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Abstract

Bitcoin is an open source decentralized digital currency and a payment system. It has raised a lot

of attention and interest worldwide and an increasing number of articles are devoted to its operation,

economics and financial viability. This article reviews the econometric and mathematical tools which

have been proposed so far to model the bitcoin price and several related issues, highlighting advan-

tages and limits. We discuss the methods employed to determine the main characteristics of bitcoin

users, the models proposed to assess the bitcoin fundamental value, the econometric approaches sug-

gested to model bitcoin price dynamics, the tests used for detecting the existence of financial bubbles

in bitcoin prices and the methodologies suggested to study the price discovery at bitcoin exchanges.
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1 Introduction

Bitcoin is an online decentralized currency that allows users to buy goods and services and execute

transactions, without involving third parties. It was launched in 2009 by a person or (more likely) by a

group of people operating under the name of Satoshi Nakamoto. Bitcoin belongs to the large family of

“cryptocurrencies”, which are based on cryptographic methods of protection. The main characteristic

of these currencies is their decentralized structure: there is no central authority which issues and regu-

lates the currency, and transactions are executed using a peer-to-peer crypto-currency protocol without

intermediaries. Introductory surveys about bitcoin structure and operation can be found in Becker et

al. (2013), Segendorf (2014), Dwyer (2014), Böhme et al. (2015), or simply in Bitcoin (2015). Several

central banks also examined bitcoin, see Velde (2013), Lo and Wang (2014), Baden and Chen (2014), Ali

et al. (2014), and ECB (2012, 2015). Discussions of bitcoin as a potential alternative monetary system

can be found in Rogojanu and Badea (2014) and Weber (2016), while the economics of bitcoin mining

are examined in Kroll (2013). Analyses of the legal issues involved by using bitcoin can be found in Allen

(2015) and Murphy et al. (2015).

The goal of this article is to review the econometric and mathematical tools which have been proposed

so far to model the bitcoin price and several related issues. To our knowledge, such a review is missing

in the financial literature and it can be of interest to both market professionals and researchers alike,

given the early stages of the empirical literature devoted to bitcoin.

The rest of the paper is organized as follows. Section 2 introduces crypto-currencies with a particular

focus on bitcoin, and briefly explains how bitcoin works. Section 3 reviews the studies devoted to the

analysis of the characteristics of bitcoin users, while Section 4 discusses the main models proposed to

assess the bitcoin fundamental value, ranging from market sizing to the bitcoin marginal cost of pro-

duction based on electricity consumption. Section 5 describes several econometric approaches suggested

to model bitcoin price dynamics, starting with cross-sectional regression models involving the major-

ity of traded digital currencies and then moving to univariate and multivariate time series models, till

models in the frequency domain. Section 6 reviews the tests employed for detecting the existence of

financial bubbles in bitcoin prices and which can be broadly classified into two large families, depending

on whether they are intended to detect a single bubble, or (potentially) multiple bubbles. Section 7

examines the methodologies suggested to estimate the information share of various bitcoin exchanges

with respect to the information generated by the whole market, which is of great importance for both

short-term traders and long-term investors who want to know which exchange reacts most quickly to

new information. Section 8 briefly concludes and highlights several possible avenues for further research.
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2 Definition of Crypto-currencies and Bitcoin

2.1 How Bitcoin works

2.1.1 Digital signatures and cryptographic hash function

The Bitcoin network uses cryptography to validate transactions during the payment processing and create

transaction blocks. In particular, Bitcoin relies on two cryptographic schemes: 1) digital signatures and

2) a cryptographic hash function. The first scheme allows the exchange of payment instructions between

the involved parties, while the second is used to maintain the discipline when recording transactions to

the public ledger (known as Blockchain). It should be noted that none of these schemes is unique to

Bitcoin, since they are widely used to protect commercial and government communications. A short

description of how the Bitcoin network works is reported below, while more details can be found in

Becker et al. (2013), Segendorf (2014), Dwyer (2014), Böhme et al. (2015), or simply in Bitcoin (2015).

Digital signatures are used to authenticate digital messages between a sender and a recipient, and

they provide:

(i) Authentication: the receiver can verify that the message came from the sender;

(ii) Non-repudiation: the sender cannot deny having sent the message;

(iii) Integrity : the message was not altered in transit.

The use of digital signatures includes public key cryptography, where a pair of keys (open and private)

are generated with certain desirable properties. A digital signature is used for signing messages: the

transaction is signed using a private key, and then transferred to the Bitcoin network. All the members

of the network can verify that the transaction came from the owner of the public key, by taking the

message, the signature, the public key and by running a test algorithm.

A cryptographic hash function takes as input a string of arbitrary length (the message m), and returns

the string with predetermined length (the hash h). The function is deterministic, which means that the

same input m will always give the same output h. In addition,the function must also have the following

properties:

(i) Pre-image resistance: for a given hash h, it is difficult to find a message m such that hash(m) = h

(ii) Collision resistance: for a given message m1 it is hard to find another message m2 such that hash

(m1) = hash (m2). In other words, a change in the message leads to a change in the hash.

The output of the hash function looks like to be random, although it is completely deterministic. The

Bitcoin network mainly uses the secure hash algorithm SHA-256 / type Secure Hash Algorithm (SHA-2),
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designed by the National Security Agency and published by the National Institute of Standards and

Technology, see Dang (2012) for details.

2.1.2 Possession of bitcoins and bitcoin addresses

From a technical standpoint, bitcoins stay in the Bitcoin network on bitcoin-addresses. The ownership

of a certain number of bitcoins is represented by the ability to send payments via the Bitcoin network

using the bitcoins attached to these addresses. The ability to send payments to other bitcoin addresses

is controlled by a digital signature, which include a public key and a private key. In particular, every

bitcoin address is indexed by a unique public ID, which is an alphanumeric identifier, which corresponds

to the public key. The private key controls the bitcoins stored at that address. Any payment (i.e. a

message) which involved this address as the sending address must be signed by the corresponding private

key to be valid. In straight terms, the possession of bitcoins at a specified bitcoin address is given by the

knowledge of the private key corresponding to that address.

