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1. Introduction

Numeraire invariance is a well-known technique in option pricing and hedging theory. It
takes a convenient asset as the numeraire, as if it were the medium of exchange, and expresses
all other asset and option prices in units of this numeraire. Since the price of the numeraire
relative to itself is identically 1 at all times, this reduces pricing and hedging to a market with
zero-interest rates. A somewhat controversial implication is that the modelling focus should
be more on the asset price ratios rather than on the asset price processes themselves.

The idea of numeraire invariance is already implicit in Merton (1973), and since then many
authors have contributed to its development. After a brief survey of its origins, we state and
prove the numeraire invariance principle for general semimartingale price processes, following
essentially Duffie [3]. We then present its application to unique pricing in arbitrage-free
models and discuss nondegeneracy and unique hedging.

Next, using numeraire invariance, we show that if the underlying asset ratios follow a
diffusion, then a payoff that is a homogeneous function of the asset payoffs can always be
replicated (subject to mild growth conditions) and hence also uniquely priced. The deltas
(hedge ratios) are given by the partial derivatives of the either the “projective option price
function,” or equivalently, of the “homogenous option price function,” either of which is the
solution of a PDE. We illustrate the classical multivariate lognormal case from this angel.

To illustrate replication under the presence of jumps, we work out a little-known exponential
Poisson model, first for the exchange option, and then for a multivariate generalization with
an arbitrary homogenous payoff function. Here, the option price function satisfies a partial
difference equation, and the deltas are given by partial differences. We mention a connection
to martingale representation, from which the explicit formulae are actually drawn.

In the final section, we first highlight the role played by homogeneity, emphasizing that if the
covariation matrix of the underlying assets is nondegenerate, then nonhomogeneous payoffs
cannot be replicated. We then extend the discussion to assets with dividends. Finally, we
derive the ubiquitous bivariate lognormal exchange option formula by a change of measure.

We will confine the discussion to European options with expiration denoted T .

†Part-time Professor of Applied Mathematics, FELAB, University of Twente.
‡Cofounder, AtomPro Structured Products, http://www.atomprostructuredproducts.nl/index.html.
††Version 14-Feb-2008. For possible future updates visit wwwhome.math.utwente.nl/˜ jamshidianf.
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2. A brief survey

2.1. Merton’s extension of Black-Scholes. Let be given a zero-dividend asset with price
process A = (At). Let C = (Ct) denote the price process of a call option on A with strike
price K and expiration T , which we wish to find. So, the option payoff is

CT = (AT − K)+.

To replicate C, another asset is needed. Black-Scholes (1973) take as the second asset a
money market of the form ert. Merton’s idea is to take the T -maturity zero-coupon bond B
with principal K, i.e., BT = K. The payoff can now be expressed in terms of both assets:

CT = (AT − BT )+.

The payoff’s homogeneity allows one to factor out B:

FT = (XT − 1)+,

where

X :=
A

B
, F :=

C

B
,

are the forward prices of the asset and the option. Merton (1973) argues that it is sufficient
to replicate the forward option by trading the forward asset, i.e., to find a δ such that

dFt = δtdXt.

The same δ should then serve as the hedge ratio with respect to asset A.
Assuming Ft = f(t, Xt) for some f , by Itô’s formula the equation dF = δdX is equivalent

to the following formula for δt and PDE for f(t, x) with terminal condition f(T, x) = (x−1)+:

δt =
∂f

∂x
(t, Xt),

∂f

∂t
+

1

2
σ2

t x
2 ∂2f

∂x2
= 0,

where σt is the forward-price volatility (assumed deterministic by Merton):

d[X]t = σ2
t X

2
t dt.

(The first (second) equation follows by equating the martingale (drift) terms of the two
equations for dF .) Thus by “factoring out” asset B, the problem with a stochastic interest
rate reduces to a call option struck at 1 in the Black-Scholes model with zero interest rate.

More generally, when asset A pays dividends at a constant rate y, the above applies with
the forward asset price Xt = e−y(T−t)At/Bt.

2.2. Margrabe’s extension to exchange options. Margrabe (1978) showed that Merton’s
argument extends to an option to exchange any two assets A and B. His idea was to replicate
the exchange option price process C according to the SDE

dCt = δA
t dAt + δB

t dBt.

