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Abstract

The paper explores the issue of leadership in central transfer within

a federation. In a federal country, provinces, in anticipation of the ul-

timate federal bailout, may spend more than what is optimal. Such

behaviour creates negative �scal externalities and harms the central

government. To counter such tendencies, it is suggested by policymak-

ers that central authority should always be a �rst mover in the transfer

game: once the grant (presumably formulaic) is dispensed, it should

refrain from any ex post transfer. In spite of such recommendations,

central governments, in almost all countries, chooses to be the second

mover from time to time. We explore the conditions, other than the

familiar political economy arguments, under which the central govern-

ment optimally chooses to be the second mover. The key determinants

of the �rst or second mover advantages in such situations is the nature

of spillover e¤ects of public goods between the two tiers of government.
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1 Introduction

Due to inherent vertical and horizontal imbalances, central (or federal) au-

thority need to transfer funds to provinces in a federal economy. A point

of concern is the degree of control wielded by the central government over

the subnational units regarding disbursement and utilization of such funds.

The debate goes back to the foundation of USA, the �rst federal (as pr the

current usage) country in modern world. Madison (1887) argued that, in

a heterogeneous country, some freedom for the local level of government is

necessary so that they can choose their level and composition of public good

in an e¤ective manner. Others (Hamilton, ibid.1887) have raised the fear

that reckless spending by provinces and subsequent bailouts by centre can

prove disastrous for the federation as a whole. Translated in modern terms,

the debate centred around the following issue: in order to maximize its

beene�t, should a central government in a federal economy choose to make

ex-post (disbursed after the provinces make their tax-expenditure decision)

grants or take recourse to ex-ante (disbursed, once-and-for-all, before the

provinces make their tax-expenditure decision) transfers? In this paper, we

try to answer this question.

Hamilton�s fear later realized in Brazil and Argentina during the 1990�s.

In Europe, Bailouts occurred in post war Germany in the provinces of Brem-

men, Saarland and Berlin (Rodden, 2006). The issue has assumed impor-

tance in the light of recent events in Eurozone (a quasi federal setup). For

theoretical analyses of such "common pool" problem, see Wildasin (1997),

Velasco (2000) and Goodspeed (2002).

Recent policy prescriptions are heavily tilted towards the Hamiltonian

paradigm. Anwer Shah (2006), for example, prescribes that "Grants to �-

nance subnational de�cits, which create incentives for running higher de�cit

in future" (page 47) are to be avoided. In India, the Twelfth Finance Com-

mission, a constitutional body which regulates centre state �nancial relation

to a large extent, had recommended (2004) the termination of central gov-
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ernments� role in assuming the states� debt. In other words, centre should

dispense with the ex post grants.

In spite of this intellectual onslaught, bailout by centre (which is, al-

most and always, ex post in nature) still persists, ostensibly, in name of eq-

uity. One can argue that such transfers are inherently politically motivated.

Evidence of political motivation behind ex post grants, either partisan or

strategic, is well documented in, say, Solé-Ollé and Sorribas-Navarro (2008)

or Arulampalam et. al.(2008). What we attempt in this paper is to explain

the persistence of allegedly ine¢cient behavior from e¢ciency calculations.

In other words, due to sequential nature of grant dispensation in a federa-

tion, the cost-bene�t calculus (of ex post vis-à-vis ex ante) should be done in

a sequential game framework, in which the provinces and the centre are the

two sets of players. Depending on the nature of the game and transfer, it is

possible that there exists a second movers advantage that the centre wishes

to exploit. The basic assumption is centre acting as a dictator, writes the

�scal constitution in order to maximize federal welfare. If it happens that

the centre maximizes its welfare by being a second mover in the grant dis-

pensation game, constitution may have to have a provision for soft budgets

and bailouts.

The reason is not hard to explain. The Hamiltonian paradigm places

emphasis of �scal solvency at various levels of Government, including centre.

Thus, the only bene�t that accrues to centre is the savings (to be spent in

various central projects), net of transfer to the provinces (which is used

to �nance provincial budget) out of a �xed revenue resource. Thus �scal

stress in provinces (and, left unchecked, this is what the provinces do), will

ultimately transferred to the centre and the latter (or the nation as a whole)

will su¤er. However, the above view of centre in a federal country misses one

important aspect of federalism: that the central authority derives bene�t not

only from its own projects, but provincial projects as well. To the extent

that provincial projects are important to centre, it may bene�t from higher
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output from provincial project.

We assume that centre has a �xed fund which �nances a central project as

well as transfer to provinces. Transfers are earmarked for provincial projects.

Thus, provincial public good is �nanced partly by provincial taxation. There

also exist two way "spillover" between provincial and central public good,

that is, each level of government value outcome of the project at other

sphere. Under this set up, we show that, for both modes of transfer, there is

a possibility of second movers� advantage for the central government. The

result depends degree to which central project bene�ts provinces.

