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Abstract

This paper develops a method of analyzing average value of a complex-

valued function that can be represented as a Fourier series satisfying a few

realistic restrictions. This method may be useful when Discrete Fourier

transform is highly inefficient, and comparison with Hodrick-Prescott filter

is made.

1 Hodrick-Prescott filter

Hodrick-Prescott filter has the following frequency response:

H(ω) =
4λ(1− cos(ω))2

4λ(1− cos(ω))2 + 1
(1)

as shown in [3]. The filter is high-pass filter - but one can convert it to become
a low-pass filter, since the low-pass part that was filtered out can be obtained
simply by subtraction.
The HP high-pass filter dependence on smoothing parameter λ implies a need
for decision: one can allow more low-frequency parts to be on data by increasing
λ and at first this decision seems good since the trend is obtained more clearly,
but in many econometric usage, frequency is something related to error terms,
and the linear trend at ω = 0 may not be the trend to be detrended.
Even if one wishes to obtain very close approximation linear trend, though,
complexities around Hodrick-Prescott filter often does not allow it.
In this paper, though, I consider the case where one wishes to obtain exact linear
trend. It is not practically possible for all time processes, but possible when
f(t) : R → C can be represented as fourier series involving finite harmonics,
with other realistic assumptions on magnitude and negative/positive sign of
individual amplitude of harmonics.
After performing analysis in z-transform, I consider a graph theory example.
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2 Assumptions

Any function mentioned in this paper is a function R → C.

Definition 2.1 (Amplitude). For any arbitrary function α(t) expressible as
α(t) =

∑
∞

ω=−∞
Aωe

iωt/d where d is constant and does not vary with ω, Aω is
said to be amplitude of α(t) at angular frequency ω/d.

The function f(t) to be discussed will be assumed to be expressible in Fourier
series form - that is, angular frequencies with non-zero amplitude are all integer
multiples of first harmonic angular frequency.
I will limit the number of angular frequencies with non-zero amplitude to be
maximum of nn, where n may represent the input size, that is defined for each
application of analysis developed in this paper. Also, the sum of all amplitudes
will be restricted to maximum of nn. But these limitations themselves is not
central to analysis to be developed.
The central question to be answered in the analysis developed in the next section
goes as follows:

If f(t) is in the Fourier series form, has limited number of har-
monics (and the maximum number of harmonics is known), and one
can generate samples of f(t) at time t, plus one can generate sam-
ples of f(t) with frequencies scale such that new frequency ω′ = kω,
with k constant, is there a good way to calculate amplitude of f(t)
at zero frequency? Discrete Fourier transform is there, but it may
be very inefficient.

Definition 2.2 (nh, np). nh is the amplitude of f(t) at zero frequency. np =∑
ω Aω.

3 z-transform analysis

From now on, angular frequency will be represented by both ω and u. Let the
digital filter based on z-transform be:

H(z) =
1

(z − p1)(z − p2)
(2)

where p1, p2 ∈ R will later be defined. Let |1− p2| ≫ |iu| and |1− p1| ≪ |iu|.

Definition 3.1 (f1, f2, µ1, µ2). f1(t) = f(t) − nh, f2(t) = nh, µ1(t) = eiut,
µ2(t) = 1.

Definition 3.2 (γ1, γ2). γ1 = 1− p1, γ2 = 1− p2.

For input of µ1(t) = eiut, µ1(z)H(z) is:

µ1(z)H(z) =
z

(z − p1)(z − p2)(z − eiu)
(3)
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Taking inverse z-transform using each pole. For pole p1, residue calculation
results in:

p1
t

(p2 − p1)(eiu − p1)
(4)

I will change the above to (subtracting away t = 0 result):

(1− γ1)
t − 1

(−γ2 + γ1)(iu+ γ1 −
u2

2
− ..)

(5)

For pole p2, residue calculation:

p2
t

(p1 − p2)(eiu − p2)
(6)

Changing to:
(1− γ2)

t − 1

(γ2 − γ1)(γ2 + iu− u2

2
− ..)

(7)

For pole eiu, residue calcaltion:

eiut

(eiu − p1)(eiu − p2)
(8)

Changing to:

iut− u2t2

2
− iu3t3

6
+ ..

(iu+ γ1 −
u2

2
− ..)(γ2 + iu− u2

2
− ..)