Assuming Ct = c(t, At, Bt) for some function c(t, a, b), he noted that by Itô’s formula this
equation is implied by the system of equations

δA
t =

∂c

∂a
(t, At, Bt), δB

t =
∂c

∂b
(t, At, Bt),

∂c

∂t
+

1

2
σ2

Aa2 ∂2c

∂a2
+

1

2
σ2

Bb2 ∂2c

∂b2
+ σAσBρ ab

∂2c

∂a∂b
= 0,
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where σA and σB are the volatilities of A and B and ρ is their correlation, assumed constants.
The converse is also true if |ρ| 6= 1. (Note however, this nondegeneracy condition excludes
the Black-Scholes and 1-factor short-rate diffusion models).

Margrabe stated that if the option payoff is homogenous of degree 1 in (a, b) (such as
(a−b)+ as in the case of an exchange option), then the PDE above should have a homogenous
solution c(t, a, b). But then, Euler’s formula for homogenous functions implies c = a∂c/∂a +
b∂c/∂b. Thus if we choose δA = ∂c/∂a and δB = ∂c/∂b as above, we get

Ct = δA
t At + δB

t Bt.

Together with the equation dC = δAdA+ δBdB, this means these deltas are self financing .
Merton had made similar observations and provided the homogenous solution c(t, a, b) of

the above PDE by reducing it to the 1-dimensional PDE of Sec. 2.1 via the transformation

f(t, x) = c(t, a, b)/b = c(t, x, 1), x = a/b,

with volatility σ in the 1-dimensional PDE given by that of asset ratio A/B:

σ2 = σ2
A + σ2

B − 2σAσBρ.

Coining the term numeraire, Margrabe presented (acknowledging Stephen Ross) a finan-
cial interpretation of Merton’s algebraic reduction. He proposed to measure the asset and
option prices in terms of asset B, as in a barter economy where B serves as the medium of
exchange. This provided the intuition behind Merton’s reduction to zero interest rates.

Note, the exchange option is replicated here by dynamic trading in only assets A and B.

2.3. Equivalent martingale measures. Harrison and Kreps (1979) and Harrison and Pliska
(1981) pioneered the application of martingale theory to option pricing. They showed that
no-arbitrage in the sense of no free lunches is essentially equivalent to the existence of an
equivalent measure under which discounted prices are martingales. (See [2] for the general
theory.) Options can thus be priced by computing the discounted payoff expectation.

For discounting, they utilized the finite variation money market numeraire exp(
∫ t

0 rsds),
where rt is the instantaneous interest rate. This included the Black-Scholes and short-rate
models, but did not address Merton’s and Margrabe’s approach where the numeraire had
infinite variation. With the advent of the forward measure, it was clear that the discounting
could also be done with a zero-coupon bond, and this often simplified the calculation as
discounting was in effect performed outside the expectation (e.g., [7] and [4]).

Another useful numeraire, “the annuity”, was used by Neuberger (1990) to price interest-
rate swaptions. It serves as the industry standard to this date for quoting swaption volatilities.
Eventually, El-Karoui, Geman and Rochet (1995) showed that one can change numeraire

to any asset B and associate to it an equivalent probability measure under which A/B is a
martingale for all other assets A. In some problems (such as certain Asian options or the
passport option), it is advantageous to take the underlying asset itself as the numeraire.

3. The principle of numeraire invariance

We fix a stochastic basis (Ω,F , (Ft), P) with a finite time horizon t ∈ [0, T ]. We denote
the stochastic integral of a locally bounded predictable integrand θ = (θ1, · · · , θn) against a
(vector) semimartingale X = (X1, · · · , Xn) by

θ · X =
n∑

i=1

∫ ·

0
θi
tdX i

t .
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In what follows, A will denote a vector semimartingale:

A = (A1, · · · , Am). (m ≥ 2)

Each Ai represents the observable price process of a traded (or replicable) zero-dividend
asset. When Am, Am

− > 0, we will set

Xi :=
Ai

Am
,

and
X := (X1, · · · , Xn), n := m − 1.

3.1. Self-financing trading strategies (SFTS). A SFTS δ for a semimartingale A =
(A1, · · · , Am) is a locally bounded predictable process δ = (δ1, · · · , δm) such that

(3.1)

m∑
i=1

δiAi =

m∑
i=1

δi
0A

i
0 + δ · A.