It is to be noted that other authors (e.g. Besfamille and Lockwood,

2008) have already explored the relative ine¢ciency of hard budgets (centre

as �rst mover) vis-a-vis soft budget (mostly ex post grants) constraints in a

federal set up. A key tool for their analysis is imperfect information and the

associated moral hazard problem. Provincial revenue raising activities are

not observable by the central authority. In real life, however, due to avail-

ability of budgetary documents in public domain and continuous scrutiny

by media, such an assumption is hard to maintain.1 Koethenbuerger (2008)

also demonstrates possibility of welfare improvement when either centre or

provinces can precommit: this is achieved by putting a brake to the �race to

the bottom�. Silva(2015) considers the regime of earmarked grants (central

transfers which are tied to a speci�c public project) show that such grants

may improve overall e¢ciency if provinces have the ability to commit (as a

�rst mover in a sequential game). In this strand of literature,

Given that the present analysis centres around the �rst mover and sec-

ond mover advantages, the research contribution also spills over to the tim-

ing game paradigm in a federal set up. Timing games have been well re-

searched in Industrial Organization literature (e.g. Gale-Or 1985; Dowrick

1986; Hamilton and Slustky 1990; Aamir and Stepanova 2006). The chief

research problem of timing games is to �gure out conditions under which a

1That is, provinces are too big to escape notice of media or the central government

etc.
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leader or follower in a von-Stackelberg game (usually, a duopoly) is identi-

�ed endogenously. The methodology was �rst used in context of a federation

by Kemph and Graziosi (2010). In this paper, the authors address the is-

sue of leadership between countries with transboundary externalities (e.g.

environmental externalities) in a perfect information set up. However, the

emphasis is on the interaction between countries, not between hierarchical

governments, which is a feature of federal economies.

In sum, there are two di¤erent strands of literature within �scal feder-

alism regarding commitment. One preoccupies itself with the consequences

of di¤erent commitment protocols within a federation with hierarchical gov-

ernments, but does not explain how the protocols arise. The second strand

(Kemph and Graziosi, ibid) discusses the origin of such protocols under dif-

ferent contexts, but does not include the hierarchical framework typical in a

federation. The present study attempts to build a bridge between these two

strands: by providing an explanation of �rst and second mover advantages

in a federation with central and provincial governments.

The current paper (like Kemp and Graziosi,ibid) uses the taxonomy

of strategic variables provided by Eaton (2004).2 Eaton shows that sec-

ond mover advantage in a general duopoly game is present only when both

players have upward sloping reaction function. However, one important dif-

ference is the following. In his treatment, Eaton has assumed players with

symmetric payo¤s. Since the players in the current analysis are province

and centre, the payo¤ of each agent is asymmetric in nature. In the present

paper, a second movers� advantage can be detected even if the players have

downward sloping reaction function.

Our paper is divided into the following parts. Section 2 describes the

basic model. Section 3 characterizes di¤erent equilibria that may arise.

Section 4 provides a discussion on endogeneity of di¤erent constitutional

protocols in the context. Section �ve compares the protocols in terms of

2See appendix A1.
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central transfer, provincial taxation and project outcomes at two levels of

government. Section 5 concludes.

2 Model

We assume a simple federal set up consisting of two provinces (i = 1; 2) and

a centre. Provinces derive utility from a local project (outcome pi) and local

consumption. Central authority gets utility from a central project (outcome

P ). In addition, both central and provincial projects may be valued by each

other. Centre faces a budget constraint: P + T1 + T2 = M , where M , the

total amount of central fund, is exogenous.

Provincial welfare is

wi (pi; ci; P ) = u (pi) + v (ci) + �f(P ) (1)

Where ci is provincial consumption (or net income after taxes). Provin-

cial income, yi, is given. Here, f(:) represents provincial bene�t from central

project. The parameter � is the weight (or, equivalently, a parameter that

captures marginal bene�t of central project) that the province puts on bene-

�t from central project. Di¤erent values of � and di¤erent forms of f allows

us to capture many facets of reality. It also recognizes the fact that it is

possible a central project is evaluated subjectively by the province.3 For ex-

ample, if f(:)
:
= P and � = 1, then the centrally produced good assumes the

nature of a national public good (e.g. a lighthouse) within the federation.

Similarly, central welfare depends on pi and P :

W (p1; p2,P ) = V (P ) +  (F (p1) + F (p2)) (2)

Here, V is the bene�t that centre receives from central project. F (:)

is the bene�t that the centre receives from provincial project and  is the

3 If P is armament import, provinces may perceive that the bene�t is close to 0. If P

is federally sponsored road network, � could be quite high. There is no upper limit on �.
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weight on associated bene�ts (equivalently, a parameter characterizing mar-

ginal bene�t).4 Again, this formulation allows us to capture many facets

of reality. To focus on the hierarchical behavior of centre and provinces,

we assume away inter-provincial bene�t from pi. We also make the familiar

assumptions: u0; v0; V 0 > 0 and u00; v00; V 00 < 0. As mentioned in section 1,

a further assumption is the center has an overriding presence, such that its

best interest is will be protected in the constitution and institutionalized.

Notice that provinces are identical (save in yi). We need this assumption

in order to induce identical protocols for both provinces, i.e. if centre is

leader (follower) with respect to one province, it can not behave di¤erently

towards other province.

3 Characterizing Equilibrium Protocols

Now we put more structure to the model by explicitly bringing in the nature

of central grants. Grants are conditional in the sense that these are tied to a

speci�c provincial project. Province raises a tax, say �i, to �nance the public

good project. Centre provides the transfer Ti such that T1 + T2 + P = M .

