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Abstract

It is well-known that laboratory subjects often do not play mixed strategy equilibrium
games according to the equilibrium predictions. In particular, subjects often mix with the
incorrect proportions and their actions often exhibit serial correlation. However, little is
known about the role of cognition in these observations. We conduct an experiment where
subjects play a repeated hide and seek game against a computer opponent programmed to
play either a strategy that can be exploited by the subject (a naive strategy) or designed
to exploit suboptimal play of the subject (an exploitative strategy). The subjects play
with either fewer available cognitive resources (under a high cognitive load) or with more
available cognitive resources (under a low cognitive load). While we observe that subjects
do not mix in the predicted proportions and their actions exhibit serial correlation, we
do not find strong evidence these are related to their available cognitive resources. This
suggests that the standard laboratory results on mixed strategies are not associated with
the availability of cognitive resources. Surprisingly, we find evidence that subjects under
a high load earn more than subjects under a low load. However, we also find that subjects
under a low cognitive load exhibit a greater rate of increase in earnings across rounds than
subjects under a high load.
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1 Introduction

In experimental settings, subjects often do not mix according to the equilibrium predictions.

Existing literature largely finds that subjects do not mix in the proportions predicted by

equilibrium and that their actions exhibit serial correlation.1 A critique of this literature is

that subjects are often inexperienced in settings where strategic mixing is required. Prompted

by this critique, many studies have examined mixing behavior in settings where decision makers

have ample experience: the field.2 Although some deviations are still detected, this literature

mostly finds that the mixing in field settings is closer to the equilibrium predictions than that

found in the laboratory.

In order to better understand the robustness of these deviations from equilibrium predic-

tions, researchers have examined whether experience in mixing in a field setting translates to

successfully mixing in a novel experimental setting.3 Our paper is similar in that we seek to

better understand the observed deviations from the mixed strategy equilibrium predictions by

exploring the role of cognition.

To our knowledge, Geng, Peng, Shachat, and Zhong (2015) is the only other study that

investigates the role of cognitive ability on mixing behavior.4 The authors do not find evidence

that higher measures of cognitive ability5 are related to the behavior consistent with the

equilibrium predictions: proportions of the mixture or serial correlation. Further, Geng et al.

do not find a relationship between measures of cognitive ability and earnings in these games.

However, one potential drawback of employing measures of cognitive ability is that these

measures are possibly also correlated with other (observable or unobservable) characteristics

1See O’Neill (1987), Brown and Rosenthal (1990), Batzilis et al. (2016), Binmore, Swierzbinski, and Proulx
(2001), Geng, Peng, Shachat, and Zhong (2014), Mookherjee and Sopher (1994, 1997), O’Neill (1991), Ochs
(1995), Palacios-Huerta and Volij (2008), Rapoport and Amaldoss (2000, 2004), Rapoport and Boebel (1992),
Rosenthal, Shachat, and Walker (2003), Shachat (2002), Van Essen and Wooders (2015). In fact, Martin et al.
(2014) find evidence that chimpanzee subjects are closer to the equilibrium predictions than human subjects.

2See Azar and Bar-Eli (2011), Bailey and McGarrity (2012), Bar-Eli et al. (2007), Buzzacchi and Pedrini
(2014), Chiappori, Levitt, and Groseclose (2002), Coloma (2007), Emara, Owens, Smith, and Wilmer (2016),
Hsu, Huang, and Tang (2007), Kovash and Levitt (2009), McGarrity and Linnen (2010), Palacios-Huerta
(2003a), Reed, Critchfield, and Martens (2006), Walker and Wooders (2001).

3See Palacios-Huerta and Volij (2008), Levitt, List, and Reiley (2010), and Van Essen and Wooders (2015).
4See Palacios-Huerta et al. (2014) for a study of brain activity during a game with a mixed strategy

equilibrium.
5Raven’s standard progressive matrices test (Raven and De Lemos, 1990) and a score on a math test.
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of the subjects.

We take a complimentary approach as we seek to better understand the observed devi-

ations from the equilibrium predictions by manipulating the available cognitive resources of

the subjects. Our study follows other cognitive load experiments that observe behavior or

judgments while the subject has some information committed to memory. This memorization

task is designed to occupy a portion of the working memory of the subject so that fewer cog-

nitive resources can be devoted to the decision or the judgment. This manipulation allows a

within-subject design, whereby subjects can be placed under different cognitive loads.6

Our subjects are directed to play against computer opponents7 that are programmed to

play one of two exploitative strategies (designed to exploit suboptimal mixing by the subjects)

and one of two naive strategies (designed to allow subjects the possibility of exploiting the

computer). Further, using a computer opponent in an experiment that employs the cognitive

load manipulation has the advantage that the subject’s beliefs about the distribution of the

cognitive load of the possible opponents, and the effects of the different cognitive loads on the

potential opponents will not affect behavior.

Researchers have found that subjects have difficulty detecting and producing random se-

quences that are required for equilibrium.8 If available cognitive resources are related to the

ability to mix in a fashion that is consistent with equilibrium and to detect (and exploit) the

deviation of opponents then the following hypotheses follow. We would expect that subjects

with fewer cognitive resources would exhibit a mixing proportion further from the equilibrium

prediction, exhibit more serial correlation, have less success detecting and exploiting naive

computer strategies, and have less success against exploitative computer strategies.

Consistent with the previous literature, the behavior in our experiment exhibits mixture

proportions and serial correlation that are inconsistent with the equilibrium predictions. How-

6We note that Carpenter, Graham, and Wolf (2013) find that the cognitive load manipulation is more
effective on subjects with a higher measure of cognitive ability. However, Allred, Duffy, and Smith (2016) do
not find such a relationship. Similarly, we do not find a relationship in our data.

7Also see Messick (1967), Fox (1972), Coricelli (2005), Levitt, List, and Reiley (2010), Shachat and
Swarthout (2004, 2012), Spiliopoulos (2012, 2013), Shachat, Swarthout, and Wei (2015), and Bayer and Renou
(2016a).

8For instance, see Wagenaar (1972), Bar-Hillel, and Wagenaar (1991), Rapoport and Budescu (1992),
Budescu and Rapoport (1994), Rabin (2002), and Oskarsson et al. (2009).
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ever, we do not find evidence that the available cognitive resources are related to either the

mixing proportions or the observed serial correlation. To our surprise, subjects under high

cognitive load earned a larger amount than subjects under low load. On the other hand, we

find that subjects under low load exhibited an increase in earnings across rounds, whereas we

do not find such a relationship for subjects under high load. In addition, we find that the

response times of subjects under low load are decreasing at a faster rate than the response

times of subjects under low load. We interpret these results as suggesting that subjects under

low cognitive load exhibit a significantly faster rate of learning than do subjects under high

load.