This is equivalent to saying that C = C0 + δ · A, i.e.,

(3.2) dC =
m∑

i=1

δidAi,

where C is the SFTS price process defined by

(3.3) C :=

m∑
i=1

δiAi.

Clearly C is then a semimartingale, ∆C =
∑

i δ
i∆Ai, and thus

C− =

m∑
i=1

δiAi
−.

The hedge ratio δi
t is interpreted as the number of shares invested in asset Ai at time t.

3.2. Numeraire invariance. Let δ be a SFTS for A and S be any (scalar) semimartingale.
Then δ is also a SFTS for SA = (SA1, · · · , SAm), i.e., (with C :=

∑m
1 δiAi) ,

(3.4) d(SC) =

m∑
i=1

δid(SAi).

Proof. By Itô’s product rule, then substituting for dC and C− and regrouping, followed by
Itô’s product rule again,

d(SC) = S−dC + C−dS + d[S, C]

= S−

m∑
i=1

δidAi +

m∑
i=1

δiAi
−dS +

m∑
i=1

δid[S, Ai]

=
m∑

i=1

δi(S−dAi + Ai
−dS + d[S, Ai]) =

m∑
i=1

δid(SAi). �

To our best knowledge, this result first appeared in the 1992 edition of Duffie [3], where
it is called the numeraire invariance theorem . Duffie gives the same proof, but assumes
that the Ai are (continuous) Itô processes. The only difference in the general case here is the
use of left limits, primarily, substituting C− =

∑m
1 δiAi

− instead of C =
∑m

1 δiAi.
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Interpreting S as an exchange rate, numeraire invariance means that the self-financing
property is independent of the choice of base currency, which is intuitively obvious.

If S, S− > 0, then 1/S is also a semimartingale. The result applied to 1/S implies that:

δ is a SFTS for A if and only if it is one for SA. Thus, if (3.3) holds then (3.2) and (3.4)
are equivalent.

3.3. Taking an asset as numeraire. Assume now Am, Am
− > 0, and apply the result to

S = 1/Am. It follows that

δ is a SFTS for A if and only if it is a SFTS for A/Am = (X, 1), i.e., if and only if
F := C/Am satisfies F = F0 + δ′ · X where δ′ := (δ1, · · · , δn). Clearly then

δm = F −
n∑

i=1

δiXi = F− −
n∑

i=1

δiXi
−. (F :=

C

Am
)

Conversely, given δ′ = (δ1, · · · , δn) and an F0, then with δm as above, δ = (δ′, δm) is a
SFTS for (X, 1) with price process F := F0+δ′ ·X. Hence by numeraire invariance δ is a SFTS
for A with price process C = AmF . Numeraire invariance thus reduces dimensionality by one:

In order to find a SFTS δ with a given time-T payoff CT , it is sufficient to find a process
δ′ and an F0 such that FT = CT /Am

T , where F = F0 + δ′ ·X, or equivalently to find a process
F such that FT = CT /Am

T and dF =
∑n

1 δidXi for some δ1, · · · , δn.

Since δm = F −
∑n

i=1 δiXi, the m-th delta δm is like F determined by δ′ and F0. As
such, one interprets the m-th asset as the numeraire asset chosen to finance an otherwise
arbitrary trading strategy δ′ in the other assets, post an initial investment of C0 = Am

0 F0.

3.4. Application to unique pricing. One calls A arbitrage free if there exists a state
price density, i.e., semimartingale S such that S, S− > 0 and SAi are martingales for all i.

The (bounded) law of one price then holds: If A is arbitrage free and δ is a bounded

SFTS for A then SC is a martingale where C :=
∑m

i=1 δiAi; consequently C = 0 if CT = 0.

Proof. By numeraire invariance, d(SC) =
∑m

i=1 δid(SAi). Thus SC is a local martingale.
But since δ is bounded, SC is dominated by a martingale. So SC is a martingale. �

By a simple and well-known argument: If Am, Am
− > 0, then A is arbitrage free if and only

if there exists an equivalent probability measure Q such that Ai/Am are Q-martingales, all i.
The equivalent martingale measure Q is related to S by

dQ

dP
=

ST Am
T

E[S0Am
0 ]

.

