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Abstract

We have developed an urban economic model in which a social planner maxi-

mizes the net output of the whole system of cities in a country in such a way that

agents locate themselves in cities of different sizes. From this model we derive the

new “threshold double Pareto Generalized Beta of the second kind”. In order to

test the theory empirically, we have analysed the US urban system and have con-

sidered two types of data (incorporated places from 1900 to 2000 and all places

in 2000 and 2010). The results are encouraging because the new distribution al-

ways outperforms the lognormal and the double Pareto lognormal. The results are

robust to a number of different criteria. Thus, the new density function describes

accurately the US city size distribution and, therefore, tends to support the validity

of the theoretical model.
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would like to thank Rafael González-Val and Fernando Pueyo for useful comments on previous versions of

this paper. This work is supported by the Spanish Ministerio de Economı́a y Competitividad (ECO2013-

45969-P) and Gobierno de Aragón, ADETRE Consolidated Group.
bDepartment of Economic Analysis, Universidad de Zaragoza (SPAIN) fsanz@unizar.es



1 Introduction

Cities are complex systems, which tend to self-organize, and where everything is in-

terconnected (Batty, 2013; Bettencourt and West, 2010). Therefore, their study can

and must be addressed from different points of view. This work aims to shed some

light, both from a theoretical and an empirical perspective, to the analysis of city size

distributions.

The literature on city size distributions is ample. Without pretending to be ex-

haustive, and citing only contributions of this century, we have Overman and Ioan-

nides (2001); Black and Henderson (2003); Ioannides and Overman (2004); Eeckhout

(2004); Resende (2004); Soo (2005); Bosker et al. (2008); Xu and Zhu (2009); Giesen

et al. (2010); Berry and Okulicz-Kozaryn (2012); Ioannides and Skouras (2013); Luck-

stead and Devadoss (2014); González-Val et al. (2015); Berliant and Watanabe (2015)

and Fazio and Modica (2015). We will point out in the next paragraph the main char-

acteristics of this body of literature.

First, the most studied geographic area is that of the United States. Second, the

two most studied distributions are the Pareto I or power law (a particular case of this is

the so-called Zipf’s law) and the lognormal. Third, the definition of what is considered

a city is not neutral to the results obtained finally. Indeed, researchers in this field

usually have to take two decisions: the consideration or not of a truncation point of

the population variable (and, if affirmative, of what size) and the specific definition of

the objects of study. Fourth, there is some consensus (Desmet and Rappaport (2015)

take it for granted as the basis of their article), that the overall US city size distribution

is lognormal and approximately Zipf at the upper tail, or at least Pareto.1 Lastly, a

number of recent papers argue that for an excellent fit to the data for the whole range

of possible sizes, it is necessary to consider more than a single functional form, since

the different parts of the distribution behave differently.

1An exception to this consensus can be found in Bee et al. (2013).
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The theory will be addressed in Section 4, where we will present an urban model,

based on Parker (1999), in which a social planner distributes the population so as to

maximize the net output of the system of cities of the country. From this model the

new density function proposed in this paper, called the “threshold double Pareto Gen-

eralized Beta of the second kind”, (tdPGB2), can be deduced.

In the empirical part of the paper, with US city data from 1900 to 2010, we will

compare the tdPGB2 with two well-known distributions previously considered when

studying city size, namely the lognormal (lgn) and the double Pareto lognormal (dPln).2

The new density function improves on the performance of the distributions used up to

now, at least for the US.

The rest of the paper is structured as follows. In Section 2 we will detail the prin-

ciples underlying our approach. Section 3 defines the densities that are estimated later.

Section 4 develops the theoretical model, yielding the new distribution as a result. Sec-

tion 5 describes the data sets used in the empirical application. Section 6 gives an

account of the empirical results. Lastly, we will give some conclusions.

2 The motivation for our approach

This paper is based on the following principles (one in each paragraph), many of them

standard in the Urban Economics literature.

From our point of view, to find statistical distributions that fit the data better than the

ones known in the literature is an interesting contribution by itself. But it is even more

interesting if these new distributions are derived from a theoretical economic model,

in which functions that have clear economic meaning are defined. See, in this regard,

Section 4.

2We do not specifically present a separate study for the Pareto distribution as it is encoded in the tails of

the new tdPGB2. Moreover, the new density is better than a single power law for all the range of city sizes.

It is also better than the Generalized Beta of the second kind (GB2) distribution.
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The study of city size distributions should be, to the extent possible, a long-term

analysis (Parr, 1985; Gabaix and Ioannides, 2004). In particular, we have used US data

from 1900 to 2010.

