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Abstract

An often disregarded, albeit central, aspect of the airline pricing’s problem consists
in assigning a fare to all the available seats on an airplane at the beginning of and
during the whole booking period. We show how a flight’s fare distribution is set in
practice and how it changes over time using evidence from a leading European low-
cost carrier. Such pricing behavior is consistent with the main predictions from the
theoretical model we present. First, fare distributions are increasing across seats be-
cause a lower fare for the seat on sale enhances the likelihood of selling the subsequent
seats. Second, over time fare distributions move, on average, downward to reflect the
perishable nature of a flight’s seats. Third, due to the increasing profile of the fare
distributions across seats, we find that the price observed by prospective buyers tends
to increase as the date of departure nears.

JEL Classification: D22, L11, L93.
Keywords: dynamic pricing, option value, seat inventory control, low-cost carri-
ers.

1 Introduction

The definition of dynamic pricing (DP) in airline markets, both in the economic and
operational research academic literature, as well as in the press, has been so far intrinsically
related to the description of how fares on sale evolve over time (McAfee and te Velde,
2007). The world-wide success of Low Cost Carriers (LCCs), whose fares are easier to

observe and compare than those offered by legacy carriers, has reinforced the view that
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the temporal fluctuations of observed fares constitute the central part of a carrier’s Revenue
Management (RM) system (McGill and Van Ryzin, 1999; Weatherford and Bodily, 1992).

Three major factors are assumed to shape the fares’ temporal profile. First, airlines
sell a highly perishable service. While the fare set today has to account for the cost
of the foregone option of selling the seat later on the same flight for a higher fare, for
perishable seats such option value goes to zero as the take-off approaches, thus leading
to the prediction of fares falling over time (McAfee and te Velde, 2007; Talluri and van
Ryzin, 2004).

Second, carriers may want to discriminate the business travelers’ segment from other
lower demand travelers, e.g., those traveling for leisure or for visiting friends and family.
Because the former are more likely to learn about their need to travel only a few days
before the departure date and their demand is quite inflexible, fares are expected to rise
over time (Gaggero and Piga, 2011; Alderighi et al., 2016).

Third, a similar increasing fares profile can emerge when customers are strategic and
may postpone the purchase in anticipation of last-minute discounts (Deneckere and Peck,
2012; Sweeting, 2012). A commitment to raise fares over time is often necessary to dis-
courage such behavior, unless the probability of a stock-out is high (Moller and Watanabe,
2010).

These three factors operate in different directions, so their relevance should be based
on the extent by which their expected impact conforms to the actual temporal patterns
of fare data. The literature provides overwhelming evidence in favor of a temporally
increasing fare profile (Gaggero and Piga, 2010; Bergantino and Capozza, 2015; Bilotkach
et al., 2010); . However, when commenting the findings from their own data analysis,
McAfee and te Velde (2007) forcefully state that standard theoretical models predicting a
declining time-path due to a falling option value are empirically false.

One of the major contributions of this paper is to show that a temporally declining
option value is, contrary to the above literature, a major factor driving a carrier’s RM
decisions, and hence DP. To unveil such a result, it is necessary to abandon the analysis
based on a single fare (notably, that of the seat on sale) so far used in the literature and
adopt, as a building block, the notion of fare distribution as in Dana (1999). Loosely
speaking, the focus on a fare distribution implies that at each point in time, the airline
does not only define the fare of the seat on sale, but also of all the remaining seats on the
flight. This approach allows us to extend the literature in a number of directions.

First, we develop a theoretical dynamic model where each seat in the distribution is



characterized by a declining value as the departure date approaches, although at each
point in time fares increase over seats. By doing so, we extend the results in Dana (1999),
by allowing for the carrier’s possibility to modify its fare distribution in different, but
discrete, time intervals.

Second, we show for the first time in the empirical literature how such distributions
are shaped. When seats are ordered with respect to their sequence of sale, we find that
the theoretical prediction of fares increasing over seats is confirmed by the data, although
the empirical distribution is non-strictly monotonous, that is, the airline arranges seats
into groups, denoted as “buckets”, where each bucket is defined by an increasing price tag
and a variable size.

Third, through the characterization of such distributions at a flight’s level, we can
determine how DP is implemented in practice. Our assessment of what constitutes DP
is different from the one used so far in the literature. Indeed, we do not classify fare
increases over time as DP, when such increases are generated from a movement along the

1" Instead, we consider as an instance of DP only a situation involving an

distribution.
identifiable change in the fare distribution. In a sense, we rule out the fare variations that
so far have taken a central role in the literature on DP. More interestingly, we show that DP
takes many forms and shapes, involving not only fare variations but, most importantly,
changes in the distribution that result in wvariations of the buckets’ size, as well as the
creation/deletion of new buckets. It turns out that DP associated with changes in the
bucket sizes is quantitatively more relevant than changes involving modification of the
buckets’ fare levels, which tend to remain rather invariant over time.

Fourth, our econometric approach is divided into two parts. In the first, we model
the fares of the first seat on sale. Our findings are consistent with previous results in the
literature: the fare of the seat on sale follows an increasing temporal profile. To drive this
result, however, is the increasing shape of the distribution and the fact that buckets tend
to disappear when they are sold out. Although the theoretical model assumes away that
consumers act strategically, the increasing fare distribution over seats help to discourage
strategic behavior on the customers’ side.

In the second part of the econometric analysis, we track the evolution over time of the
fare of all the seats, by defining a seat identifier which is both independent from the number
of available seats and time invariant. The analysis provides strong empirical support for

the theoretical models predicting a declining option value. While similar support has been

'Most fare increases can occur without any change in the distribution: when a bucket is sold out, the
seats allocated to the next higher bucket are put on sale.



shown in Sweeting (2012) for the price of single baseball tickets sold on the second-hand
market, a crucial difference here is to show that, at the same time, i) the fare of the
seat on sale tends to increase and, i) the airline engages in DP to accommodate the
declining value of all the seats in the distribution. This is done by shifting seats initially
allocated to the higher-priced buckets to lower-priced buckets, a mechanism that may lead
to the disappearance of the higher-priced bucket from the distribution. Because the upper
buckets are not normally observed by customers, the carrier can thus engage in “hidden”
DP in ways that effectively reduce, if necessary, the average selling fare of all remaining
seats, without revealing to have done so.

The rest of the paper is structured as follows. The next section revises the main
contributions of both theoretical and empirical literature. Then the theoretical model is
presented. The collection of fare data is described in Section 4 followed by a descriptive
analysis on dynamic pricing. Section 6 carries on the econometric investigation, testing the
predictions of the theoretical model described in Section 3. Finally Section 7 summarizes

and concludes.

2 Literature review

Dynamic pricing (DP) is a quite vague concept in the extant literature. Although it usually
encompasses any change in prices occurring over time, its various definitions appear to be
a direct consequence of the different theoretical, methodological and empirical approaches
developed in order to account for the pricing behavior of firms.

In some cases, DP is associated to a price change that is directly linked to at least
one intervening factor or event that induces a revision of the pricing approach followed
by the firm. For instance, based on this approach, the decreasing prices of Major League
Baseball tickets in secondary markets in Sweeting (2012) constitute a clear indication of
an active DP intervention by sellers in the form of the decision to relist the ticket at a
lower price.

On the contrary, in Abrate et al. (2012) the prices of hotel rooms are found to be either
increasing or decreasing over the booking period for stays during, respectively, weekends
and week-days. While these differences certainly denote distinct “inter-temporal pricing”
profiles, they cannot be classified as instances of DP in terms of the previous definition
since they arise from an empirical model that does not specify the source of price variation

over time; i.e., because the hotels may have determined them at the start of the booking



season, the decreasing or increasing profiles may be the result of a purely time-invariant
pricing approach.

In the airline markets, pricing policies are central for any empirical analysis; Borenstein
and Rose (1994) distinguish between systematic and stochastic peak-load pricing as sources
of price dispersion in the US market. In the former, the price variation is based on
systematic, i.e., foreseeable and anticipated, changes in shadow costs known before a flight
is opened for booking, while the latter reflects a change in the probability during the selling
season that demand for a flight exceeds capacity. In this sense, the former definition of DP
and stochastic peak-load pricing may be considered as synonymous. More importantly, the
distinction in Borenstein and Rose (1994) can be related to carriers’ RM activity, intended
broadly as a process of i) setting ticket classes, i.e., fare levels and associated restrictions
(refundability, advance purchase, business vs. economy, etc.) and ii) defining the number
of seats available at each fare.2 RM thus encompasses both a systematic and a dynamic
pricing dimension, where the former can be seen as the outcome of the process just before
a flight enters its booking period, and the latter represents subsequent changes over time
to the initial composition of ticket classes both in terms of fare levels and number of seats
in each class.

As far as the systematic approach is concerned, Dana (1999) illustrates how, in a
theoretical model with demand uncertainty and costly capacity, it is optimal for firms in
to commit to an increasing fare distribution, where each fare reflects the fact that the
shadow cost of capacity is inversely related with a seat’s probability to be sold. The main
ensuing testable prediction from Dana’s model is that the fare charged should reflect the
ranked position of the seat on sale in the fare distribution. To implement such a test, it is
therefore necessary to know a flight’s load factor at the time a fare is either posted online
or a ticket is sold. This issue has been empirically tackled either by the use of web crawling
methods (Alderighi et al., 2015), or of seat maps posted by online travel agents (Clark
and Vincent, 2012; Escobari, 2012; Williams, 2013). All these works provide evidence in
support to the hypothesis of fares increasing as a flight fills up. Interestingly, Alderighi
et al. (2015) derive their results by using two fares, the seat on sale and the last seat in
the distribution; their approach is further extended in the present work, where we model
the fare for all the seats in the fare distribution.

Because in Dana (1999) firms cannot change the initial distribution they set, the model

cannot provide any theoretical prediction on how firms would modify the price distribution

2RM involves a number of ancillary activities and techniques useful in the process (McGill and
Van Ryzin, 1999; Weatherford and Bodily, 1992).



over time. That is, would all fares start low and then increase or start high and then
decrease? The question of the optimal temporal profile of fares is generally addressed in
the operational research literature surveyed in Talluri and van Ryzin (2004) and in McAfee
and te Velde (2007). A drawback in this literature is that, unlike Dana (1999), either prices
or seat inventory levels are treated as exogenous. In fare setting models the focus is on the
opportunity cost of selling one unit of capacity, i.e., the value not-to-sell the unit today
and reserve it for a future sale. As shown in Sweeting (2012), under standard conditions
common to most models, the value of the option not-to-sell is expected to fall over time,
leading to a similar prediction for fares. However, because such a prediction arises from
models that treat seat inventory as exogenous, it is not possible to extend it directly to the
case where the airlines adopt, as the empirical literature suggests, a pricing system based
on the definition of a fare distribution over capacity units. In the theoretical model of the
next Section, we show that if airlines can revise the fare distribution more than once, then
under standard assumptions of demand, customers’ evaluations and arrival rates being
constant over time, the fares of all the seats are expected to decline over time.

