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Abstract

One explanation for large stock market fluctuations is its tendency to herd behavior. We

put forward an agent-based model where instabilities are the result of liquidity imbalances

amplified by local interactions through imitation, and calibrate the model to match some key

statistics of actual daily returns. We show that an “aggregate market-maker” type of liquidity

injection is not successful in stabilizing prices due to the complex nature of the stock market.

To offset liquidity shortages, we propose the use of locally triggered contrarian rules, and show

that these mechanisms are effective in preventing extreme returns in our artificial stock market.

JEL codes: C63, G02.
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1 Introduction

Stock markets are complex dynamic systems where the interactions between their composing

agents have a crucial role in determining aggregate outcomes. By fostering the emergence of

collective conformity, such as fads and social manias, these interactions can propagate small devia-

tions of individual behavior from the fundamental valuations to the overall market. The occurrence

of large fluctuations in stock prices can therefore be attributed to, at least to some extent, the emer-

gence of herd behavior. From this point of view, this paper offers two main contributions. First, we
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propose an agent-based model that accounts for the role of imitation in individuals’ decisions and

is capable of generating the large swings observed in actual stock markets. Second, we evaluate

the effectiveness of policy mechanisms aimed at preventing the occurrence of large fluctuations

caused by herd behavior.

Stock market crashes can have harmful effects on economic activity. Large losses of wealth

can induce lower levels of consumption, and abrupt changes in the cost of capital can lead to se-

vere distortions in investment decisions. Macroeconomic policy authorities should therefore be

interested in the prevention of such stock market collapses. But recognizing the complexity of

stock markets poses daunting challenges for policy making. Attempts to stabilize stock markets

with monetary policy and financial regulation raise several impracticalities. First, bubbles are hard

to spot and, until very recently, central banks were not inclined to respond to developments in

asset prices (see Blanchard et al., 2012, for an assessment of how this view might be changing).

Second, the experience of the recent crisis suggests that financial markets tend to innovate around

regulations and the nature of risk-taking changes as the financial system gets more sophisticated

(Edey, 2009). Another example is given by the Chinese authorities role and response to the 2014-

15 bubble and crash in the equity market, where “broad-ranging interventions [...] appear to have

increased investor uncertainty about financial sector policies” (IMF, 2015). In this paper, we ar-

gue that these aspects are typical of large, dynamic and complex systems that can self-organize

into a critical state where minor perturbations may give rise to instabilities of macroscopic scales

(see, e.g., Scheinkman and Woodford, 1994; Bak and Paczuski, 1995). One key issue is that such

extreme events cannot be predicted and therefore require a different paradigm for the design of

effective interventions.

We set up an artificial stock market with autonomous agents that interact in a two-dimensional

lattice using simple decision rules based on imitative and fundamentalist behavior. Imitation is a

key component for the emergence of herding in our model, and it can be motivated from different

theoretical reasons: Private information can generate incentives for a rational decision maker to

follow others’ actions in sequential environments (e.g., Banerjee, 1992; Bikhchandani et al., 1992,

and Devenow and Welch, 1996; Bikhchandani and Sharma, 2001, for reviews of this literature).

Imitation also can arise from social (Bernheim, 1994) and psychological factors that cause behav-

ior to deviate from fully rational considerations (e.g., Kirman, 1993; Lux, 1995). Nevertheless,

empirically, there is scarce evidence that distinguishes between these motives in real markets (see

Cipriani and Guarino (2014) for a discussion on the disconnect between the empirical and the-

oretical literature). To circumvent this debate, imitative behavior is introduced in our model by

the explicit assumption of a simple local interaction rule, rather in the spirit of Herbert Simon’s

bounded rationality (Simon, 1982).

As usual, prices in our model are determined at the market level in response to imbalances
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between aggregate demand and supply for the stock. Hence, the ultimate cause of extreme returns

in our model is oscillations of market liquidity, which is consistent with recent accounts of how the

2008-09 financial market turmoil propagated (see Brunnermeier, 2009, for a review). Nevertheless,

the emergence of large liquidity imbalances is not implicit in our model behavioral assumptions,

nor by its market micro-structure. It is the local interactions architecture of our model that amplify

clustered shortages of liquidity and have a significant impact at the overall market level.

The inherent complexity that these interactions prompt often restrict the feasibility of standard

analytical tools for realistic inferences. One solution is the use of the agent-based computational

approach (see Tesfatsion and Judd, 2006), where dynamic systems of interacting agents are com-

putationally modeled to facilitate generative explanations (Epstein, 2007). Because the estimation

of agent-based models is complicated by the lack of simple analytical solutions (see Grazzini and

Richiardi, 2015, and references therein), we developed an empirical strategy based on a goodness-

of-fit measure for the whole distribution of stock returns generated by our model. Specifically,

we calibrate our model to replicate actual stock markets data, which present distribution of re-

turns characterized by heavy tails, i.e., extreme returns are more likely to occur than Gaussianity

would imply. Using simulations, we then show that our model is capable of matching the empirical

distribution of daily returns of the Dow Jones Industrial Average (DJIA) index from 1996 to 2012.

We then turn our focus to the design and evaluation of policy schemes aimed at the prevention

of sudden liquidity dry-ups. To that end, we conduct several counter-factual exercises using our

calibrated model. First, we show that an “aggregate market-maker” type of liquidity provision

policy is only partially effective for the stabilization of our artificial stock market. More generally,

we argue that a policy design that neglects the interconnections between individual decisions and

their scaling up to aggregate outcomes can be misleading and costly.

To account for the complex nature of stock markets, we propose the use of a system of trading

algorithms, or robot traders, as described in Suhadolnik et al. (2010). Robot traders have been

around for years, but used only for private gain. More recently, their use for high-frequency trading

has been the cause of intense debate on whether their effects are beneficial or harmful to the

functioning of financial markets, and how regulation should cope with the rapid pace of their

technological innovation (see the reviews by Foucault, 2012; Kirilenko and Lo, 2013, and Farmer

and Skouras, 2013, for an ecological perspective). Here, instead, we propose their systematic use

for the benefit of public policy making.

In contrast to the practice of responding to aggregate observations, our robot traders are trig-

gered locally to follow a contrarian rule in order to prevent stampede reactions caused by herd

behavior. To prevent financial imbalances we also introduce a self-regulatory mechanism to de-

crease the robot’s contrarian behavior in response to its individual financial position. Hence, every

robot has the autonomy to trade on the basis of its local information, but is also bound by its own
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track of transactions. Also, addressing one of the key criticisms to asset price targeting, the robots’

intervention does not depend on assessments of the stock’s fundamental value. The only require-

ment is the introduction of a parallel system of autonomous trading algorithms that will gather

information in real-time at key junctures of the market structure.

There is an interesting parallel between our approach and the role of independent assessments

in collective decision making. According to what is known as “Condorcet’s jury theorem,” named

after its proponent, the 18th century French intellectual Marquis de Condorcet, the pooling of

independent information held by multiple individuals can lead to better decisions than those relying

on particular dictatorial assessments (see, e.g., Grofman et al., 1983; Young, 1988; Boland, 1989).

In other terms, and nitpicking the popular belief that stock markets are sometimes driven by the

madness of crowds, we devise a “crowd of robot traders” to restore the wisdom often associated

with collective decisions (see Surowiecki, 2005; Landemore and Elster, 2012, for many examples).

The existence of interdependencies between the individual decisions, however, may lead to

violations to the Condorcet’s principle. When decisions are correlated, the effectiveness of in-

formation pooling through the majority rule tends to decrease (Ladha, 1992; Berg, 1993; Ladha,

1995). Clearly, this is the case in our crowd of robot traders – even though the robot traders are

devised to operate autonomously, the interconnectedness of agents in our artificial market can give

rise to correlated contrarian responses. To circumvent this issue, we further developed a coor-

dination mechanism that splits the robots’ action into two stages: First, the local information is

collected and pooled by a financial policy authority. Next, the decisions of the robot traders are

coordinated to take into account the general assessment of the market condition.