At any point in time, every bitcoin address is associated with a bitcoin balance, which is public

information. Each existing or proposed (broadcasted) transaction can be checked for compliance with

the past transaction history, i.e. it is possible to verify that the transferred bitcoin do exist at the

corresponding bitcoin address.

2.1.3 A transaction in the block chain

The agents who process transactions in the Bitcoin network use a set of bitcoin addresses called wallet,

which is the set of bitcoin addresses that belong to a single person/entity. Each transaction record

includes one or more sending addresses (inputs) and one or more receiving addresses (outputs), as well

as the information about how much each of these addresses sent and received. An example of a typical

transaction is shown in Fig. 1.

In the example Alisa sends to Bob an amount of 8 BTC. This transactions has two inputs (2 and

7 BTC) and two outputs (8 and 1 BTC), where the transaction involving 1 BTC can be considered

essentially as the change of the transaction, which is returned back to Alice. Since each transaction can

have multiple sending addresses and receiving addresses, it is often impossible to link a specific sending

address to a specific receiving address. The consequence of this is that you cannot assign a serial number

to a specific bitcoin and trace its path in the Bitcoin network.

Transaction processing in the Bitcoin network is based on mechanisms which ensure that (a) the

verification of each transaction is distributed among several network members; (b) the record of each

transaction is discrete with respect to time, i.e. the transactions are linearly ordered with successive time

stamps; (c) the participants in the payment network compete and are rewarded for the recording of the
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Figure 1: A typical transaction in the Bitcoin network

transactions in a [Bitcoin network] block; (d) multiple nodes cross-check each recorded transaction.

2.1.4 Starting a transaction

Suppose Alice wants to send Bob 1 bitcoin using the Bitcoin network. To do this, Alice and Bob must

have a bitcoin address. Let’s call them ID Alice and ID Bob. Then, Alice needs to send and digitally

certify the authenticity of the message, of this type

“ID Alice sends ID Bob 1 bitcoin.”

After Alice signs the transaction message with her private key and sends it, any participant in the

Bitcoin network can verify Alice sent the message, and the message has not been altered. Moreover, as

we discussed earlier, the digital signature guarantees that no one else could sign the message, so that

Alice cannot deny that it has signed the message.

2.1.5 Checking a transaction

Before executing a transaction, the Bitcoin protocol must verify two aspects of the communication: first,

whether it was Alice who sent the message. The digital signature scheme ensures that only the owner

of the private key for that address may sign a message; secondly, to check whether there are sufficient

funds in the address to ensure the completion of the transaction.

Although the record keeping and the verification of transactions are the main features of electronic

payment systems, these functions are usually carried out through private registries, supported by trusted

third parties. Decentralized systems such as Bitcoin, replace the third-party intermediaries and store

transaction records on a public ledger, which is maintained by a distributed information system.

5



2.1.6 Updating the Blockchain

After the initial check of the transaction signed messages, validation nodes in the Bitcoin network begin

to compete for the opportunity to record a transaction in the Blockchain. First, in the block of the

transaction, competing nodes start putting together transactions, which were executed since the last

record in the Blockchain. Then, the block is used to define a complex computing task. The node that

first solves this task proceeds to record the transactions on the Blockchain and collects a reward.

The task which the competing nodes try to solve is based on one of the encryption schemes described

above - the hash function. First, the block of the newly broadcasted transactions is again used as input

for a cryptographic hash function to obtain a hash called digest. This digest, together with a one-time

random code nounce (that is an alphanumeric string) and the hash of the previous block are used in

another hash function that produces the hash of the Blockchain for the new block. The problem that

the nodes have to solve includes finding such a random code, so that the hash of the new Blockchain has

certain properties (in this case has a number of initial zeros). The first of the competing nodes which

will find the right random code, transfers this information to the other participants in the network, and

the Blockchain is updated. The implementation of this scheme is the so-called Hashcash - a proof that

the system is operating properly (proof-of-work), and whose aim is to ensure that the computers use a

certain amount of computing power to perform a task (see Beck (2002) for more details).

The nodes that perform the process of the proof-of-work in the Bitcoin network are called miners.

These miners use their computing resources in this process with the goal to obtain the reward offered

by the Bitcoin Protocol. Usually the reward is a predetermined number of newly created bitcoins.

The rest of the reward (which is currently much smaller), is a voluntary transaction fee paid by those

executing the transaction to the miners for transaction processing. The initial idea was that these

voluntary contributions would replace the predetermined compensation of newly created bitcoins when

this amount will tend to zero over time and a new incentive will be needed to stimulate the miners to

process the transactions in the Bitcoin network (see Nakamoto (2009) for details).

2.2 Statistics of the Bitcoin network

2.2.1 Capitalization

At the time of writing this paper, more than 15 million bitcoins have been mined. The price of one

bitcoin in first four months of 2016 was in the range of 400-460 USD (see Fig.2). Therefore, the total

value of all issued bitcoins was close to 7 billion U.S. dollars. The market capitalization of bitcoin is

approximately 10 times higher than the second largest crypto currency, so that bitcoin is (currently) the

undisputed leader.
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The value of a digital currency is highly dependent on the number of participants, which in turn

attracts more participants, powering a network effect. Therefore, bitcoin enjoys a significant first-mover

advantage which has three aspects:

• the more users it has, the more useful Bitcoin becomes: there are more places where you can spend

bitcoins, and business partners with whom you can exchange bitcoins, which in turns attracts more

users;

• currencies require trust, but it can only be obtained over time, so that, ceteris paribus, the oldest

currency has a natural advantage over competitors;

• the greater the volume, the higher the transaction fees, which attracts more miners and makes the

network more secure, which in turn again attracts more users and traded funds.