Our results suggest that the behavioral observations on mixing (suboptimal mixture pro-

portions and serial correlation) may not be related to the available cognitive resources of the

subjects. Our results also suggest that subjects with fewer cognitive resources will not nec-

essarily exhibit worse performance, particularly in the early rounds, than will subjects with

more cognitive resources. It seems that executing a simple, stable strategy does not require

a great deal of cognitive resources. On the other hand, early round experimentation, which

would facilitate learning, can lead to lower payoffs in these rounds. However, our analysis sug-

gests that subjects with more cognitive resources will exhibit more learning than will subjects

with fewer cognitive resources. This is consistent with the contention that subjects under a

low load had the available cognitive resources to sufficiently remember and analyze previous

outcomes.

2 Related literature

There is a large and growing literature that examines the relationship between measures of

cognitive ability and strategic behavior.9 We take a complimentary approach in that, rather

9See Al-Ubaydli, Jones, and Weel (2016), Ballinger et al. (2011), Baghestanian and Frey (2016), Bayer
and Renou (2016a,2016b), Benito-Ostolaza, Hernández, and Sanchis-Llopis (2016), Brañas-Garza, Espinosa,
and Rey-Biel (2011), Brañas-Garza, Garcia-Muñoz, and Hernan Gonzalez (2012), Brañas-Garza and Smith
(2016), Burks et al. (2009), Burnham et al. (2009), Carpenter, Graham, and Wolf (2013), Chen, Huang, and
Wang (2013), Corgnet et al. (2016), Coricelli and Nagel (2009), Devetag and Warglien (2003), Fehr and Huck
(2015), Georganas, Healy, and Weber (2015), Gill and Prowse (2015), Grimm and Mengel (2012), Jones (2014),
Jones (2008), Kiss, Rodriguez-Lara, and Rosa-García (2016), Lohse (2016), Palacios-Huerta (2003b), Proto,
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than measure cognitive ability, we manipulate the available cognitive resources of the subject.

The cognitive load manipulation is widely employed and its affects are well-understood in

nonstrategic settings. Cognitive load has been found to make subjects more impulsive and

less analytical (Hinson, Jameson, and Whitney, 2003), more risk averse (Whitney, Rinehart,

and Hinson, 2008; Benjamin, Brown, and Shapiro, 2013), more impatient (Benjamin, Brown,

and Shapiro, 2013), make more mistakes (Rydval, 2011), exhibit less self control over their

actions (Shiv and Fedorikhin, 1999; Ward and Mann, 2000, Mann and Ward, 2007), fail to

process available and relevant information (Gilbert, Pelham, and Krull, 1988; Swann et al.,

1990), more susceptible to anchoring effects (Epley and Gilovich, 2006), perform worse on

gambling tasks (Hinson, Jameson, and Whitney, 2002), perform worse on visual judgment

tasks (Morey and Cowan, 2004; Allen, Baddeley, and Hitch, 2006; Morey and Bieler, 2013;

Zokaei, Heider, and Husain, 2014; Allred, Crawford, Duffy, and Smith, 2016), affect choices in

allocation decisions (Cornelissen, Dewitte, and Warlop, 2011; Schulz et al., 2014),10 affect the

evaluations of the fairness of outcomes (van den Bos et al., 2006), have more difficulty being

dishonest (van’t Veer, Stel, and van Beest, 2014), and exhibit choices that are more influenced

by visual salience (Milosavljevic, Navalpakkam, Koch, and Rangel, 2012).11

On the other hand, few studies of strategic behavior employ the cognitive load manipula-

tion. To our knowledge the only such examples are, Milinski and Wedekind (1998), Roch et

al. (2000), Cappelletti, Güth, and Ploner (2011), Carpenter, Graham, and Wolf (2013), Duffy

and Smith (2014), Buckert, Oechssler, and Schwieren (2014), Allred, Duffy, and Smith (2016),

and Samson and Kostyszyn (2015).

With the exception of Carpenter et al. (2013) and Samson and Kostyszyn (2015), these

papers describe experiments where the subjects are placed under a cognitive load and play

against a human opponent who is either under a cognitive load or not. One of the drawbacks

of conducting a cognitive load experiment in a strategic setting with a human opponent is

that the subjects’ beliefs about the distribution of the cognitive load of the opponents and

Rustichini, and Sofianos (2014), Putterman, Tyran, and Kamei (2011), Rydval (2011), Rydval and Ortmann
(2004), and Schnusenberg and Gallo (2011).

10Although Hauge et al. (2015) does not find an effect.
11Deck and Jahedi (2015) study several effects at a time and find that subjects under a cognitive load are

less patient, more risk averse, perform worse on arithmetic tasks, and are more prone to anchoring effects.
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their beliefs about the effect of the cognitive load on their opponents are not well specified

and are difficult to measure. A design such as ours, which employs a computer opponent, can

address this critique. Further, it allows us to observe the effect of cognitive load on subjects

playing against distinct varieties of opponents.

3 Experimental design

3.1 Hide and seek game

In our design, subjects played a repeated, deterministic version of the hide and seek game

(Rosenthal, Shachat, and Walker, 2003) against a computer opponent while under a cognitive

load. Each subject selected either "Up" or "Down" as the Evader and the computer selected

either "Up" or "Down" as the Pursuer. If the computer correctly guessed the choice of the

subject then the subject earned 0. Roughly half of the subjects were shown the game whereby

successfully evading the computer with Up earned 1 point and successfully evading with Down

earned 2 points. This version is illustrated in Figure 1 on the left. The other half of the subjects

were shown the game whereby successfully evading the computer with Up earned 2 points and

successfully evading with Down earned 1 point. This version is illustrated in Figure 1 on the

right.12

Pursuer

Up Down

Evader Up 0 1

Down 2 0

Pursuer

Up Down

Evader Up 0 2

Down 1 0

Figure 1: Both versions of the hide and seek game, where Evader payoffs are provided

For subjects in either treatment, each point was worth $1.50. In the analysis that follows,

we recode the data from both treatments to correspond to the specification where successfully

evading with Down earned 2. Each subject played 100 repetitions of the same version of the

12The computer’s actions were presented in red, and the subject’s actions and payoffs were presented in blue.
A screenshot of the version where successfully evading with Down earned 2 is available in the Supplemental
Online Appendix.
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game. The subject was given feedback for that repetition, which specified their action, the

selected action of the computer opponent, and the amount of points earned.

