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Another Solution for Allais Paradox: Preference 
Imprecision, Dispersion and Pessimism 

Oben K. Bayrak 

Abstract 
 
Although there are alternative models which can explain the Allais paradox with non-standard 
preferences, they do not take the emerging evidence on preference imprecision into account. The 
imprecision is so far incorporated into these models by adding a stochastic specification implying 
the errors that subjects make. However, there is also the inherent part of the preference imprecision 
which does not diminish with experience provided in repeated experiments and these stochastic 
specifications cannot explain a significant portion of the observed behavior in experiments. 
Moreover, evidence on imprecision suggests that subjects exhibit higher imprecision for a lottery 
with a higher variance. This paper presents a new model for decision under risk which takes into 
account the findings of the literature. Looking at the indifference curves predicted by the new model, 
the new model acts like a mixture of Expected Utility Theory and Rank Dependent Utility Theory 
depending on which part of the probability triangle the lottery is located.  
 
Keywords: Allais Paradox, Independence Axiom, Preference Imprecision, Anomalies, Decision 
Theory, Decision under Risk and Uncertainty, Alternative Models 

 

1    Introduction 
 
Allais Paradox was first proposed by Maurice 
Allais (1953) to challenge the Expected Utility 
Theory (EUT). The paradox is usually described 
by two choice problems between pair of lotteries 
shown in Table 1. The first pair includes 
choosing one of the two lotteries: S1 = ($1M, 1) 
or R1 = ($5M, 0.1; $1M, 0.89; 0, 0.01). The second 
pair includes: S2 = ($1M, 0.11; 0, 0.89) and R2 = 
($5M, 0.1; 0, 0.9). A closer look would reveal that 
S1 and R1 includes a common consequence of 
$1M with probability of 0.89, and that S2 and R2 
are derived by subtracting this common 
consequence from S1 and R1, respectively. An 
individual whose preferences are compatible with EUT would either choose ‘S’ or ‘R’ type of 
lotteries in both choice problems; common 
consequences added or subtracted to the two 
prospects should have no effect on the 
desirability of one prospect over the other; 
because according to EUT formulation which 
treats the probabilities linearly, common 
consequences cancel out. However, Allais argued 
that most people might opt for S1 in the first 
problem lured by the certainty of winning $1M, 
and R2 in the second problem since the odds of 

winning are very similar but the winning prizes 
are very different; $1M and $5M. This problem is 
known as ‘common consequence effect’1. Allais’s 
ideas challenged the independence axiom of 
EUT-the idea of expected utility being linear in 
probabilities- and finally contributed to the 
development of alternative models such as 
Fanning-out hypothesis, Rank Dependent Utility 
Theory, Prospect Theory and its variants. 

Table 1: Bets in Allais Paradox. 

Outcome
s 

S1 R1 S2 R2 

$0 - 0.01 0.89 0.90 

$1M 1.00 0.89 0.11 - 

$5M - 0.10 - 0.10 

                                                        
1 Another related phenomenon is the ‘common ratio effect’: There are two choice tasks and each task 
includes a pair of lotteries. The first pair includes: M1 
= ($3000, 1) or N1 = ($4000, 0.8; $0, 0.2) whereas the 
second pair includes M2 = ($3000, 0.25; $0, 0.75) or N2 
= ($4000, 0.2; $0, 0.8). The common choice pattern is 
choosing M1 and N2 is inconsistent with the 
predictions of EUT because the second pair is formed 
by multiplying the probabilities of the first pair’s 
winning prizes by a common ratio of 0.25. 
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However, there is an emerging literature on 
preference imprecision which challenges the 
validity of these alternative theories as well. 
Experimental studies in this new strand of 
literature suggest that even intelligent and 
numerate individuals find it hard to know their 
own preferences precisely and are not able to 
state their choices and subjective valuations for 
goods and risky prospects with perfect 
confidence (See Bayrak & Kriström, 2016; Butler 
& Loomes, 1988, 2011, 2007; Cohen, Jaffray, & 
Said, 1987; Cubitt, Navarro-Martinez, & Starmer, 
2015; Morrison, 1998). Although alternative 
theories model individual behavior in a non-
standard way to explain these observed 
anomalies, they share a common implicit 
assumption with EUT that individuals can 
articulate their subjective valuations for goods 
and make choices in a precise manner. 
Therefore, the issues raised by this recently 
emerging literature are not covered by the 
existing models in the literature including both 
the EUT and its alternatives. These recent 
findings have critical implications as well: if, for example, consumers’ preferences are imprecise 
and prone to being manipulated, this may be used against consumers’ own best interests. 
Moreover, if the inherent characteristics of 
economic preferences are imprecise, the validity 
of the studies that evaluate and analyze the 
policies and/or market schemes based on the 
existing models of precise preferences should 
also be reconsidered. In order to reach solid 
conclusions about all of these issues, it is vital to 
have a better understanding and a better model 
of the imprecise preferences. 