It seems that there is no single density function capable of providing an adequate

description of the distribution for all values of the city size population variable. This is

an accepted statement in the literature on income size distribution.3 We consider this

idea to also be applicable to the study of city size distributions. Consequently, in our

approach, we have divided the overall distribution into three parts: the lower tail, the

body, and the upper tail.

Therefore, large urban nuclei (the upper tail) do matter and require special atten-

tion. This is a generally accepted fact in the Urban Economics literature, where the

largest cities are often considered to be outliers with respect to the the hypothesized

distribution.

In addition, we have the certainty that small nuclei (the lower tail) do matter and

also require a specific treatment (something confirmed in our empirical application).

This approach is fairly overlooked, with the possible exception of Reed (2002, 2003)

and, theoretically, of Blank and Solomon (2000) and Lee and Li (2013). Therefore,

we have considered all entities of population, without any truncation point. From an

empirical perspective, small urban nuclei are not relevant for the percentage of the

population that they represent, but this is not the case with regard to the total number

of nuclei.

The parsimony in terms of the number of parameters of the distribution to be esti-

mated is always a goal to be pursued. This is one of the reasons for the success of power

laws and Zipf’s law. However, the new distribution that we have proposed in this paper

seems not to be particularly parsimonious. But we can defend this option based on

two arguments. First, the information criteria used in Section 6 in order to discriminate

3See Dagum (1979) and the citations included therein.
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between the studied distributions, namely the Akaike Information Criterion (AIC) and

the Bayesian or Schwarz Information Criterion (BIC), explicitly penalize the number

of parameters of an hypothesized distribution. Second, there already exist examples

in the literature where a mere increase in the number of parameters of the distribution

does not always lead to a better fit in information-theoretic terms.4

The results are more valid and powerful as they are robust to different alternatives.

In the first place, we have used two definitions of US cities: incorporated places and

all places. Second, we will consider a number of different criteria in order to assess the

quality of the empirical fits. Indeed, we will use three different statistical tests which

are very powerful for the large sample sizes at hand (Razali and Wah, 2011), and for

which the non-rejections occur only if the deviations (statistics) are really small. They

are the Kolmogorov–Smirnov (KS) test, the Crámer–von Mises (CM) test, and the

Anderson–Darling (AD) test. Also, we will use the AIC and BIC information criteria.

Third, both in the theoretical model and in the empirical analysis, we have divided

the support of the distribution into three parts: the lower tail, the body and the upper

tail. There are two main reasons for the three-parts option. On the one hand, the

literature supports this alternative; on the other hand, we have empirically explored

other possibilities and the best results are obtained with the option reported here.

3 Description of the distributions used

3.1 The lognormal (lgn)

The well-known lognormal distribution for the population of cities was proposed in

the field of Urban Economics by Parr and Suzuki (1973) and afterwards by Eeckhout

4See, for example, the case of Switzerland in Giesen et al. (2010), where the lognormal (two parameters)

outperforms the double Pareto lognormal (four parameters), and other examples in González-Val et al. (2015)

where the log-logistic (two parameters) also outperforms the dPln.
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(2004) when considering all cities. The corresponding density is simply

flgn(x, µ, σ) =
1

xσ
√
2π

exp

(

−
(lnx− µ)2

2σ2

)

where µ, σ > 0 are respectively the mean and the standard deviation of lnx, and x is

the population of the urban units under study.

3.2 The double Pareto lognormal (dPln)

The second distribution in our study will be the double Pareto lognormal distribution,

introduced by (Reed, 2002, 2003; Reed and Jorgensen, 2004):

fdPln(x, α, β, µ, σ)

=
αβ

2x(α+ β)
exp

(

αµ+
α2σ2

2

)

x−α

(

1 + erf

(

lnx− µ− ασ2

√
2σ

))

−
αβ

2x(α+ β)
exp

(

−βµ+
β2σ2

2

)

xβ
(

erf

(

lnx− µ+ βσ2

√
2σ

)

− 1

)

where erf is the error function associated to the normal distribution and α, β, µ, σ > 0

are the four parameters of the distribution. It has the property that it approximates

different power laws in each of its two tails: fdPln(x) ≈ x−α−1 when x → ∞ and

fdPln(x) ≈ xβ−1 when x → 0, hence the name “double Pareto”. The body is approx-

imately lognormal, although it is not possible to exactly delineate the switch between

the lognormal and the Pareto behaviour. Several references show that the dPln offers

a good fit for different countries (Giesen et al., 2010; Giesen and Suedekum, 2014;

González-Val et al., 2015).
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3.3 The threshold double Pareto Generalized Beta of the second

kind (tdPGB2)

We introduce here a new distribution. By construction, the tdPGB2 has a Generalized

Beta of the second kind (GB2) body and Pareto tails, the three regions exactly delin-

eated by two thresholds: ǫ > 0 separates the Pareto lower tail from the GB2 body, and

τ > ǫ separates the body from the Pareto upper tail.