(9)

Now analyzing Equation 5, 7 and 9 by series-expanding based on γ1, γ2andu.
Let t = 1.

Definition 3.3 (Constant terms). Constant terms are the ones not depend on
angular frequency u.

The focus will be on the constant term, more specifically on γ1/γ2
2 terms.

γ2 ≪ 1 will be assumed. (which implies that |iu| ≪ 1.)
First, Equation 5. The first initial term, based on the largest term in the
denominator −γ2iu is:

γ1
γ2iu

(10)

Expanding series-wise, additive inverse of this term will be multiplied by the
terms of the form B/(−γ2iu), where B 6= −γ2iu is some atomic additive term
of the denominator in Equation 5.

Definition 3.4 (Atomic term). An atomic term of some equation refers to the
term defined only by multiplication of positive powers of γ1, γ2, u and constant
k ∈ C. Additionally, it is required that there should be no other atomic terms j
in the equation with k = kj such that only k differ - in other words, k =

∑
j kj .
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Definition 3.5 (Expanding factor). Expanding factor refers to B/(−γ2iu) in
Equation 5, and for other equations, the denominator changes to the greatest
atomic term in magnitude. By definition, any expanding factor is much less
than 1 in magnitude.

Furthermore, additive inverse of these new terms will be multiplied by ex-
panding factors to produce new terms, and this process continues indefinitely.
Since our interest is in getting particular constant terms out of Equation 5,
let us look back to the first dominant term in Equation 10. The denominator
contains u - in order to derive constant terms, some product of expanding fac-
tors that result in Du/E, where D,E are only dependent on γ1, γ2 and some
constant k ∈ C.
Thus, either one directly starts off by multiplying the expanding factor that
depends on u (when fraction simplification is done) but only the first power
of u = u1, or one can multiply expanding factors that their product is either
constant or depends on ui with i ∈ Z

− then multiply by expanding factors that
depend on uj with j ∈ Z

+ to obtain the final constant term.
First consider the greatest expanding factor in magnitude that depends on u,
which is −u/(2i).

−γ1
γ2iu

−u

2i
=

−γ1
2γ2

(11)

Since γ2 ≪ 1, this term is much less than the constant terms being searched
for.
Other expanding factors that depend on higher powers of u are much less than
−u/2i in magnitude - thus, other directions that constant terms may be obtained
do not have to analyzed.
Now to Equation 7. The initial dominant term is:

−1

γ2
(12)

There is no expanding factor in this case that depends on ui with i ∈ Z
−. Thus,

for constant terms, one can restrict search to constant expanding factors. The
only expanding factor is −γ1/γ2.

1

γ2

−γ1
γ2

=
−γ1
γ22

(13)

This is one of the terms being searched for.
Now to Equation 9. There are many initial terms:

1

γ2
,

−u

2γ2i
,
−u2

6γ2
, ...

Let the first initial term be labelled as [1], the second initial term be [2], the
third as [3].
Now to the expanding factors. First, the expanding factors that have depen-
dency on u−1 or are constant factors:

γ1
iu

,
γ1
γ2
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To eliminate u2 in [3], one needs at least two γ1/(iu) multiplied, but the constant
terms we are searching for only has one γ. Thus, [3] is ruled out. For [2], one
needs at least one γ1/iu multiplied to eliminated u. However,

u

2γ2i

γ1
iu

=
−γ1
2γ2

<
γ1
γ22

Thus, [2] is discarded also.
Now one is left with [1] only.

−1

γ2

γ1
γ2

=
−γ1
γ22

(14)

The above is one of the terms being searched for. But there is one other way
to obtain constant term. For the term being searched, there is only one γ1,
and thus γ1/(iu) expanding factor can only be used once. Furthermore, before
simplification, any expanding factor has denominator of γ2iu. Recall that ex-
panding factor has form B/(γ2iu). After using one γ1/(iu), this means that the
additional expanding factor can only have B that does not depend on γ1, γ2 and
dependent on u2. The only B that satisfies such a criterion is −u2. Thus, two
expanding factors together multiplied that can be used to obtain the desired
constant term are: γ1/(iu) and −u/(γ2i).