3.2 Memorization task

Before each repetition of the game, a cognitive load was imposed on subjects by directing

them to remember a number. Subjects in the low cognitive load treatment were required to

remember a one-digit number that ranged from 1 to 9. Subjects in the high cognitive load

treatment were required to remember a six-digit number where the first digit ranged from 1

to 9, and the remaining digits ranged from 0 to 9.

In both treatments, a new number was given for each round. After making a decision in the

game and after the given feedback, subjects were asked for the number. Each subject played

50 consecutive repetitions under a high load and 50 consecutive repetitions under a low load.

Therefore, cognitive load was a within-subject manipulation. With probability 0.5 subjects

played first under a high load. Subjects were not given feedback about their performance on

the memorization tasks.

3.3 Computer opponent strategies

Subjects were told, "How does the computer decide what to play? A number of possible

strategies have been programmed. Some computer strategies can be exploited by you. Some

computer strategies are designed to exploit you. One of these possible strategies has been

selected for the first 50 periods."

There are two naive computer strategies. One of these naive computer strategies mixes

between the actions with equal probability. We refer to this as the Naive 50 − 50 strategy.

The best response to this strategy is to play Down.

The other naive computer strategy mixes with the overall frequency corresponding to the

equilibrium prediction, but exhibits a pattern of Up-Down-Down-(repeat). We refer to this

as the Naive Pattern strategy. The best response to this strategy is to play Down-Up-Up-

(repeat).
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There are two exploitative computer strategies. One starts by playing the first 5 periods

according to the equilibrium strategy: Up with probability 1

3
and Down with probability 2

3
.

Then in the remaining 45 repetitions the computer plays the equilibrium strategy with prob-

ability 0.5 and plays the best response to the subject’s previous 4 decisions with probability

0.5. We refer to this as the Exploitative Mix strategy.

The other exploitative strategy also begins playing the equilibrium strategy for the first 5

periods, then in the remaining 45 repetitions plays the equilibrium strategy with probability 0.5

and best responds to the Win-Stay-Lose-Shift tendency13 with probability 0.5. In particular,

if the subject displayed behavior consistent with the Win-Stay-Lose-Shift strategy in 2 or

3 of the previous 3 decisions then the computer best responds to the Win-Stay-Lose-Shift

strategy. On the other hand, if the subject exhibited behavior consistent with the Win-Stay-

Lose-Shift strategy in 0 or 1 of the previous 3 decisions then the computer best responds to

the Win-Shift-Lose-Stay strategy. We refer to this as the Exploitative WSLS strategy.

Each subject played 50 consecutive rounds against a Naive computer strategy and 50

consecutive rounds against a Exploitative computer strategy. With probability 0.5 subjects

first played against a Naive computer opponent.

3.4 Experimental procedure

Subjects were paid a $5 show-up fee. Additional payments were designed to decouple the ma-

terial incentives from the game in any period with material incentives from the memorization

task in that period. Subjects completed 100 repetitions of the game and 100 memorization

tasks. Those who correctly completed all 100 memorization tasks were paid for 30 randomly

selected game outcomes, those who correctly completed 99 were paid for 29, those who cor-

rectly completed 98 were paid for 28, and so on, until subjects who correctly completed 70 or

fewer memorization tasks were not paid for any of the game outcomes.

Prior to the incentivized games and memorization tasks, subjects were given an unincen-

13See Imhof, Fudenberg, and Nowak (2007), Spiliopoulos (2013), Wang and Xu (2014), and Wang, Xu, and
Zhou (2014).
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tivized test of their understanding of the hide and seek game. In particular, the subjects were

asked about the points that they would obtain for all 4 combinations of own actions and com-

puter actions. Subjects were given feedback on their responses. In addition, the subjects were

given an unincentivized opportunity to memorize a six-digit number and an unincentivized op-

portunity to memorize a one-digit number. Unlike the incentivized portion of the experiment,

subjects were given feedback about their performance on these memorization tasks.

After completing the incentivized portion of the experiment, subjects reported their gender,

whether they were an economics major, whether they have taken a game theory course, an

optional estimate of their grade point average14 (GPA), and a rating of the difficulty in recalling

the large and the small memorization numbers. These difficulty ratings were elicited on a scale

of 1 ("Very Difficult") to 7 ("Not Very Difficult"). After these questions were completed, the

subjects were told their amount earned. Subsequently the experimenter took an image of the

right hand of the subjects with a digital scanner15 then subjects were paid in cash.

A total of 130 subjects participated in the experiment. The experiment was programmed

and conducted with the software z-Tree (Fischbacher, 2007).16 Of the 130 subjects, 78 were

students at Rutgers University-Camden and 52 were students at Haverford College.17 There

were 13 Camden sessions and 3 Haverford sessions. None of the 16 sessions lasted longer than

60 minutes.

4 Results

4.1 Summary statistics

We begin with the summary statistics of the variables of interest. Correct is a dummy vari-

able indicating whether the memorization task was correctly completed. Down is a dummy

indicating whether the Down action was selected. Earnings refers to the amount earned in

a particular game outcome: 0, 1, or 2. Female, Economics, and Game Theory are dummies

14Grade point average ranges from 0.0 to 4.0.
15We employed a Canon CanoScan 4507B002 LiDE110 Color Image Scanner. We report the analysis of this

data in Duffy et al. (2016).
16The z-Tree code is available from the corresponding author upon request.
17The Haverford subjects were recruited via ORSEE (Greiner, 2015).
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indicating gender, whether the subject was an economics major and whether reported having

taken a game theory course. GPA refers to the subject’s self-reported grade point average.

Table 1 lists the means of these variables, while Table 2 reports the Spearman correlation

coefficients.

Table 1: Summary statistics

Mean
Correct 0.929
Down 0.555
Earnings 0.733
Female 0.531
Economics 0.169
Game Theory 0.177
GPA (optional) 3.365

Correct, Down, and Earnings have 13,000 observations. Female, Economics,
and Game Theory have 130 observations. GPA has 103 observations.