Imprecision, so far is incorporated in economic 
preferences by modelling it as a stochastic 
component of a deterministic theory such as 
EUT, Rank Dependent Utility Theory and 
Prospect Theory. However, it seems that no 
single combination of deterministic core and 
stochastic specification can explain the 
significant portion of the behavior in the 
experiments (Loomes, 2005). More specifically, 
evidence suggests that a theory which predicts 
parallel and linear indifference curves inside the 
probability triangle and non-conventional 
patterns on the boundaries would fit the data 
better and the alternative models seem to allow 
patterns that are rarely observed (Harless & 
Camerer, 1994). Although several different error 

specifications for existing deterministic models 
have been developed in the literature, there has 
not much progress made in modelling the 
imprecise preferences in a deterministic 
manner. The existing stochastic models are 
limited to treat the imprecision as errors that 
subjects make, however, the evidence show that 
there is also an inherent and deterministic part 
which does not decay with experience. Loomes 
et al. (2002)  provides the evidence for why we 
should make a distinction between errors and 
imprecision: In a repeated experiment each 
subject presented with randomly ordered 45 
pairwise choice questions, after a short break, 
the same 45 pairwise choices were presented 
again, in a different random order. They find that 
stochastic variation associated with errors decay 
with experience, but there is also a stable part 
which can be seen as an inherent part of the 
preferences. This paper focuses on the stable 
part and introduces a deterministic core model 
which explains how imprecision is formed and a 
particular expected utility is drawn from the 
imprecision range. To develop such a model, I 
pay attention to the recent experimental 
findings and particularly about the determinants 
of imprecision: The experimental evidence 
provided by Butler and Loomes (1988) and 
Cubitt et al. (2015) suggest that the higher the 
variance of a lottery, the broader the imprecision 
range for a lottery. Taking these into account I 
assume that the imprecision range is 
proportionate to dispersion. The paper is 
organized as follows: Section 2 provides a 
literature review by presenting: i. the existing 
explanations of the Allais paradox using 
probability triangle, i. experimental studies on 
Allais paradox, iii. a review of preference 
imprecision literature. Section 3 presents the 
new model and its explanation for Allais 
paradox.  

2. Related Literature 

2.1. Probability Triangle, Expected 
Utility Theory and Alternatives 
 
In order to see the differences between EUT and 
the alternatives, it will be helpful to use the 
probability triangle and demonstrate the Allais 
type of bets on the triangle. These bets are 
characterized as three outcome lotteries where 
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Figure 1: Probability Triangle Figure 2: EUT Indifference Curves 

  

the outcomes are
1 2
,x x and

3
,x  which have the 

following order in terms of magnitude: 

  .
L M H
x x x The corresponding probabilities of 

these outcomes are a vector of 

probabilities: ( , , )
L M H
p p p . For the original 

version of the Allais problem the outcomes are 
$0, $1M, and $5M. Figure 1 demonstrates the 
problem in a probability triangle where the 
 vertical edge shows the probability of best 
consequence, whereas the horizontal edge 
measures the probability of the worst 
consequence. The probability of winning $1M 