There are a number of reasons proposed in the airline literature as to why fares could
increase over time. First, offering advance-purchase discounts can be an optimal strategy
when both individual and/or aggregate demand is uncertain (i.e., individuals learn their
need to travel at different points in time and airlines cannot predict which flight will
enjoy peak demand), and consumers have heterogenous valuations (e.g., they either incur
different “waiting costs” if they take a flight that does not leave at their ideal time or they
simply value the flight differently).?> Second, the revenue management models that predict
a declining option value assume a constant distribution of willingness to pay, and therefore
do not account for the fact that business travelers tend to book at a later stage (Alderighi
et al., 2016). Furthermore, those models assume an exogenous demand process and thus
abstract from the presence of strategic buyers, i.e., those who maximize long-run utility by
considering whether to postpone their purchases hoping to obtain a lower price. In a model
characterized by uncertainty, advance production and inter-temporal substitutability in
demand induced by strategic behavior, Deneckere and Peck (2012) predict that the prices
set by competitive firms are martingales, i.e., they do not follow a predictable pattern. An
often observed approach to discourage strategic waiting is to commit to a nondecreasing
price temporal path; the counterfactual analysis in Li et al. (2014), based on the estimates

on the fraction of strategic consumers in the buyers’ population, suggests that commitment

3See Cale and Holmes (1993, 1992), and Dana (1998) and Méller and Watanabe (2010).



to a nondecreasing pricing strategy is likely to be more beneficial in business markets than
in leisure ones. However, Board and Skrzypacz (2016) show that when a strategic buyer’s
value declines throughout the selling season, a seller can optimally set time-decreasing
prices.

The present work does not aim to distinguish among competing theories of nonde-
creasing prices in airline markets, but makes the novel point that the adoption of a pricing
strategy centered around a fare distribution across seats may have the (possibly indirect)
effect for the firm to combine the need to take into account the presence of strategic con-
sumers with the need to reduce fares due to a declining option value. Indeed, we show that,
on the one hand, the fare for the seat on sale (i.e., the visible side of DP) tends to follow
the non-strictly increasing shape of the distribution, although with occasional markdowns
consistent with the prediction in Deneckere and Peck (2012); and, on the other, the firm
tends to adjust downward the structure of the fare distribution, regardless of whether they

are immediately for sale or not (i.e., the hidden side of DP).

3 Theoretical model

A carrier operates a single flight with N > 1 seats on a monopolistic route. The flight is
sold over T" > 1 booking periods: ¢t = T,T — 1,...,2,1 describes the number of periods
remaining before departure (¢ = 1 is the last booking period and ¢ = T is the first one),
and ¢t = 0 is the departure date. For each ¢, the carrier commits to a sequence of fares
for all the M < N remaining seats of the flight. Thus, until seat m = M, ...,2,1 has not
been sold, each traveler presenting in booking period ¢ faces p (m,t). Within the booking
period ¢, once seat m has been sold, then the next fare on offer becomes p (t,m —1). At
the end of the booking period ¢, the unsold seats are offered in the next period, ¢t — 1, until
t = 1. Seats available at the end of the last booking period remain unsold.*

In each period t a set of consumers h = 0, 1,2, .., co arrives sequentially. The probability
that the first consumer arrives in ¢ is ¢1; € (0,1), and that consumer h + 1 arrives
conditional on the fact that consumer h has already appeared is ¢p41 ¢ € (0,1). Consumer

(h,t) is myopic and her willingness to pay is a random variable 6, with cumulative

4The use of reverse indexes for both periods and seats simplifies the notation and the proofs. It also
establishes a direct link to the empirical part of the paper, where the position of seats is counted by
starting from the last one. Indeed, contrary to prevailing literature on airline pricing aiming at explaining
the change of the first available seat as a function of time before departure and remaining seats, our goal
is to trace the evolution of the fare of each seat over time. Thus, our indexing choice is such that each seat
has the same index independent of how many seats remain.



distribution F}, ; on the support [0, éh,t], with éh,t < 0.

We make the following simplifying assumptions: for any h = 0,1,2,..,00 and t =
LT, ont = onr1e = @ € (0,1); Fyy = Fyy1y = F, with 6, = 6. Thus, we assume
that the process is memoryless and consumers have the same ex-ante evaluation. The

probability of selling the first available seat at the fare p is:

oo

a(0) =01 —F®)Y (oF (p)" = p (1= F(p)

prd 1—@F(p) W

where ¢ (1 — F (p)) is the probability that consumer h arrives and buys at price p provided
that consumers 1, .., h — 1 have previously refused to buy at the same price; and (¢F (p))h
is the probability that consumers from 1 to h arrived and did not buy.

The maximization problem of the carrier can be summarized by the following Bellman

equation:

V(t, M) :m]gX{fJ(p) P+ V(#t,M-1)]+(1—-q(p)V(t-1,M)y}, (2)

with boundary conditions V (¢,0) = 0 and V (0, M) = 0, for any t € {0,..,T} and
M € (0,..,N). Unlike the existing literature, the novel approach in equation (2) assumes
the possibility that more than one seat can be sold within each t: this implies the need
to set always a (possibly different) fare for all the seats on an airplane, which is precisely
how carriers operate in practice.’

Note that equation (2) entails a trade-off between selling now at least one seat (gaining
p and the revenue flow coming from the remaining seats, V (¢, M — 1)), and keeping the
capacity intact and postpone the sale to the next period, gaining V' (¢t — 1, M).

First order conditions imply that:
\Il(p(t7M)):V(t_LM)_V(taM_l)v (3)

where p (¢, M) is the optimal fare when there are ¢ periods and M seats; and ¥ (p) =
p+ap)/d (p).°

®The description of how the resulting fare distribution changes over time is one of the novel aspects
in the empirical part of this paper, where we use fares posted by easylJet, a leading European low-cost
carrier. Alderighi et al. (2015) find that a similar approach based on a fare distribution characterizes the
revenue management of Ryanair. More generally, the need to set a distribution of fares over all available
seats appears not to be restricted to low-cost carriers, as hinted by information posted, for instance, on a
website like http://wuw.expertflyer.com/.

%Second order conditions are satisfied when: ¥’ (p) =2 — q(p) ¢” (»)/q’ (p)* > 0. The condition holds




Under ¥’ > 0, p(t, M) is unique and can be easily found by inverting (3). Moreover,
since p (t, M) only depends on V (t — 1, M) and V (¢, M — 1), the problem described by
equation (2) can be easily solved recursively by using equation (3) with the boundary
conditions V' (¢,0) = 0 and V (0, M) = 0 (see the Appendix). This property of the model
also implies that p (t,m) is independent of the number of available seats at the start of
each t.

Define: AyV (¢, M) =V (t, M)=V (t — 1, M) and AV (t, M) =V (t, M)-V (¢t, M — 1).
The following proposition provides some standard results in the pricing literature (Gallego
and van Ryzin, 1994; McAfee and te Velde, 2007).

Proposition 1 The value function V (t, M) is increasing int and M, i.e. AV (t, M) > 0
and AV (t, M) > 0.

Consider the two following special cases. First, assume that N = 1. Using Proposition
1, equation (3) and the fact that ¥’ > 0, it follows that p(¢, M) is increasing in ¢. This
result captures the perishable nature of the airline service, and the fact that the option
value decreases over time. Second, assume that 7' = 1; using the same line of argument, it
follows that p(t, M) is decreasing in M. This result captures the fact that a higher price
reduces the likelihood to sell a given seat, and, consequently, the following seats.

In the next Proposition we show that these properties also hold for the general case
of any T' and N. We assume that AV (¢, M) is decreasing in ¢ and increasing in M; and
A9V (t, M) is increasing in ¢ and decreasing in M. In the Appendix we show that these

assumptions are satisfied when the willingness-to-pay of travelers is uniformly distributed.

Proposition 2 The fare profile {p (t,m),t=1,...,T;m =1, ...,N} has the following

properties:
1. Invariance: p (t,m) is independent of M.
2. Ascending fare profile: p (t,m) is decreasing in m.

3. Decreasing fares over booking periods: p (t,m) is increasing t.

*#*kx*% Tnsert Table 1 around here *****

when 0 has an uniform or an exponential distribution.



The results of Proposition 2 are illustrated in Table 1, which presents the simulated
fares in three different cases: one period (7' = 1), three periods (T' = 3), and five periods
(T =5)."

Result 1 of Proposition 2 implies that, conditional on seat m being available, its fare
is not affected by the number of seats available on the airplane. Table 1 therefore always
reports the fare distribution for all IV seats: the Proposition indicates that the optimal
fare of, say, seat m = 9 at t = 3 when T' = 5 is always 0.516 regardless of whether at ¢ the
number of available seats is greater or equal to 9. This result depends on the fact that
travelers’ arrivals are independent and therefore, within each period ¢, only subsequent
fares, p(m — 1,¢,...,p(1,t)), but not previous fares, p (M, t,...,p(m + 1,t)), if any, affect
the optimal level of p (m,t).

Moving from the top (first available seat, i.e., seat m = 12) to the bottom (last available
seat, i.e. seat m = 1) of each column, it appears that the fare distribution is increasing
both in the one-period and in the multi-period cases. Thus, in any period, consumers who
arrive first pay less than those showing up later (Result 2). This is a notable difference
from Board and Skrzypacz (2016), where a seller can charge only a single posted price in
each period.

An ascending fare profile is not novel in the theoretical economic literature, but the
explanation proposed here provides interesting extensions. For example, in Dana (1999),
where updates to the equilibrium price distribution are not considered, fares are propor-
tional to the implicit cost of capital, and therefore, they are inversely proportional to the
probability of selling. Since the last seats are less likely to be sold, their implicit cost is
higher, and so is their fare. In this setup, however, an increasing fare distribution comes
from the fact that the higher the fares, the more unlikely the sales of both current and
subsequent seats; that is, a high fare for the seat on sale increases the opportunity cost of
having to sell tomorrow all the subsequent seats.

The third result in Proposition 2 is illustrated in Table 1 by values of p (¢, m) declining
over t for any m. This result extends the one-period case considered in Dana (1999) by
showing that the carrier’s option value decreases as the departure date approaches. This
is standard for highly perishable services, as illustrated in Sweeting (2012), where however
the analysis is limited to the case of a single ticket and not to a full distribution of prices

as in the present case.

"In the simulations, we set: N = 12; # uniformly distributed over [0,1]; ¢ = {0.9796,0.9412,0.9057}
for, respectively, T' = {1, 3,5}. The values of ¢ are defined such that the expected number of consumers is
the same in the three cases and equal to 4N = 48.
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The results in Proposition 2 offer several new empirical implications that we test in
the remaining part of the paper. There are however two issues that the theoretical model
assumes away: the possibility of strategic consumers and the fact that there is no learning
on actual demand during the booking period. In the final part of this Section we discuss
under what conditions each aspect is likely to play a minor role in driving the empirical
results.

Strategic consumers. Proposition 2 shows two contrasting trends as far as the seat
on sale is concerned. On the one hand, according to Result 2 within the same period the
fare of the next seat is higher than the one on sale. On the other hand, Result 3 states that
the fare of a given seat reduces over periods. Thus, the fare of the seat on sale moves up
during the same period and down over period switches.® Therefore, the price reductions
may be potentially conducive to strategic behavior because the consumer arriving when
seat M is on sale at time ¢ would always prefer to buy it at ¢t — 1. However, by postponing
the purchase, the consumer faces the risk that, at time ¢, other consumers may arrive and
buy M and some or all subsequent seats. That is, if a consumer expects that the fare
of seat M — 1 will be, on average, higher than that of seat M, then strategic behavior is
discouraged.

Let 7 (m,t) be the probability of selling seat m in period ¢, and

T
p(m):Zﬂ'(m,t)p(m,t)/ZTr(m,t), (4)

t=1 t=1

the average fare paid for a given seat across all periods. Table 2 reports both 7 (m,t) and,
in the last column, p (m), based on the simulation values of Table 1. Here we notice that
the average paid fare, p(m), is increasing over seats across periods.’ Thus, the incentive
to postpone a purchase is hindered by the increasing trend of the seat on sale. There
are two extra practical reasons indicating that the empirical robustness of our theoretical
predictions are only weakly affected by the presence of strategic consumers in real markets.
First, all prices close to the departure date would be higher under the assumption that
0+ increases in t, e.g., because business travellers arrive in later periods (simulations of
this version of the model are available on request). Second, from an empirical viewpoint,

there is indeed evidence suggesting that the proportion of strategic consumers in airline

8Price drops are often observed and their impact on realized load factors is studied in Bilotkach et al.
(2015).

