vi

βl,k(vi, v̂l+1, . . . , v̂k) > 0.

As for the second part of this proposition, let ŵ = (v̂l+1, . . . , v̂k) and note that

βl,k(vi, ŵ) − βl+1,k(ŵ) = vi − δVl−1,k−1(vi, ŵ) − v̂l+1 + δVl,k−1(ŵ)

= (vi − v̂l+1) − δ(V1,k−1(vi, . . . , vi, ŵ) − V1,k−1(v̂l+1, . . . , v̂l+1, ŵ))

= (vi − v̂l+1) − δ

[
∫ vi

v̂l+1

µ(v′)

η(v′)
dv′ − (1 − δ)

l∑

j=2

δj−2

∫ vi

v̂l+1

µj−1(v′)

ηj(v′)
dv′

]

=

∫ vi

v̂l+1

η(v′) − δµ(v′)

η(v′)
dv′ + (1 − δ)

l∑

j=2

δj−1

∫ vi

v̂l+1

µj−1(v′)

ηj(v′)
dv′

= (1 − δ)
l∑

j=1

δj−1

∫ vi

v̂l+1

µj−1(v′)

ηj(v′)
dv′.
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Since µ(v), η(v) > 0 for all v ∈ R+, this expression is positive if, and only if, vi > v̂l+1. Thus,

the exit of a lower-ranked bidder does not induce the immediate exit of a higher-ranked

bidder who is using the bidding strategy given in Equation 4.10.

Proof of Proposition 4. We begin by showing that W1 has the desired form and then proceed

inductively. Note that W1 is a fixed point of the operator T̂1 : C(R+) → C(R+) defined by

(A.5) [T̂ (g)](x) = (1 − q)(x + δW0) + q

[∫ x

0

(x + δg(y)) dF (y) +

∫
∞

x

(y + δg(x)) dF (y)

]

.

This operator is clearly a self-map from C(R+) into itself. Furthermore, it is straightfor-

ward to see that T̂1 is a contraction mapping. Fix any g, g′ ∈ C(R+) such that g′ > g.

Then

[T̂1(g
′ − g)](x) = δq

[∫ x

0

(g′(y) − g(y)) dF (y) + (1 − F (x))(g′(x) − g(x))

]

> 0.

Furthermore, for any g ∈ C(R+) and any α ∈ R++,

[T̂1(g + α)](x) = [T̂1(g)](x) + δqα.

Since δq < 1, we may apply Blackwell’s Contraction Lemma and the Banach Fixed Point

Theorem, implying that T̂1 has a unique fixed point W1 such that

W1(v̂1) = (1 − q)(v̂1 + δW0) + q

[∫ v̂

0

(v̂ + δW1(v
′)) dF (v′) +

∫
∞

v̂

(v′ + δW1(v̂)) dF (v′)

]

.

Differentiating this expression with respect to v̂1 yields

W ′

1(v̂1) = (1 − q) + qF (v̂1) + δq(1 − F (v̂))W ′

1(v̂) =
µ(v̂1)

η(v̂1)
.

Finally, note that W1(0) = W0, since a buyer with value zero adds nothing to the social

welfare. Therefore, by the Fundamental Theorem of Calculus, we have

(A.6) W1(v̂1) = W0 +

∫ v̂1

0

µ(v′)

η(v′)
dv′.

Now consider Wn(v̂) for arbitrary n > 1, and suppose that Wn−1 takes the desired

form.12 Wn is defined to be a fixed point of the operator T̂n : C(Rn
+) → C(Rn

+) defined by

[T̂n(g)](x) = (1 − q)(x1 + δWn−1(x−1))

+ q

[ n−1∑

j=0

∫ xn−j

xn−j+1

(x1 + δg(x2, . . . , xn−j, y, xn−j+1, . . . , xn)) dF (y)

+

∫
∞

x1

(y + δg(x)) dF (y)

]

.