( )
M
p is implicit on the graph 

because   1
M H L
p p p . The bets that are 

located on the triangle edges (excluding the 
corners) assign positive probabilities only for 
two consequences out of three. S1 gives $1M 
with a probability of 1, it is centered in the 
corner where the probabilities of other 

consequences are zero  ( 0)
H L
p p . In addition, 

since S2 has positive probabilities for the 
consequences such as 0 and $1M, it lies on the 
horizontal axis. Similarly, R2 does not assign a 
positive probability for winning $1M therefore it 
is on the hypotenuse, which depicts the 
probability of winning $1M. The interior of the 
triangle includes the bets that assign positive 
probability to all three consequences; such as R1. 
Next we derive the slope of the indifference 
curves of EUT, to do that we use the following 
expression: 
 

                   *

L L M M H H
U p u x p u x p u x     (1) 

 
Equation (1) simply implies the collection of the 
lotteries which give the same utility level, U*. 
Next, we substitute 1-pH-pL for pM and take the 
derivative of the expression with respect to pL.  
After rearranging we find that the slope of the 
indifference curves under EUT is2: 
 

                      
   
   




 
M LH

L H M

u x u xp

p u x u x
                  (2) 

Since the slope only depends on the utilities of 
the outcomes, indifference curves under EUT are 
parallel straight lines with a constant slope. They 
are increasing in terms of desirability towards 
the northwest of the triangle because the best 
outcome is located on the vertical axis and the 
worst outcome is on the horizontal axis. Figure 2 
shows an example of indifference curves drawn 
according to EUT.  

The slope of the indifference curves implies the 
risk attitude of the individuals: the steeper the 
slope, the more risk averse the individual is, as 
shown in Figure 3. The solid line in the figure 
implies relatively more risk aversion compared 
to the dashed line: x on the figure gives $1M with  

                                                        

2

*

0,
U

p
L





by definition of indifference curves. 
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Figure 3: Risk Attitudes Figure 4: Paradoxical Behavior 

  

certainty, whereas y and z are the risky 
prospects that assign positive probability to the 
worst ($0) and the best consequences ($5M), but 
zero for the middle-ranked consequence ($1M). 
Furthermore, y assigns a higher probability to 
$5M than z. Therefore the solid line belongs to 
an individual who demands a higher probability 
of getting $5M to be indifferent between the 
risky prospect and $1M with certainty. Under 
EUT, throughout the triangle the individual 
maintains the risk attitude by having the parallel 
indifference curve covering the triangle. 
However, the actual behaviour observed in the 
literature contradicts the prediction of EUT. 
Figure 4 demonstrates the observed behaviour: 
the individual choosing S1 in the first question 
signals an indifference curve similar to c1, which 
means that the indifference curve that passes 
through R1 lies somewhere below c1, which is in 
the less desirable region. On the other hand, if 
individual chooses R2 in the second question it 
means that the indifference curve passes 
through S2 and lies somewhere below c2. It is 
easy to see that c1 and c2 are not parallel which 
means that individual acts as though less risk 
averse while making a choice between S2 and R2 
as compared to when making the choice 
between S1 and R1. This behavior is inconsistent 
with EUT, because it implies that the risk 
attitude of the individual does not remain the 
same across the choices between two pairs.  

This pattern of unstable risk attitudes is 
hypothetised as indifference curves being 

fanning out from the bottom-left corner of the 
triangle. To maintain transitivity it is assumed 
that the starting point of fanning out is located 
outside the triangle as shown in Figure 5. The 
figure shows the typical linear but fanning out 
indifference curves under the Weighted Utility 
Theory developed by Chew and MacCrimmon 
(1979). There are also different patterns 
produced by alternative theories, which allow 
for Allais paradox. Figure 6 shows the 
indifference curves of Rank-Dependent Utility 
Theory with a concave probability weighting 
function. The curves are steepest in the bottom-
right corner where the probability of the middle-
ranked outcome ($1M) equals one. They get 
flatter as we move along the horizontal and 
vertical axes and finally become parallel close to 
the hypotenuse where the probability of the 
middle-ranked outcome equals zero.  

Overall, alternative theories treat the 
probabilities in a nonlinear manner, which then 
relaxes the linearity and/or parellelism of the 
indifference curves (see Camerer (1989) for a 
detailed analysis and the derivation of the 
indifference curves of different preference 
functionals).  