We find that the robot traders are capable of stabilizing the stock market and reshaping the

distribution of returns towards a Gaussian distribution, while the self-regulatory mechanism guar-

antees its financial sustainability. Furthermore, with the aid of the coordination mechanism, the

number of robots required to mitigate extreme events is substantially reduced, which means that

our approach requires only tiny perturbations to the usual functioning of the stock market. The

calibration of our model also evidenced some uncertainty regarding agent’s sensitivity to the ob-

servation of a quorum in the local neighborhoods, and our results indicate the relevance of such a

specification for the design of effective stabilization policies.

The remainder of this paper proceeds as follows: In Section 2, we present our artificial stock

market model and describe the calibration approach we adopted to match statistical properties

observed in the data. Section 3 describes the liquidity provision policies we considered in the

counter-factual exercises of Section 4. Section 5 concludes the paper with some final remarks.
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2 Complex Stock Market Model

The stock market is represented by a L × L square lattice where each cell, indexed by i =

1, ..., N (= L2), represents an agent. Each agent holds a portfolio of money (mi,t) and assets

(ai,t). For simplicity, we assume there is only one stock being traded and that there are no short

sell constraints. Every period each agent has to decide whether she (or he) wants to buy or to

sell one unit of the stock. Agents are assumed to make their decisions concurrently, after which a

market clearing process takes place aggregating the individual demands and adjusting the price of

the stock accordingly.

2.1 Behavioral Rules

We model the agents’ decision-making process as a discrete choice, with the probabilities of each

action determined symmetrically and by merging two investment strategies: an imitative rule and a

fundamentalist rule. Because we assume symmetry, we can simplify the presentation by focusing

on the determination of the probability that agent i makes a buy order at period t, πB
i,t, which is

given by

πB
i,t = ωi,tI

B
i,t + (1− ωi,t)F

B
i,t, (1)

where IB
i,t and FB

i,t are the probabilities that the agent will choose to buy the stock based on imita-

tion and fundamentals, respectively, and ωi,t regulates the weight assigned to imitation.

The imitative component is modeled according to a local interaction rule based on the agent’s

neighborhood, where the willingness to buy is an increasing function of the number of neighbors

who have made a buy order in the previous period (NB
i,t−1), i.e.,

IB
i,t =

(
NB

i,t−1

)κ
(
NB

i,t−1

)κ
+
(
N S

i,t−1

)κ , (2)

where κ > 0 controls the intensity of the response.

Inspired by the literature on consensual collective decision-making (see, e.g., Sumpter and

Pratt, 2009), rule (2) displays a quorum-type response when κ > 1: the higher κ, the sharper is the

increase in the probability of adopting a particular behavior once a quorum of agents performing

that behavior is met in the neighborhood. Within the square lattice architecture, we assume agents

interact with their eight surrounding neighbors, also known as Moore neighborhood; a quorum

is given by a total of four neighbors adopting the same behavior. Furthermore, when κ = 1

the response becomes linear, and as κ decreases below 1 the response becomes insensitive to the

quorum: the probability of imitation presents an initial sharp increase to a mid-range value once

the first adopters are observed, but then remains around that level until a majority of adopters is

5



Figure 1: Behavioral Rules.

(a) Imitation rule.
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observed. These responses are illustrated in panel (a) of Figure 1.

In the context of the theoretical literature on imitation, mentioned in the introduction, our

imitative rule is not derived from rationality assumptions. In particular, notice that (2) implies a

naive assumption that the neighbors’ previous actions fully reflect their private information, which

neglects the correlation between the neighbors’ own decisions on the basis of common sources

(see Eyster and Rabin, 2010, 2014). Hence, the imitative component in our model follows in the

spirit of models of bounded rationality (Simon, 1982).

For the fundamentalist rule, we assume that the agent holds a belief about the fair value of

the stock, denoted by the fundamental value fi,t−1, and weighs her willingness to buy or to sell

the stock based on the gap between that evaluation and the stock’s previous period price (pt−1):

when the price of the stock is below (above) its fundamental value, the agent will expect higher

(lower) returns and therefore will increase her willingness to buy (sell) the stock. Letting Di,t−1

denote the ratio between fi,t−1 and pt−1, the probability that an agent will choose to buy based on

fundamentals is given by

FB
i,t =

Dγ
i,t−1

Dγ
i,t−1 +D−γ

i,t−1

, (3)

where γ > 0 is a parameter regulating the agent’s response to the deviations of the stock price from

its perceived fundamental value. The different shapes of the responses obtained with this rule are

illustrated in panel (b) of Figure 1.

The fundamental rule in (3) can be motivated from the literature on predictor selection under

a discrete choice setup (Brock and Hommes, 1997), where γ represents the intensity of choice

and measures how fast agents switch between different prediction strategies. Translated to our

context, the interchange is between different investment strategies (buying low/selling high) that

have corresponding prospects of return. Other than introducing standard asset pricing concerns
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in our model, this fundamentalist component also has a key role in supporting the uncertainty

required for herding behavior to emerge in a financial market (see Avery and Zemsky, 1998). We

discuss this further below after introducing the price adjustment mechanism.

The fundamental beliefs are assumed to be determined exogenously to the model according

to a log-normal distribution with a time-varying median1, µ̂t. In order to calibrate the model

to match the trend swings observed in the index series of stock prices, we set µ̂t to correspond

to a trend estimated from the data according to a procedure detailed in the next section. The

dispersion of the heterogeneous beliefs across the agents is controlled by setting the variance of

the log-normal distribution so that the variance of the fundamentals remains a constant fraction of

the median fundamental value through time, i.e., V ar (fi,t) = σµ̂t. Using conventional notation,

these distributional assumptions require that log [fi,t] ∼ N
(
log [µ̂t] , log

[
1/2 +

√
1 + 4σ/µ̂t/2

])
.

Notice that when σ = 0, agents hold identical fundamental beliefs, such that the only source of

diversity in our model comes from their interactions within neighborhoods.

The deviation of the stock market price from its fundamental value also plays a role in the

determination of the weights ascribed to each strategy. Here, we assume that the agents give more

attention to the fundamental rule as the distance between the stock price and its fundamental value

increases. Conversely, the agents will increase their reliance on the signal collected from their

neighborhood as the fundamental price gap decreases. This behavior is captured by

ωi,t =
1

1 + ηD̃2
i,t−1

, (4)

where D̃i,t−1 = log [Di,t−1], and η > 0 regulates the agents sensitivity to the relative deviations of

the stock price from its fundamental value, as illustrated in panel (b) of Figure 1. From a statistical

mechanics perspective, Rule (4) can be accountable for preventing the emergence of degenerate

results in the dynamical system. In particular, the presence of positive feedbacks in the imitation

strategy in the form of self-reinforcing collective behavior (see Sornette and Zhou, 2006) may favor

the dominance of that rule in the determination of agents’ final behavior.

Thus, our behavioral assumptions associate two main variables to the determination of agents’

responses: the composition of their neighborhood and the deviation of the stock price from its fun-

damental value. The shape of these responses is illustrated in Figure 2 for both quorum-insensitive

and quorum-sensitive imitative responses. Although πB is strictly increasing in NB, the shape of

the response depends on whether κ is smaller than or larger than 1. The response with respect to D

depends on two effects: the fundamental rule effect, making πB strictly increase with D; and the

1The median is the appropriate measure of central tendency in our model, where the number of agents buying and

selling is the ultimate determinant of price adjustments, according to (5)-(6) below. Therefore, what matters for the

“aggregate balance” of the fundamental rule is the number of agents with fi,t below and above µ̂t, rather than the

deviation of the mean of fi,t from µ̂t.
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Figure 2: Agents’ Response Functions.