Provincial public good is p = �i+Ti. Provincial consumption is ci = yi��i.
5

Incorporating these information in the utility functions, we can write (1) and

(2) as functions of �i and Ti�s, where i = 1; 2.

4Traditionally, in Fiscal Federalism literature, centre is seen as a Benevolent dictator

which has sum of provincial utilities as objective function. However, such formulation may

not address Hamilton�s fear that reckless spending by provinces will squeeze central fund.

The extent to which Central government cares for provinces is captured by the 
P

Fi (:)

term. It may be noted that such non-Benthamite formulation of Federal welfare is not

without precedence, e.g. see Snowdon and Wen (2003). In their formulation, provincial

cost reduces centres� welfare. In our formulation, provincial project outcome increases

central bene�t.
5 It is possible that central fund depends on federal income tax, i.e. M = � (y1 + y2),

where � is the rate of tax and ci = (1� �) yi � �i. This will not change our results, as

long as � is exogenously given. We assume away from the issue.
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3.1 Reaction Functions

Province i chooses �i to maximize
6

w(�i; T1; T2) = u (�i + Ti) + v (yi � �i) + �f (M � T1 � T2) (3)

From the �rst order condition,

u0 (�i + Ti) = v
0(yi � �i) (4)

The slope of provincial reaction function is

�0 (Ti) = �
u00

u00 + v00
< 0 (5)

Thus Ti is strategic substitute for �i. Since raising �i is costly for the

province, higher Ti will reduce �i. Note that
@pi
@Ti

= v00

u00+v00 > 0 on the reaction

function of the province.

Similarly, centre chooses T1; T2 to maximize
7

W (T1; T2; �1; �2) = V (M � T1 � T2) +  [F (�1 + T1) + F (�2 + T2)] (6)

The �rst order conditions are, for i = 1; 2

�V 0(M � T1 � T2) + F
0 (�i + Ti) = 0 (7)

From the �rst order conditions, we can express the reaction function of

centre as Ti(�1; �2). It can be shown that

@Ti

@�i
= �

F 00 (V 00 + F 00)

(V 00 + F 00)2 � (V 00)2
< 0 (8)

@Tj

@�i
=

F 00V 00

(V 00 + F 00)2 � (V 00)2
> 0

6 It can be shown that the associated Hessian matrix is negative de�nite (irrespective

of the value of �). Thus the problem of non convexiety does not arise.
7We can not assume the bene�ts from provinces to be F (p1 + p2) =

P

(�i + Ti) since

that would leave transfer to individual provinces indeterminate.

8



Similarly for �j . Thus, an increase in �i will reduce Ti but increase Tj .

Notice that, following an increase in �i, the sum (T1 + T2) falls, and hence

an increase in provincial taxation reduces total central transfer and quid pro

quo, increases output from central project on the reaction function of centre.

The slope of central reaction function is negative on Ti � �i plane.
8 The

reason is as follows. Higher Ti is costly for the centre (as its own public good

production decreases). At the same time, with higher provincial taxation,

provincial welfare from public good will increase. Since centre cares for the

provincial public good, ( 6= 0) centre�s response is to reduce the transfer as

�i increases.

Example 3.1 Let u (:) = pi�
�

2
p2i , v (:) = ci�

�

2
c2i , f(:) = P�

�

2
P 2, V (:) =

P �
�

2
P 2; F (:) = pi �

�

2
p2i . We assume that the parameters �; �; �; �; � are

small enough to always guarantee positive marginal utility.

For province i, the FOC is

1� � (�i + Ti) = 1� � (yi � �i)

=) �i(Ti) =
�yi � �Ti
� + �

For centre, the FOC�s are

�1 + � (M � T1 � T2) +  (1� �(�1 + T1)) = 0

�1 + � (M � T1 � T2) +  (1� �(�2 + T2)) = 0

Solving this, we get

Ti (�i; �j) =
 +M� � 1

2� + �
�
� + �

2� + �
�i +

�

2� + �
�j

On central reaction function, total transfer is T1+T2 =
2 ( +M� � 1)

2� + �
�

�

2� + �
(�1 + �2)

8Higher �j will �blow� the reaction function to right.
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Outcome of central project P =
M�+ 2(1� )

2� + �
+

�

2� + �
(�1 + �2)

The structure of the problem allows us to treat interaction between dif-

ferent provinces and centre separately. For example, the reaction functions

of centre and province i can be plotted in the �i � Ti plane, keeping �j as a

parameter, which is determined in the �j � Tj plane.

3.2 Nash Protocol

The Nash outcome (�N1 ; �
N
2 ; T

N
1 ; T

N
2 ) is solution of the following equations:

@w(�Ni ; T
N
1 ; T

N
2 )

@�i
= 0; i = 1; 2 (9)

@W (TN1 ; T
N
2 ; �

N
1 ; �

N
2 )

@Ti
= 0; i = 1; 2

As it is clearly demonstrated, we have a Cournot type game with down-

ward sloping reaction functions. We assume existence of a Nash equilibrium.