2.2. Experiments on Allais Paradox 

Besides the theoretical advances in the literature 
to explain Allais Paradox, there are also studies 
that empirically question and test its robustness. 
One strand of literature can be seen as the  
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Figure 5: Fanning Out Hypothesis Figure 6: Rank Dependent Utility 

  

defenders of EUT that claim that the violations 
can be explained by misunderstandings and 
inattentiveness (M. Allais, 1990; Amihud, 1979a, 
1979b; Morgenstern, 1979). In an experimental 
study, Savage (1954) modifies the 
representation of the lotteries in order to 
highlight the similarity of the bets in two 
questions, as shown in Table 2. 

Table 2: Savage’s representation of the Allais 
bets 

 1 2-11 12-100 

M 1000 1000 1000 

N 0 5000 1000 

M’ 1000 1000 0 

N’ 0 5000 0 

The last three columns include the different way 
of presenting the probabilities associated with 
the three outcomes. For example, suppose a 
subject chooses N in the first question and the 
random number drawn equals 9, then the 
subject wins 5000, since it is between 2 and 11. 
This representation facilitates understanding the 
similarity between the first and the last two 
lotteries shown in the table: discarding the 
common consequence of winning 1000 if the 
random number is between 12 and 100 from M and N produces M’ and N’. Although this 
modification in the presentation of the lotteries 
decreases the inconsistencies from 60% to 40%, 
they do not disappear (Incekara-Hafalir & 
Stecher, 2012). Conlisk (1989) also focuses on 

the presentation of the lottery tickets and finds 
that the inconsistencies decrease from 50% to 
28%. In addition to the subject 
misunderstandings, Harrison (1994) criticises 
the hypothetical nature of the surveys that 
document the inconsistencies and suggests that 
it would be premature to discard EUT based on 
them. Burke et al. (1996) takes the critics of 
Harrison into account and use real monetary 
payoffs in an experimental study which again 
reduces the inconsistent preference statements 
but does not eliminate them completely (See 
Camerer, 1989 for another example with real 
payoffs).  

2.3. Imprecision 

EUT and the alternatives assume that every 
risky prospect has a certainty equivalent; a 
precise amount of money that is equally 
desirable and more importantly individuals can 
state this amount with confidence. This might be 
true for an individual who has sufficient 
familiarity and expertise in risky situations, but 
ordinarily it is more likely that the certainty 
equivalent would be a range of rounded 
numbers rather than a precise estimation. 

The idea of imprecision dates back to 19th 
century, investigated in the works of Fechner 
and Weber who are considered to be the 
founders of the psychophysics and experimental 
psychology (Gescheider, 2013). They investigate 
the relation between stimulus and sensation, 
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particularly focusing on judgments about stimuli 
such as light, sound, weight, and distance. Those 
early works suggest that human judgement of 
stimuli is subject to errors, therefore expecting a 
perfect evaluation from individuals is not 
realistic (Fechner, 1966). Moreover, upon 
comparing, e.g., the weight of two objects, the 
probability of making a mistake is higher when 
the weights are very close, such as 1 kg and 1.05 
kg. Psychophysics studies focus on the physical 
stimuli, however in the realm of economics, 
individuals deal with evaluations of risky 
prospects, which are the main focus of this 
study. One can see the risky prospects or 
lotteries in economics are the counterparts of 
the physical stimuli concept in psychophysics. Finally, the ‘preference imprecision hypothesis’ is the idea which claims that as individuals’ 
judgements about objects are subject to 
mistakes, i.e., the choices among options and 
valuations of the goods are also liable to 
imprecision and noise. 