9The result of an increasing average fare profile for  (m) is robust to changes of the number of periods
as well as ¢.
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markets is rather limited, around 12 percent on average Li et al. (2014). Overall, our

model is robust to the presence of a small fraction of strategic consumers.
ik Insert Table 2 around here *****

New information. Usually carriers set their fares on the basis of three different
sources of information: historical data; internal data collected during the booking period;
and external data. Historical data are information available to a carrier before its price
setting decision; in the model, they are used to determine ¢ and 0. External data are
information on demand shifters (e.g., such events as concerts, football matches, etc.)
revealed during the booking period. If such information corresponds to an unexpected
demand shock, it can be easily accommodated in the model by assuming that a carrier,
after receiving it, redesigns a new fare profile based on new values for § and ¢. Basically,
external data produces a positive or a negative shift of the fare profile from the moment
the carrier processes the information onwards.

A different situation occurs when a carrier adjusts its fare profile based on internal data
collected during the booking period, i.e., the number of the sold seats at each given point
in time. Consider a simple case with two periods, T' = 2, and two states of the world: high
demand (¢p) and low demand (¢, < ¢pg). At time t=2 (initial period), the carrier has a
prior subjective probability of being in the high demand state: 15 g = Pr (92 = ¢n). Let
P (2, m; o i) be the fare profile chosen in t = 2. At ¢ = 1, depending on the available seats,
M, the carrier updates its expectations on the demand, vy i (M), and sets a new pricing
profile accordingly. That is, the fares set at t = 1 for any available seat m = M,...,1
are no longer independent on the number of available seats M observed in the previous
period, i.e. p(1l,m;vy g (M)). In particular, since a higher M signals a lower demand,
then p (1, m;vy g (M)) is decreasing in M. Thus, for any available m, the larger number
of seats before m, namely M — m, the lower the fare. Although in our theoretical model
fares are set independently of the previous selling history (Result 1 of Proposition 2), in
our econometric analysis we control for the possible endogeneity of fares with respect to
a flight occupancy at the time fares are posted.

In the remainder of the paper, we develop an empirical analysis aimed at testing
the predictions of the model summarized by Proposition 2: fares are decreasing over M
(Result 2) and increasing in ¢ (Result 3). Moreover, we also discuss the assumption of
independency of fares (Result 1) by showing that fare profile is weakly affected by the

number of seats before M — m.
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4 Data collection

Our collected sample comprises a total of 37,501 flights scheduled to depart during the
period May 2014 - June 2015, covering 74 European bi-directional routes. The fares for
those flights whose outward journey originates in the UK are expressed in British Pounds
and represent about 99% of the entire sample. The residual 1%, which refers to European
routes outside the UK, is collected in euro.!”

The data collection was carried out by means of a web crawler, as widely used in the
literature.!’ Every day, the crawler automatically connected to the website of easyJet,
the second largest European LCC, and issued queries specifying the route, the date of
departure and the number of seats to be booked. Because European LCCs charge each
leg independently (Bachis and Piga, 2011), to double the data size, the query was for a
return flight, with a return date 4 days after the departure.!?

The query dates were set such that a flight entered our database about four months
before departure; it was then surveyed at 10-days distanced intervals until 30 days, and
subsequently at more frequent intervals (21, 14, 10, 7, 4 and 1) to get a better under-
standing of the price evolution as the date of departure nears. The website response to
the query included flight information, for each leg, for three different dates: the set date,
the day before and after. Overall, each query allowed the saving of three consecutive days’
information for each leg. For each flight, the crawler saved the date of departure and of
the query (to calculate the number of days separating the query date from take-off), the
time of the day the flight was due to depart and arrive, the departure and arrival airports
(the route), the price for the number of seats specified in the query. The crawler also
saved an important information published by the carrier: the number of seats available at

a given posted fare. This is central for the validation of the data treatment implemented

0When necessary fares in euro are converted in pounds using the daily Eurostat exchange rate of
the day when the fare is collected. See http://ec.europa.eu/eurostat/web/exchange-rates/data/database.
Saturdays and Sundays adopt the exchange rate of the previous Friday.

"See Li et al. (2014), Gaggero and Piga (2011), Clark and Vincent (2012), Obermeyer et al. (2013),
Escobari (2012), Escobari and Jindapon (2014), Bilotkach et al. (2015), Alderighi et al. (2015) and Alderighi
et al. (2016), amongst others.

12As in the case of Ryanair in Alderighi et al. (2015), easyJet, the low cost carrier under the present
analysis offers seats where buyer’s name and dates can be changed only by paying a fixed fee which is
often as high as the fare itself. The carrier also offers a “Flexi” fare, corresponding to the basic fare
we retrieve plus a set of add-ons (extra luggage, cancelation refunds etc), which however can also be
bought independently. Furthermore, there is no pricing-in-network considerations to account for, because
the carrier only sell tickets for point-to-point services. Data from a low cost carrier thus originate from
an environment that more closely resembles the assumptions made in many theoretical models of airline
pricing.
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to derive the price distributions from the posted fares, as illustrated in the Appendix.'?

To the best of our knowledge, the empirical literature on airline pricing focuses on
the price of one seat, that corresponding to the seat being on sale at the time of the
query. A central contribution of this paper is to show that this is not sufficient to test
the implications of theoretical models of DP in airline markets. Based on the model
presented in Section 3, our data collection incorporates an experimental design explicitly
aimed at recovering a flight’s price distribution, as it is actually stored on the carriers’
web reservation system. In practice, this entailed the implementation of the following
procedure. For each flight and departure date, the crawler started by requesting the price
of one seat, and then continued by sequentially increasing the number of seats by one
unit. The sequence would stop either because the maximum number of seats in a query,
equal to 40, was reached or at a smaller number of seats. As in Alderighi et al. (2015),
the latter case directly indicates the exact number of seats available on the flight on a
particular query date, which we store in a variable called Awvailable Seats to track how a
flight occupancy changes as the departure date nears. The former case corresponds to a
situation where we know that at least 40 seats still remain to be sold on a given query
date; i.e., the number of available seats is censored at 40.

After applying the treatment described in the Appendix to the retrieved fares, we
obtained the flights’ distribution of posted fares over the available seats on a query date.
An example of such distributions is shown in Figure 1, which is based on the data of a

randomly selected flight.!*
*¥+* Insert Figure 1 around here *****

Figure 1 is central for the whole analysis. Each graph represents the price distribution
retrieved, respectively, 90, 50, 30 and 9 days to departure. In all cases, the number of
available seats is censored to 40; i.e, the graphs fail to show the extreme right tail of the
price distribution. As it appears clear, at each point in time the distributions across seats
conform with the second theoretical result in Proposition 2, although in a non-strictly

monotonous way, i.e., the carrier generally assigns the same price to more than one seat.'®

13The possibility that posted fares could be affected by the number of queries executed was managed
as follows. First, the cookie folder was cleaned every day; second, we checked a sample of fares retrieved
by the computers in our university office with queries made on the same day from computers outside that
university. No noticeable differences between the queries made from different computers could be found.

This is the flight code U25293 leaving London Gatwick and going to Milan Malpensa on 19 May 2014.
We will consistently refer to this flight as an example throughout the paper.

15The step-wise shape in Figure 1 can be easily reconciled with the strictly monotonous distribution
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We denote as a “bucket” the set of seats carrying the same price tag.'6 Interestingly, such
tags seem to remain very stable over the booking temporal horizon, an aspect that we
investigate later on.

A visual inspection is sufficient to establish some interesting features of the distribu-
tions and their evolution over time. Ninety days to departure, the carrier had allocated
three seats for sale at the price of £41 (the per-seat price that a customer buying up to
3 seats would pay), four seats at the price of £47, and so on and so forth. Due to the
data censoring, we cannot ascertain the precise size of the last “bucket” valued at £156.
Similarly, the size of the £41 bucket is likely not correct, since there may be missing seats
from that bucket that were previously sold. Forty days later, the first two buckets have
disappeared; only one seat is available at the price of £65 and the size of the £156’s top
bucket has clearly increased to at least 23 seats, although the censoring still prevents us
to precisely measure its size. Interestingly, twenty days later, the size of the first bucket
has increased to four seats, and that of the top bucket has fallen to 20 seats (still cen-
sored); the size of the intermediate buckets did not vary. Nine days prior to departure,
the carrier is still offering eight seats at the price of £65, but noticeably, the size of also
the intermediate buckets has increased while that of the top one has shrunk.

It is stressworthy that in our database all the series of fares associated to the 40 (or
less in the case of non-censored flights) seats of a query assume a shape qualitatively
similar to the ones shown in Figure 1: this is the case for all flight-codes and date of
departure combinations. Such overwhelming evidence implies that the airline’s pricing
approach always defines a fare for all the seats of a flight, as predicted in our Proposition
2. This is an important contribution to the literature on airline pricing, that so far has
empirically neglected this aspect of the airlines’ fare setting. It could be argued that this
is a peculiar approach followed by the carrier we used to create our sample. However,
the empirical findings in Alderighi et al. (2015) also suggest that another European low
cost carrier, Ryanair, defines a similar fare distribution across seats. As far as legacy

carriers are concerned, the analysis is complicated by their adoption of a nested-classes

derived in Proposition 2 and reported in Table 1, if we assume that the former is a discrete version of the
latter. The reason to make such a transformation can be a combination of technological and marketing
factors, due to the way the computer reservation systems and RM systems have been historically designed.
Thus, for each flight, a carrier usually uploads in the reservation system from 10 to 15 fare levels and use a
revenue management system to determine how many seats to make available at each fare level over time.

16The term is drawn from the revenue management literature (McGill and Van Ryzin, 1999; Weatherford
and Bodily, 1992). It is noteworthy that the buckets satisfy the Result 2 in Proposition 2. The possibility
of bulk discounts is ruled out by the identification of the same bucket prices regardless of the number of
seats in the query.
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system, where the same seat can belong to different classes, each with different ticket
restrictions; however, various papers present graphical evidence of fares whose temporal
path also follows a step-wise pattern, with each step representing a class, i.e.,“bucket”,
level (Escobari, 2012; Lazarev, 2013; McAfee and te Velde, 2007; Puller et al., 2009).
Finally, the analysis of Figure 1 suggests the following considerations. First, the buck-
ets’ price levels tend to be quite fixed over time; second, the variation in the distribution
of seats across buckets, especially in terms of movements from the top buckets towards
the lower ones, appears to be a central aspect of the carrier’s revenue management. So far
the literature has failed to notice both considerations, which we will investigate further in

the remainder of the paper.

5 Descriptive analysis

The descriptive analysis in this Section aims to provide some insights into the following

two interrelated questions:
e how is DP implemented when the price equilibrium is in distribution?

e How is the fare distribution affected by the simultaneous presence of two conflicting
incentives for the firm, one induced by the perishable nature of seats in a flight, the
other arising from the presence of strategic consumers who would quickly learn of

possible last-minute discounts?

The first question is addressed by first defining the various forms of DP that we can
identify in our data and then providing a descriptive quantification of their importance;
the second question is directly related to the third prediction in Proposition 2 that the
opportunity cost for all the seats in the distribution is decreasing over time, an aspect

that would be certainly exploited by strategic consumers.