If δ is a bounded SFTS, then C/Am is a Q-martingale, where C :=
∑m

i=1 δiAi; hence

Ct = Am
t EQ[

CT

Am
T

| Ft].

Proof. By numeraire invariance, d(C/Am) =
∑m

i=1 δid(Ai/Am). So C/Am is a local martin-
gale. Since δ is bounded, C/Am is dominated by a martingale. So C/Am is a martingale. �
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3.5. Unique hedging. Let A be arbitrage-free and δ be a bounded SFTS for A. Then,
as before, Xi := Ai/Am and F := C/Am are Q-martingales, and dF =

∑n
i=1 δidX i by

numeraire invariance. Assume that Xi are Q-locally square-integrable (e.g., continuous).
Then, d〈F 〉Q =

∑n
ij=1 δiδjd〈Xi, Xj〉Q. (Here, 〈Xi, Xj〉Q is the Q-compensator of [Xi, Xj ]; so

it equals the latter in the continuous case.) Clearly, 〈F 〉Q = 0 if FT = 0. Thus: If 〈Xi〉Q are
absolutely continuous and the n × n matrix ( d

dt
〈Xi, Xj〉Q) is nonsingular, then given any

random variable R, there exists at most one bounded SFTS δ for A with
∑m

i=1 δi
T Ai

T = R.
When there are “redundant assets”, the matrix is singular, and replication is not unique.

4. Application to diffusion processes

4.1. Pricing and hedging. Let A = (A1, · · · , Am) be a semimartingale with A,A− > 0
such that the price ratios Xi := Ai/Am follow the SDE system

dXi
t = Xi

t

k∑
j=1

ϕij(t, Xt)(dZ
j
t + φjdt), (i = 1, · · · , n := m − 1)

where Zj are independent Brownian motions, ϕij(t, x) are bounded continuous functions, and

E e
1

2

∑
j

∫ T

0
(φj

t )
2dt < ∞. (Note, we allow Ai be discontinuous.) Define the martingale

M := e−
∑k

j=1
(
∫

φjdZj+ 1

2

∫
(φi)2dt),

and the measure Q by dQ = MT dP. Then W j := Zj +
∫

φjdt are Q-Brownian motions and

are Q-independent since [W j ,W k] = 0 for j 6= k. The Xi are Q-martingales since

(4.1) dX i
t = Xi

t

k∑
j=1

ϕij(t, Xt)dW j
t ,

and ϕij(t, x) are bounded. Thus A is arbitrage-free.
For each s ≤ T and x ∈ Rn

+, there is a unique continuous positive Q-square-integrable

martingale Xs,x = (Xs,x
t ) on [s, T ] with Xs,x

s = x satisfying this SDE, and we have X = X0,X0 .
Now, let h(a), a ∈ Rm

+ > 0, be a homogenous Borel function of linear growth. Define

g(x) := h(x, 1), x ∈ Rn
+.

Define the function f(t, x) satisfying f(T, x) = g(x) by,

(4.2) f(t, x) := EQ g(Xt,x
T ).

(Intuitively, f(t, x) = E[g(XT ) |Xt = x].) Then the Markov property holds, i.e., we have,

(4.3) Ft := f(t, Xt) = EQ(g(XT ) | Ft).

Thus F = (f(t, Xt)) is a Q-martingale, and since Xi are too, assuming that f(t, x) is C1,2,
Itô’s formula yields (setting the martingale and drift parts equal),

(4.4) dFt =

n∑
i=1

∂f

∂xi
(t, Xt)dXi

t ,

and

(4.5)
∂f

∂t
(t, Xt)dt +

1

2

n∑
i,j=1

∂2f

∂xi∂xj
(t, Xt)d[Xi, Xj ]t = 0.
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By (4.4) and numeraire invariance, δ is a SFTS for A, where

(4.6) δi
t :=

∂f

∂xi
(t, Xt), i ≤ n, δm := F −

n∑
i=1

δiXi.

Clearly, the price process of this SFTS is C = AmF (by the definition of δm). Moreover,
CT = h(AT ) since FT = g(XT ) and h(a) is homogenous.