With currencies that serve as a store of wealth, there is an additional lock-in effect as it is takes effort

to transfer that wealth into other currencies. Thus, there are multiple effects in place that makes it very

hard to dethrone Bitcoin. At this point in time, Bitcoin is the strongest leader among crypto currencies.

Figure 2: Market price of 1 Bitcoin in US dollars (2009-2016)

2.2.2 Network power

The value of the miners’ hardware exceeds $ 300 million, while the total computing power supporting

the

Bitcoin network is approximately 800 Peta-hashes/s (see Fig. 3).

The total daily revenue from fees paid to miners for recording transactions and validating new blocks

is approximately 1,2-1,5 million US dollars. The number of open bitcoin wallets is higher than 15 million.

On average in 2015, bitcoin users make more than 200 thousand transactions per day (see Fig.4).
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Figure 3: Computing power in the Bitcoin network: 01.01.2009 - 31.12.2015

Figure 4: Number of transactions in the Bitcoin network: 01.01.2009 - 31.12.2015

The number of transactions has a natural limit related to the block size (1Mb or about 1500 trans-

actions). Considering the average time required for mining a new unit (10 min), the theoretical limit of

the Bitcoin network is currently 7 transactions per second, or about 600 thousand transactions per day.

The bitcoin community is actively looking for an optimal solution to increase the block size. Among the

main initiatives, we cite the SegWit software which would increase the block size approximately 1.5-2

time, and Lightning Network designed to build a liquidity network hub for micro-payments using secure

p2p channels with the opportunity to significantly reduce costs.
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3 Who uses Bitcoin? A review of econometric analysis of Bit-

coin users

The Bitcoin system has attracted attention worldwide and the number of scientific papers devoted to

it is steadily increasing, see Bohme et al. (2015) and https://en.bitcoin.it/wiki/Research for

more details. Unfortunately, a very limited number of studies has been devoted to the analysis of the

characteristics of Bitcoin users, which could give a better understanding of this phenomenon and its

future perspectives. The relative scarcity of academic interest in this field should not come as a surprise,

given the extreme difficulty to gather data about Bitcoin users, who mostly want to remain anonymous.

A couple of works tried to overcome this problem by interviewing a dozen of Bitcoin users, see Baur et

al. (2015) and Huhtinen (2014).

Bohr and Bashir (2014) were the first to analyze a larger structured dataset, consisting of a survey

conducted in 2013 by Lú́ı Smyth, at that time a digital anthropology researcher at the University College

London. This survey consists of 1193 responses collected from February 12, 2013 through April 4, 2013.

Bohr and Bashir (2014) tried to answer three research questions:1) what predicts the accumulation of

wealth among Bitcoin users; 2) what predicts optimism about the near- and long-term value of Bitcoin;

3) what attracts people to Bitcoin. The first issue was examined by performing a simple regression of

the self-reported amount of bitcoins owned (transformed to their log base 2 values to avoid skewness)

against a set of Bitcoin users’ characteristics extracted from the survey:

• the user Age and the user Age squared to account for nonlinearity;

• a variable named “Installation”, which refers to when respondents first downloaded the Bitcoin

client (software that connects to the Bitcoin network), and ranges from 1 = the first quarter of

2009 to 17 = the first quarter of 2013, and which is then centered on the mean;

• a dummy variable named “Miner” to account for whether or not individuals had ever gone through

the process mining bitcoins themselves;

• an interaction term “Installation x Miner”, to test whether early Bitcoin miners obtained a large

advantage in Bitcoin accumulation versus late adopters of Bitcoin;

• a dummy variables named “Bitcoin sins”, which is 1 if the respondent admitted to mining bitcoins

through someone else’s hardware without their permission (via malware), or to steal someone else’s

bitcoins;

• a dummy variables named “Lives in U.S”;
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• a dummy variables named “Illicit goods”, which is 1 if the respondent admitted to purchasing

narcotics, gambling services, or other illicit goods with their bitcoins.

• a dummy variables named “Bitcoin talk”, which is 1 if the respondent indicated that he/she uses

Bitcoin-specific platforms to talk with others about Bitcoin;

• a dummy variables named “Investor” , which is 1 if the respondent self-described their role within

the context of Bitcoin as an investor.

• integer variables named “profit” and “community” ranging from 1 = not motivating to 5 =very

motivating, for whether the respondents considered profit or community as motivating factors for

their initial involvement with Bitcoin

Bohr and Bashir (2014) found that age was a statistically significant factor in predicting the amount

of bitcoin a respondent held: young respondents hold fewer bitcoins, but the amount approximately

double every 10 years reaching a maximum between 55 and 60 years old, similarly to accumulation

across other asset classes. The interaction term Installation cdot Miner is significant, confirming that

mining bitcoins was easier during the early days of its operation, so that early adopter miners gained

an advantage in Bitcoin accumulation. Those who actively participated in bitcoin online communities

owned twice as much bitcoin as those who do not, while those users who self-identified themselves as

investors had accumulated about four times as many bitcoins as those who did not. Ceteris paribus,

Bitcoin users who purchased illicit goods, such as narcotics, had up to 45% more bitcoin holdings than

those who bought only legal goods

Bohr and Bashir (2014) then performed two additional regressions, where the near-term (four months

from time of survey) and the long-term (six years from time of survey) expected values of one bitcoin in

USD where regressed against the previous set of variables: older users were found to be less optimistic

than younger users, with optimism peaking at about age 35, while the higher is the level of social

engagement on online forums, the higher the predicted price. Interestingly, the later Bitcoin installers

were more optimistic about the near-term value, while miners were more pessimistic than non-miners

regarding the long-term value of Bitcoin.