5.1 Defining Dynamic Pricing

As Figure 1 suggests, DP clearly goes beyond the mere fluctuation of the price of the
first seat in the distribution. One of the novel aspects of this paper is to show that DP
entails a restructuring of the fare distribution, and that this practice may involve either
a modification of the buckets sizes (i.e., a reallocation of remaining seats across buckets)
or the creation/deletion of bucket levels, or both. To fully capture this behavior, we still

refer to the flight data used in Figure 1, as reported in Table 3. Each cell contains the
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bucket size, with columns identifying the days prior to departure and rows the bucket
price. The last row in each sub-panel indicates whether the number of available seats is
censored (that is, there are 40+ seats left on the flight) or the precise number of available
seats (this is visible only from six days onwards in Panel B, when the maximum number
of prices observed is for 30 seats).

We define as dynamic pricing any change in the distribution of seats across two se-
quential query dates. That is, we do not restrict DP to be associated to price fluctuations
over time of a single seat, but explicitly consider variations in all bucket sizes as relevant
forms of DP, and therefore of revenue management activity.

Table 3 provides examples of some of the forms of dynamic pricing implemented by the
carrier. To better identify them visually, we use circles to denote cases of DP associated
with bucket size changes, and with rectangles the more standard DP cases of creation or
deletion of a bucket price level. Note that we do not identify as DP the price increases
that automatically occur when the first available bucket becomes sold out and the system
moves to the next available bucket level.!'” Thus, our definition admits cases in which
there is no DP even if the fare of the seat on sale varies, as well as situations in which

there is dynamic pricing even if the fare of the seat on sale does not change.
****Insert Table 3 around here*****
Based on the content of Table 3, we can distinguish the following forms of DP.

e Size increase of first bucket: the bucket on sale has at least one seat more than in the

previous observation. E.g., at 29 days before departure, the size of the £65’s bucket
increases from 4 to 5 seats. We likely underestimate this form of DP, because we
cannot detect a size increase when the number of seats sold between two consecutive
observations is larger than or equal to the size growth and the number of available

seats is censured.

e Price decrease of first bucket: the fare of the seat on sale drops from the previous

observation. For instance, at 90 days to departure the fare of the first bucket falls
from £47 to £41. This could be also construed as a form of “size increase”, because

the size of the £41’s bucket goes from zero to 3. However, to emphasize the fact that

YThat is, if we observed that from, say 89 days to departure, the sequence of the first seat’s price
followed the bucket price levels (41,49, ...,136,156) without any change in the buckets sizes, then we
would argue that no DP has taken place because the fare distribution has not been altered: simply the
first fare evolved according to the sequence embedded in the fare distribution.
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the fare changes of the first seat are more easily observed by customers, we prefer
to denote this form of DP as a price change. Furthermore, it can also indicate the
creation of new buckets, as in the case of the £58’s bucket, which is not observed

before 13 days from departure.

e Price decrease of last bucket: the fare of the last seat drops from the previous obser-

vation. This form of DP can be identified only when the data are not censored, as in

the case of 2 days before departure, where the top bucket valued at £156 disappears.

e Size decrease of last bucket:the last bucket has at least one seat less than in the

previous observation. As in the previous case, this form of DP can be traced only
when the data are not censored. One example occurs 3 days to departure, when the
£156’s bucket size drops from 13 to 5 seats.

e Size increase of the second bucket: the second bucket has at least one seat more

than in the previous observation. See for instance the second bucket size at 2, 4 and

21 days before departure.

e Size change of the penultimate (observed) bucket: it denotes either an increase or a

decrease in the number of seats assigned to the penultimate or penultimate observed
bucket, where the latter indicates that, when data are censored, the penultimate
bucket we observe may not actually be the second-to-last. Indeed, in the case of
censored data, there could be other higher buckets that the crawler could not access
due to the censoring restriction. Examples occurs at 61, 21 and 13 days before

departure.

e Any change to intermediate buckets: it accounts for any form of price and/or size

change of any bucket between the second and the penultimate (observed) bucket.

See for example 101, 91 or 61 days before departure.

Furthermore, in our sample we observe other additional cases of DP interventions that

are not represented in Table 3.

e Price increase of first bucket only: the fare of the first bucket increases, whilst all the

other buckets remain unchanged both on price and size. For the sake of exposition,
suppose that in Table 3, at 59 day before departure the four seats in the £55’s
bucket are moved to the (previously unobserved) £58’s bucket while the rest of the

fare distribution remains unchanged.
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e Price increase of last bucket: the fare of the last bucket is higher than that of the

previous observation. It is identifiable only for uncensored data.

e Size increase of last bucket: This form of DP is symmetrical to the case of size de-

crease of last bucket. It is identifiable only for uncensored data.

e Size decrease of the second bucket: This form of DP is symmetrical to the size in-

crease of the second bucket.

5.2 Descriptive statistics on Dynamic Pricing

Tables 4, 5 and 6 report the probability of observing the various forms of DP defined in the
previous subsection. These were calculated by considering only variations between query
dates separated by one day (e.g., in Table 3, between 3 and 2 days to departure). The
qualitative results do not change if the probabilities were obtained considering variations
as highlighted in Table 3, i.e., between any two consecutive, but not adjacent, query dates.
An overall measure of DP, “Overall DP”, which groups all the forms of DP into one case,
is also included in the Tables. The probabilities in each table are broken down by different
categories that identify different sub-samples: final number of left seats (Table 4); days to
departure (Table 5); and fixed and varying flight occupancy (Table 6).

Table 4 defines the sub-samples based on final number of left seats, i.e. denotes the
minimum observed number of available seats for a flight: this would be equal to 22 in
Table 3.1® The table suggests the following considerations. First, most DP treatments
appear to be applied with a similar frequency across flights, regardless of their impact
on the final occupancy rate; a notable exception are the “Price increase” and the “Size
increase” of the first bucket, with the former (latter) more likely to be observed in flights
with higher (lower) final occupancy rates.

Second, the “hidden side” of DP is revealed by the fact that “Size decreases” of the
last bucket tend to be the most frequent type of DP; as previously discussed, seats initially
allocated in top buckets are transferred to lower buckets: in the table, this does not seem
to be different across flights with a different final number of left seats.

Third, if we use “Overall DP” as a generic proxy of the intensity of DP treatments,
the table suggests that flights with different final occupancy rates have received similar
treatments’ intensity levels, with a frequency of 42% per cent. This result supports the

idea that changes in the fare distribution usually occur, on average, every two-three days.

8Note that all the flights in the sample at some point reveal an uncensored number of available seats.
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Finally, a change in bucket size is more likely observed than changes in fare. This
result provides support to our approach that DP should not be based on fare fluctuations

only.
*k**x% Tpnsert Table 4 around here *****

Table 5 is based on the distance between the query date and the departure date. Table
5 indicates that dynamic pricing interventions are more likely observed between 42 to 8
days before departure. As we have already mentioned, they are largely represented by a
size decrease of the last bucket and an increases in the size of first and other buckets. DP
is implemented more intensively in such period because there is still some time left for it
to have an effect on sales. Moreover, the probability to observe a price decrease in the

first bucket falls sharply in the last week, when fare increases are more likely applied.
Kk Insert Table 5 around here *****

Table 6 defines the sub-samples based on the number of available seats at the query

X

date; the “same occupancy” case refers to when the number of available seats does not
vary between two consecutive, one-day distant, query dates. In both cases, the sample
is determined only by uncensored observations, so as to control whether the number of
available seats has changed. Table 6 points at the following considerations.

First, DP (i.e. a change in the fare distribution) may occur even when the carrier
has not sold any seat, or, conversely, it may not occur when one or more seats are sold.
In both cases, the pattern of the change in the fare distribution is quite similar for the
intermediate buckets, while there is a different behavior concerning the first bucket and,
partially, the last bucket. This suggests that general (automatic) changes are independent
from the selling situation and that a direct intervention of RM analysts is mainly focused
on the first and the last buckets.

Second, as the available seats reduce, most forms of DP are less likely observed, sug-
gesting that modifications to the fare distribution are likely driven by the need to boost a
flight’s occupancy rate. The direction of these findings is in line with standard interpreta-
tion: e.g., when occupancy is unchanged, the probability of a “Price decrease” of the first
bucket is two and a half times higher when at least 21 seats remain on the flight.

Third, “Price increases” of the first bucket are again notable exceptions: the selling
price is more likely pushed up as the number of available seats lowers. This is consistent
with the idea that the RM analysts adjust the fare upward for the seat on sale if the flight

20



is selling well. Symmetrically, the probability of a “Price decrease” in the first bucket
drops substantially when only few seats remain.

Finally, “Size increases” of the first bucket appear to be inversely related with the
occupancy rate but highly correlated with the “Size decreases” of the last bucket: the
“hidden side” of DP conforms to the general interpretation that modifications to the fare
distribution implemented by transferring seats from top to lower buckets is motivated by a
downward revision of the analyst’s belief on the flight’s demand. Indeed, this form of DP
is more likely observed when occupancy is unchanged and there are at least 21 available

seats.
*#*<x*Insert Table 6 around here *****

A combined analysis of Tables 4-6 suggests that:

e DP is driven by the need to manage inventory effectively; it does not however lead

necessarily to identical level of final occupancy rates across flights.

e DP takes many forms and shapes, all aimed at redesigning the distribution of fares

uploaded on the carrier’s reservation system.

e In particular, a decrease in the size of the last bucket suggests that the carrier’s
option value to continue to retain seats in that bucket is a decreasing function of
time, up to the point that the carrier may decide to eliminate a top bucket from the

fare distribution, as it occurs 2 days prior to departure in Table 3.

5.3 Option Value in the presence of strategic consumers

An airline seat is a perishable product: because there is no value for the firm to take-
off leaving some seats unoccupied, the incentive to carry out last-minute sales is strong.
Similar to the case described in Sweeting (2012), we would therefore expect that the
carrier’s fare distribution is decreasing over time. This is also one of the main predictions
from our theoretical analysis in Section 3.

However, as shown in Li et al. (2014), the growing presence of strategic consumers
complicates the carrier’s pricing problem: if it systematically dropped its prices a few
days before departure, customers would react by postponing their purchase decision. The
incentive to drop prices is likely to be even stronger in the airline market than in the case

described in Sweeting (2012), where potential buyers of second-hand tickets for a baseball
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match face a high risk of a stock-out, a contingency less likely for travelers, especially
those whose main purpose is leisure, who can substitute across dates or even destinations
and still satisfy their wish to travel.

The previous analysis suggests the solution adopted by the carrier to manage this
dilemma: the reshaping of the fare distribution, with seats reallocated from top buckets
to lower ones, is consistent with the firm’s belief that demand is not sufficiently high to
fill the plane with enough customers willing to pay the higher prices set for those seats
initially positioned in the higher buckets. At the same time, the way the distribution
is designed, with its increasing profile over seats (see Figure 1 and Table 2), guarantees
a commitment not to lower prices if demand is low: e.g., in Figure 1 and Table 3, the
selling price gravitates around the value of £65 for about 40 days, simply because the
firm during that period moved seats initially allocated to higher buckets down to the £65
bucket and, occasionally, also to lower ones. If 50 days from departure, when only one
seats remained in the £65’s bucket, the carrier had kept the distribution unchanged, and
allowed the price to automatically increase to the higher prices of £75 and then £87, most
likely fewer seats would have been sold. We can indeed infer that demand for this flight
might not have been very high since two days prior to departure the flight still had 22
seats to sell. Furthermore, letting the fare go up to, say, £87 and then drop it back to the
more suitable level of £65 would show customer’s that the carrier is very likely to engage
in price reductions, thus providing more justification for customers to behave strategically
and postpone purchase.