Table 2: Spearman non-parametric correlation coefficients

1 2 3 4 5 6
1 Correct 1.00
2 Down 0.0110 1.00
3 Earnings 0.0075 0.0343∗∗∗ 1.00
4 Female −0.0142 −0.0044 −0.0228∗∗ 1.00
5 Economics −0.0083 −0.0050 0.0049 −0.316∗∗∗ 1.00
6 Game Theory −0.0073 −0.0180∗ 0.0122 −0.210∗ 0.436∗∗∗ 1.00
7 GPA (optional) 0.0767∗∗∗ 0.0066 0.0254∗∗ 0.0767 −0.234∗ −0.0649

Each correlation between variables 1, 2, or 3, and variables 4, 5, or 6 has 13,000
observations. Each correlation between variables 1, 2, or 3, and variable 7 has
10,3000 observations. Each correlation between variables 4, 5, or 6, and variable
7 has 103 observations. Each correlation among variables 1, 2, and 3 has 13, 000
observations. Each correlation among variables 4, 5, and 6 has 130 observations.
∗∗∗ denotes p < 0.001, ∗∗ denotes p < 0.01, and ∗ denotes p < 0.05

We observe that higher GPA subjects tend to earn more and are more likely to correctly

perform the memorization task. Further, we do not observe a relationship between Earnings

and either Economics or Game Theory, we do observe a negative relationship between Earnings
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and Female.18

We note that the high load memorization tasks were correct (87.97%, 5718 of 6500) with

a significantly lower frequency than the low load memorization tasks (97.88%, 6362 of 6500),

according to a Mann-Whitney test Z = −22.03, p < 0.001. This suggests that our manipula-

tion was successful. As each of the 130 subjects attempted 50 high load memorization tasks

and 50 low load memorization tasks, Table 3 presents a characterization of the subject-level

distribution of number of correct memorization tasks by cognitive load treatment.

Table 3: Number of subjects by cognitive load treatment and number of correct memorization tasks

46− 50 41− 45 36− 40 31− 35 26− 30 23− 25 Total
High load 72 30 13 10 2 3 130
Low load 125 5 0 0 0 0 130

In Table 4, we provide a characterization of the aggregate behavior by cognitive load and

computer opponent treatments. We also provide the Optimal fraction of Down actions against

each computer opponent treatment. Against the Naive 50-50 opponent, the best response is

to always play Down, therefore Optimal is 1. Against the Naive pattern opponent, best

responding to the pattern implies that Optimal is 0.333. Against the Exploitative opponents,

playing the equilibrium strategy would prevent the computer from exploiting the subject,

therefore Optimal is 0.333.

Table 4: Fraction of Down by computer strategy treatment and cognitive load treatment

Optimal High load Low load MW Z−stat Observations
Naive 50-50 1.000 0.615 0.585 1.769† 3450
Naive pattern 0.333 0.494 0.524 −1.589 3050
Exploitative WSLS 0.333 0.559 0.568 −0.520 3200
Exploitative Mix 0.333 0.523 0.561 −2.134∗ 3300

The optimal fraction of Down actions by computer opponent treatment and
cognitive load treatment. Mann-Whitney tests were conducted on the difference
between the high and low load. The Mann-Whitney Z-statistic is reported. ∗

denotes p < 0.05 and † denotes p < 0.1

18Apparently being an economics major is not good for one’s GPA: we note a negative relationship between
GPA and Economics.
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From the analysis summarized in Table 4, we observe that subjects under a high load play

Down with a significantly different probability than subjects under a low load against both

the Naive 50-50 strategy and the Exploitative Mix strategy.19 We also note that in these two

cases, subjects under a high load are closer to the optimal mixture than are subjects under a

low load. Although we do not find a significant difference in the overall rate of playing Down

against the Naive pattern strategy there are meaningful differences in behavior. Subjects

under a high load best respond to the action of the Naive pattern strategy (62.8%), more

frequently than do subjects under a low load (55.1%) according to a Mann-Whitney test,

Z = 4.103, p < 0.001.

However, we cannot conclude that subjects under a high load were more likely to have

discerned the pattern than subjects under a low load. This is because there is not a significant

difference between the number of consecutive periods at the end of the Naive pattern treatment

in which the subject under a high load earned a payoff greater than zero (Mean = 5.82,

SD = 1.63) and that for a subject under a low load (Mean = 6.54, SD = 2.47), Z = 0.50,

p = 0.61.

4.2 Mixture proportions

We now test whether the subjects mixed in the proportions as predicted by equilibrium: Up

with probability 0.6667 and Down with probability 0.3333. Here we restrict attention to

observations against Exploitative computer strategies. This is because there are difficulties

interpreting the mixing proportions against the Naive computer strategies.

We conduct a binomial χ2 test on each subject.20 ,21 Performing a joint test on the 76

subjects under a high load by summing their test statistics, we reject the hypothesis that, on

aggregate, they mix with these proportions, χ2(76, 1) = 1026.22, p < 0.001. We also conduct

a joint binomial χ2 test on 53 the subjects under a low load by summing their test statistics,

19As a robustness check, we run a repeated measures regression with the action as the dependent variable
and treatment dummies as independent variables. The qualitative results of Table 4 hold, with the exception
that the Exploitative Mix difference is not signficant.

20See the Supplemental Online Appendix for the subject-level data. Note that one subject selected Down
in every period and therefore we cannot perform a binomial χ2 test on this subject.

21We note that there does not exist a significant Spearman correlation between the χ2 statistic and the
Female, Game Theory, Economics, and GPA variables.
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and again we reject the hypothesis that they mix with the Nash equilibrium proportions,

χ2(53, 1) = 774.08, p < 0.001.

Next we test the hypothesis that the subjects under high and low load are significantly

different in this regard. We conduct a two-sample Kolmogorov-Smirnov test22 on the distri-

bution of the individual χ2 test statistics and find that they are not significantly different,

K = 0.164, p = 0.37. This qualitative result is not changed when we restrict attention to

the last 25 periods of each 50 period block, K = 0.129, p = 0.70. We also test for differences

between the treatments using a Mann-Whitney test on the percentage of Down actions against

an exploitative computer opponent. We find that the subjects under a high load (54.05%)

had a significantly different mixture than subjects under a low load (56.44%), Z = 1.910,

p = 0.056. However, the difference between subjects under high load (53.42%) and low load

(56.30%) is not significant when we restrict attention to the final 25 periods of the 50 period

block, Z = 1.622, p = 0.105.