In a second stage of their analysis, Bohr and Bashir (2014) divided users based on their description

of Bitcoin in relation to anonymity freedom, and banking system, and analyzed these three groups

using logistic regression. They found that users’ political identity was not a factor in predicting whether

respondents valued bitcoin for its anonymity, and the only significant variable that suggested a preference

for anonymity was whether a user was a miner or not. Users who favored bitcoin for its potential to disrupt

the banking system were found to be above the age of 40, residing outside the US and identified themselves
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politically as greens. Finally, users who like bitcoin for its freedom-promoting qualities were found to

politically identify as libertarian, residing outside the US and aged between 30 and 39. Interestingly,

the authors themselves are well aware of the limits of their dataset and ask the reader to consider their

results with caution: the (self-selected) sample may not be representative of the full population of Bitcoin

users and it considers only the English-speaking bitcoin community. Besides, the survey is quite out of

date being collected before the implosion of the now bankrupt exchange Mt.Gox which lost hundreds of

thousands of coins. Despite these limits, it is definitely a start and a stimulus to future research.

Yelowitz and Wilson (2014) attempted to solve the problem of a small dataset by using the Google

Trends data to examine the determinants of interest in Bitcoin. Google Trends can be used either to

extract data for precise search terms or for general topics, where in the latter case related searches are

also considered. More specifically, they built proxies for four possible Bitcoin users classes -computer

programming enthusiasts, speculative investors, Libertarians and criminals-, as well as for Bitcoin interest

for each US state. They searched topics for Bitcoin (under the category ‘Currency’), Computer Science

(under the category ‘Discipline’), whereas for the remaining clienteles – Illegal Activity, Libertarians

and Speculative Investors – they used the search terms ‘Silk Road’, ‘Free Market’ and ‘Make Money’,

respectively. We remark that the Google Trends data represent how many web searches were performed

for a particular keyword (or keywords) in a given week and in a given geographical area, relative to the

total number of web searches in the same week and area. The resulting index is then rescaled by Google

between 0 and 100 dividing it by its largest value and multiplying the result by 100. For each US state,

Yelowitz and Wilson (2014) initially computed a 31-month time series (from January 2011 to July 2013)

for the relative popularity of Bitcoin and each clientele grouping. They then used Google Trends to

measure relative state-level popularity of each search term for the full period and scaled each state-series

relative to the most popular state. This type of analysis has two limits: Google samples its database

everytime a query is requested, so that an exact replication is not possible, even though the qualitative

results do not change (see also section 4.4. in Fantazzini and Toktamysova (2016) for a discussion of

this issue); Google Trends gives a value of zero, if the number of searches it too low1. Out of 1488 (48

states× 31 months) potential observations, Yelowitz and Wilson (2014) used 794 with non-zero values.

Following Stephens-Davidowitz (2014), they normalized each search rate to its z-score and estimate the

following panel regression:

BITCOINjt = β0 + β1Xjt + δj + δt + εjt

where BITCOIN jt is Bitcoin interest in state j in month t, Xjt is clientele interest, and δj and δt are

state and time fixed effects. Each state-month is weighted by state population in July 2011, and the

1https://support.google.com/trends/answer/4355213?hl=en&ref topic=4365599
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standard errors are corrected for non-nested two-way clustering at the state and time levels, see Cameron

et al., (2011) for details. Yelowitz and Wilson (2014) employed a large set of model specifications,

progressively including additional controls for state and time, control variables like unemployment rate

and unrelated ‘placebo variables’, interaction terms of the original variables with bitcoin prices. Moreover,

some specifications were estimated using data from 2012 onwards (when Bitcoin was more popular) or

for the 24 US states with at least 20 monthly observations. In all cases, they found a positive association

between Bitcoin interest and their two clientele groups of computer programming enthusiasts and those

possibly engaged in illegal activity, while no significant association with those interested in the Libertarian

ideology or in investment motives.

The work by Yelowitz and Wilson (2014) solved some problems of the analysis by Bohr and Bashir

(2014), but it is still related only to the US bitcoin community and its data were collected before the

bankruptcy of the exchange Mt.Gox. Nevertheless, it proposed some ideas that will be later included

into more complex models suggested for modelling bitcoin price dynamics, and which will be reviewed

in section 5.

4 What is bitcoin’s fundamental value? A review of financial

and economic approaches

The value of bitcoin has been subject to strong volatility over the past years, raising the question of

whether it is purely a bubble. One way to answer this question is to use tests for financial bubbles and

we will review them in section 6. Another possibility is to try to assess its intrinsic (or fundamental)

value. In this regard, two approaches have been proposed so far: market sizing and the (marginal) cost

of production based on electricity consumption.

4.1 An upper bound: Market Sizing

Market sizing is basically the process of estimating the potential of a market and this is widely used by

companies which intend to launch a new product or service. This approach has been recently used by

some financial analysts and researchers to get a ballpark estimate for Bitcoin’s fair value.