To test formally that the above solution is widely applied, we need to show that:

1. The fare of the first seat on sale (i.e., the one customers normally observe) follows
a generally increasing time trend, which is not incompatible with some occasional,
and largely unpredictable, fare decreases (Tables 4, 6 and 5). This would takes care
of strategic behavior: if customers systematically observe the increasing trend, as
predicted by Table 2 of our theoretical model, the best response is to buy at the

time they become aware of their need to travel.

2. The seats allocated to the top buckets are systematically transferred to lower buckets,
i.e., the carrier over time reduces their selling fare to reflect the changing probability
they will be sold. This is largely unobserved by customers visiting the carrier’s
website ( “the hidden side of DP”).

To test this latter aspect, we exploit a feature of our data collection strategy. With
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uncensored observations, we can establish a seat’s position in the distribution. Imagine
that only 39 seats remain on a flight on a given query date. If we look at the distribution
from the bottom up, the first seat is the one on sale, and the 39*" identifies the “last” seat
that would be put up for sale.!” Imagine that a few days later, the number of available
seats drops to 30. In this case, the first seat is indeed the one that occupied the 10"
position in the previous query date, and the last seat would be now the 30**. That is, it
is not possible to use the bottom-up perspective to uniquely identify seats. However, if
we assign the position using a top-down approach, it turns out that in both cases the last
seat would be assigned a position equal to 1, the 10" seat would take a position equal to
30, and the first seat in the first case a position of 39. We report these values in a variable
denoted as Position.?? That is, over different query dates, we can track the evolution of
each seat’s fare, as long as the observation is uncensored.

Table 7 reports the mean fare of the same seat (i.e. with the same value of the
variable Position) at various clusters of days to departure. The numbers clearly indicate a
decreasing pattern of the mean fare as we approach the departure day. Interestingly, and
in line with the prediction of our model, the monotonicity of such decreasing pattern is
confirmed for the last seats (i.e those with a low value of Position), while it is strong for
the seats in lower positions from the top. Quite interestingly, the decline appears to be
inversely proportional to the position. That is, the last seat (Position = 1) drops from an
average fare of £182 to £139; the 20th seat from the top also has a starting mean of £181,
which falls drastically down to £82. This is consistent with what we observe in Table 3:
while the top seat is moved only one bucket down (2 days from departure), many seats

that are originally allocated to the top bucket of £156 are moved down by several buckets.
Firk Insert Table 7 around here *****

Although the values in Table 7 strongly suggest the impact of hidden DP to be mostly
geared towards a downward shift of seats allocated to higher buckets, it is important to
point out to at least one counter-example in our dataset, where we show fares moving
in precisely the opposite direction. This is likely to happen in unexpected situations of
high demand. The example in this case is based on the final of the football European
Champions’ Leagues, played by Real and Atletico Madrid in Lisbon (Portugal) on May
24th 2014. We therefore look at the flight connecting Madrid with Lisbon the day before.

19Recall that the seats are all homogenous.
20We are using the same notation of the theoretical model where Position is identified by the reverse
index m.
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Real Madrid and Atletico Madrid qualified on, respectively, April 29" and 30%", i.e., 24
and 23 days before the flight departure. As Figure 2 shows, on April 30" the crawler
collected fares for the first forty seats on sale, that is, the flight was still censored with the
first fare being set at €97. Noticeably, five days later, all the low priced seats disappear;
the lowest fare moves up to €184, which was the highest bucket only five days before,
and about 20 seats are allocated to the new highest bucket of €307. Although some seats
from the top bucket are shifted down between eighteen and twelve days to departure, an
example of increase in the last bucket size occurs between twelve and eight days, when
the number of seats in the top bucket is increased from five to ten. Eventually, the flight
departed with only four empty seats in the top bucket. Overall, both the levels of fares
involved, which are much higher than those in Table 7 even after the conversion in British
Pound is applied, and the increase in the size of the top bucket suggest that the rule of
a declining option value may present many exceptions when new information induces the
carrier to adjust its beliefs on demand upward. It is not possible, however, to identify all
these exceptions in the data, given the temporal interval and the several routes covered. In
the remainder of the analysis, therefore, we will focus the investigation on the prevailing
effect of hidden DP on the time profile of all the fares in the distribution.

*Hkx* Insert Figure 2 around here *****

6 Econometric analysis

The econometric strategy is designed to test formally the two aspects discussed in the
previous sub-section.

First, we want to show that the fare of the first seat on sale follows an increasing
temporal profile determined by the structure of the bucket fare levels in the distribution.
That is, generally the carrier tends to close a bucket fare once the seats in that bucket are
sold out, so that automatically the fare of the next bucket becomes the advertised one on
the site. Second, we formally test the hypothesis that the fare distribution decreases over
time because the option value lowers as the departure date approaches.

Because, as explained before, the first seat is defined by taking the first value on the left
tail of the distribution of remaining seats, while the option value necessitates the opposite
approach where Position is counted starting from the top of the right tail, the two issues

are tackled separately.
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6.1 First seat on sale

Table 8 reports various estimates derived by restricting the sample to the first available
seat; i.e., the one with the lowest fare.

The dummies Days to departure aggregate fare observations having similar temporal
intervals between the query and the departure date. The reference group corresponds
to the set of query dates that are furthest from departure. If fares tend to follow an
increasing, albeit non-strictly monotonic, profile, then the coefficients of all the dummies
should increase as the query date approaches the departure date.

The standard errors are clustered by route and week to take into account the possibility
of flight-specific demand shocks on a given day affecting the demand for all the flights on
the route in a given week.2!

Model (1) estimates an order probit model in which the regressand is the Bucket order.
This variable represents the rank of the seat on sale (lowest fare has rank 1) within a given
flight In our illustrative example of Table 3, Bucket order is equal to 1 when fare is £36,
2 when fare is £41, and so on and forth; finally, it equals 8 when the fare is £87, the sale
fare two days before take-off. Departure time and departure day of the week fixed effects
are included in the model, but not reported in the table to save space.

Model (1) supports the view that the rank of the bucket to which the first seat belongs
increases over time; i.e., the temporal sequence in which seats are sold is determined by
the design of the bucket levels in the fare distribution. The predicted effects of the model
are represented in Figure 3 which reports the predicted probability of observing the bucket
orders 1, 2 and 8 as a function of the distance from departure date. As the diagram shows,
seats allocated to the lower bucket orders (i.e., the low-fare buckets) are more likely put
up for sale in the early booking period and are never sold a few days from departure,
whilst seats in higher bucket orders (e.g., 8 in the Figure) are more likely put up for sale

towards the end of the booking period, but never at an early stage.

Rk Insert Figure 3 around here *#F**

Models (2)-(5) derive from a panel OLS fixed effect estimation of the first seat fare,
in logs, with the panel identifier corresponding to the combination of flight-code plus day
of departure, while the temporal dimension is denoted by the number of days prior to

departure. That is, each panel tracks the fares posted over the booking period of a flight

21For instance, a large group booking for a Wednesday morning flight raise fares for this flight and may
induce other customers to select alternative flights on nearby days.
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on a specific route that departs on a specific date and time of the day.??> Although in these
models the actual fare replaces the bucket order, we still obtain that the inter-temporal
profile of the first seat follows an increasing trend.

While models (2) and (5) use the full sample, models (3) and (4) restrict the analysis of
model (2) to the case of flights in, respectively, “Leisure” and “Business” routes. Following
Alderighi et al. (2016) and Gaggero and Piga (2011), the routes’ classification is based on
data derived from the “International Passenger Survey” (IPS), a quarterly survey collected
by the UK Office of National Statistics.2> Routes are classified based on the passengers’
stated travel motivations. For each flight, we computed the share of business travelers
carried by all companies on the city-pair comprising the route where the flight operates.
Depending on whether such a share is below or above the value of 16 per cent, routes
are respectively labeled as “Leisure” or “Business”. Based on the findings in Alderighi
et al. (2016), we should expect a steeper temporal profile for flights in business routes,
due to the larger proportion of price-inelastic travelers who are more likely to book only
a few days before departure. Indeed, based on the estimates of the Days to departure
dummies, we find that in both types of routes evolve in a similar way until about 29
days to departure, but then increase more sharply in business routes. Such a robustness
check does not impinge on the main message of this Section, i.e., that the fare of the first
seat follows an increasing trend over time, which the finding in model (1) indicates to be

strongly associated with the bucket design of the fare distribution.
*#k%* Insert Table 8 around here *****

To sum up, all models in Table 8 are consistent with existing evidence in the literature
supporting the view that fares increase as the departure date approaches (Bilotkach et al.,
2010; Gaggero and Piga, 2010; Koenisgsberg et al., 2008; Mantin and Koo, 2009; Alderighi
et al., 2015). On the one hand, our approach suggests that this is mainly due to the
allocation of seats into buckets of increasing fare: once all the seats in a bucket are sold,
the bid fare moves to the next higher bucket level. Our results thus provide a so far
undetected perspective, that is, they directly relate the evolution of the selling fare to the
design of the fare distribution for all the seats available on a flight at each point in time.

On the other hand, a time-increasing time profile may be beneficial in a situation

where customers are likely to behave strategically and may be heterogeneous in their

221f there is more than one flight in a day, each is treated with a separate panel identifier.
ZThe IPS does not cover routes with both endpoints outside the UK; hence, the combined number of
observation in models (3) and (4) is lower than in model (2) and (5).
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willingness to pay: for instance, business travelers may learn about their need to travel
only a few days before a flight’s departure. That is, the pricing based on an increasing
fare distribution over seats is capable to provide an effective mechanism to manage, at
the same time, the presence of both strategic and late arriving high evaluation customers,
even if the mechanism is consistent with a theoretical model such as ours that assumes

away customers’ heterogeneity.

6.2 Option value and the hidden side of dynamic pricing

To test whether the option value of each seat declines over time, as predicted in Result 3 of
Proposition 2, we regress the log of fare of each seat in the distribution against the Days to
departure dummies, the variable Position used in Table 7, and interactions of both. The
panel identifier continues to be the flight-code; however, unlike the case of Table 8, the
panel’s temporal dimension is represented by a sequential counter that uniquely identifies
all the possible combination of Position with the Days to departure dummies.?* As before,
we set the earliest day to departure dummy (Days to departure 36+) as reference group
and we cluster the standard errors by route and week.

Because Position is identified precisely only when an observation is uncensored, we
need to correct for two sources of sample selection, one of which arises because, as before,
we restrict the sample to only those observations of flights that, on a given query date,
have fewer than 40 seats left to sell. Relatedly, seats in lower buckets have a higher
probability to be sold and disappear from the sample at an earlier stage, thus biasing the
estimated relationship of a seat’s fare over time. To tackle both, we adopt Procedure 17.1
in Wooldridge (2002). First, we run a probit on the full sample, where the dependent
variable is a binary value equal to one if seat i, (i = 1,...,39), is still available ¢ days
before departure: in the case of censored flights, the last 39 seats are a fortiori available.?
We include, among the regressors, Position as well as dummies for the number of days
to departure, the day of the week of the departure date, the route, the departure slot
time (morning, afternoon, evening, etc.), the season (Winter and Summer). Second, we

calculate the Inverse Mill’s ratio and, third, we include it in the FE regressions, both OLS

24 Alternatively, we could have incorporated either the variable Position or the Days to departure dum-
mies into the fixed effect identifier: in these cases, only the interaction model could be identified in the FE
estimation. The results would not change. Estimates available on request.