Two prominent findings of experimental 
literature lead economists to focus on imprecise 
preferences. The first is that when subjects face 
the same pairwise choice more than once, a 
considerable portion of the subjects seem to be 
behaving inconsistently on different occasions in 
a given experiment (Ballinger & Wilcox, 1997; 
Camerer, 1989; Hey & Orme, 1994; Starmer & 
Sugden, 1989). Second, the existing theories of 
decision under risk seem to be only partially 
successful in explaining the behaviour observed 
in experiments (Loomes & Sugden, 1998). 
Beginning in 1990s, the idea of imprecision 
began to receive attention by researchers in the 
form of modelling it as the stochastic component 
of a deterministic theory such as EUT and/or 
alternative theories (Harless & Camerer, 1994; 
Hey & Orme, 1994; Loomes & Sugden, 1995, 
1998; Sopher & Gigliotti, 1993).  The common 
approach employed by these studies is to 
incorporate the imprecision as the stochastic 

componentthe random and/or error partof 
a core deterministic theory. The general logic 
that is employed is to reject a theory if the 
observed behaviour systematically departs from 
the core theory, if the anomalies cannot be 
explained by random errors or deviations from 
the core theory. However, it seems that no single 
combination of deterministic core and stochastic 
specification can explain the significant portion 

of the behavior in experiments (Loomes, 2005). 
For example, Harless and Camerer (1994) 
conducted their analysis on 23 data sets 
consisting of approximately 8,000 choices that 
subjects made in Allais type of problems. Overall, 
they found that none of the existing theories 
perform significantly better than others: all 
theories are rejected by a chi-square test. This 
implies that the variation that is not predicted by 
the existing core theories can be explained by 
another theory as yet undeveloped, because the 
stochastic part is found to be a systematic 
variation rather than being an error. Most 
importantly, they find that EUT describes the 
data better when the lotteries are located inside 
the triangle and fits poorly when lotteries are on 
the boundaries of the triangle. This implies a 
theory which predicts parallel and linear 
indifference curves inside the triangle and non-
conventional patterns on the boundaries would 
fit the data better. Overall, their results suggest 
that EUT can be improved by further 
generalizations to incorporate commonly 
observed patterns in the literature. Moreover, 
the alternative models such as Rank-Dependent 
Utility Theory seem to allow patterns that are 
rarely observed. Thus, the results suggest not 
abandoning EUT but extending it.  

There is also another strand of literature 
consisting of experimental studies that use 
direct elicitation methods of imprecision intervals mainly relying on the subjects’ self-
reporting. These studies elicit the imprecision 
range for the subjective valuations by asking 
subjects to answer a series of binary choice 
questions between a lottery and a sure amount 
of money. Additionally, for each question 
subjects indicate how confident they are about 
their choice3. The common patterns found in this 

                                                        
3 There is also another method which is known as “iteration procedure”. For example Dubourg et al. 
(1994) used a numbered disk, which has a small 
window showing only single value at a time. For each 
value, subjects state their preference by choosing one 
of the three phrases: definitely willing to pay, 
definitely not willing to pay, or not sure. If the response was ‘willing’, the interviewer rotates the 
disk to reveal a higher value through the window, whereas if the answer is ‘not willing’, the interviewer 
reveals a lower amount. The experiment continues 
until there is a maximum amount that subjects are 
definitely willing to pay and not willing to pay. If the 
two amounts are different, then the interviewer asks 
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strand of literature provide information about 
the nature of preference imprecision: For 
example, Butler and Loomes (1988) used four 
lotteries in their experiment. Their findings 
support that there is a positive relation between the variance of the lottery and individuals’ 
subjective valuation range. Most recently, Cubitt 
et al. (2015) provides a more comprehensive 
treatment of the imprecision issue: their data 
includes responses for 33 different lotteries 
which are organized in seven sequences each 
including 5 lotteries. Lotteries in sequence 1 
have equal variances whereas in sequence 2 
they do not. They find that the size of the 
imprecision range is significantly different for 
the lotteries in sequence 2, increasing with the 
variance, however in sequence 1 there is not 
significant change in the size of the imprecision 
range. This result suggests that subjects exhibit 
higher imprecision for a lottery with a higher 
variance. Their design also enables tests of 
stability, i.e. whether the size of the intervals 
changes with repetition or not. It is important, 
because if imprecision is merely a result of 
errors or unfamiliarity with the experimental 
mechanisms, it should disappear with repetition 
and experience. However, they found no 
evidence for imprecision declining with 
experience. Their analysis supports that 
imprecision is stable and not temporary; it 
seems to be the inherent characteristic of individuals’ preferences. 
3. Model 
 
