German-Soto, Vicente (2016): Un Índice de Desigualdad Regional usando Datos Agregados.
Preview |
PDF
MPRA_paper_71876.pdf Download (526kB) | Preview |
Abstract
This work considers the Euclidean distance concept to assess the evolution of regional disparities from aggregate data, such as for example, the per capita output. The vector space concept, as a measure of inequality, presents interesting properties: it tends to zero when the distances are reduced, is equal to zero in the hypothetical case of absolute equality and considers the contribution of each element to the joint inequality. The exercise generates an individual inequality index for the Mexican states along 1940-2010 that may be attractive in many respects, for example, in methodologies testing stochastic convergence, in regional economic growth, to determine the effectiveness of policies aimed to reduce the regional differences, among others.
Item Type: | MPRA Paper |
---|---|
Original Title: | Un Índice de Desigualdad Regional usando Datos Agregados |
English Title: | A Regional Inequality Index using Aggregated Data |
Language: | Spanish |
Keywords: | regional income inequality; Euclidian distance; data analysis; development index; per capita product |
Subjects: | C - Mathematical and Quantitative Methods > C8 - Data Collection and Data Estimation Methodology ; Computer Programs > C82 - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data ; Data Access O - Economic Development, Innovation, Technological Change, and Growth > O1 - Economic Development > O10 - General R - Urban, Rural, Regional, Real Estate, and Transportation Economics > R1 - General Regional Economics > R12 - Size and Spatial Distributions of Regional Economic Activity |
Item ID: | 71876 |
Depositing User: | Dr. Vicente German-Soto |
Date Deposited: | 09 Jun 2016 08:35 |
Last Modified: | 03 Oct 2019 01:30 |
References: | Campos Soberanes, Ana X. y Colinas Picazo, Monserrat (2014). Desigualdad en el ingreso a nivel estatal en México para el año 2012: un enfoque desde el coeficiente de Gini. XXIV Coloquio Mexicano de Economía Matemática y Econometría, Monterrey, México, septiembre de 2014. Cortez, F. (2011). Desigualdad económica y poder en México. Working Paper 2011-015, CEPAL. Cowell, Frank A. (2006). Theil, Inequality Indices and Decomposition. Research on Economic Inequality. 13: 345-360. Cowell, Frank A. (2011). Measuring Inequality, London: Oxford University Press (LSE Perspectives in Economic Analysis), pp. 256. Elliott, Sophie (2009). Why Measure Inequality? A Discussion of the Concept of Equality. Oxonomics. 4: 32-41. German-Soto, Vicente (2005). Generación del producto interno bruto mexicano por entidad federativa, 1940-1992. El Trimestre Económico. 72(3): 617-653. German-Soto, Vicente y Chapa Cantú, Joana C. (2014). Cointegration with Structural Changes between Per Capita Product and Income Inequality in Mexico. Applied Economics. 47(49): 5215–5228. Guerrero, I., L.F. López-Calva, and M. Walton (2009). The Inequality Trap and Its Links to Low Growth in Mexico, pp. 111–156, in Levy, S. and M. Walton (edits) No Growth without equity? Equity, Competition, and Growth in Mexico, Palgrave Macmillan and The World Bank. Hernández Licona, G. (2013). El Desarrollo Económico en México. Estudios, 11(106): 99–140. Kaplow, L. (2005). Why Measure Inequality? Journal of Economic Inequality, 3: 65-79. Levy, S. and M. Walton (2009). No Growth Without Equity? Equity, Competition, and Growth in Mexico. Palgrave Macmillan and the World Bank. Medina, Fernando (2001). Consideraciones sobre el índice de Gini para medir la concentración de ingreso. Serie Estudios Estadísticos y Prospectivos No. 9, Santiago de Chile: CEPAL. Simon, Carl P. y Blume, Lawrence (1994). Mathematics for Economists. New York: W. W. Norton and Company Inc. Székely, M. (2005). Pobreza y desigualdad en México entre 1950 y 2004. El Trimestre Económico. 72(4): 913-931. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/71876 |