Z5Because, as discussed in the previous analysis, the seats in the bucket on sale are more easily observed
by potential strategic consumers and tend therefore to follow an increasing time trend, we set the dependent
variable to zero for those seats belonging to buckets containing the next available seat for sale (i.e., the
one whose position is identified by the value of the variable Awvailable Seats).
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and IV, on the selected sample, with the log fare as the dependent variable.
*raxk Insert Table 9 around here *****

Table 9 reports the results. As far as the main variables of interest, Position and
the Days to departure dummies are concerned, the OLS estimates in columns (1) and (2)
suggest that their effects are qualitatively similar to the ones in columns (3)-(6) obtained
using an instrumental variable approach where the variable Seat Before=Awvailable Seats -
Position is treated as endogenous. First of all, the coefficient of Position is, as expected,
negative, because higher values of this regressor correspond to seats in lower buckets. That
is, the econometric evidence indicates that the distributions of all flights are structured
similarly to Figure 1, as also predicted in Proposition 2, Result 2. Second, and relatedly,
the Position coefficient provides a rough estimate of the linear average gradient of the fare
distribution: such a value varies from 1.8% to 2.5% in the Leisure routes sample.

Third, and more interestingly, the Days to departure dummies are also negative and
their coefficients increase in absolute value as the departure date nears. Considering that
the reference category corresponds to seats in early posted observations, the dummies’
coefficients suggest a downward trend for the average fare of all the seats in the fare
distribution. This finding is consistent with the view that the carrier generally faces
strong incentives to move the seat down to lower buckets as the departure date nears and
that such a move reflects a declining option value, as predicted in Proposition 2, Result 3.

Fourth, to get a better appreciation of whether the intensity of the decline over time
varies with the seat’s position, model (2) and (4) interact Position with the set of Days to
departure dummies. Because the interaction coefficients are all negative, it can be inferred
that the decline is stronger as the position value increases: the further a seat is positioned
from the top one, the larger the fall in the bucket order (and in fare) it experiences.

Figure 4 shows the predicted effects from model (4) of Table 9. Each line, which
represents the predicted relationship between fare and position, keeping the temporal
dummies fixed, defines a stylized, smooth version of the fare distributions in Figure 1.
The slope varies to reflect the interaction terms in model (4). When the position is fixed,
each point depicts the extent by which the average fare falls over time during the booking
period. Based on interaction coefficients in Table 9, the drop is larger as the position

increases, as also shown descriptively in Table 7.2

26For instance, the fare of seat 39 drops, on average, from a value around e*® = 134 to about e*° = 55;
of seat 25 from about e® = 148 to about e*® = 74, while for seat 1, the last one to be sold, the predicted
fare moves from %! = 164 to about e*® = 121.

28



In models (5) and (6) in Table 9 we restrict the analysis to the case of flights in,
respectively, “Leisure” and “Business” routes. We do so to test whether the estimates
from model (3) for the full sample hold in sub-samples of more homogeneous flights.
Overall, the estimates in models (5) and (6) do not differ qualitatively from those in
model (3), in particular as far as the variable Position and its interaction with the Days
to departure dummies are concerned. That is, the DP approach resulting in the movement
of seats from higher to lower buckets appears to be prevalent in both leisure and business
routes. However, in the “Business” sample, the coefficients of the temporal dummies are
considerably smaller in absolute magnitude, suggesting that in business routes the carrier
tends not to drop its fares over time as much as it does in leisure routes; this results is
in line with the standard characterization of business travelers as customers with a higher
willingness to pay, whose need to travel is revealed only at a later stage of the booking
period. Such a characterization could be easily accommodated in our theoretical model
in Section 3 if we assumed that the average 6 increases at some point during the booking
period.

To study whether the fare drops are affected by the number of available seats at each
point in time (that is, whether larger drops tend to occur when the number of sold seats
is lower than expected at each point of the booking period), we include the variable Seats
Before in every model, which captures the number of seats preceding the seat identified
by Position. We first treat this variable as exogenous, and obtain highly significant and
positive, albeit relatively small in magnitude, coefficients. Because in the presence of
an endogenous variable the OLS estimates can only be considered in terms of correlation
between the regressor and the dependent variable, our findings suggest that seats allocated
to upper buckets tend to have, a fortiori, more seats preceding them: hence the positive
correlation between the fare and the value of Seat Before. To test for causality, we use two
instruments. The first one,Lag Seat Before , is simply the mean of the two weekly lagged
values of Seat Before variable. The second one, holiday period, proposed by Alderighi et al.
(2015) is a dummy variable indicating whether the query date falls within a holiday period
(Chrismas, Faster, school breaks, etc) and captures possible differences on the demand
side. The application of an instrumental variable approach indicates that the coefficient of
Seat Before becomes negative, i.e., the causality runs in the expected direction, and takes
a larger absolute magnitude in models (3) - 0.003 - and (5) - 0.006. The same coefficient
are however insignificant in models (4) and (6). Most importantly, the impact of Seat

Before does not modify the qualitative structure of the Days to departure dummies. The
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econometric analysis therefore provides compelling evidence of the persistent effects of the
hidden aspects of DP that the carrier implements to manage the declining value of a set
of perishable seats. To our best knowledge, no prior investigation of these aspects can be

found in the literature.

6.3 Robustness

An alternative way to test for the decreasing option value would be to evaluate how each
bucket size evolve over time. If the redesign of the distribution is such that seats in higher
buckets tend to be moved down, then we should observe the size of top buckets to decrease
over time, and viceversa for the lower-priced buckets. An advantage of this approach is
that it can be estimated using both censored and uncensored observations, after having
excluded the first bucket on sale since its size could be reduced by unobserved sales taking
place between query dates, and the last bucket when the observation is censored, since in
this case the size is likely to be measured incompletely and is thus biased downward.

To define the relative position of a bucket, we take the following approach. Using a
route-month combination, we divide all the fares in each combination into quintiles, and
thus create five sub-samples over which we run a FE panel regression of each bucket size
over the Days-to-Departure dummies.

As Table 10 indicates, in Columns (1)-(3) the size of the lower priced buckets tends to
increase as the departure date approaches. The effect decreases as we move up the distri-
bution, with coefficients dropping as we move from model (1) to model (3). Conversely,
the buckets in the top quintile clearly behave in the opposite way: they start large and

then shrink in size (and may as well disappear, as previously discussed).
Kk Insert Table 10 around here *****

Finally, in line with Table 7, a further robustness check to test for the decreasing option
value is to consider the average fare of the n left seats, where n is the number of available
seats at the latest collected day prior to departure. We regress the log of such average fare
on our set of Days to departure dummies. The results, not reported to save space, clearly
indicate a decreasing trend of the dependent variable as departure date approaches and

therefore confirm the decreasing option value, which is the main finding of this paper.
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7 Conclusion

This paper provides a set of important contributions to the existing literature on airline
pricing.

First, we present a theoretical model where the airline sets in equilibrium a distribution
of increasing fares similar to Dana (1999); an innovation in this paper is to allow the
possibility for the carrier to modify the distribution as the date of departure approaches,
thus allowing to derive a prediction of how the distribution is likely to evolve over time.
Similar to the various models of revenue management surveyed in McAfee and te Velde
(2007), our model also predicts a declining temporal profile of fares. Although those
models’ predictions have received empirical support in Sweeting (2012), their validity for
the airline market is largely rejected in many papers and in McAfee and te Velde (2007)
in particular, who deem them as “empirically false”. A first important contribution is to
show that the incentive to drop fares over time is indeed observed once the analysis is
extended to consider all the fares characterizing the equilibrium distribution.

Furthermore, we show that focusing the empirical analysis on the fare for the first seat
on sale is not a valid way to conduct a test of theoretical predictions on the fare time-
path for at least two reasons. One, the theory we present predicts the equilibrium fare
distribution to be monotonically increasing. If, in theory, each seat in a flight is assigned
a different fare, then tracking the fare time path of the first seat on sale implies tracking
the fare of different seats. The proper way to test for a declining fare is always to refer
to the same seat’s fare; this is something we do by establishing a seat’s fixed position in
the fare distribution. Two, airlines are aware of customers’ strategic behavior and have
an incentive to limit the posting of fare drops by showing that the temporal profile of the
observed fare follows a upward trend.

More generally, the focus on a fare distribution allows the investigation of many so far
neglected aspects of Dynamic Pricing (DP). Another important contribution of this paper
is to show, for the first time in the literature, how these fare distributions are shaped.
We define changes over time in the distribution as instances of DP, regardless of whether
the actual observed fare has changed. Our analysis of DP in our sample of 37,501 flights
operated by easyJet, a leading European low-cost carrier during the period May 2014 —
June 2015, unveiled the following results.

Dynamic pricing takes many forms and shapes, involving not only fare variations but,
most importantly, changes in the distribution that result in variations of the bucket size, as

well as the creation of new buckets. The fare of the next seat on sale tends to increase, due
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to the increasing shape of the distribution and the fact that buckets disappear when they
are sold out, although there can be some fare drops. More generally, over the observed
booking period, the firm shifts seats initially allocated to the higher-priced buckets to
lower-priced buckets, a mechanism that may lead to the disappearance of the higher-priced
bucket from the distribution. This is what we call “the hidden side of DP”.

The overall outcome of this pricing mechanism is an increasing profile of fares each
period of booking but a decreasing profile of the fares assigned to the seats that remain
to be sold. Hence, over time the slope of the distribution changes: initially, it is steeper
because more seats are allocated to higher-priced buckets but it flattens as seats are
reassigned to lower-priced buckets.

Our analysis provides important insights on how dynamic pricing may be relevant
for such firms as hotels, cruise ships, car rentals, which have to set their prices facing
conditions similar to those of airlines. While we believe that the approach based on fare
distribution is widely applied in the airline industry, and provides a central aspect of
the revenue management implemented by LCCs, future research needs to investigate how
the findings in this work need to be adapted to the more complex revenue management

systems adopted by traditional, legacy carriers.
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Table 1: Simulated optimal fares pj; in the case of T'= 1,3, 5 periods

Seats | T =1 T=3 T=5

m t=1|t=3 t=2 t=1|t=5 t=4 t=3 t=2 t=1

12 0.656 | 0.691 0.624 0.552 | 0.703 0.661 0.613 0.563 0.521

11 0.665 | 0.704 0.636 0.559 | 0.719 0.676 0.626 0.573 0.526
0.676 | 0.719 0.650 0.567 | 0.735 0.693 0.642 0.585 0.531
0.687 | 0.735 0.665 0.577 | 0.752 0.710 0.659 0.598 0.538
0.700 | 0.752 0.681 0.589 | 0.771 0.730 0.677 0.614 0.547
0.714 | 0.771 0.700 0.602 | 0.790 0.750 0.699 0.633 0.558
0.730 | 0.791 0.721 0.619 | 0.811 0.773 0.722 0.655 0.572
0.748 | 0.813 0.745 0.639 | 0.833 0.798 0.749 0.680 0.590
0.770 | 0.837 0.773 0.664 | 0.857 0.825 0.779 0.711 0.614
0.796 | 0.864 0.805 0.696 | 0.883 0.855 0.814 0.749 0.646
0.829 | 0.895 0.844 0.739 | 0.911 0.889 0.854 0.796 0.692
0.875 | 0.932 0.894 0.805 | 0.944 0.928 0.904 0.860 0.765

RN W UTo N 0o S

Table 2: Simulated optimal probabilities of selling (m,,,;) and average paid fare (Py,), T =5
periods

Seats Probability of selling, ¢ Average
m t=5 t=4 t=3 t=2 t=1 Total | paid fare
12 1 0.747 0.185 0.052 0.014 0.004 1.000 0.688
11 ] 0.567 0.269 0.109 0.046 0.009 0.999 0.689