The surfaces represent the probability that an agent will attempt to buy (πB) depending on the number of neigh-

bors buying (NB) and the ratio between the perceived fundamental value of the stock and its price (D), according

to (1)-(4).

weighting effect, which turns the relationship between πB and D negative when IB is sufficiently

larger (smaller) than FB and D > 1 (D < 1).

2.2 Market Clearing

The model dynamics emerges as a result of the synchronous update of the agents’ demands and a

market clearing mechanism that randomly matches individual orders and adjusts the price of the

stock according to an excess demand function. Letting

Zt =
NB

t −NS
t

N
, (5)

represent the (relative) excess demand for the stock. The price adjustment is modeled through a

hyperbolic tangent functional form (see Plerou et al., 2002) according to

pt = pt−1 (1 + tanh [Zt]) . (6)

This price adjustment process can be motivated as the action of a sluggish auctioneer who at-

tempts to balance demand and supply for the stock (Chiarella et al., 2006; Lux, 2009). In spite of

this underlying mechanism, we assume that market activity is generated solely by its composing

traders. This is to say that, after the random matching between buyers and sellers is completed,
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any remaining orders will be unsatisfied. Obviously, other than for regulating the market aggre-

gate liquidity, this market clearing mechanism is also important for the record keeping of agents’

transactions and the evolution of their portfolio, tracked by mi,t (money) and ai,t (assets).

When trade is sequential, Avery and Zemsky (1998) point out that the presence of a price ad-

justment mechanism may hamper the emergence of rational herding in financial markets. Because

signals from the prices would temper the uncertainty that leads agents to act against their own

private information, there must be multiple unknowns for herding to arise, e.g., agents must be

uncertain about both the effect and the occurrence of information events on the value of the asset

(see Park and Sabourian, 2011, for more general conditions). Although our model of herding is not

explicitly based on rationality, and trade is simultaneous rather than sequential, the convolution be-

tween imitative and fundamentalist behavior in (1) also reflects one such case of multidimensional

uncertainty. Particularly, our agents are uncertain about the fundamental value of the stock (Eq. 3)

and about the quality of their neighbors’ information (Eq. 4). Hence, our heuristic rule of imitation

seems consistent with the requirements for the emergence of rational herding in sequential trading.

2.3 Data and Calibration

We generated artificial series of prices simulating the model with a square lattice of 100 × 100

agents. For every simulation, the lattice is initialized randomly with half the agents as buyers and

the other half as sellers. As an empirical benchmark, we use the daily log returns of the Dow Jones

Industrial Average (DJIA) index, corrected for inflation using the U.S. Consumer Price Index, from

January 2, 1996 to December 31, 2012, consisting of a total of 4,277 observations2. We also hold

three years of data on the DJIA index, from 2013 to 2015, out of the calibration procedure in order

to run an out-of-sample validation later on. To avoid sensitivity to initial settings, we ran our model

for 4,400 periods, and therefore discarded the first 123 observations for the comparison between

the simulated and empirical distributions.

Our model is purposely designed to simulate trading at daily or higher frequencies. In order

to capture the lower frequencies of fluctuations, such as temporary trends commonly observed in

series of stock price levels, we estimate the time-varying series of fundamentals from the data using

the Hodrick-Prescott (HP) filter (Hodrick and Prescott, 1997). The HP filter is one of the most-used

tools for the measurement of business cycles. It decomposes a series of observations into a trend

and a cycle component as an approximation to a high-pass filter, where the maximum frequency of

the cycles allowed to remain in the trend series is determined by a smoothing parameter, λ. For our

2The U.S. stock market is arguably among the most efficient and liquid stock markets nowadays, which leads to

the question of how would the model work in less efficient markets, such as those of emerging economies. In fact, an

earlier version of our model (Suhadolnik et al., 2010) provided a good adjustment to Brazilian stock market data. We

leave a comparative analysis of our present model’s adjustment to other markets for future research.
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purposes we set λ = 30, 000, a value that renders a trend that is stripped of cycles with frequencies

up to approximately one quarter3.

The HP filter is also two-sided by design, which means that a point trend estimate is dependent

on both lagged and leading observations of the original series. Hence, our approach is geared

towards the view that the fundamental value reflects not only past prices information, but it is

also a function of the future evaluations of the stock. One potential problem with this approach

is that the symmetry of the filter is lost at sample endpoints (see, e.g., Galimberti and Moura,

2016), but here we deal with this issue by augmenting both ends of our sample with additional

data; i.e., the fundamentals are obtained by applying the HP filter to data on the DJIA index from

January 03, 1995 to December 31, 2015. The estimated trend, presented in panel (a) of Figure 3,

is then introduced in our model to represent the deterministic portion, µ̂t, of the exogenous series

of fundamentals that agents hold for their daily evaluations.

To calibrate the model parameters, namely κ, γ, η, and σ, we ran a grid search procedure

for several combinations of these parameters, attempting to minimize a measure of fitness to the

data. For that purpose we adopt the two-samples Anderson-Darling (AD) goodness-of-fit statistic

(see Scholz and Stephens, 1987), which compares the distribution of the simulated series of log

returns to that obtained from the data. We also attempted to match some key statistical properties

of the data, such as the returns auto-correlations, both in levels and absolute values to measure

predictability and volatility clustering, respectively, and the kurtosis of the distribution of returns

to measure the relevance of heavy tails. Table 1 presents statistics associated to some selected

parametrizations4.

2.4 Model Dynamics

Overall, our results show that the best adjustment of the model to the data is found when the

response of agents imitative rule is approximately linear. It was possible to find calibrations with a

good fit for each of the three specifications of the imitative response, though very low/high values

for κ were found to provide slightly poorer adjustments. It also was evident that as the quorum-

sensitiveness of the agents’ imitative response increased, the parameter on the intensity of choice

in the fundamentalist rule had to be decreased to keep up with the adjustment of the model to

the data. Thus, our model captures a trade-off between agents’ sensitivity to their neighborhoods’

information and their perceived deviations of the stock prices from its fundamental value, though

the data and our calibration measures were not informative about this trade-off.

Our preferred specification is that with κ = 0.75, γ = 2.50, η = 750, and σ = 0, particularly

3The value of λ is calculated from the filter’s frequency response function (see King and Rebelo, 1993) for the

desired frequency at a 75 percent cut-off.
4Details of this calibration exercise are presented in Appendix A.1.
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Figure 3: Time Evolution of Data and Calibrated Model Series.

(a) Price indexes and estimated fundamentals.
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(b) Standardized returns.
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The return series are standardized to have mean and standard deviation equal to zero and one, respectively. The

model’s series comes from the following parameter combination: κ = 0.75, γ = 2.50, η = 750, and σ = 0.
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Table 1: Statistics on Series of Returns Series from Data and Simulated Model.

Series
Auto-correlations AD test

Kurtosis
Tail

Returns Abs.Rets. Stat. p-val. exponent

Dow Jones Industrial Average -0.06 0.21 — — 9.99 3.06

Model with quorum-insensitive imitative response:

κ = 0.25, γ = 2.50, η = 750, σ = 0 -0.04 0.17 17.67 0.00 4.57 4.10

κ = 0.75, γ = 2.50, η = 750, σ = 0 -0.05 0.49 1.18 0.10 7.31 3.27

κ = 0.75, γ = 2.50, η = 750, σ = 0.1 -0.80 0.61 28.15 0.00 2.99 5.94

Model with linear imitative response:

κ = 1.00, γ = 1.00, η = 750, σ = 0 0.47 0.38 43.70 0.00 2.79 6.24

κ = 1.00, γ = 2.00, η = 750, σ = 0 -0.06 0.54 0.66 0.18 5.98 3.39

κ = 1.00, γ = 2.00, η = 750, σ = 0.1 -0.64 0.37 27.55 0.00 3.00 5.91

Model with quorum-sensitive response:

κ = 3.00, γ = 1.00, η = 1, 000, σ = 0 0.14 0.67 48.69 0.00 5.51 3.23

κ = 3.00, γ = 1.00, η = 15, 000, σ = 0 -0.06 0.79 0.69 0.17 6.93 3.35

κ = 3.00, γ = 1.00, η = 15, 000, σ = 0.1 -0.38 0.13 28.07 0.00 2.99 5.88

Statistics are averages of 100 simulations of the model for each combination of parameters, only varying the random

seed. The two-sample Anderson-Darling (AD) test compares the DJIA series of standardized log returns to those

obtained from model simulations, and the median standardized statistic is reported. The null hypothesis is that both

samples come from a common population and the p-values indicate the significance level at which this hypothesis can

be rejected. The power law tail exponents are estimated according to Gabaix and Ibragimov (2011) focusing in the top

10% absolute returns.
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Figure 4: Density Estimates of Data and Model Returns Distribution.