(A.7)

12Notice that this implies that all of the cross-derivatives of Wn−1 are identically zero.
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Note that for any g, g′ ∈ C(Rn
+) such that g′ > g, we have

[T̂n(g′ − g)](x) = δq

[ n−1∑

j=0

∫ xn−j

xn−j+1

[g′ − g](x2, . . . , xn−j, y, xn−j+1, . . . , xn) dF (y)

+ (1 − F (x1)(g
′(x) − g(x))

]

.

Furthermore, for any g ∈ C(Rn
+) and any α ∈ R++,

[T̂n(g + α)](x) = [T̂n(g)](x) + δqα.

Since δq < 1, Blackwell’s monotonicity and discounting conditions are satisfied. Thus,

Blackwell’s Contraction Lemma and the Banach Fixed Point Theorem imply that T̂n has a

unique fixed point Wn such that

Wn(v̂) = (1 − q)(v̂1 + δWn−1(v̂−1))

+ q

[ n−1∑

j=0

∫ v̂n−j

v̂n−j+1

(v̂1 + δWn(v̂2, . . . , v̂n−j, v
′, v̂n−j+1, . . . , v̂n)) dF (v′)

+

∫
∞

v̂1

(v′ + δWn(v̂)) dF (v′)

]

.

(A.8)

Differentiating this expression implicitly with respect to v̂1 yields

W (1)
n (v̂) = (1 − q) + qF (v̂1) + δq(1 − F (v̂1))W

(1)
n (v̂) =

µ(v̂1)

η(v̂1)
.

Note that this expression is independent of n and of v̂j for j 6= 1, implying that W
(1,j)
n is

identically zero for all j 6= 1.

Similarly, implicit differentiation with respect to v̂2 yields

W (2)
n (v̂) = (1 − q)δW

(1)
n−1(v̂−1) + δq

[ n−2∑

j=0

∫ v̂n−j

v̂n−j+1

W (1)
n (ˆ̂v−1(v

′)) dF (v′)

+

∫ v̂1

v̂2

W (2)
n (v′, v̂) dF (v′) + (1 − F (v̂1))W

(2)
n (v̂)

]

,

where ˆ̂v(v̂) is the re-ordering of v̂ and v′. Since W 1,j
n is identically zero,

n−2∑

j=0

∫ v̂n−j

v̂n−j+1

W (1)
n (ˆ̂v−1(v

′)) dF (v′) = F (v̂2)
µ(v̂2)

η(v̂2)
.

Furthermore, W
(2,1)
n = 0 implies that

∫ v̂1

v̂2

W (2)
n (v′, v̂) dF (v′) + (1 − F (v̂1))W

(2)
n (v̂) = (1 − F (v̂2))W

(2)
n (v̂).
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Finally, our inductive hypothesis implies that

W
(1)
n−1(v̂−1) =

µ(v̂2)

η(v̂2)
.

Thus, we may conclude that

(A.9) W (2)
n = δ(1 − q)

µ(v̂2)

η(v̂2)
+ δq

[

F (v̂2)
µ(v̂2)

η(v̂2)
+ (1 − F (v̂2))W

(2)
n (v̂)

]

= δ

(
µ(v̂2)

η(v̂2)

)2

.

Once again, note that this expression is independent of n and of v̂j for j 6= 2, implying

that W 2,j
n is identically zero for all j 6= 2.

Proceeding inductively, consider the derivative of Wn with respect to its k-th argument,

where k ≤ n. We have

W (k)
n (v̂) = (1 − q)δW

(k−1)
n−1 (v̂−1) + δq

[ n−k∑

j=0

∫ v̂n−j

v̂n−j+1

W (1)
n (ˆ̂v−1(v

′)) dF (v′)

+
n−1∑

j=n−k+1

∫ v̂n−j

v̂n−j+1

W (k)
n (ˆ̂v1(v

′)) dF (v′) + (1 − F (v̂1))W
(k)
n (v̂)

]

.