The relation between �i and Ti can be shown in the following graph:
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θi=Ri(Ti)

Ti=Ti(θi|θj)

θi

TiTi
N

θi
N

Figure 1: Nash Equilibrium in a Province

It can be shown that the equilibrium is stable. A Nash outcome is

more likely if neither provinces, nor centre are unable to commit or reach a

binding, enforceable constitution.

3.3 Stackelberg Protocols(s)

Here, we de�ne the problems �rst.

If centre is the �rst mover, then it chooses T1 and T2 in such a way that

W (T1; T2) = V (M � T1 � T2) +  [F (�1 (T1) + T1) + F (�2 (T2) + T2)]

is a maximum. Here, �i (Ti) is the reaction function of the province

(obtained from 4).

In symbols, the �rst order condition at the optimum can be written as,

for i = 1; 2
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@W (�F1 ; �
F
2 ; T

L
1 ; T

L
2 )

@Ti
+
@W (�F1 ; �

F
2 ; T

L
1 ; T

L
2 )

@�i
�
@�i

@Ti
= 0 (10)

Solution to two equations will yield TLi . Plugging into provincial reaction

functions, we get �Fi .

We show how  alters Ti. In order to demonstrate the result, we continue

with the LQ example.9

Lemma 3.1 If  increases, then TLi increases. As a result, PL falls and

pFi increases.

Proof. See appendix A2.

If province i (given the symmetry of provinces, similar conditions can be

derived for province j) is leader vis-a-vis the centre, then it has to choose �i

in such a way that

wi = u(�i + Ti(�1; �2)) + v(y � �i) + �f(M � T1 (�1; �2)� T2 (�1; �2))

is a maximum. Here, Ti(�i; �j) is the reaction function of the centre

(obtained from .

In symbols, the �rst order condition can be written as, for i = 1; 2

@wi(�L1 ; �
L
2 ; T

F
1 ; T

F
2 )

@�i
+
X

j=1;2

�
@w(�L1 ; �

L
2 ; T

F
1 ; T

F
2 )

@Tj
�
@Tj

@�i

�
= 0 (11)

Solutions to above equations will yield �i = �i (�j) and �j = �j (�i).

Since our main concern is hierarchical structure between the centre and

provinces, we refrain from inter provincial commitment issues that may arise

when provinces are �rst mover. That is,
�
�L1 ; �

L
2

�
is determined by a simul-

taneous move game. Continuing with the LQ exampl /e, we prove a couple of

9 If we do not assume LQ functional form, then, in the comparative statics analysis,

second derivatives of the reaction function such as @2�i
@T2

i

etc. involve third derivatives of

the utility functions. This becomes di¢cult to interpret.
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lemmas to characterize provincial interaction. We focus on the parameter �

because it takes a central stage in our model.

Lemma 3.2 If � is su¢ciently high, then �1, �2 are strategic substitutes in

the simultaneous move game.

Note that, if f(:) = M � T1 � T2 so that the second derivative is zero,

then �1 and �2 are always strategic complements.

Lemma 3.3 If � increases, then equilibrium �Li increases.

Proof. See appendix A2.

It can be shown that the partial e¤ect of � on �i is positive. In case

of strategic complementarity between �1 and �2, the total e¤ect of � on

�i (consisting of the partial e¤ect as well as the indirect e¤ect via �j) is

unambiguously positive. In case of strategic substitutability between �i and

�j , the total e¤ect is ambiguous. However, as the above lemma proves, the

e¤ect is also positive.

4 Determination of Outcomes

To determine the �rst and/or the second movers� advantage in the Stack-

elberg game, we need to �gure out the shape of iso-welfare curves of the

province as well as the centre. That is, we need to determine whether

the strategic variables chosen by one tier of government are plain substi-

tutes/complements.

4.1 Provincial and Central Iso-welfare Curves

Let us �rst look at the provinces. The iso-welfare curve is de�ned by

�wi = u (�i + Ti) + v (yi � �i) + �f (M � T1 � T2) (12)
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The slope of the curve in the �i�Ti plane
10 is

dT

d�
j �w = �

w�

w
T

and
d2T

d�2
j �w =

�
w��

wT
on the reaction function of province. Therefore, sign

�
d2T

d�2
j �w

�
=

sign (wT ) at the critical point. Now wT = u0 (p) � �f 0(P ). Theoretically,

higher central transfer leads to higher output from provincial project, but

the amount spent on central output reduces quid-pro-quo, and hence there

is loss of provincial utility. For low values of � (� 0), higher T is likely to

be associated with higher provincial welfare. Hence T is plain complement

(PC)11 for province and the iso-welfare curves achieve a minimum on the

reaction function. On the other hand, if � is su¢ciently high, then the

provincial iso-welfare curves achieve a maximum on the reaction functions,

and higher T is associated with lower provincial welfare.

Example 4.1 Let us illustrate the point using the LQ speci�cation. We

have wT = 1 � �p � �(1 � �P ). Suppose � = 0. Then, Ti will always be a

plain substitute for province i if � is close to 1.