The specific description is as follows. We first define the building block functions,

setting

fGB2(x, a, b, p, q) =
axap−1

bapB(p, q) (1 + (x/b)
a
)
p+q (1)

cdfGB2(x, a, b, p, q) =
1

B(p, q)
B

(

(x/b)a

1 + (x/b)a
, p, q

)

(2)

l(x, ρ) = xρ−1 (3)

u(x, ζ) =
1

x1+ζ
(4)

The fGB2 (cdfGB2) is the Generalized Beta of the second kind density (resp., cumu-

lative distribution function, cdf) (McDonald and Xu, 1995; Kleiber and Kotz, 2003),

B(z, p, q) =

∫ z

0

tp−1(1 − t)q−1 dt with z ∈ [0, 1] is the incomplete Beta function and

B(p, q) = B(1, p, q) is the Beta function. The four parameters a, b, p, q are positive, b

is a scale parameter, and a, p, q are shape parameters. The functions l(x, ρ) and u(x, ζ)

will model, except for a multiplicative positive constant, the Pareto lower (l) and upper

(u) tails of our distribution, where ρ > 0 and ζ > 0 are the respective Pareto exponents.

We have imposed the continuity of the composite density function at the two thresh-

old points and an overall normalization of the former to unity. The resulting density
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is

ftdPGB2(x, ρ, ǫ, a, b, p, q, τ, ζ) =























b3 e3 l(x, ρ) 0 < x ≤ ǫ

b3 fGB2(x, a, b, p, q) ǫ ≤ x ≤ τ

b3 a3 u(x, ζ) τ ≤ x

where the constants are given by

e3 =
fGB2(ǫ, a, b, p, q)

l(ǫ, ρ)
(5)

a3 =
fGB2(τ, a, b, p, q)

u(τ, ζ)
(6)

b−1
3 = e3

ǫρ

ρ
+ cdfGB2(τ, a, b, p, q)− cdfGB2(ǫ, a, b, p, q) +

a3
ζ τζ

(7)

This distribution depends on eight parameters (ρ, ǫ, a, b, p, q, τ, ζ) to be estimated.

4 The theoretical model generating the new distribu-

tion

The most common functions used to describe city size distributions all have an underly-

ing theoretical model from which they are derived. Thus, Gabaix (1999) and Córdoba

(2008) deduce power laws and, more specifically, Zipf’s law. The same law, although

in a very different setting, is also obtained by Hsu (2012), while Eeckhout (2004) pro-

poses a model for the lognormal. The more recent double Pareto lognormal comes

from the theoretical models proposed by Reed (2002), Reed and Jorgensen (2004) and

Giesen and Suedekum (2014).

Our model is not of a statistical nature as are those just mentioned and, to some

extent, the productivity random shocks model of Eeckhout (2004) and, especially, the

random growth Gibrat model of Gabaix (1999).

In Parker (1999), within a neoclassical labour market model where firms maximize
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profits, the GB2 density is exactly deduced. What is interesting about that model is that

it allows, mutatis mutandis, being applied to the case of urban nuclei to get our new

distribution of Section 3: the tdPGB2.

We have separated the study of city size distributions according to three different

regions: the lower tail (x ∈ (0, ǫ]), the body (x ∈ [ǫ, τ ]), and the upper tail (x ∈

[τ,∞)). The quantities ǫ and τ are the thresholds. Clearly, ǫ < τ .

We will denote the number of cities within the three intervals of population values

as ni(x), i = 1, 2, 3, respectively. The corresponding cumulative numbers of cities are

Ni(x), i = 1, 2, 3. The total number of cities, N3(∞), is obviously a constant and it

is assumed to have a finite upper bound Θ, so that N3(∞) < Θ. If the total number of

cities is finite, the total population to be allocated will be finite as well.

If we want to obtain an overall continuous probability density function we have to:

i) Assume, as is usual in the field, x to be a continuous variable, and obtain the

continuity of ni(x), i = 1, 2, 3 on the respective intervals where they are defined.

ii) Impose the continuity of the previous functions at the threshold points, namely

n1(ǫ) = n2(ǫ) , n2(τ) = n3(τ) (8)

iii) Divide the number of cities ni(x), i = 1, 2, 3 by the total number of cities

N3(∞), so that ni(x)/N3(∞), i = 1, 2, 3 give the correct densities of cities

of population x on the respective intervals and also at the threshold points ǫ and

τ .