Woo et al. (2013) in a Bank of America Merrill Lynch report estimated separately the value of bitcoin

as a medium of exchange and as store of value and then summed them up to get a rough estimate of

bitcoin fair value. More specifically, to compute the value as medium of exchange, they considered two

uses for bitcoin: e-commerce and money transfer. As for the former, they first get an estimate of the

money velocity by dividing the US personal consumption (CUS) expenditures by the household checking
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deposits and cash (HSUS) and compute the average of this value over the past 10 years. Then they

multiply the money velocity for the total B2C e-commerce sales in the previous year, assuming that the

velocity for on-line sales is the same as the velocity for all US household spending. Third, they assume

that Bitcoin will grow to account for the payment of 10% of all on-line shopping (Bitcoinshare), so that

they estimated that US households would want to have a balance of $1bn worth of Bitcoins. Finally,

given that US GDP was approximately 20% of world GDP, they multiply the previous amount by 5,

getting to $5bn worth of Bitcoins for the total global on-line shopping. In formulas, we have:

Ve−commercet
=

1

10

(

10
∑

i=1

CUSt−i

HDUSt−i

)

· B2Ct−1 ·Bitcoinshare ·
GDPworldt−1

GDPUSt−1

Woo et al. (2013) highlighted that, in addition to its role as a mean for payment for on-line commerce,

Bitcoin can be used for transfer of money. They considered the three top players in the money transfer

industry - Western Union, MoneyGram, and Euronet - (with about 20% of the total market share) and

assumed that Bitcoin could become one of the top three players in this industry. They then put forward

the strong assumption that Bitcoin’s market capitalization could be used as its enterprize value, so that

they add the average market capitalization of Western Union, MoneyGram and Euronet (approximately

$4.5bn), to the maximum market capitalization of Bitcoin’s role as a medium of exchange:

Vmoney transfert
=

1

3
(MKWUt

+MKMGt
+MKEt

)

Woo et al. (2013) suggested that the closest assets to bitcoin as a store value are probably precious

metals or cash. Particularly, bitcoins and gold share three characteristics: they do not pay any interest,

the supply of both is limited, and both are more difficult to trace than most financial assets (except

cash). Considering that the outstanding value of gold bar/coins/ETFs (in 2013) was approximately

$1.3trn and that bitcoin is much more volatile that gold, Woo et al. (2013) assumed that the market

capitalization of Bitcoins cannot go above $300bn: moreover, assuming that Bitcoin were to eventually

acquire the reputation of silver and that gold price was (in 2013) approximately 60 times that of silver,

they suggested that the Bitcoin market capitalization for its role as a store of value could reach $5bn.

Interestingly, they noted that this value is close to the value of the total US silver eagles minted since

1986 (around $8bn - 12k tons). Therefore, a simple rough way to get the Bitcoin market capitalization

as a store of value is:

Vstore of valuet
= 0.6 · TSMt · Psilver,t

where TSM t is the total sum of all US silver eagles minted since 1986 at time t, while Psilver,t is the
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price for 1 troy ounce of silver at time t.

Finally, Woo et al. (2013) computed the potential bitcoin fair value as the sum of the maximum

market capitalization for Bitcoins for its role as a medium of exchange and as a store of value, divided

by the total number of bitcoin in circulation (TBt), thus obtaining a maximum fair value of Bitcoin

approximately equal to $ 1300:

Pbitcoint
=

(Ve−commercet
+ Vmoney transfert

+ Vstore of valuet
)

TBt

A different approach for market sizing is employed by Bergstra and de Leeuw (2013), who compared

Bitcoin with a high tech startup which will either become dominant on its market or it will fail, following

an idea suggested by Yermack (2013). They supposed that if Bitcoin will be successful and survive till

2040, then it will represent half of all money world wide. Given the technical novelty of the Bitcoin

system, they assigned a very low probably (p) this to happen: one in a 100.000. Assuming that the total

money mass (MM ) in 2040 will be 1014 Euro (as a pure guess), their estimate for the bitcoin price is

Pbitcoint
=
MM2040

TB2040
· pt =

1014

2 · 107
· 10−5 = 50 euro

Finally, a similar approach is investigated by Huhtinen (2014), who considered the current money

aggregates M2 for USD, EUR and JPY, and alternative scenarios for the portion of money supply that

could be replaced by bitcoin, instead. He argues that the most realistic replacement level for the three

world currencies is 0.1% and it could be achieved with a bitcoin valuation of EUR 1573.

4.2 A lower bound: the marginal cost of bitcoin production

Market sizing can give an idea of the bitcoin potential in the medium-long term, but it is clearly unsat-

isfactory to explain the short term dynamics of the bitcoin price. In this regard, Garcia et al. (2014)

were the first to suggest that the fundamental value of one bitcoin should be at least equal to the cost

of the energy involved in its production through mining, and this cost should be used as a lower bound

estimate of bitcoin fundamental value More specifically, they divided the cumulated mining hash rate in

a day by the number of bitcoins mined, to obtain the number of SHA-256 hashes needed to mine one

bitcoin. They then used an approximation of the power requirements for mining of 500 W per GHash/s,

which was the average efficiency of the most common graphics processing units used to mine bitcoins

between 2010 and 2013 (at the end of 2015 this is much lower), and an approximation of electricity costs

of $0.15 KWh–1, which was an average of US and EU prices.

More recently, a more refined model for the cost of bitcoin production was developed by Hayes
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(2015a,b) and we discussed it below in details. Hayes (2015a,b) highlights that rational agents would not

undertake production of bitcoins if they incurred a real loss in doing so, and the variables to consider

to decide whether to mine or not are substantially five: 1) the cost of electricity, measured in cents

per kilowatt-hour; 2) the energy consumption per unit of mining effort, measured in watts per GH/s (1

W/GH/s=1 Joule/GH), which is a function of the cost of electricity and energy efficiency; 3) the bitcoin

market price; 4) the difficulty of the bitcoin algorithm; 5) the block reward (currently 25 BTC), which

halves approximately every four years. In a competitive commodity market, an agent would undertake

mining if the marginal cost per day (electricity consumption) were less than or equal to the marginal

product (the number of bitcoins found per day on average multiplied by the dollar price of bitcoin).

Hayes (2015a,b) argues that the speculative and money-like properties of bitcoin (like mean of exchange

and store of value) can surely add a subjective portion to any objective attempt to estimate bitcoin

intrinsic value. However, the marginal cost of production determined by energy consumption might set

a lower bound in value around which miners will decide to produce or not.