Applying the same simplifications as above, we have

W (k)
n = δ(1 − q)W

(k−1)
n−1 (v̂−1) + δq

[

F (v̂k)W
(k−1)
n−1 (v̂−1) + (1 − F (v̂k))W

(k)
n (v̂)

]

=
δµ(v̂k)

η(v̂k)
W

(k−1)
n−1 (v̂−1)

= δk−1

(
µ(v̂k)

η(v̂k)

)k

.(A.10)

Finally, note that Wn(0, . . . , 0) = W0 since, as with one agent with value zero, assigning

an object to a “null” agent yields no increase in social welfare. Thus, we may conclude

that, as desired,

(A.11) Wn(v̂) = W0 +
n∑

j=1

δj−1

∫ v̂j

0

(
µ(v′)

η(v′)

)j

dv′.

In order to prove Proposition 5, we will need to make use of the following result.

Lemma 2 (W is Additively Separable).

The social planner’s expected payoff function in the case of random object arrivals is an additively

separable function of the (ordered) values of the the buyers present on the market.

Proof. Recall that the socially optimal policy in this setting is for the planner to assign

an object—whenever it is available—to the highest-valued buyer on the market. Since

the arrival process of new buyers and the realized valuations of these new entrants are

independent of the number of agents present on the market, a marginal increase in the
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value of the highest-valued buyer present on the market does not affect the planner’s

expectations of future realized values, nor does it impact the anticipated plan of object

assignments. Therefore, for any values v̂1 > · · · > v̂n > v̂n+1, we must have

∂

∂v̂1

Wn(v̂1, . . . , v̂n) =
∂

∂v̂1

Wn+1(v̂1, . . . , v̂n+1).

Similarly, for any k = 2, . . . , n, a marginal increase in v̂k, the value of the k-th highest-

ranked buyer, affects neither future arrivals and valuations nor the planner’s optimal

plan of action. Therefore, we must have

∂

∂v̂k

Wn(v̂1, . . . , v̂n) =
∂

∂v̂k

Wn+1(v̂1, . . . , v̂n+1).

Thus, for any n ∈ N and any k = 1, . . . , n,

(A.12) W (k)
n (v̂1, . . . , v̂n) = W

(k)
n+1(v̂1, . . . , v̂n, v̂n+1),

where v̂1 > · · · > v̂n > v̂n+1.

Now consider any n ∈ N and ordered values v̂1 > · · · > v̂n. Equation A.12 implies that

W (1)
n (v̂1, . . . , v̂n) = W

(1)
n−1(v̂1, . . . , v̂n−1) = W

(1)
n−2(v̂1, . . . , v̂n−2) = · · · = W

(1)
1 (v̂1).

Therefore, it must be the case that

W
(1,2)
2 (v̂1, v̂2) =

∂

∂v̂2

W
(1)
2 (v̂1, v̂2) =

∂

∂v̂2

W
(1)
1 (v̂1) = 0.

Straightforward induction therefore yields

W
(1,k)
k (v̂1, . . . , v̂k) =

∂

∂v̂k

W
(1)
k (v̂1, . . . , v̂k) =

∂

∂v̂k

W
(1)
k−1(v̂1, . . . , v̂k−1) = 0

for all k = 2, . . . , n. Hence, it must be the case that, for any k 6= 1, W
(1)
k (v̂1, . . . , v̂k) is a

function of v̂1 alone.

Since Equation A.12 implies that

W (2)
n (v̂1, . . . , v̂n) = W

(2)
n−1(v̂1, . . . , v̂n−1) = W

(2)
n−2(v̂1, . . . , v̂n−2) = · · · = W

(2)
2 (v̂1, v̂2),

we may perform a similar exercise as above. In particular,

W
(2,3)
3 (v̂1, v̂2, v̂3) =

∂

∂v̂3

W
(2)
3 (v̂1, v̂2, v̂3) =

∂

∂v̂3

W
(2)
2 (v̂1, v̂2) = 0.