At the end, this process will lead to the generation of the previously defined tdPGB2.

We will develop the model considering the three regions separately; then we will

consider the joint results.
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4.1 Model for the lower tail (variables and parameters with index

1) of the tdPGB2

The model consists of maximizing the net output function in monetary units of the

whole urban system of a country at a given time.

The human capital level of each city depends on the population x according to

the function ψ1(x), with ψ1(0) = 0. We assume it to be positive and increasing.

Each inhabitant supplies one unit of labour inelastically. The gross output of the cities

of population x is F1[n1(x), ψ1(x)]. There are diminishing returns to the number of

cities, i.e.,

∂F1

∂n1
> 0 ,

∂2F1

∂n2
1

< 0 (9)

at all population levels. There are also monetary congestion costs c1(x) associated to a

city of population x. These costs reduce the gross output of each urban settlement. We

assume that c1(0) = 0, c1(x) > 0 and c′1(x) > 0.

Thus, the net output of the cities of population x ∈ (0, ǫ] is F1[n1(x), ψ1(x)] −

c1(x)n1(x), and the net output of all cities with populations between 0 and ǫ (the lower

tail) is the corresponding definite integral of this last quantity. To specify the problem

more, we assume further that F1[n1(x), ψ1(x)] = ψ1(x)n1(x)
β , where β ∈ (0, 1) in

order to arrange that the signs of the derivatives behave as stated in (9).

Therefore, the cities’ optimal control problem for the lower tail, where the output

price has been normalized to unity, can be stated as

max
n1

∫ ǫ

0

(ψ1(x)n1(x)
β − c1(x)n1(x)) dx

subject to :
dN1(x)

dx
= n1(x)

N1(0) = 0

N1(ǫ) =

∫ ǫ

0

n1(x) dx < Θ

n1(x) ∈ (0,∞)
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where the state variable is N1(x) and the control is n1(x). The associated Hamiltonian

function is simply

H1(x,N1, n1, λ1) = ψ1(x)n1(x)
β − c1(x)n1(x) − λ1(x)n1(x) (10)

The state and costate equations are the following5

dN1(x)

dx
= −

∂H1

∂λ1
= n1(x)

dλ1(x)

dx
=
∂H1

∂N1
= 0

and thus λ1(x) = λ1 = Constant. The control n1(x) to be chosen is the one which

maximizes the Hamiltonian and belongs to an open interval, so no corner solutions may

arise. The first order condition is just

∂H1

∂n1
= ψ1(x)βn1(x)

β−1 − c1(x) − λ1 = 0 (11)

The second order derivative is

∂2H1

∂n2
1

= ψ1(x)β(β − 1)n1(x)
β−2 < 0 , x ∈ (0, ǫ]

and therefore the first order condition becomes necessary and sufficient for a strict

global maximum. From equation (11) we can solve for n1(x) as follows

n1(x) =

(

βψ1(x)

c1(x) + λ1

)1/(1−β)

, x ∈ (0, ǫ]

It is time now to define specific functional forms for the human capital and cost func-

tions: ψ1(x) = A1x
γ1 , c1(x) = k1x

b1 , where A1 > 0, γ1 > 0, k1 > 0 and b1 > 0.

The microfoundations for these specific functional forms are as follows. We want both

5It is not necessary to impose the transversality conditions because N1(ǫ) < Θ.
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ψ1(x) and c1(x) to be positive and increasing functions (larger cities are associated to

higher levels of human capital and higher congestion costs) and ψ1(0) = c1(0) = 0

(obviously, cities with no people do not have either human capital or costs). Whether

concave (γ1, b1 < 1), linear (γ1 = b1 = 1) or convex (γ1, b1 > 1) will be discussed in

subsection 4.5.

Consequently, we have

n1(x) =

(

β A1 x
γ1

k1xb1 + λ1

)1/(1−β)

, x ∈ (0, ǫ]

We want n1(x) to be a pure Pareto power law, that is, to be proportional to a power

function. For this, it is necessary and sufficient that λ1 = 0.6 Then, with λ1 = 0 we

simply have n1(x) =

(

β A1

k1

)1/(1−β)

x
γ1−b1
1−β so in order to have a pure Pareto lower

tail we require that the corresponding Pareto exponent ρ satisfies ρ =
γ1 − b1
1− β

+ 1 > 0.

The assumptions made so far about the values of the parameters β, b1 and γ1 are com-

patible with the validity of this equation and the empirical analysis confirms that the

estimations of ρ are always positive.