In light with the emerging evidence known as 
preference imprecision and considering the 
results of Harless and Camerer (1994), I present 
a new model which assumes that individuals 
also take into account the dispersion of the 
lotteries as well while calculating the expected 
utility. Taking the evidence discussed in 
Section2.3 into account, I assume that the 
imprecision range is proportionate to 
dispersion. The model is formulated as having 
two stages: in the first stage individual forms the 
imprecision range and the values of the range is 

denoted as (.)
k

EU which is indexed by the 

                                                                                 for a ‘best estimate’ of the subject for determining the ‘switching point’ 

subscript   1,...,k K and the values in the range 

are ranked as follows: (.) (.)
i j

EU EU if and only 

if i j . In the second stage model describes how 

individuals select a single expected utility for 
decision making. Starting with the first stage, 

lower
1

( (.))EU and the upper bounds ( (.))
K

EU are 

calculated in the following way:  
 

                        
1
( )EU X EU X u              (3) 

 
                         

K
EU X EU X u              (4) 

 

where ( )u is the utility of the standard 

deviation and  0 , a measure of an individual’s 
ability to be precise about preferences. It 
describes how individual is familiar with 
decision under uncertainty. Notice that the 
individual has precise preferences and behaves 
in the way that EUT predicts when  0 . 

Therefore the model can be seen as an extension 
of EUT. As  increases, the imprecision range 

also increases. The second stage of the model 
describes how individuals select a single value 
from the range formed in the first stage: Note 
that, although individuals are imprecise about 
their preferences, the situations in real life 
requires precise judgements; e.g. none of the 
transactions takes place in terms of interval 
amounts of money in real markets. Thus, the 
final decision such as determining a buying or a 
selling price has a precise unit in real life 
situations. At the end of the first stage individual 
forms a range of expected utility values but 
cannot determine a single value from the range 
confidently, he or she calculates the expected 

value of the range, denoted as (.)EU . However, 

individual does not have a prior knowledge 
about the distribution of the true expected utility 
of this range. In other words the decision at the 
second stage of the model resembles the 
decision under ambiguity i.e. individual knows 

the outcomes, (.)
k

EU , but does not know the 

probability of those outcomes. Therefore 
individual forms beliefs about the possible 
distribution of the true expected utility in this 
range: 
 

               1
. . . .

K

k k k
EU E EU EU f EU   (5) 
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Regarding the shape of ( (.))
k

f EU ; a pessimist 

will put more weight to the values towards the 
lower bound of the range whereas an optimist 
will put more weight to the values close to the 
upper bound of the range. Perhaps, an idiom -
seeing the glass half-full or half-empty- might be 
helpful to understand the intuition: It is an 
expression which indicates that a particular 
situation can be seen as both potentially good 
and bad depending on how people perceive it. 
The optimists will attain extra utility from how 
much dispersion the prospect has, because they 
see the dispersion as the opportunity not to be 
missed: they see the “glass half full”. The 
pessimists want to avoid dispersion, because the 
dispersion would cause them a disutility; they 
see the glass half empty. 

In order to see how model incorporates Allais 
Paradox and explore the parameters of the 
models that allow for Allais type of behaviour, I 

use CRRA utility function for (.)u as an example 

and the bets in Table 1. For the purpose of being 
parsimonious, I specify the simplest 
specification for the beliefs formed in the second 

stage, i.e. ( (.)
k

f EU in equation (3): Using as the 

weight attached to the lower bound of the 
imprecision range and 1 to the upper bound, 

individual calculates a weighted average of the 
expected utility range. In this case alpha 
represents the pessimism level of the individual, 
e.g. a relatively pessimistic individual 
have higher than 0.5 so attaches more weight 

to the lower bound
1

( (.))EU . Thus an individual 

calculates the expected utility of a bet X under 
the new model as follows: 

 

                    
1

1
K

EU X EU X EU X     (6) 