Therefore, consistent with the previous literature, we find that the subjects do not mix

in the equilibrium proportions. However, we do not find strong evidence of a significant

difference between the mixture proportions of subjects under a high load and subjects under

a low load. This suggests that the availability of cognitive resources is not related to the

observed deviations from the equilibrium mixture proportions in this game.

4.3 Serial correlation

Next we investigate whether the actions in our data exhibit serial correlation. As in the

previous subsection, we restrict attention to observations against an Exploitative opponent.

This is because exhibiting a mixture with serial correlation against a Naive opponent is a best

response.

In order to detect serial correlation, we perform test of runs, as described in Gibbons and

Chakraborti (1992). A run (r) is defined to be a sequence of one or more identical actions

followed by a different action or no action at all. Given the number of Up actions (nU ) and the

number of Down actions (nD) selected by a subject, we are able to calculate the probability

22See Gibbons and Chakraborti (1992).
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of observing any feasible number of runs.23 For every subject, given nD and nU we calculate

the probability density function of the number of runs:

f(r|nU , nD) =






2(nU−1
( r2 )−1

)(nD−1
( r2 )−1

)

(nD+nU
nU

)
if r is even

(
nU−1
r−1
2
)(
nD−1
r−3
2
)+(

nU−1
r−3
2
)(
nD−1
r−1
2
)

(nD+nU
nU

)
if r is odd.

From the density function, we can calculate the cumulative distribution function:

F (r|nU , nD) =
r∑

k=1

f(k|nU , nD),

which is the probability of observing r or fewer runs. Similar to Walker and Wooders (2001),

Palacios-Huerta and Volij (2008), and Levitt, List, and Reiley (2010), we calculate two sta-

tistics, F (r − 1|nU , nD) and F (r|nU , nD), for each subject.
24 At a 5% level of significance,

we would reject the null hypothesis of independence, if either F (r|nU , nD) < 0.025 or if

1− F (r − 1|nU , nD) < 0.025. Because we plan to run one-sample Kolmogorov-Smirnov tests

on these probabilities, as Walker and Wooders (2001), for each subject we take a draw from

the uniform distribution with F (r|nU , nD) as the upper bound and F (r − 1|nU , nD) as the

lower bound. This leaves us with a single probability estimate for each subject.25 If the actions

are selected independently then these probabilities would be distributed as a uniform between

0 and 1.

We perform a one-sample Kolmogorov-Smirnov test that the 53 probabilities associated

with subjects under a low load are uniformly distributed between 0 and 1. We reject the

hypothesis that the probabilities are distributed as a uniform, K = 0.174, p = 0.071. Figure 1

illustrates the test on subjects under a low load. We also perform a one-sample Kolmogorov-

Smirnov test that the 76 probabilities associated with subjects under a high load are uniformly

23Given nU > 0 and nD > 0, there must be at least 2 runs and the maximum possible number of runs is
equal to 2 ∗min(nU , nD) + 1.

24See the Supplemental Online Appendix for the subject-level data.
25We note that there does not exist a significant Spearman correlation between these probability estimates,

and the Female, Game Theory, Economics, and GPA variables.
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distributed between 0 and 1. Again, we reject the hypothesis, K = 0.246, p < 0.001. Figure

2 illustrates the test on the subjects under a high load.

<<Figures 1 and 2 about here>>

While subjects in neither cognitive load treatments appear to be mixing in an independent

fashion, it remains to be seen whether the distribution associated with subjects under a high

load is different from the distribution associated with subjects under a low load. We perform a

two-sample Kolmogorov-Smirnov test and we fail to reject the hypothesis that the distributions

are different, K = 0.158, p = 0.42. This qualitative result remains unchanged when we restrict

the analysis to the final 25 periods in the 50 period block, K = 0.091, p = 0.97.

Another test of serial correlation examines the rate at which subjects switch their action

from one decision to the next. We find that there is not a significant difference in switching

rates for subjects under a high load (49.54%) and subjects under a low load (48.00%), Z =

1.217, p = 0.224.26 ,27 Therefore, while we observe serial correlation in both of our cognitive

load treatments, we do not detect differences in the serial correlation between these treatments.

4.4 Earnings differences

Now we examine difference in earnings by cognitive load treatment. We observe that earnings

of subjects under a high load (Mean = 0.737, SD = 0.806) are not different than those

of subjects under a low load (Mean = 0.730, SD = 0.805), according to a Mann-Whitney

test, Z = 0.52, p = 0.61. However, when we examine these corresponding differences within

computer opponent treatments, differences do appear. Table 5 lists the differences in earnings

within computer opponents, and the corresponding Mann-Whitney tests.

26We obtain similar results when we restrict attention to the final 25 periods in the 50 period block. This
analysis is available from the corresponding author upon request.

27 Interestingly, differences in switching emerge when we restrict attention to particular computer strategies.
Against the Exploitative WSLS computer strategy, subjects under a high load switch (46.22%) less than subjects
under a low load (50.87%), Z = 2.572, p = 0.005. However, against the Exploitative Mix computer strategy,
subjects under a high load switch (52.69%) more than subjects under a low load (45.12%), Z = 4.233, p < 0.001.
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Table 5: Average amount earned by computer opponent treatment and load treatment

High load Low load MW Z − stat Observations
Naive 50-50 0.779 0.794 −0.595 3450
Naive pattern 0.855 0.753 3.686∗∗∗ 3050
Exploitative WSLS 0.707 0.735 −0.997 3200
Exploitative Mix 0.664 0.602 2.395∗ 3300

The average amount earned by computer opponent treatment and cognitive
load treatment. Mann-Whitney tests were conducted on the difference between
the high and low load observations. The Mann-Whitney Z-statistic is reported.
∗∗∗ denotes p < 0.001 and ∗ denotes p < 0.05

The results in Table 5 suggest that the investigation of earnings should account for the

computer opponent treatment. Therefore, in each of the regressions below we include dummy

variables indicating the computer opponent treatment and the interaction of these dummies

with the high load dummy. Additionally, we consider specifications that account for the re-

peated nature of the observations. In these repeated measures regressions, we estimate an

exchangeable covariance matrix, clustered by subject. In other words, we assume a unique

correlation between any two observations involving a particular subject. However, we assume

that observations involving two different subjects are statistically independent. We also con-

sider specifications that control for Female, Economics, and Game Theory. We refer to this

collection of variables as Demographics. We also account for self-reported GPA. Recall that a

response to GPA was optional and only 103 of 130 subjects provided a response. This analysis

is summarized in Table 6.