(a) Mode of the distributions.
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(b) Tails of the distributions.
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Densities were estimated using the Gaussian kernel smoothing function. The model’s series comes from one typical

simulation using the following parameter combination: κ = 0.75, γ = 2.50, η = 750, and σ = 0.

for presenting a kurtosis closer to that observed in the data. Also, using the AD test, we are not able

to reject the null hypothesis that the simulated data and the actual data returns came from the same

distribution at the 10 percent level of statistical significance. A visual assessment of the series of

prices and log returns generated by this model specification is presented in Figure 3.

One remarkable characteristic of stock market returns is the presence of heavy tails, i.e., ex-

treme events are more likely to occur than implied by a Gaussian distribution (Mandelbrot, 1963;

Fama, 1965). This is evident in the data we used and our calibrated model seems to capture this

property pretty well. Figure 4 shows that our model is able to capture the data deviations from

Gaussianity at the tails of the return distribution up to ±5 standard deviations. Moreover, our

model is also in agreement with an established result of the econophysics literature regarding the

decay of the probability of extreme returns; namely, the existence of an inverse cubic power law

(see, e.g., Gopikrishnan et al., 1999) is confirmed by the estimates of tail exponents presented in

Table 1.

When the fundamentals were allowed to vary across the agents, our calibration also showed

a poor fit to the data in that it generated approximately Gaussian returns. Therefore, increas-

ing agents’ diversity of beliefs about the fundamental value of the stock is likely to dampen the

destabilizing herding effects coming from their imitative behavior. Such a result is in contrast

to a growing volume of literature where the diversity of beliefs is found to generate endogenous

volatility in the absence of local interactions (see, e.g., Kurz, 1994; Brock and Hommes, 1998;

Kurz et al., 2005; Branch and McGough, 2011). Hence, our analysis suggests that the effects

of heterogeneous beliefs on volatility can be conditioned by the underlying assumptions on how

agents interact, though we were not able to disentangle these features. We leave this issue open for
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Figure 5: Boxplots of Model Statistics vs. Data Across Nonoverlapping Subsamples.

(a) Anderson-Darling goodness-of-fit statistic.
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The statistics come from 100 simulations of the model with κ = 0.75, γ = 2.50, η = 750, σ = 0. Outliers, i.e.,

returns larger/smaller than the whiskers, are not presented.

future research.

One potential concern with respect to the calibration of our model is that of data-snooping,

i.e., the repeated use of the same reference data series for model selection purposes. In our case,

the parameter sweep using the DJIA data series to calibrate the model may lead to an overfitting

of the model to that series, particularly considering the large number of degrees of freedom in our

imitation-based model. Nevertheless, it is important to recall that our approach is not dependent nor

geared towards the model’s predictive ability; instead, our focus is on matching some key statistical

properties of the distribution of stock market returns, particularly those statistics capturing the

incidence of instabilities.

To enhance our understanding of the fit of the model to the data we look at some adjustment

statistics across nonoverlapping subperiods of the calibration sample (see Brock et al., 1992), as

well as over an out-of-sample period from 2013 to 2015. Figure 5 presents the results focusing on

the distributions of the AD statistic and the kurtosis of the returns distribution. Clearly, the statistics

show that the fit of the model is not independent of the sample period; particularly, the model’s

ability to match the DJIA returns distribution tends to deteriorate in periods of reduced volatility,

such as in the three years preceding the 2007-08 financial crisis. Whereas this observation is not

surprising, given that our model is purposely designed to capture the emergence of periods of high

volatility, we interpret these results as positive evidence that our approach is not severely affected

by data-snooping.
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Figure 6: Boxplots of Simulated Model Returns Before and After a Sharp Fundamental Shock.
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The statistics come from 1,000 simulations of the model with κ = 0.75, γ = 2.50, η = 750, σ = 0, and fi,t = 1.50 for

t = 1, . . . , 500, and fi,t = 1.20 afterwards. Outliers, i.e., returns larger/smaller than the whiskers, are not presented.

2.5 Role of Fundamentals

Due to our assumption of a smoothly time-varying series of fundamental values, the emergence of

extreme returns in our model is mainly driven by the short-run effects of local interactions. That

may give the mistaken impression that our model downplays the relevance of sharp fundamental

reassessments in generating abrupt stock price changes, such as in mass sells triggered by unex-

pected poor performance of the firm, or a sudden deterioration of the macroeconomic conditions.

In fact, an important feature of our model is its flexibility to account for these distinct sources of

disturbances.

To clarify this point we simulate the model with a fictitious break in the fundamental value to

see how the model behaves. Particularly, we run the model for 500 periods under the assumption

of a constant fundamental value of 1.50, a value chosen to match the median of fundamentals

used in the data calibration of the model above. We also adopt our preferred specification for the

parameters κ = 0.75, γ = 2.50, η = 750, and σ = 0. At period 501 we then hit the model

with an abrupt 20% negative shock to the fundamental, reducing it to 1.20. After repeating this

simulation 1,000 times the resulting model dynamics is depicted in Figure 6, where we present the

distributions of model returns over the periods that follow the fundamental shock.

We see that an abrupt change in the perceptions of the stock’s fundamental value has an imme-

diate impact on the model dynamics; in fact, the impact is initially stronger than the original shock,

with a median return of about -60% after the abrupt reassessment of the fundamental; these effects
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tend to fade away as time goes by and the market price resettles around the new fundamental value.

Hence, the break in fundamentals is synergistically magnified by the herding effects, leading to an

initial overshooting in the pricing of the stock. To conclude, an interesting feature of our model is

the presence of a holistic interaction between fundamental assessments and local interactions that

lead to the emergence of realistic stock market dynamics.

3 Liquidity Provision Policies

The emergence of extreme events in our stock market model is directly related to temporary short-

ages of liquidity for those agents willing to buy or sell their stock, i.e., imbalances in the aggregate

market demand for the stock relative to its supply5. We now introduce and evaluate alternative

policy schemes of liquidity provision aimed at offsetting these imbalances. Particularly, we look at

the interesting and realistic case where the aggregate excess demand cannot be observed before the

price adjustment process takes place. In these circumstances, the main challenge for policy design

is to find a good prediction for the upcoming imbalance in the market.

3.1 Aggregate Market Maker

An obvious tentative solution to the problem of liquidity shortages is the introduction of an aggre-

gate market maker. The idea is that by supplying the extra liquidity demanded by the market such

a market maker may be able to prevent the occurrence of extreme and destabilizing returns in our

stock market model.