The same inductive reasoning again leads to the conclusion that

W
(2,k)
k (v̂1, . . . , v̂k) =

∂

∂v̂k

W
(2)
k (v̂1, . . . , v̂k) =

∂

∂v̂k

W
(2)
k−1(v̂1, . . . , v̂k−1) = 0

for all k = 3, . . . , n. Combining this with the fact that W
(1)
k is independent of its second

argument yields the conclusion that W
(2)
k (v̂1, . . . , v̂k) is a function of v̂2 alone. Proceeding
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inductively in this manner, we may conclude that

(A.13) W (j,k)
n (v̂1, . . . , v̂n) = 0 for all j 6= k,

where j, k ∈ {1, . . . , n}.

Thus, Equation A.13 implies that, for any n ∈ N and any k = 1, . . . , n, we may write

W (k)
n (v̂1, . . . , v̂n) = gk,n(v̂k)

for some real-valued function gk,n. Combining this with Equation A.12 immediately im-

plies that

gk,n = gk,m for all m ≥ n.

Therefore, there exists a sequence of real-valued functions {gk}
∞

k=1 such that

W (k)
n (v̂1, . . . , v̂n) = gk(v̂k)

for every k = 1, . . . , n and arbitrary n ∈ N. Therefore, applying the Fundamental Theorem

of Calculus allows us to conclude that, for arbitrary n,

(A.14) Wn(v̂1, . . . , v̂n) = Wn(0, . . . , 0) +
n∑

k=1

∫ v̂k

0

gk(v
′) dv′;

that is, Wn is additively separable in its arguments.

Proof of Proposition 5. Note that we may rewrite Equation 5.4 as

Wn(v̂) = pq

[

F (v̂1)v̂1 +

∫
∞

v̂1

v′ dF (v′) + δ

n−1∑

j=0

∫ v̂n−j

v̂n−j+1

Wn(ˆ̂v−1(v
′)) dF (v′) + δ(1 − F (v̂1))Wn(v̂)

]

+ p(1 − q) [v̂1 + δWn−1(v̂−1)] + (1 − p)q

[
n∑

j=0

δ

∫ v̂n−j

v̂n−j+1

Wn+1(ˆ̂v(v′)) dF (v′)

]

+ (1 − p)(1 − q) [δWn(v̂)] .

Differentiating this expression with respect to v̂1 yields

W (1)
n (v̂) = p[1 − q(1 − F (v̂1))] + δ[pq(1 − F (v̂1)) + (1 − p)(1 − q)]W (1)

n (v̂)

+ δ(1 − p)q
n−1∑

j=0

∫ v̂n−j

v̂n−j+1

W
(1)
n+1(

ˆ̂v(v′)) dF (v′) + δ(1 − p)q

∫
∞

v̂1

W
(2)
n+1(v

′, v̂) dF (v′).
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Similarly, differentiating Wn(v̂) with respect to v̂k for k > 1 yields

W (k)
n (v̂) = δpq

[
n−k−1∑

j=0

∫ v̂n−j

v̂n−j+1

W (k−1)
n (ˆ̂v−1(v

′)) dF (v′) +
n−1∑

j=n−k

∫ v̂n−j

v̂n−j+1

W (k)
n (ˆ̂v−1(v

′)) dF (v′)

]

+ δpq(1 − F (v̂1))W
(k)
n (v̂) + δ(1 − p)q

[
n−k∑

j=0

∫ v̂n−j

v̂n−j+1

W
(k)
n+1(

ˆ̂v(v′)) dF (v′)

]

+ δ(1 − p)q

[
n∑

j=n−k+1

∫ v̂n−j

v̂n−j+1

W
(k+1)
n+1 (ˆ̂v(v′)) dF (v′)

]

+ δp(1 − q)W
(k−1)
n−1 (v̂−1)

+ δ(1 − p)(1 − q)W (k)
n (v̂).

Applying Lemma 2 allows us to denote W
(m)
n (v̂) by gm(v̂m), where m, n ∈ N and m ≤ n.