Table 6: Regressions of earnings

(1) (2) (3) (4)
High load 0.0626∗ 0.0692∗ 0.0791∗ 0.0968∗∗

(0.0284) (0.0327) (0.0333) (0.0369)
GPA − − − 0.0457∗

(0.0229)
Strategy dummies Y es Y es Y es Y es

Repeated measures No Y es Y es Y es

Demographics No No Y es Y es

AIC 31221.7 31199.0 31212.3 24767.3
Observations 13,000 13,000 13,000 10,300
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The repeated measures regressions estimate an exchangeable covariance matrix,
clustered by subject. We do not provide the estimates of the intercepts, the indi-
vidual demographics variables, the covariance estimates, or the strategy dummies.
Each specification has 13,000 observations. AIC refers to the Akaike information
criterion (Akaike, 1974). ∗∗ denotes p < 0.01, and ∗ denotes p < 0.05

Although the less detailed analysis does not find a relationship between cognitive load and

earnings, in each of the specifications in our regressions we find that subjects under a high

cognitive load earn a significantly larger amount than subjects under a low load. We also find

a positive relationship between GPA and earnings.

4.5 Earnings differences over time

In order to better understand the result that subjects under a high cognitive load have higher

earnings than subjects under a low cognitive load, we now consider the trajectory of earnings.

We define Round to be the number of periods under a particular computer opponent treatment

and a particular cognitive load treatment. Therefore, Round ranges from 1 to 50. Other than

the inclusion of the Round variable and the interaction of Round and cognitive load treatment,

the analysis is identical to that summarized in Table 6. This analysis is summarized in Table

7.

Table 7: Regressions of earnings across rounds

(1) (2) (3) (4)
High load 0.114∗∗ 0.120∗∗ 0.130∗∗ 0.146∗∗

(0.0378) (0.0410) (0.0415) (0.0462)
Round 0.00190∗∗ 0.00190∗∗ 0.00190∗∗ 0.00198∗

(0.00069) (0.00069) (0.00069) (0.00077)
Round*High load −0.00201∗ −0.00201∗ −0.00201∗ −0.00193†

(0.000976) (0.000972) (0.000972) (0.00109)
GPA − − − 0.0457∗

(0.0229)
Strategy dummies Y es Y es Y es Y es

Repeated measures No Y es Y es Y es

Demographics No No Y es Y es

AIC 31239.6 31216.8 31230.1 24785.8
Observations 13,000 13,000 13,000 10,300

The repeated measures regressions estimate an exchangeable covariance matrix,
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clustered by subject. We do not provide the estimates of the intercepts, the indi-
vidual demographics variables, the covariance estimates, or the strategy dummies.
Each specification has 13,000 observations. AIC refers to the Akaike information
criterion (Akaike, 1974). ∗∗ denotes p < 0.01, ∗ denotes p < 0.05, and † denotes
p < 0.1

The positive and significant high load coefficient suggests that subjects under a high load

earn more in the early rounds. However, we observe a positive and significant Round coef-

ficient in addition to a negative and significant Round-High load interaction. This indicates

that the subjects under a low load exhibit an improved earnings across rounds, however, the

subjects under a high load do not exhibit such an improvement. This finding is robust to the

specification of the analysis. This suggests that while subjects under a low load earn less than

subjects under a high load in the early rounds the subjects under a low load appear to be

catching up. This result is consistent with the interpretation that subjects under a low load

exhibit a greater learning across rounds.

4.6 Differences in response time

Research finds a positive relationship between the time spent deciding on a choice and the

difficulty of the choice.28 In other words, decisions where one option is clearly better than

the others tends to take less time than decisions where this is not the case. In order to

better understand the analysis of earnings across rounds, here we study the response times

across rounds. We run the analogous regressions as summarized in Table 7 but we employ

the response time of the game decision as the dependent variable. Therefore, a higher value

indicates that the decision was selected in a longer time period. As response times are bounded

below by 0, we perform the analysis by taking the natural log of the response times. This

analysis is summarized in Table 8.

28See Wilcox (1993), Moffatt (2005), Rubinstein (2007), Alós-Ferrer, Graníc, Shi, and Wagner (2012), Chen
and Fischbacher (2015), and Alós-Ferrer, Graníc, Kern, and Wagner (2016).
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Table 8: Regressions of the natural log of response times across rounds

(1) (2) (3) (4)
High load −0.166∗∗∗ −0.214∗∗∗ −0.187∗∗∗ −0.172∗∗

(0.0270) (0.0465) (0.0471) (0.0534)
Round −0.00781∗∗∗ −0.0083∗∗∗ −0.0083∗∗∗ −0.0072∗∗∗

(0.00050) (0.00045) (0.00045) (0.00051)
Round*High load 0.00238∗∗∗ 0.00243∗∗∗ 0.00243∗∗∗ 0.00127†

(0.00071) (0.00064) (0.00064) (0.00072)
GPA − − − −0.00404

(0.0473)
Strategy dummies Y es Y es Y es Y es

Repeated measures No Y es Y es Y es

Demographics No No Y es Y es

AIC 14000.3 12427.1 12431.7 9930.9
Observations 13,000 13,000 13,000 10,300

The repeated measures regressions estimate an exchangeable covariance matrix,
clustered by subject. We do not provide the estimates of the intercepts, the indi-
vidual demographics variables, the covariance estimates, or the strategy dummies.
Each specification has 13,000 observations. AIC refers to the Akaike information
criterion (Akaike, 1974). ∗∗∗ denotes p < 0.001, ∗∗ denotes p < 0.01, and † denotes
p < 0.1

Table 8 provides evidence that subjects under a high load take less time to reach their

decisions, and that this time decreases by round for subjects under a low load. The Round-

High load interaction, however, suggests that subjects under a low load exhibit a greater

increase in the decision speed across rounds than subjects under a high load. This is consistent

with the interpretation of the analysis summarized in Table 7 that subjects under a low load

exhibit a greater amount of learning than subjects under a high load. Interestingly, we do not

find a relationship between response time and GPA.

5 Discussion

The experimental literature largely finds that subjects do not mix in the proportions predicted

by equilibrium and that actions exhibit serial correlation. We find these features in our

data however we do not find evidence that they are related to the cognitive load treatment.

Therefore, we do not find evidence that the standard experimental results on mixing are
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associated with the available cognitive resources of the subject.