Hayes (2015a,b) develops his model by assuming that a miner’s daily production of bitcoin depends

on its own rate of return, measured in expected bitcoins per day per unit of mining power. The expected

number of bitcoins expected to be produced per day can be calculated as follows:

BTC/day∗ = [(β · ρ)/(δ · 232)] · sechr · hrday (1)

where β is the block reward (currently 25 BTC/block) , ρ is the hashing power employed by a miner,

and δ is the difficulty (which is expressed in units of GH/block). The constant sechr is the number of

seconds in an hour (3600), while hrday is the number of hours in a day (24). The constant 232 relates

to the normalized probability of a single hash per second solving a block, and is a feature of the 256-bit

encryption at the core of the SHA-256 algorithm which miners try to solve. These constants which

normalize the dimensional space for daily time and for the mining algorithm can be summarized by the

variable θ, given by θ = 24 hrday· 3600 / 232 sechr = 0.0000201165676116943. Equation (1) can thus be

rewritten compactly as follows:

BTC/day∗ = θ · (β · ρ)/δ (2)

Hayes (2015a,b) sets ρ = 1000 GH/s even though the actual hashing power of a miner is likely to

deviate greatly from this value. However, Hayes (2015a,b) argues that this level tends to be a good

standard of measure under current circumstances.

The cost of mining per day, Eday can be expressed as follows:
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Eday = (price per kWh · 24hrday · W per GH/s)(ρ/1000GH/s) (3)

Assuming that the bitcoin market is a competitive market, the marginal product of mining should be

equal to its marginal cost, so that the $/BTC (equilibrium) price level is given by the ratio of (cost/day)

/ (BTC/day):

p∗ = Eday/(BTC/day
∗) (4)

This price level can be though as a price lower bound, below which a miner would operate at a

marginal loss and would probably stop mining. Alternatively, given the bitcoin market price, Equation

(4) can be inverted to find lower bounds (or break-even values - as defined by Hayes (2015a,b)) for the

other variables that determine bitcoin profitability. For example, given an observed market price (p) and

mining difficulty, the break-even electricity cost in kilowatt-hours is given by

price per kWh∗ = [p(BTC/day∗)/24hrday]/W per GH/s (5)

Similarly, given a known cost of production and observed market price, one can solve for a break-even

level of mining difficulty:

δ∗ = (β · ρ · sechr · hrday/[(Eday/p) · 2
32] (6)

Finally, given a market price, cost of electricity per kilowatt-hour, and mining difficulty, we can find

the break-even energy efficiency,

W per GH/s
∗

= [p(BTC/day∗)/(price per kWh · 24hrday)] (7)

Equation (4) shows that if real-world mining efficiency will increase (as it is widely expected due

to more efficient mining hardware), the break-even price for bitcoin producers will tend to decrease.

For example, Garcia et al (2014) found that the average mining efficiency over the period 2010-2013

was approximately 500 Watts per GH/s, while currently, if we use equation (7) or look at the best

mining hardware available2, the average energy efficiency seem to be close to 0.60-0.90 Watts per GH/s.

Moreover, equations (2) and (4) show that a smaller block reward β, everything else remaining the same,

will increase the bitcoin price: given that the block reward is expected to be halved in 2016 down to

12.5 BTC, if the bitcoin price will not increase, this will indicate that the energy mining efficiency will

2https://en.bitcoin.it/wiki/Mining hardware comparison
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have compensated the decreased block reward. In this regard, a small numerical example can be of help:

suppose that the world average electricity cost is approximately 13.5 cents/KWh (as in Hayes 2015b)

and the average energy efficiency of bitcoin mining hardware is 0.75 J/GH. Then, the average cost per

day for a 100 GH/s mining rig would be approximately equal to (0.135 · 24 · 0.75) · (1,000 /1,000) =

$243/day. The number of bitcoins that a 100 GH/s of mining power can find in a day with a current

difficulty of 60883825480 is equal to 0.0082602265269544 BTC/day. Given that the marginal cost and

the marginal product should be theoretically equivalent, the $/BTC price is given by equation (4): (2.43

$/day) / (0.0082602265269544 BTC/day) ≈ $294.18/BTC, which is not too far from the current market

values of $290-$300/BTC. Interestingly, if we keep the previous data and we halve the Bitcoin reward to

12.5 BTC, the bitcoin fair price should be ≈ $588.36/BTC: will we see a rally in the next months?

5 Modelling bitcoin price dynamics

Almost all empirical analyses devoted to bitcoin prices employed time series methods. However, a

small number of studies used simple cross-sectional regressions which may prove useful because crypto-

currencies are very recent, highly speculative and volatile, so that time series methods can be misleading

and uninformative given the short time span involved (Hayes, 2015b). For sake of generality, we review

both approaches.

5.1 Econometric analyses with cross-section data

Hayes (2015b) performed a regression using a cross-sectional dataset consisting of 66 traded digital

currencies (known collectively as altcoins) based on a theoretical model developed in Hayes (2015c). The

natural logarithm of the altcoin market prices on September 18, 2014 -express in terms of bitcoins- was

regressed against a set of five variables:

• the natural logarithm of the computational power in Giga-Hashes per second ;

• the natural logarithm of the number of (alt-)coins found per minute, computed by dividing the

reward for each mined block and the time between blocks;

• the percentage of coins that have been mined thus far compared to the total that can ever be found;

• a dummy variable for which computational algorithm is employed (’0’ for SHA-256 and ’1’ for

scrypt).