4.2 Model for the body (variables and parameters with index 2) of

the tdPGB2

In the body of the tdPGB2 distribution, we have assumed a similar model as for the

lower tail on the corresponding interval [ǫ, τ ]. Therefore, the number of cities in the

body can be found to be

n2(x) =

(

β A2x
γ2

k2xb2 + λ2

)1/(1−β)

, x ∈ [ǫ, τ ]

6As already indicated, the proper probability density function on the interval x ∈ (0, ǫ] is n1(x)/N3(∞)
(see also Parker (1999)). Since N3(∞) is a finite positive constant, we have a Pareto distribution in the lower

tail if and only if, as stated in the text, λ1 = 0. This footnote also applies to the power law in the upper tail

with the corresponding Lagrange multiplier, see subsection 4.3.
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where now we expect to have λ2 > 0. Comparing this last expression with the def-

inition of the GB2 distribution (see Eq. (1)) both functions can be properly related,

so that n2(x)/N3(∞) is, up to a positive multiplicative constant, the expression of

fGB2(x, a, b, p, q) of (1). Indeed, we simply have

n2(x) =

(

βA2

λ2

)1/(1−β)

B(p, q)
bap

a
fGB2(x, a, b, p, q) , x ∈ [ǫ, τ ]

with the identifications of the parameters

a = b2

b =

(

λ2
k2

)1/b2

p =
1

b2

(

1 +
γ2

1− β

)

q =
1

1− β
−

1

b2

(

1 +
γ2

1− β

)

4.3 Model for the upper tail (variables and parameters with index

3) of the tdPGB2

The corresponding number of cities in the upper tail can be found to be

n3(x) =

(

β A3x
γ3

k3xb3 + λ3

)1/(1−β)

, x ∈ [τ,∞)

In this case, we want to obtain again a pure Pareto upper tail. Thus, we require that

λ3 = 0. Then, we have n3(x) =

(

β A3

k3

)1/(1−β)

x
γ3−b3
1−β and the Pareto exponent ζ

must satisfy −ζ =
γ3 − b3
1− β

+ 1 < 0. The assumptions made so far about the values of

the parameters β, b3 and γ3 are compatible with the validity of this equation and the

empirical analysis confirms that the estimations of ζ are always positive.
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4.4 The overall distribution

Lastly, we can impose the following natural conditions, namely, continuity of human

capital (ψ(x)) and effective cost functions (c(x) + λ)7 at the threshold values ǫ and τ :

A1ǫ
γ1 = A2ǫ

γ2 , A2τ
γ2 = A3τ

γ3 (12)

k1ǫ
b1 = k2ǫ

b2 + λ2 , k2τ
b2 + λ2 = k3τ

b3 (13)

These conditions have (8) as an immediate consequence. Now, as stated previously,

dividing ni(x), i = 1, 2, 3 by the total number of cities N3(∞) provides the exact

probability density function on each interval and the threshold values corresponding

to the tdPGB2. Let us remark that in subsection 3.3, the definition of the quantities

e3, a3, b3 by Eqs. (5), (6) and (7) reflects exactly the conditions for the overall prob-

ability density function to be continuous at the threshold values ǫ and τ and to be

normalized to unity.

As a final outcome, we have demonstrated that we can obtain the tdPGB2 proba-

bility distribution from a theoretical economic model.

4.5 Economic explanations for the shape of the functions used in

the model

There are two functions that define the most important characteristics of our model:

ψ(x) and c(x). With regard to the first, the proposed functional form and values of the

γ parameters in the previous subsections make it an increasing function (γ > 0). It can

be convex (γ > 1), linear (γ = 1), or concave (γ < 1). In the first (third) case, if a city

has a size that is, for example, twice the size of another city, its human capital stock

will be larger (smaller) than twice that of the smaller city. Our theoretical model is

compatible with these three options and, therefore, it is an empirical question, outside

7See Eq. (10) to notice that the effective cost function derived from the Hamiltonian is just c(x) + λ.
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the scope of this paper, to determine which of them holds.

Of course, from an economic point of view, the most interesting scenario is that in

which human capital accumulates at rates that are increasing with respect to the size of

the urban settlements. We can justify this behaviour with two arguments.

First, “there is some evidence suggesting that human capital accumulates more

quickly in urban areas” (Glaeser and Resseger, 2010). This empirical evidence is also

corroborated in Moretti (2004) and Rauch (1993). Second, there is the existence of

agglomeration economies. Estimates of their magnitude imply that doubling the size or

density of an urban area increases its productivity between 2% to 8% (see the surveys

of this topic in Melo et al. (2009), Puga (2010) and Combes and Gobillon (2015)).