With our timing assumption, the aggregate excess demand cannot be observed before the prices

adjust. Hence, we suggest that such a market maker will respond to lagged measures of market

activity. The aggregate excess demand in our model can be approximated as a linear function

of the market clearing implied return6. Using such an approximation, our rationalization of the

market-maker intervention as a response to perceived excess demand for the stock is given by

Kt = {Λrt−1 +Kt−1}
+K

−K
, (7)

where Kt denotes the number of stocks supplied by the market maker at period t, rt−1 is the

previous period log return of the stock, Λ =
(
N +K

)
/2, and {•}max

min is a truncation operator used

to impose a limit to the participation of the market maker. As a result, K may be interpreted as a

5Within our model that is a direct implication of our assumption that stock prices are determined by a market

clearing process that balances aggregate demand and supply for the stock (see Eq. 6).
6See Appendix A.2 for this derivation.
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measure of the magnitude of the intervention. The presence of the lagged term Kt−1 arises from

the additional demand introduced by the market maker in the previous period.

3.2 Self-regulatory Robot Traders

The channel through which the liquidity imbalances arise in our model has, by design, a complex

architecture due to the distributed effects of local interactions between the agents in this market.

Thus, we argue that an aggregate intervention disregarding the complex nature of the market is of

limited effectiveness for the stabilization of stock returns. To account for these local connections,

we propose a novel self-regulatory scheme based on locally triggered automatic trading algorithms,

or “robot traders” for short.

At any given period, the stock market model is now populated by two types of agents: human

and robot traders, the latter indexed by j = 1, ..., Q and randomly distributed on top of the baseline

model square lattice architecture of the market. We also assume that the robot traders are able to

collect information about the last period decisions of the human agents within the neighborhood

of their location. The distinctive feature of the policy rule of the robot traders is that they follow

a contrarian rule relative to such information. Also in contrast to the human traders, the robots

decisions are solved deterministically. Namely, robot j decides to make a buy order at period t if

it observes that7
(
Ñ S

j,t−1

)β[−aj,t]

>
(
ÑB

j,t−1

)β[aj,t]

, (8)

where Ñ S
j,t−1 and ÑB

j,t−1 denote the number of humans in the robot’s neighborhood who have made

a sell and a buy order in the previous period, respectively, and β [•] regulates the intensity of the

contrarian response, which is assumed to be a function of the robot assets holdings. Particularly,

we found that the functional form given by β [x] = 1 + tanh [φx] renders the effects of interest.

When the robot’s holdings is off-balance, for example aj,t is large and positive (negative) due to

successive buys (sells) of the stock in the previous periods, the contrarian response becomes less

sensitive to the number of human sellers (buyers) in the neighborhood. The solid black schedules

in Figure 7 illustrate how the robot’s decision is affected by its portfolio position for different

values of φ. Logically, the robot places a sell order if condition (8) is not observed.

The mechanism underlying the robot traders’ decisions is intentionally designed to counteract

the human agents tendency to herd. We advanced a similar rule in a previous work (Suhadolnik

et al., 2010). Here, in contrast, we abandoned the unrealistic assumption that the human agents

are directly influenced by the robots through imitative behavior8. This allows us to focus on the

7In Appendix A.3 we show that this contrarian rule is symmetric to the humans imitative rule.
8Results under the assumption of integrated robots are similar to what we find without this assumption. These are

available upon request.
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Figure 7: Contrarian Rule Responses.
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The solid black schedules represent the combinations of ÑB
j and aj for which condition (8),or (9) with θ = 0,

of the contrarian rule is satisfied as an equality. The gray schedules represent cases with coordination, setting

θ = 1/2, for different levels of CB , which stands for the fraction of robots deciding to buy in the interim stage.

liquidity provision effects that the robots have in the market prices, which in turn end up affecting

agents’ decisions through their fundamentalist concerns.

3.3 Coordinated Robots Intervention

Although the robot traders consist of a population of autonomous trading algorithms distributed

across the market, there is still a unique financial policy authority behind their implementation9.

That means there is some scope for communication and coordination among the robot traders.

Namely, the financial policy authority can collect information about the market conditions that

every robot can infer from their individual neighborhoods, and then alter each robot’s action in

a coordinated fashion. Such a coordinated intervention may also be viewed as a mixture of the

previous approaches.

We modeled this intervention in a two-stage process. In the first stage, the “consultation round,”

the robot traders solve condition (8) for an interim decision based on their corresponding neigh-

borhood information. The financial authority then collects all these decisions so as to compute the

fraction of robots that would be buying and selling without coordination, denoted by CB
t = QB

t /Q

and CS
t = QS

t /Q, respectively. In the second stage, this information is sent back to the robots

in the form of a multiplier that will determine their final decision of buying (or selling otherwise)

9In the case of the United States, for example, such an authority could be represented by the Securities and Ex-

change Commission.
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according to10

(
1− 2θCS

t

) (
Ñ S

j,t−1

)β[−aj,t]

>
(
1− 2θCB

t

) (
ÑB

j,t−1

)β[aj,t]

, (9)

where θ ∈ (0, 1) is a parameter that controls the degree of interdependence between the robot

traders. If θ = 0, there is no coordinated action, and, as θ → 1, coordination among the robots

grows in importance. Hence, in our model we attempt to find the right mix of independence and

interdependence between the robot traders by tuning parameter θ.

Furthermore, there are two additional effects to notice when this coordination rule is activated.

First, if CB
t < 1/2, the multiplier on the left-hand side of (9) is smaller than the multiplier on

the right-hand side, and vice versa for CB
t > 1/2, which implies that coordination will push

the individual robot’s behavior towards the majority interim decision. This is illustrated by the

gray schedules in Figure 7. Second, when θ = 1, the right-hand side of (9) becomes negative

if CB
t > 1/2, whereas if CB

t < 1/2, it is the left-hand side that becomes negative; i.e., in full

coordination, all the robots will follow the majority interim decision, entirely disregarding their

individual neighborhood information.

This idea of a coordinated intervention can be further motivated by the intriguing effects that

communication has on the pooling of independent information in collective decision making. By

creating interdependencies between decision makers, communication can facilitate information

pooling (Ladha, 1995) at the same time that it can also cause the phenomenon known as “group-

think” (Janis, 1982), where pressure to conform among the members of a group can narrow the

range of opinions and lead to the emergence of informational cascades that amplify individual

errors (Bikhchandani et al., 1992). A key issue in this context is to find the “right mix” of inde-

pendence and coordination between the individuals in the group11, which in our model is done by

tuning θ.

3.4 Market Clearing Considerations

The policy interventions we have introduced in this section also require adjustments to the process

of market clearing defined in the baseline model. To take into account the introduction of the ag-

gregate market maker and the robot traders, the market aggregate excess demand is more generally

defined as

10See Appendix A.4 for the origins of this rule as a linearly weighted response to the pooled and the individual

pieces of information.
11Nature appears to have solved this problem by endowing ants (Kirman, 1993) and bees (List et al., 2009) with

simplistic rules.
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Z̃t =
NB

t −NS
t −Kt +QB

t −QS
t

N +K +Q
. (10)

The process of random matching between supply and demand in the market also needs to

take into account the additional offers submitted by both the market maker and the robot traders.

Therefore, we also need to track the portfolio of money and assets of each robot, say by mj,t and

aj,t, respectively, and of the market maker, which can be traced at an aggregate level by mK,t and

aK,t, respectively.

Furthermore, we assume anonymous trading in our artificial stock market, so that there are

no asymmetries between the orders originated from the different agents in the market. This has

two important implications. First, the chances that a buy (sell) order submitted during a bullish

(bearish) period does not find a matching sell (buy) order in the market are the same irrespective

of whether the order originated from a human agent, a robot or the market maker. Second, robots

occasionally end up trading among themselves, which means that the intervention is artificially

generating some extra market activity. In spite of this downside for the robot traders approach,

anonymity provides an important safeguard against the possibility that the human agents uncover

the participation of the contrarian algorithms and attempt to exploit it for their own gains.

4 Counter-factual Exercises

We now evaluate the effectiveness and the costs associated with the different interventions we have

formulated in the previous section. In the spirit of a counter-factual exercise, we took our calibrated

model as representative of how actual prices and returns are determined in a stock market and

evaluated the effectiveness of the liquidity provision policies to prevent the occurrence of extreme

events in this artificial market.