• the number of calendar days from inception of the altcoins through September 18, 2014.
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Hayes (2015b) found that a higher computational power employed in mining for a cryptocurrency,

the higher its price: this result can be expected given that the amount of mining power is a proxy for

the overall use of the altcoin considered. Moreover, a rational miner would only seek to employ mining

resources if the marginal price of mining exceeded the marginal cost of mining. Hayes (2015b) also found

that the number of ’coins’ found per minute is negatively correlated to the altcoin price, which is expected

given that scarcity per mined block tend to lead to a greater perceived value. Another interesting result

is that the altcoins based on the scrypt algorithm are more valuable than those based on SHA-256d,

ceteris paribus. The former algorithm was proposed as a solution to prevent specialized hardware from

brute-force efforts to out-mine others for bitcoins, so that it requires more computing effort per unit than

the equivalent altcoin using SHA-256. Instead, Hayes (2015b) found that the percentage of altcoins mined

thus far compared to what is left to be mined has not statistical influence on the altcoin price: he suggests

that this is due to the fact that altcoins can be divisible down to 8 decimal places by construction, and

that number of decimal places can be increased, potentially without limit. It is our opinion, instead,

that the most likely reason is rather the possibility to increase the total altcoin money supply, provided

a majority of miners agree. Hayes (2015b) also found that the longevity of the cryptocurrency is not

related to altcoin price, which may be due the very short time span considered (the vast majority of

altcoins are less than two years old).

In general, these results can be of great interest to those who want to introduce a successful altcoin:

necessary conditions seem to be the adoption of the scrypt algorithm (or another even more difficult

protocol) and keeping the number of coins found per minute at a relative low level, which can be

accomplished by increasing the time needed to mine a single block and by reducing the reward per each

new block successfully mined. Instead, increasing the computational power dedicated to the altcoin

mining is more difficult and partially out of the control of the altcoin creator, unless very large (and

expensive) investments are made in the altcoin IT infrastructure.

5.2 Econometric analyses with time series data

Kristoufek (2013) is the first author to propose a multivariate approach which focused on the speculative

component of the Bitcoin value, showing that both the bubble and bust cycles of Bitcoin prices can be

partially explained by investors’ interest in the currency. In this regard, the numbers of search queries on

Google Trends and Wikipedia are used as proxies for investors’ interest and attention. More specifically,

Kristoufek (2013) employed a bivariate Vecto-AutoRegression (VAR) model for the weekly log-returns

of bitcoin prices and Google Trends data,
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∆Yt−1=α+ Φ1∆Yt−1+Φ2∆Yt−2+...+Φp∆Yt−p+εt (8)

and a bivariate Vector Error Correction (VEC) model for the daily bitcoin log-prices and Wikipedia

search data,

∆Yt−1=α+ BΓYt−1+ζ1∆Yt−1+ζ2∆Yt−2+...+ζp−1∆Yt−(p−1)+εt (9)

where B are the factor loadings while Γ represents the cointegrating vector. Moreover, Kristoufek (2013)

employed a trivariate VECM with bitcoin log-prices and two variables - Q+
t and Q¯

t - measuring positive

and negative feedback, respectively:

Q+
t = Qt1(Pt−

1
N

∑

N

i=1
Pt−i+1)>0

Q−
t = Qt1(Pt−

1
N

∑

N

i=1
Pt−i+1)<0

(10)

where Qt is the Google/Wikipedia search data at time t and 1 is an indicator function equal to 1 if the

condition in (·) is met and 0 otherwise, while N is the number of periods taken into consideration for the

moving average (N=4 weeks for Google Trends, N=7 days for Wikipedia). Kristoufek (2013) suggested

these two variables can be used as proxies for search-term activity connected with positive (Q+
t ) and

negative (Q¯
t) feedback.

Kristoufek (2013) found a significant bidirectional relationship, where search queries influence prices

and viceversa, suggesting that speculation and trend chasing dominate the bitcoin price dynamics. In-

terestingly, he found that when prices are higher than the recent trend, this will increase investors’

attention, and this action will further increase prices. Similarly, when prices are below their recent trend,

the growing investors’ interest will push prices further down: needless to say, such a market may often

give rise to price bubbles, as we will review at length in section 6.

Garcia et al. (2014) extend the set of variables used by Kristoufek (2013) by considering a dataset con-

sisting of price data, social media activity, search trends and user adoption of Bitcoin. More specifically,

they considered the following variables:

• the number of new Bitcoin users adopting the currency at time t, proxied by the number of

downloads of the Bitcoin software client;

• the bitcoin price expressed in three world currencies (USD, EUR and CNY);

• information search, proxied by normalized daily Google search data (or by daily views of the Bitcoin

wikipedia webpage as a robustness check);
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• information sharing (or online word-of-mouth communication) proxied by the daily number of

Bitcoin-related tweets Bt per million messages in the Twitter feed Tt, calculated as (Bt/Tt)×106.

These data were downloaded from http://topsy.com and considered the daily number of tweets

containing at least one of the following terms: ‘BTC’, ‘#BTC’, ‘bitcoin’ or ‘#bitcoin’ . As a

robustness check, Garcia et al. (2014) also considered an alternative measure of information sharing

represented by the number of ‘reshares’ of the messages posted on the oldest, regularly active public

Facebook page dedicated to Bitcoin.

Garcia et al. (2014) estimated a four-variate VAR(1) model with first-differenced data ranging from

January 2009 up to October 2013 and found two positive feedback loops: a reinforcement cycle between

search volume, word of mouth and price -which they called social cycle-, and a second cycle between

search volume, number of new users and price -denoted as user adoption cycle-. The first cycle shows

that increasing Bitcoin popularity leads to higher search volumes, which leads to increased social media

activity, which then stimulates the purchase of bitcoins by individual users, thus driving the prices up

and eventually feeding back on search volumes. The second cycle shows that new Bitcoin users download

the software client after getting information online about the Bitcoin technology. The increase in the

number of users subsequently drives prices up, given that the number of bitcoins does not depend on

demand but grows with time in a determined fashion. Garcia et al. (2014) also found a negative relation

from online searches to prices, showing that three of the four largest daily price drops were preceded

by the large increases in Google search volume the day before. In this regard, they showed that online

search activity responds faster to negative events than prices, so that search spikes are early indicators

of price drops. A set or robustness checks confirmed the previous findings.