−
−1

γ2

γ1
iu

−u2

γ2iu
=

γ1
γ22

(15)

This completes our analysis for µ1(t). Now summing up pieces: Equation 13,
14, 15:

−γ1
γ22

(16)

Now to µ2(t). For input of µ2(t) = 1,

µ2(z)H(z) =
z

(z − p1)(z − p2)(z − 1)
(17)

For pole p1, inverse-z transform residue after subtracting away t = 0 part:

p1
t − 1

(p1 − p2)(p1 − 1)
(18)

taking t = 1 and converting to γ1, γ2 form:

−γ1
(γ2 − γ1)(−γ1)

=
1

γ2 − γ1
(19)

For pole p2, inverse-z transform residue after subtracting away t = 0 part:

p2
t − 1

(p2 − p1)(p2 − 1)
(20)
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t = 1 and converting,
−γ2

(γ1 − γ2)(−γ2)
=

−1

γ2 − γ1
(21)

Pole 1 will not be considered, as 1t = 1, and the residue therefore does not
depend on t. Adding together Equation 19 and 21:

0 (22)

Now let us go back to f1(t) and f2(t). The principle remains exactly the same
as with µ1 and µ2. But because of amplitudes, Equation 16 will change to:

(np − nh)
−γ1
γ22

(23)

Thus, now it is possible to obtain the value of nh, since we already know what
np is.

4 Applications: Graph theory

I will use the analysis developed above for finding the number of hamiltonian
paths: here nh. Hamiltonian path models have recently been used to study
Nash equilibrium, as in [4] and [2].

Definition 4.1 (Base-n expansion). Base-n expansion of some number k is
basically expressing k in base-n: k = ±

∑
∞

p=−∞
apn

p with 0 ≤ ap < n.

The power of base-n is that if important parameters are the finite sums
(that is, k = ±

∑bh
p=bl

apn
p, with bl and bh finite), instead of infinite sums, then

analysis becomes much easier. For studying numerical approximation of k (if
exact value cannot be known), one can just focus on finite number of numerical
digits.

Definition 4.2 (graph, n). A graph G is denoted with G = (V,E) as done in
the standard literature. n = |V | is assumed whenever n appears.

Definition 4.3 (walk, n-walk, hamiltonian path). A walk is defined as in the
standard graph theory vocabulary. A walk that has n vertices is called n-walk.
Let us represent a walk with a list (tuple) of vertices in a traversing order from
the start vertex to the end vertex. By the definition of a walk, one vertex can
appear more than once in a list. A hamiltonian path, as defined in the standard
graph theory vocabulary, is a walk with n distinct vertices, where |V | = n.

Definition 4.4 (vertex). A vertex is assigned a number. Each distinct vertex
has a distinct number. Let V = {n, n2, n3, ..., nn}. From now on, one can
assume a vertex as a number whenever appropriate.

Definition 4.5 (nh, np). nh is the number of hamiltonian paths of G. np is
the total number of n-walks of G.
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Definition 4.6 (Vertex-number). The vertex-number of a walk is defined as
the sum of all elements (vertices) in the list of a walk.

Note that the vertex-number of a walk represents the angular frequency of a
walk in x(t), as will be seen. It is certainly possible that two walks may occupy
the same frequency. If there are k walks that occupy the same frequency ωa,
then the amplitude at the frequency would be k in Fourier series language, or
kδ(ω − ωa) in Fourier transform language where δ(ω) is a dirac delta function.
The maximum number of vertices inside a walk is restricted to n, for
sake of convenience.

Definition 4.7 (Permutation of a list). A permutation of a list is a re-ordering
of list elements in ξ. For example, for ξ = (ξ1, ξ2, .., ξn), ξα = (ξn, ξn−3, ξn−4, ..., ξ1)
is a permutation of ξ.

Lemma 4.1. Given V as defined above, a vertex-number can only be formed

out of a permutation of a single vertex-number list.

Proof. The proof is simply the basis representation theorem, where basis are
elements in V . One exception to this proof, though, arises when a list ξ repre-
senting a walk may be of (k, k, ...k) with |ξ| = n and k = ni, or in words, there
are n k’s in ξ. In this case, nk = ni+1, meaning the vertex-number ξ equals
one of vertices in V . But this should not matter whenever walks one deals with
have same number of vertices.

Following from above:

Definition 4.8 (Contribution of each n-walk to x(t)). From above, each walk
has a vertex number k. Each n-walk is said to contribute eikt to x(t).