These results are reminiscent of the findings reported in Geng et al. (2015). These authors

do not find a relationship between measures of cognitive ability and either the mixture pro-

portions or the serial correlation of actions. Although the design of Geng et al. (2015) exhibits

(adolescent subjects, human opponents, measures of cognitive ability) notable differences from

our design (college student subjects, computer opponents, cognitive load manipulation), nei-

ther study finds a relationship between cognition and either mixing proportions or serially

correlated actions. However, more work needs to be done in order to better understand the

relationship between cognition and the standard mixed strategy experimental results.

We also find surprising evidence that subjects under a high cognitive load earn more than

subjects under a low cognitive load, particularly in the early rounds. This is consistent with

the explanation that subjects under a high load are employing a simple, stable strategy and

subjects under a low load are engaging in experimentation during those early rounds.

However, we also find that subjects under a low cognitive load exhibit increases in earnings

across rounds, while those under a high cognitive load do not.29 An interpretation of this result

is that the subjects under a low load exhibit more learning than subjects under high load. Our

analysis of the response times is also consistent with this interpretation. This result has an

intuitive appeal because remembering and analyzing previous outcomes would seem to require

available cognitive resources.

Gill and Prowse (2015) find a similar result, albeit in a different setting. These authors

observe that subjects with higher measured cognitive ability exhibit a faster convergence to

the equilibrium prediction in a repeated beauty contest game.

We acknowledge that there is much work to be done on the topic. We leave it to future

research to determine whether there is a sufficient number of rounds where subjects under a

low load would earn more than subjects under a high load. Also, it is possible that subjects

play a computer opponent differently than a human opponent because the computer might

be expected to employ a more stable strategy. These and other interesting questions are a

matter for future research.

29Geng et al. (2015) did not study the trajectory of earnings across rounds,
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Figure 1: Kolmogorov-Smirnov Test of Runs for subjects under a low load.
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Figure 2: Kolmogorov-Smirnov Test of Runs for subjects under a high load.
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Low Load against Exploitative opponent
Subject #Down χ2 p-value Runs F (r) F (r − 1) U draw

2 22 2.56 0.110 25 0.483 0.371 0.387
3 22 2.56 0.110 31 0.956 0.921 0.939
4 25 6.25 0.012 21 0.099 0.058 0.058
6 23 3.61 0.057 19 0.033 0.017 0.031
9 28 11.56 < 0.001 32 0.977 0.956 0.962
13 27 9.61 0.002 26 0.576 0.460 0.506
16 28 11.56 < 0.001 20 0.068 0.037 0.060
20 22 2.56 0.110 42 0.999 0.999 0.999
22 49 94.09 < 0.001 3 1.000 0.040 0.202
27 24 4.84 0.028 37 0.999 0.999 0.999
30 22 2.56 0.110 34 0.995 0.989 0.990
31 29 13.69 < 0.001 33 0.992 0.983 0.989
33 25 6.25 0.012 32 0.969 0.942 0.955
34 18 0.16 0.689 29 0.959 0.916 0.934
43 31 18.49 < 0.001 26 0.718 0.612 0.650
47 33 24.01 < 0.001 16 0.014 0.006 0.012
49 27 9.61 0.002 34 0.994 0.987 0.990
52 22 2.56 0.110 28 0.796 0.704 0.714
53 27 9.61 0.002 24 0.351 0.250 0.286
62 25 6.25 0.0124 30 0.902 0.841 0.872
64 17 0.01 0.9203 21 0.270 0.172 0.218
65 32 21.16 < 0.001 24 0.550 0.434 0.497
67 50 − − 1 0 0 0
68 29 13.69 < 0.001 26 0.629 0.516 0.556
70 24 4.84 0.028 19 0.0314 0.016 0.020
71 28 11.56 < 0.001 30 0.921 0.869 0.902
77 27 9.61 0.002 31 0.949 0.911 0.920
78 33 24.01 < 0.001 15 0.0061 0.002 0.003
102 30 16.00 < 0.001 25 0.559 0.438 0.535
Camden subjects are labeled 1− 78. Haverford subjects are labeled 101− 152. Among the

50 decisions against an exploitative opponent, we report the number of down actions, the χ2

statistic and the corresponding p-value as discussed in subsection 4.2. We report the number
of runs, the two CDF statistics, and the draw of the uniform between these, as discussed in
subsection 4.3.
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Low Load against Exploitative opponent
Subject #Down χ2 p-value Runs F (r) F (r − 1) U draw

103 34 27.04 < 0.001 21 0.341 0.223 0.326
105 48 88.36 < 0.001 4 0.118 0.041 0.075
110 25 6.25 0.012 21 0.098 0.058 0.067
112 35 30.25 < 0.001 26 0.936 0.892 0.932
119 28 11.56 < 0.001 26 0.598 0.483 0.575
120 25 6.25 0.012 26 0.558 0.442 0.467
121 34 27.04 < 0.001 16 0.021 0.009 0.017
125 27 9.61 0.002 36 0.999 0.998 0.998
128 36 33.64 < 0.001 23 0.805 0.663 0.793
130 30 16.00 < 0.001 25 0.559 0.438 0.480
131 25 6.25 0.012 25 0.442 0.335 0.388
134 22 2.56 0.110 28 0.796 0.704 0.791
136 25 6.25 0.012 22 0.159 0.098 0.149
137 27 9.61 0.002 17 0.008 0.003 0.007
140 41 53.29 < 0.001 14 0.237 0.151 0.195
141 24 4.84 0.028 25 0.447 0.339 0.399
142 25 6.25 0.012 28 0.763 0.665 0.683
144 23 3.61 0.057 20 0.062 0.033 0.052
145 28 11.56 < 0.001 26 0.598 0.483 0.561
146 25 6.25 0.012 29 0.841 0.763 0.818
147 24 4.84 0.028 24 0.339 0.240 0.270
149 36 33.64 < 0.001 19 0.282 0.167 0.219
150 25 6.25 0.012 27 0.665 0.558 0.641
151 30 16.00 < 0.001 29 0.912 0.850 0.889
152 23 3.61 0.057 33 0.987 0.973 0.973
Camden subjects are labeled 1− 78. Haverford subjects are labeled 101− 152. Among the

50 decisions against an exploitative opponent, we report the number of down actions, the χ2

statistic and the corresponding p-value as discussed in subsection 4.2. We report the number
of runs, the two CDF statistics, and the draw of the uniform between these, as discussed in
subsection 4.3.
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High Load against Exploitative opponent
Subject #Down χ2 p-value Runs F (r) F (r − 1) U draw