0.421 0.307 0.168 0.075 0.025 0.996 0.690

0.301 0.303 0.224 0.120 0.041 0.989 0.691

0.202 0.296 0.253 0.162 0.061 0.972 0.694

0.129 0.272 0.263 0.193 0.093 0.948 0.699

0.085 0.210 0.267 0.227 0.136 0.924 0.703

0.052 0.155 0.251 0.249 0.177 0.883 0.711

0.028 0.109 0.220 0.253 0.215 0.824 0.724

0.015 0.075 0.173 0.249 0.238 0.749 0.744

0.008 0.040 0.126 0.236 0.256 0.664 0.774

0.002 0.019 0.074 0.180 0.265 0.539 0.822

RN W UTo oS
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Table 3: Number of seats in each bucket price across days to departure

Panel A: days to departure 109-49

Days to dep. 109 101 100 99 91 90 89 81 8 79 71 61 60 59 50 49

Bkt price
36 5
41 5 (1) 7 7 3
47 5 5 5 5 5 (4 4 1 1 1
55 6 (3) 5 5 5 4 4 4 3 4 4 4
58
65 4 (6) 6 6 (5 4 4 4 4 4 4 4 4 1 (5
75 6 (4 4 4 (6) W 4 4 4 4 4 4 4 4 3
87 4 (6) 6 6 (4 4 4 4 4 4 4 5 05 % 3
101 5+ (4) 4 4 (6) (W) 4 4 4 4 4 3 3 3 3
117 3+ 3+ 3+ 4 4 4 4 4 4 4 5 5 (3) 3
136 5 4 4 4 4 4 4 3 3 3 3
156 5+ 5+ 11+ 114 114 13+ 12+ 12+ 12+ 24+ 20+

Av. seats 40+ 40+ 40+ 40+ 40+ 40+ 40+ 40+ 40+ 40+ 40+ 40+ 40+ 40+ 40+ 40+

Panel B: days to departure 48-2

Days todep. 48 43 42 41 31 30 29 21 13 12 10 9 6 4 3 2

Bkt price
36
41
47
55
58 4]
65 [4] (5)

75 () (3) 3
3 3 3
3 3 3
3 3 3

[+]
[+]

87
101
117
136 3 3 3 3 3 3 3

156 24+ 27+ 27+ 23+ 21+ 21+ 20+ 18+ 13+ 14+ 20+ 15+ (13) (B) (3)

W W W W =
W W W
W w w
W W W W

2 @
(4) 4
(4) 4
(4) 4
(4) 4
@ @

Av. seats 40+ 40+ 40+ 40+ 40+ 40+ 40+ 40+ 40+ 40+ 40+ 40+ 30 25 23 22

(a) n+ means that n or more seats are available for the observed bucket.
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Table 4: Dynamic pricing by final number of left seats on a flight

Forms of dynamic pricing Full Final available seats
sample 1-10 11-20 21-30  31-39
First bucket
Price decrease first bkt 0.08 0.08 0.08 0.07 0.07
Price increase of first bkt only 0.05 0.07 0.05 0.03 0.02
Size increase first bkt 0.17 0.16 0.18 0.19 0.20
Last bucket
Price increase last bkt 0.01 0.02 0.01 0.01 0.02
Price decrease last bkt 0.04 0.04 0.05 0.05 0.03
Size increase last bkt 0.04 0.04 0.05 0.04 0.04
Size decrease last bkt 0.23 0.23 0.24 0.24 0.21
Intermediate buckets
Size increase 2nd bkt 0.06 0.05 0.06 0.07 0.07
Size decrease 2nd bkt 0.04 0.04 0.04 0.04 0.04
Size change 2nd-last observed bkt 0.08 0.08 0.09 0.09 0.08
Size/price changes intermediate bkts 0.22 0.20 0.23 0.25 0.26
Overall dynamic pricing 0.42 0.41 0.42 0.42 0.42
Observations 454,311 | 202,970 137,712 74,302 39,327
Observations (Last bucket) 133,011 | 74,435 39,817 14,577 4,182
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Table 5: Dynamic pricing by days to departure

Forms of dynamic pricing Days to departure
0-7 8-21 22-42 43-63  64-130

First bucket

Price decrease first bkt 0.03 0.09 0.11 0.09 0.06
Price increase of first bkt only 0.11 0.09 0.05 0.03 0.01
Size increase first bkt 0.09 0.22 0.29 0.19 0.12
Last bucket

Price increase last bkt 0.01 0.01 0.01 0.03 0.03
Price decrease last bkt 0.05 0.04 0.00 0.00 0.00
Size increase last bkt 0.04 0.05 0.06 0.01 0.00
Size decrease last bkt 0.10 0.32 0.57 0.27 0.11
Intermediate buckets

Size increase 2nd bkt 0.03 0.10 0.08 0.06 0.03
Size decrease 2nd bkt 0.01 0.07 0.05 0.03 0.02
Size change 2nd-last observed bkt 0.05 0.14 0.09 0.07 0.06
Size/price changes intermediate bkts ~ 0.10 0.36 0.27 0.21 0.15
Overall dynamic pricing 0.33 0.62 0.56 0.37 0.24
Observations 61,365 118,694 65,205 57,065 151,982
Observations (Last bucket) 59,628 67,012 5,848 415 108

Table 6: Dynamic pricing by available seats

Varying occupancy | Same occupancy

Forms of dynamic pricing Available seats Available seats
1-20 21-39 1-20 21-39

First bucket
Price decrease first bkt 0.03 0.06 0.06 0.15
Price increase of first bkt only 0.17 0.15 0.03 0.01
Size increase first bkt 0.07 0.14 0.09 0.34
Last bucket
Price increase last bkt 0.02 0.01 0.01 0.01
Price decrease last bkt 0.05 0.05 0.03 0.03
Size increase last bkt 0.04 0.04 0.03 0.06
Size decrease last bkt 0.12 0.33 0.07 0.37
Intermediate buckets
Size increase 2nd bkt 0.02 0.07 0.02 0.09
Size decrease 2nd bkt 0.02 0.05 0.03 0.07
Size change 2nd-last observed bkt 0.05 0.12 0.05 0.14
Size/price changes intermediate bkts  0.09 0.32 0.09 0.33
Overall dynamic pricing 0.39 0.63 0.22 0.59
Observations 44,981 46,303 18,630 23,092
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Table 7: Mean fares by Position in fare distribution and days to departure

Position in Days to departure
distribution 36+ 35-29 28-22 21-15 14-11 10-8 7-4 3-0
1 182 171 172 167 158 152 146 139

2 182 171 172 167 158 152 145 137
3 182 171 171 167 156 150 143 134
4 182 171 171 165 152 143 134 124
5 182 171 170 164 150 141 131 120
6 182 170 170 163 146 137 127 116
7 182 170 169 161 143 135 125 113
8 182 170 168 160 141 133 122 111

9 182 170 167 158 138 131 120 109
10 182 169 166 156 136 128 117 107
11 182 169 164 154 134 126 115 105
12 186 169 162 151 131 121 110 101
13 185 168 161 149 128 119 108 99
14 185 167 159 147 126 117 106 97
15 185 166 156 144 124 115 104 96
16 184 164 154 141 122 114 102 93
17 183 163 151 139 120 111 99 90
18 183 161 148 136 117 106 94 86
19 182 160 146 133 116 105 93 84
20 181 157 143 131 114 103 90 82
21 179 155 140 128 111 100 88 80
22 177 152 138 126 110 99 86 79
23 175 149 135 123 108 97 84 77
24 173 146 132 121 105 94 81 75
25 170 142 130 118 104 92 79 73
26 167 139 127 115 102 88 6 71
27 164 136 125 113 100 86 74 69
28 161 133 122 111 98 84 72 68
29 158 130 120 109 96 82 71 67
30 154 128 117 106 95 80 69 66
31 150 125 115 104 92 78 68 65
32 147 122 113 102 90 76 65 64
33 144 120 111 100 88 74 63 63
34 141 117 108 98 86 71 62 62
35 139 115 106 96 84 69 60 61
36 137 115 104 94 82 67 58 60
37 134 112 102 93 80 65 96 60
38 131 111 99 90 78 64 95 58
39 127 111 94 90 77 62 54 60
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Table 8: Regression analysis of the price of the first seat on sale

) ) ®) @) ©)
Dependent variable Bkt order log(p) log(p) log(p) log(p)
Estimation technique Order probit OLS-FE  OLS-FE OLS-FE OLS-FE
Sample All routes  All routes Leisure  Business All routes
Days to departure 0-3 2.629*** 0.805***  0.719*** (0.857***  (.787***
(0.028) (0.007)  (0.011)  (0.010)  (0.007)
Days to departure 4-7 2.306*** 0.686***  0.597*** (.735***  (0.668***
(0.028) (0.007)  (0.011)  (0.010)  (0.007)
Days to departure 8-10 1.756%** 0.510%**  0.451%**  (0.544***%  (.499***
(0.027) (0.007)  (0.010)  (0.009)  (0.006)
Days to departure 11-14 1.494%%* 0.424%F%  0.377FFF  (0.453%F*  (.421%F*
(0.025) (0.006)  (0.009)  (0.009)  (0.006)
Days to departure 15-21 1.330%*** 0.371%F*  (0.333%FF  (0.400%**  (0.366%**
(0.025) (0.006)  (0.009)  (0.009)  (0.006)
Days to departure 22-28 1.187%** 0.325%**  (0.296***  (0.351***  (.323***
(0.024) (0.006)  (0.009)  (0.009)  (0.006)
Days to departure 29-35 1.137%%* 0.298***  (0.276*** (0.315***  (.291***
(0.022) (0.005)  (0.008)  (0.008)  (0.005)
Days to departure 36-49 0.812%** 0.198***  (0.183*** (0.209***  (0.196***
(0.020) (0.005)  (0.007)  (0.008)  (0.005)
Days to departure 50-63 0.501%** 0.110%**  0.106%**  0.112*%**  (0.108***
(0.020) (0.004)  (0.007)  (0.007)  (0.004)
Days to departure 64-77 0.211%** 0.040%**  0.040***  0.039***  (0.044***
(0.020) (0.004)  (0.007)  (0.007)  (0.004)
Days to departure 78-91 -0.033** -0.007** -0.007 -0.009°* -0.003
(0.015) (0.003)  (0.006)  (0.005)  (0.003)
Price decrease 15¢ bkt -0.099%**
(0.001)
Price increase 1% bkt only 0.087***
(0.002)
R2 (or Pseudo R?) 0.107 0.574 0.536 0.615 0.594
Observations 900,861 900,861 350678 375775 900,861

(
(
(
(

Models (2)-(5) flight-code fixed effects.
) ¥** F* and * denote statistical significance at 1%, at 5% and at 10% level.

a) Robust standard errors clustered by route and week of departure.

b) Model (1) includes departure time dummies and departure day of the week dummies.
o)
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Table 9: Regression analysis of the price of all seats in the distribution (Option value).
Dependent variable: log(p)

(1) (2) (3) (4) (5) (6)
Estimation technique OLS-FE  OLS-FE IV-FE IV-FE IV-FE IV-FE
Sample All routes All routes All routes All routes  Leisure Business