Definition 4.9 (Amplitude). For any arbitrary function α(t) expressible as
α(t) =

∑
∞

ω=−∞
Aωe

iωt/d where d is constant and does not vary with ω, Aω is
said to be amplitude of α(t) at angular frequency ω.

4.1 Grid: x(t)

Definition 4.10 (Grid, wires). A grid consists of n depths, with each depth
being equivalent to a column. Each depth contains n vertices as in V . Each
wire connects a vertex vα from ith depth to a vertex point of vβ in i+1th depth.
A wire is connected between vα to vβ if and only if (vα, vβ) ∈ E.

Definition 4.11 (Function transmission: first depth case). In the first depth
(first column), each vertex vα transmits eivαt.

Definition 4.12 (Function transmission except for first and nth depth). Defin-
ing for each vα in arbitrary ith depth. All incoming wire transmissions wζ(t)
from each wire ζ from i− 1th depth to vα in ith depth are summed, or equiva-
lently wλ =

∑
ζ wζ . And then multiply by eivαt and transmit uvα

= eivαtwλ to
each wire starting from vα.
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Definition 4.13 (Vertex point function transmission: nth depth case). All
incoming wire transmissions wζ(t) from each wire ζ from n − 1th depth to vα
in nth depth are summed, or equivalently wλ =

∑
ζ wζ . And then multiply by

eivαt, resulting in svα = eivαtwλ. xideal(t) =
∑

v∈V sv is the output of the grid,
not considering quantization errors involved.

For each depth i,
∑

v∈V uv shows the sum of all vertex-numbers representing
i-walk.

4.2 Post-grid: y(t)

Simply, this post-grid procedure is all about calculating y(t) = x(t)e−iωht where
h =

∑n
i=1

ni, the hamiltonian frequency of x(t). Thus, y(t) has 0 has hamilto-
nian frequency.

4.3 Post-grid: f(t)

f(t) is defined as f(t) = y(ct). c will be defined later.
Let the angular frequencies of f(t) be labelled with u. u = 0 refers to hamilto-
nian frequency.
From now on, when it is said “every u,” this refers to every u with non-zero
amplitude in f(t).

4.4 Sinusoidal quantization errors

For every vertex v of each depth of the grid, the numbers from maximum of n
vertices are added and then multiplied by eivt, for each t.
For each vertex v of each depth, the error occurred would be of the following
form:

• (Sum of errors from previous depths) × (eivt + calculation error for eivt)
+ (The correct sum of previous depths) × (calculation error for eivt).

Here the purpose of error analysis is not to find out exact error but to derive the
formula for the magnitude that is equal or bigger than actual possible maximum
error.
Assume that the correct value of the previous depth is always 2nn > |nn+nni|,
and the correct value of eivt is 2 > |1 + 1i|. This is bigger than it actually is,
thus Equation 24 is an overestimate of the sum of errors.

Definition 4.14 (ev, ei). ei representing total maximum sinusoidal quantiza-
tion error in magnitude occurring from depth 1 to depth i of all vertices, and ev
represents the maximum error in magnitude that occurs from calculating eivt.

Note that ev and ei represents entirely different things, and v inside ev is
not an index, unlike i, which is an index, in ei.
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Thus, this will yield the following recurrence equation:

ei+1 = n2 [(2 + ev)ei + 2nnev] (24)

Now let us simplify Equation 24 by the following substitutions:

Λ = 2n2 + n2ev, Υ = 2nnev (25)

ei+1 = Λei +Υ (26)

Assuming that we start from e0 = 0 (for sure, depth 0 does not exist, but this
can safely be used), by geometric series formula,

ei = Υ
Λi − 1

Λ− 1
(27)

ei=n ≡ en = Υ
Λn − 1

Λ− 1
< ΥΛn (28)

Assuming that ev < 1/n2, we can assume that Λ < 3n2.
To incorporate the errors occurring from further calculating y(t),

ei=n+1 ≡ en+1 = Υ
Λn+1 − 1

Λ− 1
< ΥΛn+1 (29)

with Λn+1 ≈ 3n+1n2n+2 ≈ n3n+3 ≈ n4n, assuming ev < 1/n2.

5 Conclusion

This paper presented an alternative way of deriving the average value of a
complex-valued Fourier series with realistic restrictions in case Discrete Fourier
transform becomes costly. The paper then presents a possible application of the
analysis.
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