θ

θ=θ(T)

T

Fig 2: T is Plain Complement for province, wT > 0, low �

10So as to avoid division by zero. We have also removed subscripts to retain notational

clartity.
11See appendix A1.
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θ

θ=θ(T)

T

Fig 3: T is Plain Substitute (PS) for province, wT < 0, high �

4.1.1 Central Iso-welfare Curve

The Central Iso Welfare curve is

�W = V (M � T1 � T2) +  [F (�1 + T1) + F (�2 + T2)]

Following similar logic, we �nd that, on the central reaction function

facing province i, d2�
dT 2
j �W = �WTT

W�
, such that sign

�
d2�
dT 2
j �W

�
= sign (W�).

Now W� = F 0 () > 0: hence W� > 0. i.e. the central iso-welfare curve

always has a minimum on the reaction function of the centre and higher �

implies higher welfare for centre (provincial tax is always a plane . These

possibility is depicted in the following diagram.

15



θ

T

T=T(θ)

θ=θ(T)

Fig 5: W� > 0: Central isowelfare curves are convex to the origin.

4.2 Second Movers� Advantage

Now we are ready to state our main proposition.

Proposition 4.1 Assume that central grants are targeted to a speci�c provin-

cial project. If the weight attached to central good by the provinces (�) is

high, then central transfer is plain substitute for the province. As a result,

centre is better o¤ as a second mover. Otherwise, centre is better o¤ as a

�rst mover.

Proof. See appendix A2.

This discussion can be summarized in the following diagram:
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T=T(θ)

θ=θ(T)

T

θ

Equilibrium with Centre as First Mover

Equilibrium with Centre as Second Mover, low β

Equilibrium with Centre as Second Mover, high β

Fig 6: Centre Gains as Second Mover if wT < 0 and W� > 0.

Note that, givenW� > 0, centre wish to settle for � as high as possible. It

is evident that, if � is low, the provincial authority would like to have a high

central transfer-low provincial taxes regime (because the cost of public good

can be e¤ectively shifted to the centre and it does not depend on central

public good so much). In that case, centre gains by being the �rst mover

and restrict the transfer.

In a similar way, if wT < 0, then province also prefers to be the second

mover (the proof is similar to that of proposition 3.1). In other words, both

players have an incentive to be the second mover. The deadlock is broken

by the overriding authority of the centre.

5 Comparison of Two Equilibria

Here. we compare the two equilibria in terms of project outcomes, transfers

and federal welfare. The main results are derived through two propositions.
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Assuming identical provinces, provincial will be identical and can be repre-

sented by a common notation �. Similarly, central transfer, in equilibrium,

will be same for both provinces and can be denoted by a generic T . Let the

three equilibria (Nash, and two Stackelberg points) be given by


�N ; TN

�
,



�F ; TL

�
and



�L; TF

�
, respectively. We now have the following proposi-

tion.

Proposition 5.1 (i) Assume � to be small such that wT > 0: Then, �
F >

�N > �L and TF > TN > TL.

(ii) If � is large enough, then �L > �F > �N and TF > TL > TN with

the LQ example.

Proof. See appendix A2.

As a corollary, we immediately have the following, for small � (when the

constitutional outcome is centre as �rst mover)

Corollary 5.1 (ai) Central transfers are lowest when centre is a leader.

That is, central project has highest output when centre is leader: PL > PF .

(aii) Central leadership point is associated with highest provincial taxes,

that is �F > �L. The e¤ect on provincial public good, however, is ambigu-

ous. As T decreases from TF to TN , � increases along the central reaction

function and the marginal response is more than 1;so that provincial public

good increases, pN > pL. As T further increases from TN to TL, � in-

creases along the provincial reaction function and the marginal response is

less than 1; which means lower provincial public good. The ultimate e¤ect

will depend on (given the slope of reaction functions), the relative distances

between TF ; TN and TL.

The next corollary summarizes that with (su¢ciently) higher � (when

the constitutional outcome is centre as follower)

Corollary 5.2 (bi) Central transfers are higher with centre as second mover

(that is TF > TL). As a result, central project yields lower output (PF >

PL)
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(bii) Provincial tax e¤orts are higher when provinces are lead �F > �L.

Thus pL > pF .

6 Conclusion

In this paper, we have provided a general scenario under which the central

government gains by being a follower in the grant dispensation game.

If central government grant is tied up with the public project of the

province, provincial tax and central transfer are strategic substitutes. Higher

central transfer lowers the marginal utility of public project to the province

and province responds by cutting down taxes. If central welfare is increasing

in provincial taxes, then centre should choose a mode of transfer which

generates high provincial taxes.

The work can be extended to several dimensions. First, we have demon-

strated the result with one type of grant. In a federal economy, the grants

may just augment provincial budget instead of being tied to a project. Sec-

ond, a key assumption of the paper is centre has an over-riding presence in

dictating the mode of transfer. In many economies, the balance of power

between centre and provinces are determined by bargaining, e.g. as in the

nascent years of the USA. This opens up the possibility of a timing game

to resolve the tie of leader/follower. Third, we have assumed that for each

province, � is same. But suppose it is not: some provinces, due to political

alognment with centre, has a high �, other provinces have low perceived �.