Human capital is one of the inputs in our production function, and therefore causes the

productivity per worker to be higher in larger cities.

It is time now to justify the shape adopted for the cost function c(x), which is

increasing with respect to city size (b > 0). We can label these costs, without loss

of generality, as congestion costs. Now, we are thinking about the factors related to

all the “bad” things that are traditionally associated with bigger cities. This is why

these costs reduce the gross output of each urban nucleus and affect the net output.

Some of these factors are crime, traffic, diseases, pollution, and housing prices. All of

them tend to increase in absolute terms with city size. In per capita or relative terms

things are not so clear. Bettencourt and West (2010) report that the magnitude of crime,

traffic, and certain diseases is multiplied by 2.3 if the population of a city is doubled;

in this case b > 1. Regarding pollution, there is a certain consensus about the fact

that larger cities are, on average, greener (Glaeser, 2011); in this case b < 1. Lastly,

the connection between city size and housing prices is a complex topic which depends

on local geography, regulatory policies, and the internal spatial structure of the city:

see Saiz (2010), Glaeser et al. (2012), and the references therein for an overview; in

this case b > 1 or b < 1. Again, as for the ψ(x) function, our theoretical model is
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compatible with all the possibilities and, therefore, is an open empirical question to

determine whether c(x) increases with city size at a more than proportional rate or not.

4.6 A reflection on the practical implications of our model

The parameters of the overall distribution so obtained, the tdPGB2, depend on the elas-

ticities β, γi, i = 1, 2, 3 and bi, i = 1, 2, 3. In particular, the Pareto exponents at the

lower and upper tails are also related to β, γi and bi. These elasticities might vary

over time, mainly for economic reasons, so we obtain that the city size distribution is

explained at a given time by the economic conditions that determine it. Therefore, this

model may help in explaining the observed persistence of the city size distribution in

the short term (Kim, 2000; Beeson et al., 2001), because the previously mentioned elas-

ticities probably have a slow time variation. However, in the long term the variations

can be quite remarkable, as Batty (2006) points out.

The content of the last paragraph leads us to two important outcomes. First, the

urban policy implications of the previous discussion are, in our opinion, important.

Second, the interpretation of the city size distribution as a steady state (by definition,

with no time changes at all) of a stochastic process is not the only possible approach. In

our framework the city size distribution can be interpreted as an equilibrium given the

economic conditions at a given time. Our model is static in nature but also explains the

evolution of the city size distribution, in the sense that if the elasticities of the model

do change with time, the distribution will change as well.

5 The databases

In this article, we have used data about US urban centres from two sources. The first is

the decennial data of the US Census Bureau of “incorporated places” without any size

restriction from 1900 to 2000. These include governmental units classified under state

15



laws as cities, towns, boroughs, or villages. Alaska, Hawaii and Puerto Rico have not

been considered due to data limitations. The data has been collected from the original

documents of the annual census published by the US Census Bureau.8 This data was

first introduced in González-Val (2010), see therein for details.

The second source consists of all US urban places, unincorporated and incorpo-

rated, and without size restrictions, also provided by the US Census Bureau for the

years 2000 and 2010. The data for the year 2000 was first used in Eeckhout (2004) and

later in Giesen et al. (2010), Ioannides and Skouras (2013) and Giesen and Suedekum

(2014). The two samples were also used in González-Val et al. (2015).

We do not consider, on the other hand, data like Economic Areas, Core Based

Statistical Areas (CBSA), or MSAs. These three types violate our principle that the

small nuclei do matter and that there should be no truncation point: there are only 366

MSAs, 940 CBSAs, and less than 200 Economic Areas in 2010.

The descriptive statistics of the data sets used in this paper can be seen in Table 1.9

6 Results

We will show briefly in this section how our new distribution, the tdPGB2, performs in

fitting the size of US places (incorporated and all), compared to well-known distribu-

tions of city size as the lognormal (lgn) and the double Pareto lognormal (dPln).

First, Table 2 shows the maximum likelihood estimation (MLE)10 results for the

used distributions. We can observe that the estimations are rather precise in all cases.

We have shown in Table 3 the results of the Kolmogorov–Smirnov (KS), Crámer–

8http://www.census.gov/prod/www/decennial.htmlLast accessed: May 6th, 2016.
9The results for the remaining years of incorporated places in the period 1900–2000 are similar and are

not shown for the sake of brevity. They are avaliable from the authors upon request. The previous statement

also applies to all the tables in Section 6.
10We have performed all the estimations using the numerical mle command of MATLABr, on an

equal footing for all the parameters. The standard errors were computed independently using the software

MATHEMATICAr.
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von Mises (CM) and Anderson–Darling (AD) tests for the studied samples and density

functions used. The AD test is very appropriate when one wants to assess the adequacy

of the distributions at the tails, see, e.g., Cirillo (2013). The first remarkable result is

that the lognormal (lgn) is always strongly rejected, so this specification seems not to

be as good as a parametric description in practice, at least for US places.11 The second

observation is that a similar thing happens for the double Pareto lognormal (dPln): it

is rejected almost always, with the only exception being the sample of incorporated

places in 1900.