4.1 Visual Inspection

We begin with a visual inspection of the results from one typical simulation of our preferred spec-

ification of the model. In order to evaluate the stabilization effects of different policies, Figure 8

presents the distributions of returns associated with varying magnitudes of the interventions. Tak-

ing the Gaussian distribution as a reference, the goal was simply to flatten the distribution of the

model-generated returns towards Gaussianity.

Clearly, the results in Figure 8 favor the robots intervention: panel (a) shows that although the

aggregate market-maker intervention is partially successful in stabilizing returns, increasing the

magnitude of the intervention brings no further improvements beyond that achieved with K = 500;

a different picture emerges for the robots’ case, in panel (b), where a 15 percent intervention
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Figure 8: Density Estimates of Model Returns Distribution With and Without Interventions.

(a) Market-maker intervention.
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Densities estimated using the Gaussian kernel smoothing function. The model’s series come from the following

combination of parameters: κ = 0.75, γ = 2.50, η = 750, and σ = 0. The magnitude of the interventions are denoted

in relative terms to the number of human agents in the grid. The robots are self-regulated with φ = 0.1.

is capable of bringing the model distribution of returns very close to the Gaussian distribution.

Similar stabilization results are obtained when the robots are not self-regulated, i.e., φ = 0.

To assess the costs associated with the interventions, we look at the evolution of the aggregate

financial position of these liquidity provision mechanisms. Particularly, we track the amounts of

money and stocks accumulated by the purchases and sells of the interventions. Because we do

not impose short selling constraints in our model, the participants of the artificial stock market

can accumulate negative positions either in money or in stocks holdings. Nevertheless, from a

policy making, practical standpoint, the sustained provision of liquidity to the market by selling

stocks will require an equal amount of purchases in order to cover such positions. Hence, both

the accumulation of a positive or negative balance of money by the intervention policy may be

interpreted as a measure of its cost. To circumvent this issue, we also consider the wealth positions

associated with each intervention, which are calculated taking into account the stock prices.

Figure 9 presents the evolution of the financial position of the interventions for the particular

simulation we are considering in this section. There are three policy specifications to consider:

the market maker, the robots without self-regulation (φ = 0), and the robots with self-regulation

(φ = 0.1). The former two are plotted jointly in panel (a), and the latter is plotted in panel (b).

We reach two main conclusions from these results. First, the costs associated with the market-

maker intervention are substantially higher than those incurred with the robots. Comparing the

instances where both policies are free to operate without any self-regulation feature, as illustrated

in panel (a), we calculated that the maximum (minimum) wealth of the market-maker intervention

is about 70 (50) times larger than that of the robots.
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Figure 9: Evolution of Intervention Costs.

(a) Market maker and robots without self-regulation.
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The financial positions are obtained by simulating the model individually for each intervention, with the following

parameter combination: κ = 0.75, γ = 2.50, η = 750, and σ = 0. The magnitude of the interventions are given by

Q = K = 1, 000, and the self-regulated robots in panel (b) have φ = 0.1.
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Our second conclusion relates to the evident success achieved by our self-regulatory scheme

to control the financial sustainability of the robots’ operation, as illustrated in panel (b) of Figure

9. The self-regulatory robots incurred costs much smaller than their corresponding unregulated

versions and the aggregate market maker. Clearly, this improvement resulted from the robots’

ability to avoid the lingering financial imbalances at the individual level, while keeping up with the

intervention effectiveness at the aggregate level.

4.2 Averaged Statistics and Robustness

Given the stochastic nature of our model, drawing conclusions on the basis of one particular sim-

ulation may be subject to the effects of random noise. We now extend our analysis to account

for these effects by looking at averaged statistics related to the costs and effectiveness of the liq-

uidity provision policies. For robustness purposes, we also consider alternative calibrations of

the model with respect to the assumption on the agent’s response to their neighborhood informa-

tion. Namely, we consider the parameter combinations highlighted with a gray shade in Table 1,

covering the cases of quorum-insensitive, linear, and quorum-sensitive responses.

Table 2 presents statistics related to the effectiveness of the interventions. Particularly, the

kurtosis of the distribution of returns generated by the model is a measure that captures the essence

of our stability analysis: the closer it gets to 3, the closer the distribution is to the desired Gaussian

benchmark. In the quorum-insensitive responses, we can see that our previous conclusions are

statistically confirmed, with the robots presenting important improvements as the magnitude of

the intervention increases. But, this is not generally true under the alternative specifications of

the agents’ imitative response: There are some cases (gray shaded) where the intervention was

not effective to reduce the return kurtosis. However, notice that even under these specifications,

increasing the intensity of the intervention to 10 percent tends to bring the desired stabilization

goals.

The statistical results for the market-maker intervention are again informative of its partial

success. In terms of kurtosis reduction, we can see that a market maker restricted to operate at a

maximum share of 1 percent of the market is better, on average, than the same quantity of robots.

Besides, notice that the measure of volatility clustering (AC Abs.) tends to be lower under the

market-maker intervention. However, the downside of this mechanism comes with the increase of

its intensity, where we can see that there is no general improvement to its stabilization effectiveness.

For the case of a market populated by quorum-sensitive agents, there is evidence that the market

maker may even destabilize the market.

The statistical evaluation of the costs associated with the interventions is rather challenging.

Following our previous discussion, we summarize the financial position of each policy by tracking
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Table 2: Interventions Effectiveness.

Policies

Returns statistics, by agents imitative response

Quorum-insensitive Linear Quorum-sensitive

Kurt. AC AC Abs. Kurt. AC AC Abs. Kurt. AC AC Abs.

Without intervention 7.31 -0.05 0.49 5.98 -0.06 0.54 6.93 -0.06 0.79

Robots without self-regulation (φ = 0):

Q = 100 7.09 -0.00 0.48 6.66 0.00 0.56 6.78 -0.06 0.79

Q = 500 5.37 0.12 0.40 5.19 0.20 0.53 7.14 -0.07 0.75

Q = 1000 4.36 0.11 0.28 3.68 0.26 0.39 4.71 -0.05 0.63

Robots with self-regulation (φ = 0.1):

Q = 100 7.02 -0.00 0.48 6.42 -0.00 0.56 6.89 -0.06 0.79

Q = 500 5.37 0.11 0.41 5.32 0.20 0.54 7.35 -0.06 0.76

Q = 1000 4.26 0.12 0.29 3.56 0.26 0.40 4.99 -0.05 0.65

Market maker:

K = 100 4.84 -0.00 0.20 4.63 0.14 0.29 4.47 -0.16 0.44

K = 500 5.09 -0.10 0.19 4.71 0.12 0.28 6.94 -0.39 0.44

K = 1000 4.67 -0.29 0.21 4.33 -0.03 0.22 8.24 -0.47 0.42

Statistics are averages of 100 simulations of the model for each specification, according to Table 1, only varying the

random seed. Kurt. stands for kurtosis, AC for autocorrelation, and AC Abs. for the autocorrelation of absolute

returns.
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Table 3: Interventions Costs.