1 36 33.64 < 0.001 19 0.282 0.167 0.189
5 24 4.84 0.028 28 0.767 0.669 0.716
7 26 7.84 0.005 28 0.767 0.669 0.743
8 28 11.56 < 0.001 26 0.598 0.483 0.501
10 9 5.29 0.021 17 0.829 0.576 0.613
11 31 18.49 < 0.001 19 0.063 0.033 0.059
12 31 18.49 < 0.001 21 0.177 0.109 0.122
14 22 2.56 0.110 32 0.977 0.956 0.974
15 30 16.00 < 0.001 19 0.051 0.026 0.045
17 23 3.61 0.057 31 0.949 0.911 0.925
18 22 2.56 0.110 16 0.004 0.001 0.003
19 20 1.00 0.317 33 0.995 0.988 0.990
21 40 49.00 < 0.001 16 0.368 0.260 0.349
23 35 30.25 < 0.001 23 0.699 0.551 0.581
24 32 21.16 < 0.001 17 0.021 0.001 0.014
25 37 37.21 < 0.001 24 0.942 0.902 0.916
26 29 13.69 < 0.001 32 0.983 0.966 0.983
28 38 40.96 < 0.001 17 0.254 0.135 0.208
29 21 1.69 0.194 25 0.516 0.399 0.496
32 32 21.16 < 0.001 28 0.916 0.862 0.913
35 25 6.25 0.012 23 0.237 0.159 0.163
36 26 7.84 0.005 37 0.999 0.998 0.999
37 20 1.00 0.317 30 0.950 0.912 0.947
38 28 11.56 < 0.001 25 0.483 0.371 0.440
39 28 11.56 < 0.001 30 0.921 0.869 0.869
Camden subjects are labeled 1− 78. Haverford subjects are labeled 101− 152. Among the

50 decisions against an exploitative opponent, we report the number of down actions, the χ2

statistic and the corresponding p-value as discussed in subsection 4.2. We report the number
of runs, the two CDF statistics, and the draw of the uniform between these, as discussed in
subsection 4.3.
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High Load against Exploitative opponent
Subject #Down χ2 p-value Runs F (r) F (r − 1) U draw

40 23 3.61 0.057 23 0.250 0.169 0.193
41 24 4.84 0.028 27 0.669 0.562 0.610
42 21 1.69 0.194 27 0.735 0.629 0.673
44 49 94.09 < 0.001 3 1 0.04 0.929
45 18 0.16 0.689 26 0.772 0.676 0.676
46 19 0.49 0.484 22 0.264 0.177 0.185
48 28 11.56 < 0.001 34 0.995 0.989 0.990
50 31 18.49 < 0.001 16 0.007 0.003 0.005
51 33 24.01 < 0.001 21 0.270 0.172 0.230
54 31 18.49 < 0.001 25 0.612 0.488 0.539
55 22 2.56 0.110 27 0.704 0.598 0.655
56 29 13.69 < 0.001 20 0.077 0.043 0.077
57 23 3.61 0.057 27 0.682 0.576 0.659
58 23 3.61 0.057 22 0.169 0.105 0.120
59 25 6.25 0.012 32 0.969 0.942 0.948
60 28 11.56 < 0.001 29 0.869 0.796 0.851
61 32 21.16 < 0.001 21 0.217 0.135 0.193
63 23 3.61 0.057 28 0.778 0.682 0.744
66 30 16.00 < 0.001 30 0.950 0.912 0.946
69 23 3.61 0.057 25 0.460 0.351 0.368
72 24 4.84 0.028 33 0.985 0.970 0.984
73 20 1.00 0.317 20 0.090 0.051 0.051
74 22 2.56 0.110 36 0.999 0.998 0.999
75 33 24.01 < 0.001 7 0.000 0.000 0.000
76 49 94.09 < 0.001 3 1 0.04 0.296
Camden subjects are labeled 1− 78. Haverford subjects are labeled 101− 152. Among the

50 decisions against an exploitative opponent, we report the number of down actions, the χ2

statistic and the corresponding p-value as discussed in subsection 4.2. We report the number
of runs, the two CDF statistics, and the draw of the uniform between these, as discussed in
subsection 4.3.
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High Load against Exploitative opponent
Subject #Down χ2 p-value Runs F (r) F (r − 1) U draw

101 31 18.49 < 0.001 30 0.965 0.936 0.951
104 31 18.49 < 0.001 27 0.815 0.718 0.727
106 27 9.61 0.002 35 0.998 0.994 0.997
107 28 11.56 < 0.001 31 0.956 0.921 0.952
108 24 4.84 0.028 24 0.339 0.240 0.271
109 23 3.61 0.057 23 0.250 0.169 0.224
111 21 1.69 0.194 26 0.629 0.516 0.549
113 24 4.84 0.028 29 0.844 0.767 0.816
114 20 1.00 0.317 31 0.975 0.950 0.952
115 20 1.00 0.317 24 0.438 0.327 0.372
116 24 4.84 0.028 29 0.844 0.767 0.832
117 24 4.84 0.028 33 0.985 0.970 0.984
118 24 4.84 0.028 32 0.970 0.944 0.953
122 19 0.49 0.484 16 0.007 0.003 0.004
123 29 13.69 < 0.001 18 0.022 0.010 0.017
124 27 9.61 0.002 27 0.682 0.576 0.612
126 24 4.84 0.028 30 0.904 0.844 0.861
127 30 16.00 < 0.001 31 0.975 0.950 0.958
129 42 57.76 < 0.001 17 1 0.822 0.937
132 24 4.84 0.028 40 0.999 0.999 0.999
133 29 13.69 < 0.001 30 0.935 0.889 0.891
135 24 4.84 0.028 30 0.904 0.844 0.858
138 26 7.84 0.005 28 0.767 0.669 0.691
139 26 7.84 0.005 30 0.904 0.844 0.889
143 26 7.84 0.005 21 0.100 0.059 0.071
148 31 18.49 < 0.001 29 0.936 0.883 0.916
Camden subjects are labeled 1− 78. Haverford subjects are labeled 101− 152. Among the

50 decisions against an exploitative opponent, we report the number of down actions, the χ2

statistic and the corresponding p-value as discussed in subsection 4.2. We report the number
of runs, the two CDF statistics, and the draw of the uniform between these, as discussed in
subsection 4.3.
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