In addition, at the same time and with the same techniques, the proposed tdPGB2 is

never rejected by any of the three tests. In this respect, the differences in the statistics

of the used tests are relevant when going from the lognormal to the dPln and then to the

tdPGB2. This means that the tdPGB2 is a good parametric specification for the size of

US places.

Lastly, we have shown in Table 4 the results of the Akaike Information Criterion

(AIC) and the Schwarz or Bayesian Information Criterion (BIC), which are standard in

the literature, in order to choose between the proposed distributions. We can see that

the selected specification is the tdPGB2 by both AIC and BIC criteria.

7 Conclusions

This paper has tried to contribute, both from a theoretical perspective and from an

empirical approach, to the literature on city size distributions.

To summarize, the contributions from the theoretical point of view are the follow-

ing. The main result is that the new statistical distribution introduced in this paper,

namely the “threshold double Pareto Generalized Beta of the second kind” (tdPGB2)

is deduced using a simple model in which a social planner allocates the population of a

11This fact has been previously highlighted by Giesen and Suedekum (2014).
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country in cities of different sizes so as to maximize the net output of the whole urban

system. There are four basic features of this model. First, that it is built up piecewise,

taking into account the specific particularities of the lower tail, the body and the up-

per tail. Second, the production function is increasing and concave in the number of

cities, so that it complies with the law of diminishing returns. Third, the human capital

stock of a city is increasing with respect to city size. And fourth, the congestion costs

that lessen the gross output of each urban unit are also increasing with respect to cities

population.

The theoretical parameters of the overall distribution are given explicitly, at any

given time, in terms of the elasticities of the gross output with respect the number of

cities, of human capital stock with respect to city size, and of costs with respect to city

size. Economic conditions may change and accordingly the associated elasticities, thus

determining the resulting city size distribution. This fact opens the door for urban eco-

nomic policy recipes trying to govern the economic conditions previously mentioned.

Therefore, our approach is rooted in economic modelling, rather than in pure statistical

reasoning.

Empirically, the data sets we have shown are those of the US incorporated places

in 1900, 1950, and 2000. Also, all US places in 2000 and 2010. As mentioned, we

have introduced the tdPGB2 distribution. It is pure Pareto at both tails and Generalized

Beta of the second kind (GB2) on the body. This new density function outperforms

the most widely used ones in the literature, namely, the Pareto, the lognormal and

the double Pareto lognormal (dPln). In fact, the tdPGB2 is the distribution chosen

to describe US places, incorporated and all. These results are robust to a battery of

different independent criteria: Kolmogorov–Smirnov, Crámer–von Mises, Anderson–

Darling tests; Akaike Information Criterion and Bayesian Information Criterion.

From an empirical point of view, the main contributions of this paper are the fol-

lowing:
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i) A classical distribution, with underlying theoretical model (Eeckhout, 2004), the

lognormal, is surpassed by the tdPGB2.

ii) A newer distribution, the dPln, also with underlying theoretical foundations

(Giesen and Suedekum, 2014), is outperformed by the new tdPGB2.

iii) The new distribution confirms something that has been known for a long time:

that the upper tail can be taken as pure Pareto. Moreover, also the lower tail can

be taken as pure Pareto.

iv) The Generalized Beta of the second kind distribution improves the performance

compared to the lognormal for the body, and this distinction has an economic

theoretical origin.

The empirical results are in good agreement with the theoretical model developed,

based on economic foundations. Both theory and empirical support may lead to a new

way of looking at city size distributions.
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Table 1: Descriptive statistics of the US data samples used

Sample Obs. % of US pop. Mean SD Mean (log scale) SD (log scale) Min. Max.