 

where    
1
( ) ( ) ( )EU X EU X u and

   ( ) ( ) ( )
K

EU X EU X u . Using (6) we can now 

write the expected utilities for the lotteries S1, 
R1, S2 and R2

4: 
 

                             
1

1aEU S                         (7) 

 

                                                        
4 See the supplementary excel file for the calculations 

   
 

 




  

   

      
     

1
0.89 1 0.1 5 1.21

1 0.89 1 0.1 5 1.21

a a a

a a a

EU R k

k
    (8) 

 

        
 

 
 



      
       

2
0.11 1 0.31

1 0.11 1 0.31

a a

a a

EU S k

k
         (9) 

 

           
 

 
 



      
       

2
0.1 5 1.5

1 0.1 5 1.5

a a

a a

EU R k

k
          (10) 

 
Since S1 gives $1M with certainty, the 

standard deviation is zero, which then reduces 
to the standard expected utility formulation. For 
the other three lotteries, the standard deviations 
are 1.21, 0.31, and 1.5, respectively. Figure 7 
shows the combinations of parameters of the 

model  ( , )  which allow for Allais type of 

behaviour.  
The vertical axis measures values whereas 

the horizontal axis lists values for  . The solid 

curve shows the critical values for the first 

task where the individual has to make a choice 
between S1 and R1, and, above this curve, S1 is 
chosen over R1. Second, the dashed curve shows 
the critical values for in the second task where 

the individual has to make a choice between S2 
and R2, and below this curve, R2 is chosen over 
S2. Thus, below the solid curve the individual 
prefers R1 and R2 in both tasks whereas above 
the dashed line the individual prefers S1 and S2 
in both tasks. These regions include the 
combination of parameters, and  , which 

result in consistent behaviour with EUT. On the 
other hand, the region between these two curves 
includes the parameter combinations that allow 
for the paradoxical behaviour: the individual 
prefers S1 in the first task and R2 in the second 
task. Overall, as the level of imprecision 
increases, the critical value that allows for the 

Allais Paradox converges to 0.5.  
Next we look at the indifference curves 
predicted by the model. When we substitute the 

expressions for
1
( )EU X and 

1
( )EU X  into (6) and 

simplify, we get: 
 

                  
*

( ) 1 2 ( )EU X EU X u     (11) 
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Figure 7: Model parameters that that allows for Allais Paradox. Solid line shows the critical α values 
in the first task, whereas the dashed line shows the ones in the second task. Above the solid curve, 
S1 is chosen over R1, whereas above the dashed curve, S2 is chosen over R2 

 

Similar to what we did while deriving the 
slope of the EUT indifference curves in Section 
2.1, we simply take the derivative of equation 

(7) with respect to pL and  
H L
p p equals: 

 

       

       

2 2

2 2

L M L M

M H H M

EV EV

EV EV

x x P x x

x x P x x

u u

u u





      
      

(12) 

 

where 2(0.5 ) (1 2 )aP a   
      and EV is the 

expected value of the lottery has the following 

usual formula: 
L L M M H H

EV p x p x p x      . 

Figure 8 shows the pattern of the indifference 
curves under the new model5. 
 
Indifference curves of the new model are in line 
with the findings of Harless and Camerer (1994): 
Inside the triangle they are parallel as in EUT, 
and they are nonlinear in the region that is 
closer to the horizontal edge of the triangle. 
 

                                                        
5 An easy way to evaluate such a complicated slope 
expression is to use vector field method. Mathematica 
raw output can be found in Appendix. 
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Figure 8: Indifference curves of the new model 

 
More interestingly, the new model seems to 
behave as a mix of Rank Dependent Utility 
Theory and EUT in different regions of the 
triangle: when we move towards the north-west 
of the triangle they behave like EUT indifference 
curves, straight and parallel lines as in Figure 2; 
whereas when look at the other half of the 
triangle we see the indifference curves showing 
a similar pattern to the ones predicted by Rank 
Dependent Utility Theory (See Figure 6). To 
understand the intuition behind this pattern, one 
should look at equation (11) and consider the 
two lotteries (A and B) in Figure 8 as an 
example: Both have equal standard deviations, 
since the model parameters and  are same 

for an individual, the following are equal: 