Thus, we may rewrite the two expressions above as

g1(v) = δ [pq(1 − F (v)) + (1 − p)(1 − q(1 − F (v)))] g1(v)

+ δ(1 − p)q(1 − F (v))g2(v) + p [1 − q(1 − F (v))]
(A.15)

and, for k > 1,

gk(v) = δ [pq(1 − F (v)) + (1 − p)(1 − q(1 − F (v)))] gk(v)

+ δ(1 − p)q(1 − F (v))gk+1(v) + δp [1 − q(1 − F (v))] gk−1(v).
(A.16)

Note, however, that Equation A.16 also holds for k = 1 if we define

g0(v) :=
1

δ
for all v ∈ R+.

Thus, the partial derivatives of Wn are determined by a second-order difference equation.

Defining

ym(v) =

[

gm+1(v)

gm(v)

]

and A(v) =

[

a(v) b(v)

1 0

]

,

where

a(v) =
1 − δ [pq(1 − F (v)) + (1 − p)(1 − q(1 − F (v)))]

δ(1 − p)q(1 − F (v))
and b(v) = −

δp [1 − q(1 − F (v))]

δ(1 − p)q(1 − F (v))
,

we may rewrite this difference equation as the first-order system

ym+1(v) = A(v)ym(v).

Induction immediately yields the solution

(A.17) ym(v) = [A(v)]m y0(v).
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We denote by λ1(v) and λ2(v) the eigenvalues of A(v); in fact, these can be shown to

take the form

λ1(v) =
a(v) −

√

a2(v) + 4b(v)

2
and λ2(v) =

a(v) +
√

a2(v) + 4b(v)

2
.

Furthermore, since p, q, δ ∈ (0, 1) and F (v) ∈ [0, 1] for all v ∈ R+, arithmetic manipulation

yields

λ2(v) > 1 > λ1(v) > 0 for all v ∈ R+.

Finally, note that A(v) is diagonalizable, and, moreover,

[A(v)]m =
1

λ2(v) − λ1(v)

[

λm+1
2 (v) − λm+1

1 (v) λm+1
1 (v)λ2(v) − λ1(v)λm+1

2 (v)

λm
2 (v) − λm

1 (v) λm
1 (v)λ2(v) − λ1(v)λm

2 (v)

]

.

Thus, Equation A.17 may be rewritten as

gm(v) =
1

λ2(v) − λ1(v)
[(λm

2 (v) − λm
1 (v)) g1(v) + (λm

1 (v)λ2(v) − λ1(v)λm
2 (v)) g0(v)]

=
λm

2 (v)

λ2(v) − λ1(v)
(g1(v) − λ1(v)g0(v)) +

λm
1 (v)

λ2(v) − λ1(v)
(λ2(v)g0(v) − g1(v)) .(A.18)

Since λ2(v) > 1, the first term in Equation A.18 is divergent unless

g1(v) = λ1(v)g0(v).

Such a divergence would, of course, be contradictory; the marginal impact of an increase

of the m-th highest value on the social welfare must be bounded above by δm−1, as the

benefit of this increase is not realized for at least m periods. Thus,

(A.19) gm(v) = λm
1 (v)g0(v).

Recalling that Wm
n (v̂) = gm(v̂m) and that g0(v) = δ−1, application of Lemma 2 allows us to

conclude that

(A.20) Wn(v̂) = Wn(0) + δ−1

n∑

j=1

∫ v̂j

0

λj
1(v

′) dv′.

Finally, note that any agent with a “null” value adds nothing to the social welfare, and

hence the planner’s payoff when they are not present is given by Wn(0) = W0, where

W0 = pq

[∫
∞

0

(v′ + δW0) dF (v′)

]

+ p(1 − q) [δW0]

+ (1 − p)q

[∫
∞

0

δW1(v
′) dF (v′)

]

+ (1 − p)(1 − q) [δW0]

=
q

1 − δ

[

p

∫
∞

0

v′ dF (v′) + (1 − p)

∫
∞

0

(
∫ v′′

0

λ1(v
′) dv′

)

dF (v′′)

]

.
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