Inc. places 1900 10,596 46.99 3,376 42,324 6.65 1.26 7 3,437,202

Inc. places 1950 17,113 63.48 5,613 76,064 6.84 1.50 1 7,891,957

Inc. places 2000 19,296 61.49 8,968 78,015 7.18 1.78 1 8,008,278

All places 2000 25,358 73.98 8,232 68,390 7.28 1.75 1 8,008,278

All places 2010 29,461 74.31 7,826 65,494 7.11 1.82 1 8,175,133

Table 2: ML estimators and standard errors (SE) of the parameters of the dPln and

tdPGB2 for the US places samples. The estimators for the lognormal are the mean and

the standard deviation of the logarithm of population data, see Table 1

dPln

α (SE) β (SE) µ (SE) σ (SE)

Inc. places 1900 0.92 (0.01) 2.64 (0.06) 5.95 (0.01) 0.58 (0.01)

Inc. places 1950 0.80 (0.01) 2.15 (0.04) 6.06 (0.01) 0.78 (0.01)

Inc. places 2000 0.87 (0.01) 3.62 (0.09) 6.31 (0.01) 1.36 (0.01)

All places 2000 1.22 (0.01) 3.15 (0.08) 6.78 (0.01) 1.52 (0.01)

All places 2010 1.12 (0.01) 3.03 (0.07) 6.54 (0.01) 1.55 (0.01)

tdPGB2

ρ (SE) ǫ (SE) a (SE) b (SE)

Inc. places 1900 1.88 (0.17) 58 (7) 2.350 (0.030) 242 (3)

Inc. places 1950 1.43 (0.07) 62 (2) 1.063 (0.005) 49 (1)

Inc. places 2000 1.51 (0.07) 43 (4) 0.699 (0.003) 36 (1)

All places 2000 1.52 (0.03) 102 (4) 0.473 (0.002) 223 (3)

All places 2010 1.32 (0.02) 132 (3) 0.497 (0.003) 318 (5)

tdPGB2

p (SE) q (SE) τ (SE) ζ (SE)

Inc. places 1900 1.271 (0.018) 0.305 (0.005) 2,472 (227) 1.001 (0.018)

Inc. places 1950 7.882 (0.068) 0.679 (0.006) 15,968 (1,164) 1.082 (0.028)

Inc. places 2000 7.201 (0.055) 0.895 (0.007) 55,595 (2,537) 1.380 (0.043)

All places 2000 4.592 (0.027) 2.182 (0.011) 54,016 (3,094) 1.445 (0.042)

All places 2010 3.068 (0.022) 1.878 (0.010) 56,703 (3,238) 1.430 (0.040)
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Table 3: p-values (statistics) of the Kolmogorov–Smirnov (KS), Cramér–Von Mises

(CM) and Anderson–Darling (AD) tests for US places and the density functions used.

Non-rejections at the 5% significance level are in bold

lgn dPln

KS CM AD KS CM AD

Inc. places 1900 0 (0.07) 0 (17.22) 0 (100.47) 0.17 (0.01) 0.11 (0.34) 0.10 (1.97)

Inc. places 1950 0 (0.06) 0 (17.56) 0 (104.90) 0 (0.02) 0 (1.40) 0 (10.48)

Inc. places 2000 0 (0.04) 0 (9.40) 0 (53.66) 0 (0.02) 0 (1.95) 0 (12.63)

All places 2000 0 (0.02) 0 (3.03) 0 (19.12) 0 (0.02) 0 (1.45) 0 (8.98)

All places 2010 0 (0.02) 0 (4.57) 0 (29.48) 0 (0.02) 0 (1.73) 0 (11.73)

tdPGB2

KS CM AD

Inc. places 1900 0.978 (0.005) 0.971 (0.032) 0.989 (0.205)

Inc. places 1950 0.994 (0.003) 0.990 (0.025) 0.989 (0.206)

Inc. places 2000 0.986 (0.004) 0.974 (0.031) 0.986 (0.214)

All places 2000 0.969 (0.003) 0.936 (0.039) 0.971 (0.249)

All places 2010 0.899 (0.004) 0.814 (0.060) 0.769 (0.478)

Table 4: Maximum log-likelihoods, AIC and BIC for US places and the density func-

tions used. The lowest values of AIC and BIC for each sample are in bold

lgn dPln

log-likelihood AIC BIC log-likelihood AIC BIC

Inc. places 1900 -87,943 175,891 175,905 -87,254 174,516 174,545

Inc. places 1950 -148,254 296,512 296,528 -147,593 295,194 295,225

Inc. places 2000 -177,127 354,258 354,274 -176,931 353,870 353,901

All places 2000 -234,773 469,550 469,566 -234,710 469,428 469,461

All places 2010 -268,748 537,499 537,516 -268,657 537,323 537,356

tdPGB2

log-likelihood AIC BIC

Inc. places 1900 -87,230 174,476 174,535

Inc. places 1950 -147,471 294,958 295,020

Inc. places 2000 -176,770 353,556 353,619

All places 2000 -234,628 469,272 469,337

All places 2010 -268,520 537,056 537,122
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