Policies

Interventions wealth relative to volume, by agents’ imitative response

Quorum-insensitive Linear Quorum-sensitive

Min. WV Max. WV Min. WV Max. WV Min. WV Max. WV

Robots without self-regulation (φ = 0):

Q = 100 -0.04 0.09 -0.05 0.14 -0.06 0.33

Q = 500 -0.14 0.24 -0.17 0.38 -0.14 0.74

Q = 1000 -0.25 0.32 -0.29 0.40 -0.17 0.52

Robots with self-regulation (φ = 0.1):

Q = 100 -0.00 0.01 -0.00 0.02 -0.00 0.07

Q = 500 -0.01 0.00 -0.01 0.01 -0.00 0.23

Q = 1000 -0.05 0.00 -0.07 0.00 -0.00 0.19

Market maker:

K = 100 -0.30 0.73 -0.20 0.75 -0.21 0.81

K = 500 -9.15 28.10 -8.02 24.22 -8.53 18.35

K = 1000 -17.16 75.15 -15.98 68.81 -16.73 60.99

Statistics are averages of 100 simulations of the model for each specification, according to Table 1, only varying the

random seed. WV stands for the ratio between wealth and volume of the corresponding intervention, and the statistics

reported are averages of the minimum and maximum values of this ratio throughout each simulation.

the wealth associated with its money and stocks holdings. We then turn these measures into relative

terms calculating ratios relative to the volume traded each period. Finally, we average the minimum

and maximum values of this ratio over the simulations conducted for each model specification and

intervention policy.

Statistics on these wealth/volume ratios (WV) are presented in Table 3. Clearly, we again

confirmed our conclusions from the visual assessment of a typical simulation. First, the results

show that the self-regulation of the robots intervention is successful in reducing the magnitudes of

financial imbalances accumulated by the intervention in the three characterizations of the agents

imitative responses. One interesting observation in this respect is that the self-regulatory robots

tended to accrue profits under the assumption of quorum-sensitive responses. But apart from this

case, the distortionary effects due to the self-regulatory robots over the agents’ distribution of

wealth remained below 10 percent of the traded volume in the market.

Finally, the results in Table 3 for the market maker show that there could be a very high cost

associated with this intervention. Whereas in the case with a small intervention the distortions to

the distribution of wealth between the agents can vary between -30 percent to about 80 percent of

the traded volume, as the intervention intensifies, these distortions become astronomical.
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Figure 10: Coordinated Intervention of 2 Percent Robots.
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Statistics are averages of 100 simulations of the model for each specification, according to Table 1, only varying the

random seed. The specification of the robots’ intervention is given by Q = 200 and φ = 0.1.

4.3 Results With Coordinated Interventions

Overall, our experiments indicate that introducing coordination reduces the number of robots re-

quired to achieve our previous stabilization results, though there is a greater sensitivity to the

assumption of how agents react to their neighborhood. Figure 10 summarizes some of the results

we obtain under coordination, focusing on the case with only 200 robots, or 2 percent of the num-

ber of humans in the baseline model. Clearly, there is some heterogeneity with respect to how the

coordination affects the robots effectiveness.

For the cases of quorum-insensitive and linear-response agents, increasing the coordination pa-

rameter up to θ = 0.8 brings gradual improvements to the stabilization of the stock returns. Beyond

this threshold the coordination strategy may lead to undesirable effects, such as the generation of

bimodal distributions. A different picture emerges for the case with quorum-sensitive agents: The

benefits from coordination only start to appear for θ > 0.6, meaning that a tendency towards the

majority rule seems to work better under these particular circumstances. Hence, one key issue for

the successful design of the coordinated approach is the identification of which behavioral assump-

tion better characterizes how agents react to the information collected among their peers in actual

stock markets.
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4.4 Risk of Counter-Robots Developments

One potential problem with the approach of mixing the aggregate and the local interventions is that

it may increase the risk that the human agents uncover the ongoing policy and use such information

to systematically exploit the contrarian measures for private gain. Besides, unlike our public-

service robots, software-based traders have been around for years but used for private gain. They

have sometimes been considered as culprits for extreme moves in markets. Some observers blame

the first generation of robots for the crash of 1987 as they were the tools for delivering so-called

“portfolio insurance.” Currently, programs are far more sophisticated and responsible for billions

of dollars traded every day, particularly in the form of high-frequency trades. In practice, because

no one knows whether an order is placed by a robot rather than a human trader, the regulator can

only react in the aftermath of extreme events.

Conventional regulatory frameworks such as this have to adapt to circumstances that are chang-

ing too fast for regulation to succeed, and the robots have something to do with this. Financial

regulation implemented by the authorities are too conspicuous to succeed. It is in the nature of

markets that they will tend to innovate around regulations, and the nature of risk taking will in-

evitably keep changing as financial systems get more sophisticated (Edey, 2009). An advantage

of contrarian algorithms is their crypticness; by stealthily taking contrarian positions at key junc-

tures in the movement of stock markets, the advantage of the stabilizing robots over conventional

financial regulation is unmistakable.

Nevertheless, one cannot at first rule out counter-actions from the profit-seeking human traders,

which may even lead to catastrophic outcomes such as a biological arms race for the development

of the most sophisticated automated trading mechanism. Thus, it is important to devise further

mechanisms that introduce uncertainty about the form and the timing of the robots interventions.

One possibility would be to add extraneous variability to such policy measures, which could be

accomplished by turning the determination of the robot’s trades stochastic. Another interesting

extension would be to consider an evolutionary approach (see Evstigneev et al., 2009, for a review),

where investment strategies are allowed to adapt, and selection and reproduction forces could be

assigned to the maintenance of an appropriate degree of diversity. We leave these considerations

for future research.

5 Concluding Remarks

We developed an agent-based model of a stock market that, in spite of endowing agents with simple

behavioral rules, incorporates complex structures of local interactions that lead to the emergence

of herd behavior. After calibrating the model, we have shown that it is capable of matching some
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statistical properties observed in actual stock market data, such as the low degree of serial pre-

dictability; moderate levels of volatility clustering; and leptokurtic distributions of returns. One

key feature of our model was that periods of market instabilities were generated as the result of

liquidity imbalances amplified by the local interactions.

Our main contribution came with an attempt to stabilize the artificial stock market through

the design of liquidity provision policies. Remarkably, we have shown that an intervention in

response to the aggregate state of the market is only partially effective for stabilization and incurs

high financial costs. We argued that the complex nature of the stock market needs to be taken into

account, and accordingly we proposed the use of contrarian robot traders. These robots are spread

through the market to collect local information on the market conditions and trade autonomously

using a contrarian rule.

We showed that the robot traders can successfully offset periods of liquidity shortages and, as

a result, are effective in keeping market volatility under control. We also devised a self-regulatory

mechanism that prevents the costs associated with their implementation to become excessively

burdensome. Additionally, we analyzed the case for a coordination mechanism where the robot

intervention occurs in two stages: First, the robots collect the information from their neighborhoods

and communicate it to a financial authority. Then, the authority aggregates this information and

regulates a coordinated action. We found this additional mechanism to allow a substantial reduction

in the number of robots required for an effective stabilization.

Therefore, we conclude that in spite of the problem of predicting the evolution of complex

systems, extreme events caused by herd behavior may be potentially avoidable with the use of a

locally triggered intervention strategy, together with an understanding of the underlying mecha-

nisms of decision-making in stock markets. Of course, there are many open practical issues in the

way between turning our proposal into a realistic intervention mechanism, e.g.: Who will conduct

the robots implementation? Who will finance their operation costs? How to control their risks? At

this stage we can only foresee that the actual implementation of our proposed mechanisms shall be

subject to a great deal of experimentation to guide their actual design and feasibility.

A Appendix

A.1 Calibration Exercise

The final calibration was split into two stages.12 In the first stage, we simulated the model with a

gross grid of parameter combinations, and compared the associated evaluation statistics in order to

learn the relevance of each parameter. Apart from the return auto-correlations and kurtosis mea-

12During the model design stage, massive simulations were conducted.
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sures, we adopted an Anderson-Darling goodness-of-fit statistic as an evaluation statistic, which

was adjusted for the possibility of ties (see Scholz and Stephens, 1987, Eq. 7). This statistic was

used in two ways: in pairs, comparing the distribution of returns from each replication of the sim-

ulation against the data; and, in a multiple sample version where we tested whether the different

replications of the simulation came from the same distribution in order to check for the role of ran-

domness in the model. To capture the level of disorder in the overall system, we also adopted an

averaged measure of the entropy in our two-dimensional lattice of agents, which we attempted to

maximize in order to prevent the emergence of persistent clustering patterns. Following Wolfram

(1983), we computed a block entropy, with the block corresponding to the neighborhood definition.