By (4.5), on the support X, f(t, x) satisfies the PDE

(4.7)
∂f

∂t
+

1

2

n∑
i,j=1

xixjσij(t, x)
∂2f

∂xi∂xj
= 0,

where

σij(t, x) :=

k∑
l=1

ϕil(t, x)ϕjl(t, x).

By the invariance of Itô’s formula under the change of coordinates, the change of variable

Li = Xi

Xi+1 − 1 (i < n), Ln = Xn − 1, transforms (4.7) into the Libor market model PDE.

4.2. The homogenous solution. The option price process and the deltas are already found,
but let us also discuss the homogenous option price function defined by

c(t, a) := amf(t,
a1

am
, · · · ,

an

am
).

Then Ct = c(t, At). Agreeably, δi
t = ∂c

∂ai
(t, At) by (4.6). (For i = m use Euler’s formula for

c(t, a)). By the continuity of X and (4.6), δi
t = ∂c

∂ai
(t, At

−

) too. Therefore by Itô’s formula,

(4.8)
∂c

∂t
(t, At

−

)dt +
1

2

m∑
i,j=1

∂2c

∂ai∂aj
(t, At

−

)d[Ai, Aj ]ct = 0.

(The sum of jumps term in Itô’s formula drops out since ∆C =
∑

δi∆Ai.) This yields the

PDE ∂c
∂t

+ 1
2

∑
i,j aiajσ

A
ij(t, a) ∂2c

∂ai∂aj
= 0 for the special case d[Ai, Aj ]t = Ai

tA
j
tσ

A
ij(t, At)dt for

some functions σA
ij(t, a). The quotient-space PDE (4.7) is more fundamental for it holds in

general (even when A is not a diffusion or is discontinuous) and has one lower dimension.

4.3. Deterministic volatility case. Assume ϕij , and hence σij , are independent of x. Then

we simply have Xt,x
T = xXT /Xt. Hence by (4.2),

(4.9) f(t, x) := EQ[g(x1
X1

T

X1
t

, · · · , xn
Xn

T

Xn
t

)].

Conditioned on Ft and unconditionally, XT /Xt is Q-multivariately lognormally distributed,

with mean (1, · · · , 1) and log-covariances
∫ T

t
σij(s)ds. Let P (t, T, z), denote its distribution

function. Then by (4.9), we obtain

(4.10) f(t, x) =

∫
Rn

+

g(x1z1, · · · , xnzn)P (t, T, dz).

If ∂g/∂xi and g(x) − ∑
xi∂g/∂xi are bounded, then so is δ, since

∂f

∂xi
(t, x) = EQ[

Xi
T

Xi
t

∂g

∂xi
(x1

X1
T

X1
t

, · · · , xn
Xn

T

Xn
t

)].
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5. Application to exponential Poisson model

5.1. Option to exchange two assets. Let A and B denote the asset price processes. As-
sume A = BX, where

(5.1) Xt = X0e
βPt−(eβ−1)λt

for some constants β 6= 0, λ > 0 and semimartingale P such that [P ] = P and P0 = 0 (so,
Pt =

∑
s≤t 1∆Ps 6=0), e.g., a Poisson (or Cox) process. Equivalently, by Itô’s formula, X follows

(5.2) dXt = Xt−(eβ − 1)d(Pt − λt).

Define the function f(t, x), x > 0 by

(5.3) f(t, x) :=
∞∑

n=0

(xeβn−(eβ−1)λ(T−t) − 1)+
λn

n!
(T − t)ne−λ(T−t),

Clearly f(T, x) = (x − 1)+. Define u(t, p) := f(t, X0e
βp−(eβ−1)λt). One directly verifies that

∂u

∂t
(t, p) + λ(u(t, p + 1) − u(t, p)) = 0,

Using this, one can show that

(5.4) dF = δAdX, Ft := f(t, Xt).

where,

δA
t := δA(t, Xt−), δA(t, x) :=

f(t, eβx) − f(t, x)

(eβ − 1)x
.

Thus by numeraire invariance (δA, δB) is a SFTS for A with price process C = BF , where

δB := F− − δAX− = F − δAX.

Further, CT = (AT − BT )+ since FT = (XT − 1)+.
Also, this is a bounded SFTS. In fact, 0 ≤ δA ≤ 1 and −1 ≤ δB ≤ 0.