Then centre may be a �rst(second) mover with the latter (former) group

of provinces: we would expect provincial debt services being assumed by

the central government in the politically aligned provinces. This suggests

that a familiar e¤ect of partisan behaviour turns out not from the fact that

centre putting di¤erent weight on provinces (as assumed in traditional po-

litical economy literature, e.g. Sengupta 2012), but from provinces placing

di¤erent weights on central project

Thus there exists future scope of research based on the current work.
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Appendix A1
Strategic and Plain Complements

Brie�y, suppose �i (ai; aj) is bene�t function for agent i, while ai and

aj are own actions and other agents� action, respectively. Then aj is plain

complement (PC) for agent i if
@�i

@aj
> 0, and plain substitutes (PS) if

@�i

@aj
< 0. Similarly, ai and aj are strategic substitutes ,SS (complements,

SC) if
@2�i

@ai@aj
< (>)0. Similarly for agent j.

The �rst order condition for agent i is

@�i

@ai
= 0

Di¤erentiating with respect to aj , we have

@2�i

@a2i

dai

daj
+

@2�i

@ai@aj
= 0

!
dai

daj
= �

@2�i

@ai@aj

@2�i

@a2i

If SOC holds, the sign of cross (double) derivative determines the slope

of reaction functions. In the same vein, sign of cross(single) derivative de-

termine the shape of isopro�t curves near the reaction function.

Let the isopro�t curve for agent i in ai�aj plane be �
i (ai; aj) = �k. The

slope is
daj

dai
= �

�ii
�ij
:

Here, the lower subscripts denote partial derivatives, i.e. @�i

@ai
= �ii. On

the reaction function, �ii = 0, so that is a critical point of the isopro�t(or
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iso-welfare) curve. Notice that

d2aj

da2i
= �

�iii

�
�ij

�2
+ �ijj

�
�ii
�2
� 2�iij�

i
i�
i
j

�
�ij

�3

= �
�iii
�ij

at �ii = 0

Thus, sign

�
d2aj

da2i

�
= sign

�
�ij

�
at the critical point.
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Appendix A2
Proof of Lemma 3.1

From equation 10 , we can write the Hessian matrix

H =

2

4
@2W
@T 21

@2W
@T1@T2

@2W
@T1@T2

@2W
@T 22

3

5

=

"
V 00 + F 00k2 V 00

V 00 V 00 + F 00k2

#

Here k = 1 +
@�i

@Ti
=

�

� + �
. Of course, V 00 + F 00k2 < 0 and jHj =

�
V 00 + F 00k2

�2
� (V 00)2 > 0. Thus W (:) is concave.

Di¤erentiating the FOC with respect to , we get the following matrix

equation

"
V 00 + F 00k2 V 00

V 00 V 00 + F 00k2

#"
dT1
d

dT2
d

#

=

"
�kF 0

�kF 0

#

=)
dTLi
d

= �
kF 0(k2F 00)

jHj
> 0 for i = 1; 2

Thus dP
L

d
= �d(

P

Ti)
d

< 0,
d�Fi
d
= �0 () dTi

d
< 0 and

dpFi
d
=
�
1 + �0(Ti)

� dTLi
d

>

0.

Proof of Lemma 3.2

Equation (11) can be written as, say for province 1:

@w1

@�1
= u0(�1+T1)

�
1 +

@T1

@�1

�
�v0 (y1 � �1)+u

0(�1+T1)
@T1

@�1
��f 0(P )

�
@T1

@�1
+
@T2

@�1

�
= 0

Assuming LQ functional forms,
@T1

@�1
and

@T1

@�1
are constant numbers.

Di¤erentiating above expression with respect to �2, we get

@2w1

@�1@�2
= u00

@T1

@�2

�
1 + 2

@T1

@�1

�
+ �f 00(P )

�
@T1

@�1
+
@T2

@�1

��
@T1

@�2
+
@T2

@�2

�
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Notice that the �rst term is positive, since u00 = �� < 0, @T1
@�2

= �
2�+� > 0

and 1+2@T1
@�1

= 1� 2 �+�2�+� = �
�

2�+� < 0. On the other hand, f
00 = �� < 0

and sum of T1+T2 falls as �1 or �2 increases. So the second term is de�nitely

negative. If � is large enough, then, even if the �rst term is positive, the

whole expression �

(2�+�)2
(�� � ���) is negative. Hence �1,�2 are strategic

substitute since @�1
@�2

= �

�

@2w1

@�1@�2

�

SOC
< 0.12

Proof of Lemma 3.3

To show this, we proceed in two steps. First, we show the (partial) e¤ect

of � on �Li . Second, we demonstrate the total e¤ect of � on �
L
i (consisting of

the direct e¤ect as well as the indirect e¤ect via �Lj .

In order to do so, we write the reaction functions (implicitly de�ned by

11 ) as �i = �
i(�j ;�). Notice that, we have already demonstrated the fact

that (lemma 2.1), if � is above a threshold then �1 < @�i

@�j
< 0.

To �nd the direct e¤ect of � on �i, we need to �nd
@�i

@�
= �

�

@2w1

@�1@�

�

SOC
.

Given our assumptions, @2w1

@�1@�
= �f 0(P )

�
�

�

2� + �

�
> 0, so an increase

in � increases �i, if nothing else changes.