The greater uncertainty about the interval of parameter values relied on the determination of γ

and η, which are both related to the model’s sensitivity to the deviation of the stock price from its

perceived fundamental value. Hence, we considered a broader range of values of these parameters.

The results from this exercise are summarized in the box-plot diagrams in Figure 11, from which

we can draw the following inferences:

Imitative response (κ): This parameter appeared to have small effects over the model’s sensitivity

to the other parameters. Most variation in the dispersion of each statistic occurred for values

of κ < 5.

Fundamentalist response (γ): This parameter presented similar patterns within each statistic for

γ > 5, with the fit of the model deteriorating for higher values of γ; we also found that

higher values of γ tended to cause degenerate results (the entire grid turning to the buy

or the sell state) due to its exponential effect; particularly, notice that the box-plots on the

AD statistic for the test that all replications came from the same distribution are below the

rejection line only for γ = 1 and γ = 2. This indicates that higher values increase the effects

of randomness in the model. For the auto-correlation of returns and for the averaged entropy,

γ = 1 and γ = 2 are also closer to the desired targets of low predictability and high disorder

in the lattice of agents.

Weighting rule sensitivity (η): Similar results were observed regarding the insensitivity of the

distribution of each statistic for η > 1, 000; focusing on the AD statistic and the return

kurtosis we can readily rule out η = 10, because it turns the model results on these statistics

insensitive to the other parameters. However, smaller ηs tend to bring better results in terms

of auto-correlation of returns and averaged entropy.

Diversity of fundamental beliefs (σ): Overall, the adjustment of the model tended to deteriorate

for higher values of σ. In particular, the returns generated by the model tended to the Gaus-

sian distribution as diversity increased. Our main conclusion is that the simplifying assump-
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Figure 11: Box-plots of Key Statistics from Model Simulations.
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The statistics come from 100 replications (varying the random seed) of each of the 900 combinations of parameter

values, i.e., a total 90,000 simulations of the model. Our calibration aims to minimize the AD goodness-of-fit statistics

(dotted lines represent critical values at the 25 percent significance level), to match the data in relation to return auto-

correlation and kurtosis (dotted lines represent statistics from data), and to maximize averaged entropy.
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tion, which is that there is no diversity of beliefs about the fundamentals, i.e., σ = 0, is

critical for the emergence of heavy tails in the distribution of our model returns.

In the second stage of calibration, we constructed a finer grid of parameter combinations focused on

the regions around the values that performed well in the first stage. Namely, we focused on the case

of homogeneous fundamental beliefs, σ = 0, and evaluated the model for every combination of the

following parameter values: κ = {0.10, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.50, 3.00};

γ = {1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 2.75, 3.00}; and η = {500, 750, 1000, 1250, 1500, 1750, 2000, 2500, 3000

This yielded a total of 1,386 parameter combinations, which, after multiplying by the 100 replica-

tions, resulted in a total of 138,600 simulations. The calibrations presented in Table 1 were selected

from these results, which are also available upon request.

A.2 Market-maker Response

To invert the price adjustment function with respect to the excess demand, first notice that from (6)

the stock market log returns are given by

rt = log [1 + tanh [Zt]] .

Because tanh x = ex−e−x

ex+e−x , this can be simplified to

rt = log 2 + 2Zt − log
[
1 + e2Zt

]
,

or

ert =
2e2Zt

1 + e2Zt
,

which, after manipulation, leads to

e2Zt =
ert

2− ert
,

Zt =
rt − log [2− ert ]

2
. (11)

Assuming rt is small, so that ert ≃ 1 ⇒ log [2− ert ] ≃ 0, we can approximate the excess demand

implied by a given return by a linear function as advocated in the main text. Substituting for the

modified excess demand of (10), and assuming there are no robots, i.e., Q = QB
t = QS

t = 0, the

linearly approximated excess demand is given by

NB
t −NS

t −Kt

N +K
=

1

2
rt,
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which implies

NB
t −NS

t =

(
N +K

)

2
rt +Kt. (12)

The market maker is assumed to respond to lagged excess demand according to

Kt =
{
NB

t−1 −NS
t−1

}+K

−K
. (13)

Substituting (12), lagged by one period, into (13) produces the final specification of the market

maker response function given by (7).

A.3 Symmetry Between Robot and Human Rules

Assuming that the robots behave according to a counter-imitative rule symmetric to that of the

humans, (2), the probabilities that robot j makes a buy/sell order at period t are given by

IB
j,t =

(
Ñ S

j,t−1

)κ̃

(
ÑB

j,t−1

)κ̃

+
(
Ñ S

j,t−1

)κ̃
, IS

j,t =

(
ÑB

j,t−1

)κ̃

(
ÑB

j,t−1

)κ̃

+
(
Ñ S

j,t−1

)κ̃
, (14)

respectively. Because the robots make deterministic decisions, they would choose to buy if IB
j,t >

IS
j,t, but because IB

j,t ≡ 1− IS
j,t, robot j’s decision to buy simplifies to

(
Ñ S

j,t−1

)κ̃

(
ÑB

j,t−1

)κ̃

+
(
Ñ S

j,t−1

)κ̃
>

1

2
,

(
Ñ S

j,t−1

)κ̃

>
(
ÑB

j,t−1

)κ̃

,

which is identical to condition (8) after substituting the exponents for the self-regulatory mecha-

nism.

A.4 Robots Coordination Through Pooling of Information

With the two-stages coordination approach, the robots have to decide on the basis of two pieces of

information: 1) what they collect from their neighborhood, and 2) the signal they receive from the

financial authority about the other robots’ interim decisions. Assuming that the robots combine

this information linearly, the probability that robot j will place a buy order at period t is given by

πB
j,t = (1− θ) IB

j,t + θCB
t , π

S
j,t = (1− θ) IS

j,t + θCS
t ,
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where IB
j,t and IS

j,t follows from (14), and the other terms are explained in the main text. Because

the robots make a deterministic decision, they choose to buy if πB
j,t > πS

j,t, and sell otherwise. I.e.,

robot j’s condition to buy is given by

(1− θ) IB
j,t + θCB

t > (1− θ) IS
j,t + θCS

t , (15)

but as IB
j,t ≡ 1− IS

j,t,

(1− θ)
(
1− 2IS

j,t

)
> θ

(
CS

t − CB
t

)
,

(1− θ)




(
Ñ S

j,t−1

)β[−aj,t]

−
(
ÑB

j,t−1

)β[aj,t]

(
Ñ S

j,t−1

)β[−aj,t]

+
(
ÑB

j,t−1

)β[aj,t]


 > θ

(
CS

t − CB
t

)
,

(1− θ)

((
Ñ S

j,t−1

)β[−aj,t]

−
(
ÑB

j,t−1

)β[aj,t]
)

> . . .

. . . θ
(
CS

t − CB
t

)((
Ñ S

j,t−1

)β[−aj,t]

+
(
ÑB

j,t−1

)β[aj,t]
)
,

where we used the definition of IS
j,t according to (14). After manipulation we find (15) to be

equivalent to

(1− θ)
(
Ñ S

j,t−1

)β[−aj,t]

− (1− θ)
(
ÑB

j,t−1

)β[aj,t]

> . . .

. . .
(
2θCS

t − θ
) (

Ñ S
j,t−1

)β[−aj,t]

−
(
2θCB

t − θ
) (

ÑB
j,t−1

)β[aj,t]

,

(
1− 2θCS

t

) (
Ñ S

j,t−1

)β[−aj,t]

>
(
1− 2θCB

t

) (
ÑB

j,t−1

)β[aj,t]

,

which is identical to condition (9) in the main text.
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