    (1 2 ) ( )
A

k u and     (1 2 ) ( )
B

k u . Since 

Lottery A assigns a higher probability to the 

highest consequence
H
x than Lottery B, ( )EU A is 

higher than ( )EU B . As we move towards the 

north-west of the triangle the standard expected 

utility of the lotteries ( (.))EU increases and 

outweighs the effect of standard of the standard 

deviation,      (1 2 ) ( )u . However, when we 

are close to the horizontal edge the probability 
assigned for the highest outcome is lower, 

therefore (.)EU is lower, and this makes the 

total ( (.))EU to be affected by standard 

deviation more.  
 

4. Conclusion 

 
This paper presents another explanation for 
Allais paradox: Previous theories such as Rank 
Dependent Utility Theory, Prospect Theory and 
its variants focus on nonlinear probability 
weighting to explain the paradox. However, 
emerging literature on preference imprecision 
challenges these alternative models too: These 
alternative models share an implicit common 
assumption which is the precision of preferences 
i.e., individuals can articulate their preferences 
confidently in a precise manner. The 
experimental studies reviewed in Section 2.3 
shows that even literate and numerate 
individuals exhibit imprecision when stating 
their preferences (valuations and choices) 
especially for the risky prospects. To incorporate 
imprecision, researchers modelled the existing 
deterministic core theories in a stochastic 
manner by adding an error term to the 
deterministic part. However, none of these 
modelling approaches seem to explain a 
significant portion of the behaviour. Most 
importantly, literature on stochastic preferences 
suggests that a model which predicts 
indifference curves similar to EUT inside the 
probability triangle, but non-standard patterns 
for the region close to edges of the triangle 
would fit better. Secondly, experiments on 
preference imprecision shows that the 
imprecision range is proportional to the 
dispersion of lotteries. The model presented in 
this paper takes these into account; it predicts 
indifference curves in line with the evidence: If 
we draw an imaginary line (from the point 

where  0
L H
p p to the hypotenuse) to divide 

the triangle into two pieces, in the upper half of 
the triangle where the effect of standard 
deviation becomes negligible, indifference 
curves are similar to the ones that EUT predicts; 
whereas in the lower part, the curves are similar 
to the ones that Rank Dependent Utility Theory. 
Note that the concern of this paper is to present 
a simple and parsimonious model which 
incorporates the recent findings of the literature. 
Central to the model; the satisfaction from the 
risky prospect depends on both the standard 
expected utility formulation and the dispersion 
of the risky prospect. Further extensions are 
possible, especially to overcome the violation of 
monotonicity for the lotteries which lie in the 
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region that is close to the right bottom corner, 
where the disutility from standard deviation of 

the lottery (1 2 ) ( )k u     might overweigh the 

expected utility part ( )EU A , for pessimistic 

individuals which implies 0.5  (See Equation 

12). To overcome this problem: (i) one can 
assume that theory is undefined for this region 
or (ii) assume that the utility of the lotteries that 
lie in this region equals to the utility of the 
lowest outcome (winning nothing). Considering 
(i), it is not a major disadvantage of the model, 
since a widely influential model-Prospect 
Theory-is undefined for a much larger region 
(See Figure 2A in Appendix). The decision 
weight function is not defined for the 
probabilities close to zero and one. The intuition 
of (ii) is that the lotteries, which give the lowest 
outcome of zero with a probability close to one, 
are perceived as a degenerate lottery giving zero 
with a probability of one. For example, 
pessimistic individuals will think that if the 
probability of winning zero is higher than a 
certain probability such as 0.97, they will 
definitely win nothing from the lottery.   
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Appendix 
 

Below is the Mathematica code which I used to 
evaluate the slope equation (12) for different 

combinations of
L
p and

H
p .  

Streamplot command in Mathematica plots 
streamlines that show the local direction of the 
vector field at each point. Figure 1A shows the 
raw output. Figure 8 is drawn according to this 
output. 

Figure A1: Mathematica Streamplot Output 

 

Figure A2: Propect Theory, dashed lines show 
the undefined region 

 

 

 