To obtain the total e¤ect (because of the ambiguity that higher � in-

creases both �i and �j , but higher �j reduces �i) one has to di¤erentiate

the equations �i = �i(�j ;�) and �j = �j(�i;�) and obtain
d�i
d�

etc. The

resulting matrix equation is

"
1 �@�i

@�j

�@�j

@�i
1

#"
d�i
d�
d�j
d�

#

=

"
@�i

@�

@�j

@�

#

Here, � =

�����
1 �@�i

@�j

�@�j

@�i
1

�����
= 1�

�
@�i

@�j

��
@�j

@�i

�
> 0

12The SOC is @2w1
@�2

1

= �
��2

(2�+�)2
� � � ��

�

�

2�+�

�2

< 0. It can be shown that the

magnitude of the slope of the reaction function in �i� �j space is less than one (Similarly

for the other province. That is, the Nash equilibrium is stable.
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Thus,

d�i

d�
=

�����

@�i

@�
�@�i

@�j
@�j

@�
1

�����

�
=

@�i

@�
+ d�j

d�
@�i

@�j

�

If we have LQ example (where provinces only di¤er by income level),
@�i

@�
=
@�j

@�
. So the numerator is

@�i

@�

�
1 +

@�i

@�j

�
> 0 !

d�Li
d�

> 0. Simi-

larly for
d�Lj

d�

Thus,
d(
P

TFi )
d�

= �
�

2� + �

d(
P

�Li )
d�

< 0 ! dPF

d�
= �

d(
P

TFi )
d�

> 0 and

dpLi
d�
=
d�Li
d�

�
� + �

2� + �

d�Li
d�

+
�

2� + �

d�Lj

d�
. Since

d�Lj

d�
�
d�Li
d�

we have
dpLi
d�

=

2 (2� + �)�1 �
d�L

d�
> 0. Thus transfers go down, but local taxation rises to

compensate such that local project outputs increase.

Proof of Proposition 4.1

In this and subsequent proofs, We are omitting other variables (�j ; Tj) for

notational clarity. Also, the subscripts are dropped: that is wi(�Ei ; T
E
i jT

E
j ; �

E
j ) �

wi(�i; T
E
i )

13� w(�E ; TE) (subscripts are dropped). Here, the superscript E

stands for di¤erent equilibria, e.g. Nash or Stackelberg. Similarly for the

centre.

Second part of the proposition is evident: so only the �rst part is proved.

The proof14 follows Dowrick (1986). Notice that, we need to show that the

Centre is better o¤ as a Stackelberg follower than leader.

Proof. The proof proceeds in two stages. In the following �gure, we have

drawn reaction function of the centre and a Stackelberg point B (�L; TF )

such that province is the leader (the iso-welfare curve is not necessary).

13Tj being a parameter in the equilibrium
14The proof does not depend on linear quadratic assumption.
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θL

TF T

θ

B

T=T(θ)

Fig A1: A Stackelberg Point of Province

First, we show that the reaction function of the province , � = � (T )

must be below B, i.e. � (TF ) < �L:
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θL

TF
T

θ

B

T=T(θ)

θ=θ(T)

θM

TF
’

Fig A2: Position of the Provincial Reaction Function

Suppose not. Then �M = �(TF ) > �L. Thus we have, for the province,

w (�M ; TF ) > w (�L; TF ) (by the de�nition of reaction function). Let, T
0

F

be the best response to �M , that is, T
0

F = T (�M ). But, then since wT < 0;

we have w (�M ; TF ) < w (�M ; T
0

F ). Combining these inequalities, we get

w (�M ; T
0

F ) > w (�m; TF ) > w (�L; TF ). But then� (�L; TF ) cannot be the

Stackelberg leadership point of the province on the reaction function of cen-

tre.

Second, � = � (T ) cannot pass through the Stackelberg leadership point

B. Notice that the isopro�t curve of the province must have zero slope on

� = �(T ). For simultaneous tangency on T = T (�) a critical point of

� = �(T ), the reaction function T = T (�)must be positively sloped. But this

case is ruled out either. Thus, � = �(T ) must be below B, the Stackelberg

leadership point of the province. So, �M < �L.
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θL

TF T

θ

B

T=T(θ)

θM

θ=θ(T)

Fig A3: Centre Prefers to be Stackelberg Leader.

Note that, W (�L; TF ) > W (�M ; TF ), since W� > 0. But, (�M ; TF ) is

one of the set of points which the centre can choose as a Stackelberg leader.

Therefore, centre must prefer to be a Stackelberg follower if W� > 0 and

wT < 0.

Proof of Proposition 5.1

As before, we are focussing on the interaction between one province and

the corresponding transfer. The lne of reasoning follows Kemp and Graziosi,

ibid.

Proof. Part (i) Comparing provincial Nash and Leadership position, we

have

w
�
�L; TF (�L)

�
� w(�N ; TN ) (A2.1)

by de�nition of Nash equilibrium and Stackelberg leadership.

When province is follower in a Stackelberg game or under Nash protocol,

equilibrium occurs on provincial reaction function. Thus

@w(�N ; TN )

@�
=
@w(�F ; TL)

@�
= 0 A2.2
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by de�nition of reaction function. Given wT� < 0

�N > �F () TN < TL (A2.3)

Again, by de�nition of Nash equilibrium:

w(�N ; TN ) � w
�
�L; TN

�

Here, we are considering the subcase where wT > 0. Suppose T
N > TF .