Days to departure 0-3 -0.388***  -0.263%**  -0.689*F*  -0.251*  -0.914***  -0.446%*
(0.061)  (0.060)  (0.119)  (0.118)  (0.158)  (0.221)
Days to departure 4-7 -0.358%*F*  _0.191%*F*  _(0.599%** -0.182 -0.785%**  _0.389*
(0.048)  (0.048)  (0.095)  (0.095)  (0.127)  (0.178)
Days to departure 8-10 -0.319%%* 0. 117%F*  _0.485%** -0.111 -0.620%*%*  -0.322%*
(0.033)  (0.035)  (0.066)  (0.066)  (0.089)  (0.121)
Days to departure 11-14  -0.255%** -0.063* -0.369%** -0.059 -0.470%**€  -0.238**
(0.024)  (0.027)  (0.047)  (0.047)  (0.064)  (0.084)
Days to departure 15-21  -0.139*** 0.043%* -0.207*%* 0.046 -0.265%*FF  -0.115*
(0.017)  (0.021)  (0.030)  (0.031)  (0.041)  (0.053)
Days to departure 22-28  -0.084***  0.067***  -0.122***  0.068**  -0.150***  -0.072*
(0.013)  (0.018)  (0.019)  (0.022)  (0.027)  (0.033)

Days to departure 29-35 -0.015 0.073%** -0.031* 0.073%** -0.044* -0.004
(0.011)  (0.016)  (0.013)  (0.017)  (0.019)  (0.020)
Position -0.018%**  _0.004***  -0.022%¥*%*  -0.004**  -0.025%** -0.018%**
(0.000)  (0.001)  (0.001)  (0.002)  (0.002)  (0.003)
Seats before 0.001%** 0.001%** -0.003* 0.002 -0.006%** 0.001
(0.000)  (0.000)  (0.001)  (0.001)  (0.002)  (0.003)
Pos*Days to dep. 0-3 -0.017%** -0.017%**
(0.001) (0.001)
Pos*Days to dep. 4-7 -0.017%** -0.017%**
(0.001) (0.001)
Pos*Days to dep. 8-10 -0.016%** -0.016%**
(0.001) (0.001)
Pos*Days to dep. 11-14 -0.013%** -0.013%**
(0.001) (0.001)
Pos*Days to dep. 15-21 -0.011%** -0.011%**
(0.001) (0.001)
Pos*Days to dep. 22-28 -0.009%** -0.009%**
(0.001) (0.001)
Pos*Days to dep. 29-35 -0.005*** -0.005%**
(0.001) (0.001)
Heckman’s A 0.045 0.156*** 0.172%* 0.151%* 0.285*** 0.112
(0.044)  (0.043)  (0.062)  (0.061)  (0.084)  (0.106)
Hansen J-stat 0.244 1.06 0.187 1.35
R2 0.633 0.659 0.628 0.659 0.612 0.654
Observations 2,962,064 2,962,064 2,962,049 2.962,049 1355145 1,087,653

(a) Robust standard errors clustered by route and week 4P departure.
(b) Flight-code fixed effects.
(c) ***, ** and * denote statistical significance at 1%, at 5% and at 10% level.



Table 10: Regression analysis of buckets’ sizes by bucket position in the distribution

6 ) ®) @) )
Low price Low-Med price Med price Med-High price High price
buckets buckets buckets buckets buckets
Dependent variable Bkt size Bkt size Bkt size Bkt size Bkt size
Estimation technique OLS-FE OLS-FE OLS-FE OLS-FE OLS-FE
Days to departure 0-3 1.528%*** 1.526*** 1.290*** 0.343%** -2.252%%
(0.109) (0.068) (0.059) (0.049) (0.056)
Days to departure 4-7 1.671%** 1.466%** 1.064%** 0.190%*** -1.867***
(0.077) (0.047) (0.043) (0.038) (0.054)
Days to departure 8-10 1.832%** 1.4317%%* 0.850%*** 0.223*** -0.957***
(0.059) (0.039) (0.032) (0.030) (0.055)
Days to departure 11-14  1.749%** 1.425%** 0.979*** 0.517*** -0.167*F**
(0.051) (0.035) (0.031) (0.028) (0.052)
Days to departure 15-21 0.054 0.030 0.065%*** 0.171+%* 0.708***
(0.034) (0.025) (0.024) (0.021) (0.038)
Days to departure 22-28 -0.029 -0.044* 0.102%** 0.489%** 1.273%%*
(0.034) (0.025) (0.025) (0.025) (0.044)
Days to departure 29-35 0.022 -0.095%** 0.013 0.401%** 1.242%%%*
(0.031) (0.021) (0.021) (0.022) (0.046)
Days to departure 36-49 0.025 -0.184%** -0.129%** 0.146*** 0.406***
(0.029) (0.019) (0.019) (0.018) (0.028)
Days to departure 50-63 -0.034 -0.287%** -0.256%** -0.0827%** 0.043*
(0.025) (0.018) (0.019) (0.017) (0.024)
Days to departure 64-77 -0.099*** -0.335%** -0.340%** -0.230%** -0.164%**
(0.022) (0.014) (0.015) (0.015) (0.021)
Days to departure 78-91 -0.078*** -0. 277 -0.2971%** -0.229°%** -0.209%**
(0.017) (0.011) (0.012) (0.011) (0.016)
R? 0.119 0.175 0.091 0.019 0.093
Observations 549,102 754,021 763,483 803,686 643,972

(a) Robust standard errors clustered by route and week of departure.
(b) Flight-code and bucket-price fixed effects.
(c) ***, ** and * denote statistical significance at 1%, at 5% and at 10% level.
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Figure 1: Fare distribution at various days to departure
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Figure 2: Football Champions’ League final (Fare distribution)
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Figure 3: Probability of a bucket to include the first seat on sale, over days to departure

Pr(Bkt order = 1, 2, 8)
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Figure 4: Predicted marginal effects of Position and days to departure on prices.
Note: based on Model (4) in Table 9.
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A Appendix
A.1 Algorithm
First note that (2) can be written as:

V(t,M):mgx{q(p)[erV(t,M—1)—V(t—1,M)]}+V(t—1,M) (A.1)

with boundary conditions V (¢,0) = 0 and V (0,M) = 0, for any ¢ € {0,...,T} and
M € {0,...,N}. To find a solution for the problem described in (A.1), we consider the

following steps.

Step 1. Find the solution for max, ¢ (p) (p + z). Since F is bounded in [0, 8], there exists a
solution for the problem. When 6 is uniformly distributed in [0, 1], there is a closed

form solution given by:

p=(1-V({1 -9 L+zp)/e. (A.2)

Step 2. Set t =1 and M = 1.

Step 3. Compute x =V (t, M — 1) =V (t — 1, M) and use Step 1 to get p (¢, M). Replace it
in (A.1) to obtain V (¢, M).

Step 4. Set m = m + 1. Repeat Step 3 until m = N.

Step 5. Set t =t + 1 and m=1. If t < T, then go back to Step 3.

A.2 Proofs

Proof. of Proposition 1

We show that V (¢, M) > V (t—1,M). By contradiction assume that V (¢, M) <
V(t—1,M). Let p* (r,m) with 7 =1,...,t—1and m =1,..., M, be the set of fares that
solves (A.1) when there are ¢t — 1 periods and M seats. Define p (7,m) with 7 = 1,...,¢t
and m = 1,..., M, as a set of fares (not necessarily the optimal one) that is chosen
when there are ¢ periods and M seats: p (7 +1,m) = p* (r,m), for 7 =1,...,t — 1 and
p(l,m)=pe (0, 9_). Then, under this fare profile the expected return gained in the first
t — 1 periods is V (¢t — 1, M). Because ¢ < 1, there is a positive probability that some

seats are available in the last period (¢t = 1), and they generate positive expected revenue,
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which contradicts our assumption. The proof that V (¢,m) > V (¢, M — 1) is similar to
the previous case and is omitted to save space. ®m
Proof. of Proposition 2

Part (1): Clear, from the text. Part (2): From (3) and the fact that ¥ > 0, it
follows that p (¢, N) is increasing in Agy (t, M) = AV (¢, M) — AV (t,M). Moreover
since that A;V (¢, M) is increasing in M and AyV (¢, M) is decreasing in M, it follows
that Ag; (¢, M), and therefore p (¢, N), is decreasing in M. Part (3): As showed above,
p(t, N) is increasing in Ay (t, M). Moreover since that AyV (¢, M) is increasing in ¢t and
AV (t, M) is decreasing in t, it follows that Ay (¢, M), and therefore p (¢, N), is increasing
int. m

A.3 Uniform distribution

In this part, we discuss the properties of the value function when the willingness to pay of
consumers is uniformly distributed. Table A1 completes our previous example based on
the simulation values of Table 1. It shows that the marginal return of having an additional
seat or an additional period are decreasing over time, and at the same time, that there are
increasing returns from doubling both variables. In order to verify the robustness of the
result, we have simulated the case T'= N = 200 and for any ¢ in the range [0.01,0.99],
with a step of 0.01.

Table Al: Simulated value function, V' (¢,m)

Seats Value function, V' (¢,m)

m t=5 t=4 t=3 t=2 t=
7.421 6.577 5.474 4.035 2.201
7.014 6.255 5.248 3.909 2.159
6.577 5903 4.996 3.763 2.108
6.107 5.518 4.712 3.593 2.045
5.602 5.097 4.395 3.396 1.968
5.060 4.638 4.040 3.168 1.873
4.480 4.137 3.643 2902 1.757
3.857 3.591 3.199 2.593 1.613
3.191 2,995 2.701 2.232 1.432
2476 2345 2.143 1.810 1.205
1.710 1.635 1.516 1.312 0.913
0.887 0.857 0.808 0.719 0.530

—_
[\]
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A.4 Data treatment

This Section contains further details on the procedure we applied to derive the fare dis-
tributions from the posted fares.

Through data visual inspection, we learnt that the carriers’ posted fare follow this rule:

CH 3

S

PF(s) (A.3)
where s denotes the number of seats in the query, PF(s) the corresponding posted fare, p;
the fare of each seat, starting from the first one available for sale and C is a fixed charge
which we interpret as a fixed commission per booking. The presence of C' implies that
the distribution of posted fares over seats is generally U-shaped, with the decreasing part
due to the commission being spread over more seats and the increasing part due to the
increasing values of buckets, as in Figure 1.

To find C, we rely on the fact that in most cases the first and the second seat are
likely to belong to the same bucket. Therefore C' (and the value of the first bucket) can be
obtained by solving the following system of two linear equations in two unknowns, using

the identity p1 = p2 = p:

PF(1) =C +p
PF(2) =(C + 2p)/2

The commission changed over the sampling period: it amounted to £5.5 until 25 June
2014, then to £6 until 6 May 2015 and subsequently to £6.5. For flights priced in euro
the corresponding values are €7, €7.5 and €8.5 with changes taking place simultaneously
to the fares in British Pounds. The values in the two currencies are highly related to the
exchange rate in the various periods.

After finding C, using (A.3) it is straightforward to derive the bucket fare tags, P;:

P; = j* PF(j) — (j — 1) % PF(j — 1) with j € [2,40], (A.4)

with P, = PF(1) — C.%"
Two aspects are noteworthy. First, the procedure to derive the bucket values does
not impose any restriction on the monotonicity of the distribution. Second, and most

importantly, the distributions we derive correspond exactly to the distributions advertised

2TFor simplicity, cents and pennies are rounded to unity.
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on the carrier’s website. As discussed in the Data Collection section, for each query the
crawler retrieved the information that appears on the booking page regarding the “number
of seats available at that fare”.?® We can then gauge the extent to which the size of each
bucket, obtained from (A.4), conforms with the information provided by the carrier. It
turns out that the above procedure generates buckets’ sizes that perfectly correspond to
the sizes implied by the information posted by the carrier on the number of seats available
at a given fare. We take this as a strong indication that we succeeded in reverse-engineering

the carrier’s pricing approach.

28This and the other website’s features illustrated in the paper were still operative at the date this paper
was completed.
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