5.2. Multivariate exponential Poisson model. Let A > 0 be an m-dimensional semi-
martingale with A− > 0. Set X := (Ai/Am)n

i=1, n := m − 1. Assume

Xi
t := Xi

0 exp(
k∑

j=1

(βijP
j
t − (eβij − 1)λjt)),

(1 ≤ k ≤ n) or equivalently,

dX i
t = Xi

t−

k∑
j=1

(eβij − 1)(dP j
t − λjdt),

where, βij are constants with the n × k matrix (eβij − 1) of full rank, λj > 0 are constants,

and P j are semimartingales such that [P j ] = P j , P j
0 = 0 and [P j , P l] = 0 for j 6= l.

Let h(a), a ∈ Rm
+ be a given payoff function, assumed homogenous of degree 1 and of

linear growth in a. Define

g(x) := h(x, 1), x ∈ Rn
+, n := m − 1.



NUMERAIRE INVARIANCE 9

Define

f(t, x) :=
∞∑

q1,··· ,qn=0

g(x1e
∑n

j=1
(β1jqj−(eβ1j−1)λj(T−t)), · · · ,

xne
∑n

j=1
(βnjqj−(eβnj−1)λj(T−t)))

n∏
i=1

λqi

i

qi!
(T − t)qie−λi(T−t).

Let α = (αij) be any n× k matrix such that for 1 ≤ j, l ≤ k,
∑n

i=1(e
βil − 1)αij = 1 if j = l

and 0 otherwise. Define

(5.5) δi
t := δi(t, Xt−), (1 ≤ i ≤ n)

where

δi(t, x) :=
1

xi

k∑
j=1

αij(f(t, eβ1jx1, · · · , eβnjxn) − f(t, x)).

Then one can show

(5.6) dF =

n∑
i=1

δidXi, Ft := f(t, Xt).

Hence by numeraire invariance, δ = (δ1, · · · , δn, δm) is a SFTS for A, where δm :=
F − ∑n

i=1 δiXi. Its price process C =
∑m

1 δiAi = C0 + δ · A is clearly given by AmF :

(5.7) Ct = Am
t f(t, Xt).

Further, CT = h(AT ) because h(a) is homogenous of degree 1 and f(T, x) = g(x) := h(x, 1).
Moreover, δi are bounded if γi(x) are bounded, where γm(x) := g(x) − ∑n

i=1 γi(x)xi and

γi(x) :=
1

xi

k∑
j=1

αij(g(eβ1jx1, · · · , eβnjxn) − g(x)). (i ≤ n)

5.3. Relation to Poisson predictable representation. Let P = (P 1, · · · , P k) be a vector
of independent Poisson processes P i with intensities λi > 0. Let v(p), p ∈ Rk, be a function
of exponential linear growth. Then, one has the following representation:

v(PT ) =

∞∑
q1,··· ,qk=0

v(q1, · · · , qk)

k∏
i=1

λqi

i

qi!
T qie−λiT +

k∑
i=1

∫ T

0
∆iu(t, Pt−)d(P i

t − λit),

where ∆iu(t, p) := u(t, p1, · · · , pi + 1, · · · pn) − u(t, p)) and

u(t, p) :=
∞∑

q1,··· ,qk=0

v(p + q)
k∏

i=1

λqi

i

qi!
(T − t)qie−λi(T−t).

Also, u(t, p) satisfies the partial difference equation and the SDE

∂u

∂t
(t, p) +

k∑
i=1

λi∆iu(t, p) = 0;

du(t, Pt) =
k∑

i=1

∆iu(t, P−)d(P i − λit).
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6. Miscellaneous considerations

6.1. The role of homogeneity. Let A be continuous semimartingale and δ be a SFTS for
A. Assume Ct = c(t, At) for a C1,2 function c(t, a). Since dC =

∑
δidAi, by Itô’s formula,

(6.1)
∂c

∂t
(t, At)dt +

1

2

m∑
i,j=1

∂2c

∂ai∂aj
(t, At)d[Ai, Aj ]t =

m∑
i=1

(δi
t −

∂c

∂ai
(t, At))dAi

t.