Then

w(�N ; TN ) � w
�
�L; TN

�
> w

�
�L; TF

�

But this contradicts with the de�nition of Stackelberg leadership. There-

fore, we must have TN < TF . Notice that TN and TF are on the same

(downward sloping) central reaction function. The �N > �L. Similarly, for

the centre (WT� < 0 and W� > 0), we must have �
F > �N . But �N and �F

are two points on the (downward sloping) provincial reaction function. So

we must have TL < TN . Combining these observations, we have result 5.1

(i).

For part (ii), notice that � is high, so that wT < 0. Applying the

same methodology as above, we have TN > TF , i.e. �N < �L. At the

same time, �F > �N i.e. TL < TN . That is, we have
�
�F ; �L

�
> �N

and
�
TF ; TL

�
< TN . However, the relative magnitudes of the leadership

positions with the follower position is not known.

Let us assume TL > TF .

We compare the �rst order conditions of the equilibrium of the centre.

We already know that, when centre is the follower, as well as in Nash out-

come
@W (�L; TF )

@T
=
@W (�N ; TN )

@T
= 0

We compare this with the case when centre is the leader. It solves the

problem

max
T
W (T; �(T )) = 0
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The FOC yields

@W (�F ; T /L)

@T
+W� �

@�

@T
= 0

Note that
@�

@T
= �

w�T

w��
< 0. Given W� > 0, we must have

@W (�F ;TL)
@T

>

0. Thus
@W (�F ; TL)

@T
>
@W (�L; TF )

@T
=
@W (�N ; TN )

@T

If TL > TF , then �F < �L:

Notice
@W (�L; TF )

@T
>
@W (�L; TL)

@T
since MU falls with T and TL > TF .

Second
@W (�L; TL)

@T
>
@W (�F ; TL)

@T
since MU falls with � (WT� < 0)and

�L > �F . Combining these two statements, @W (�L;TF )
@T

>
@W (�F ;TL)

@T
which is

a contradiction.

Thus TF > TL > TN :

Similarly, when province is the follower, and under Nash

@w(�F ; TL)

@�
=
@w(�N ; TN )

@�
= 0

when province is leader, it maximises

max
�
w(�; Ti(�; :):Tj(:; �))

FOC is

w� +

�
wTi �

@Ti

@�
+ wTj �

@Tj

@�

�
= 0

Notice that, wTi < 0 and
@Ti
@�i

< 0. On the other hand, wTj < 0

and
@Tj
@�

> 0 ( Note: wTi = u0 � �f 0 and wTj = ��f 0). Using the LQ

speci�cation, @Ti
@�i

= �
� + �

2� + �
and

@Tj
@�i

=
�

2� + �
: Thus

wT1 �
@T1

@�1
+ wT2 �

@T2

@�1

= �
�
u0 � �f 0

� � + �
2� + �

+
�

2� + �

�
��f 0

�

= �f 0
�

�

2� + �

�
� u0

�
� + �

2� + �

�
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θF

Central Reaction Function

Provincial Isowelfare curve

T

θ

T=RC(θF)

Figure 1: Fig A4: Condition for �L > �F .

We already know that � is su¢ciently large such that �f 0 > u0. We need

to impose a mildly stringent restriction on �, i.e. �f 0 > u0
�
1 + �

�

�
such

that expressions under square brackets is positive and

@w(�L; TF )

@�
<
@w(�F ; TL)

@�
=
@w(�N ; TN )

@�

A comparison between the �rst two terms imply that one cannot rank

�L and �F from the condition stated above. However, if the isowelfare

curve of the province cuts the reaction function of the centre at the point�
�F ; ~T = RC(�

F )
�
, then the tangency (which de�nes �L) between provincial

isopro�t curve and central reaction function occurs at a higher point, that

is �L > �F . The possibility is shown in the following diagram.

Slope of the provincial isopro�t curve d�
dT
j(�F ; ~T ) = �

u0 � �f 0

u0 � v0
, while that

of central reaction function in the �i�Ti plane is Ai (e.g. for LQ assumption,

it is
2� + �

� + �
). So we need

u0 � �f 0

u0 � v0
j(�F ; ~T ) > Ai. Since the point

�
�F ; ~T

�

is above the reaction function of the province, we must have u0 � v0 < 0.

The inequality then suggests � > �̂ =
u0 �Ai � (u

0 � v0)

f 0
j(�F ; ~T ) is required

for �L > �F > �N : This is also partially corroborated by lemma 3.3.
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It is easy to (but tedious) �gure out �̂ for the LQ example. As we know,

TLi =
M� � 1 + � � (� + ��) yi + �yj

2� + ��
! �Fi = �yi � (1� �)T

L
i , where

� = �
�+� This, in turn, implies that

T̂i =
 +M� � 1

2� + �
�
� + �

2� + �
�Fi +

�

2� + �
�Fj

p̂i = �Fi + T̂i

P̂ =
M�+ 2(1� )

2� + �
+

�

2� + �

�
�F1 + �

F
2

�

From here, we can calculate u0 = 1 � �p̂i, v
0 = 1 � �(yi � �

F
i ) and

f 0 = �1 + �
�
P̂
�
.
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