In general,
∑

i,j(δ
i − ∂c

∂ai
)(δj − ∂c

∂aj
)d[Ai, Aj ] = 0 since the (left so) right hand side of (6.1)

has finite variation and hence zero quadratic variation. Thus, if [Ai] are absolutely continuous
and the m × m matrix ( d

dt
[Ai, Aj ]) is nonsingular, then δi

t = ∂c
∂ai

(t, At), and so by (6.1),

(6.2)
∂c

∂t
(t, At)dt +

1

2

m∑
i,j=1

∂2c

∂ai∂aj
(t, At)d[Ai, Aj ]t = 0.

Moreover, since C =
∑

i δ
iAi, we then have c(t, At) =

∑
i

∂c
∂ai

(t, At)A
i
t. So, if the support

of At is a cone, then it follows that c(t, a) is necessarily homogenous of degree 1 in a on that
cone. Consequently, only homogenous payoffs can be so replicated in this nonsingular case.

In some singular cases, e.g., the Black-Scholes or Markovian short-rate models, there also
exist infinitely many nonhomogenous functions c(t, a) satisfying Ct = c(t, At). This is simply
because for each t the support of At is a proper surface in Rm in these models, and obviously
there exist infinitely many distinct functions on Rm that coincide on any surface.

Assume M i := e−
∫
·

0
rtdtAi are local martingales under an equivalent measure for some

predictable process r. Then dAi = rAidt + e
∫

rdtdM i. Thus, using C =
∑

i δ
iAi and (6.1),

(6.3)
∂c

∂t
(t, At)dt +

1

2

m∑
i,j=1

∂2c

∂ai∂aj
(t, At)d[Ai, Aj ]t = rt(Ct −

m∑
i=1

∂c

∂ai
(t, At)A

i
t)dt.

This “PDE” is valid also for nonhomogeneous functions. It is the type of PDE encountered
in the Black-Scholes or Markovian short-rate models. Of course, if we choose c(t, a) to be
homogenous - which we can thanks to numeraire invariance - then it simplifies to (6.2).

6.2. Extension to dividends. Consider m assets with positive price processes Âi and con-
tinuous dividend yields yi

t. When there exist traded or replicable zero-dividend assets Ai such

that Ai
T = Âi

T , the problem reduces to pricing and hedging (European) options on the Ai.

All that is required is that the 2m assets Ai and Ãi be arbitrage free, where

Ãi
t := e

∫ t

0
yi

sdsÂi
t

is the price of the zero-dividend asset that initially buys one share of Â and thereon continually

reinvests all dividends in Â itself. (When yi is deterministic, this requires Ai
t = e−

∫ T

t
yi

sdsÂi
t.)

For instance, consider an exchange option (m = 2). Say Â and B̂ are the yen/dollar and
yen/Euro exchange rates viewed as yen-denominated dividend assets. Then A is the yen-value

of the U.S. T -maturity zero-coupon bond and Ã is the yen-value of the U.S. money market
asset. This exchange option is equivalent to a Euro-denominated call struck at 1 on the
Euro/dollar exchange rate Â/B̂. The ratio A/B is the forward Euro/dollar exchange rate. If
it has deterministic volatility, we are as in a setting of [7] with results similar to next section.
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6.3. Change of numeraire. For the exchange option, one has to calculate E (X − Y )+ for
certain integrable random variables X and Y > 0. Such expectations often become more
tractable by a change of measure as in [4]. Define the equivalent probability measure Q by

dQ

dP
:=

Y

E(Y )
.

Clearly,

(6.4) EQ(
X

Y
) =

E(X)

E(Y )
.

Replacing X by (X − Y )+ in (6.4) and using the homogeneity to factor out Y ,

(6.5) E (X − Y )+ = E(Y )EQ(
X

Y
− 1)+.

If X/Y is Q-lognormally distributed then (6.4) and (6.5) readily yield,

(6.6) E (X − Y )+ = E(X)N(
log(EX/EY )√

νQ
+

√
νQ

2
) − E(Y )N(

log(EX/EY )√
νQ

−
√

νQ

2
),

where νQ := varQ[log(X/Y )] and N(·) denotes standard the normal distribution function.
If X and Y are bivariately lognormally distributed, as in Merton’s and Margrabe’s models,

then it is not difficult to show that X/Y is lognormally distributed in both P and Q with the
same log-variance νQ = ν := var[log(X/Y )]. Then νQ can be replaced with ν in (6.6).
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