Garcia and Schweitzer (2015) extended the previous VAR(1) model with additional social signals

but, more interestingly, for the first time they implemented an algorithmic trading strategy based on

this VAR model, showing the possibility of high profits, even taking risk and trading costs into account.

More specifically, they used the following variables ranging between February 2011 and December 2014:

• the daily closing bitcoin prices of each day t at 23.59 GMT from coindesk.com;

• the daily volume of BTC exchanged in 80 online markets for other currencies from bitcoincharts.com.

• the daily amount of Block Chain transactions, as measured by blockchain.info every day at

18.15.05 UTC, which they approximated to 00.00 GMT of the next day.

• the amount of downloads of the most popular Bitcoin client from http://sourceforge.net/projects/bitcoin;

• the normalized daily Google trends search volume for the term ‘bitcoin’;
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• the daily amount of unique tweets about Bitcoin binned in 24-hour windows starting at 00.00 GMT

using data from topsy.com ;

• the average daily valence of Bitcoin-related tweets: in psychological research, valence aims at quan-

tifying the degree of pleasure or displeasure of an emotional experience, see Bradley and Lang

(1999), Russell (2003), Garcia and Schweitzer (2012) for more details. Garcia and Schweitzer

(2015) measured the average daily valence using the lexicon technique proposed by Warriner et

al. (2013), which improves the previous ANEW lexicon method by Bradley and Lang (1999) with

more than 13000 valence-coded words. They computed the daily average Twitter valence about

Bitcoin for day t in two steps: first, they measure the frequency of each term in the lexicon during

that day, and second, they computed the average valence weighting each word by its frequency.

• the daily polarization of opinions in Twitter around the Bitcoin topic, computed as the geometric

mean of the daily ratios of positive and negative words per Bitcoin-related tweet. Opinion polar-

ization tries to measure the semantic orientation of words into positive and negative evaluation

terms, see Osgood (1964). Garcia and Schweitzer (2015) used the LIWC psycholinguistics lexicon-

based method by Pennebaker et al. (2007) and expand its lexicon of stems into words by matching

them against the most frequent English words of the Google Books dataset, see Lin et al. (2012)

for details. In the end, Garcia and Schweitzer (2015) considered 3463 positive and 4061 negative

terms. It is important to remark that polarization can be considered a complementary dimension

to emotional valence, because it measures the simultaneous coexistence of positive and negative

subjective content, rather than its overall orientation, see Osgood (1964), Tumarkin and Whitelaw

(2001).

Garcia and Schweitzer (2015) found that only valence, polarization and trading volume have significant

effects on bitcoin price. These selected variables are then used to implement several trading strategies,

which are then compared to traditional strategies like the Buy and Hold strategy, the Momentum strategy

(that predicts that price changes at time t+1 will be the same as at time t), and several others, see

Garcia and Schweitzer (2015) for details. They found that a combined strategy involving the previous

three variables is the best one over their back-testing period, even when taking risk and trading costs

into account. To our knowledge, the work by Garcia and Schweitzer (2015) is the only one so far which

performed a large-scale forecasting back-testing analysis.

Buchholz et al. (2012) expanded the set of variables which may affect the bitcoin price, considering

not only BitCoin attractiveness -measured by Google Trends data-, but also accounting for the impacts

of BitCoin supply and demand. To measure the latter, they considered the total supply of bitcoins

in existence, the total number of bitcoin transactions per day, the total value of bitcoin transactions
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(measured in bitcoins) per day, and the average value of transactions in bitcoins per day (given by

total transaction value divided by total number of transactions). Unfortunately, Buchholz et al. (2012)

employed only bivariate VAR and VEC models without using the full set of variables, potentially leading

to an omitted-variable bias. They also computed a GARCH-in-mean model, where they consider the

volatility component in the mean equation as a proxy for demand for bitcoins; however, the lack of control

variables in the mean equation is again rather problematic. Moreover, several interesting variables which

were discussed at the beginning of their work (like the data on historical news articles and blogs from

LexisNexis) were not examined in their empirical analysis. Despite these shortcomings, the work by

Buchholz et al. (2012) can be considered a seminal paper since it provided several important hints which

were later included in subsequent broader analyses.

Glaser et al. (2014) extended previous research by studying the aggregated behavior of new and

uninformed Bitcoin users within the time span from 2011 to 2013, to identify why people gather infor-

mation about Bitcoin and their motivation to subsequently participate in the Bitcoin system. The main

novelty is the use of regressors that are related to both bitcoin attractiveness and bitcoin supply and

demand. More specifically, they used the following variables:

• daily BTC price data,

• daily exchange volumes in BTC,

• Bitcoin network volume, which includes all Bitcoin transfers caused by monetary transactions within

the Bitcoin currency network,

• daily views on the English Bitcoin Wikipedia page as a proxy for measuring user attention,

• dummy variables for 24 events gathered from https://en.bitcoin.it/wiki/History, including

significant events that may have affected the Bitcoin community. The events focus either on

exceptional positive (new exchange launches, legal successes or significant news articles) or negative

(major system bugs, thefts, hacks or exchange breakdown) news which are directly related to the

Bitcoin system, security and infrastructure.

Glaser et al. (2014) are the first to consider both exchange (EV ) and network volumes (NV ): their

idea is that if a customer want to buy bitcoin to pay for goods or services, exchange and network

volumes will share similar dynamics, otherwise only exchange-based volumes will be affected. To verify

this hypothesis, they employed the following auto-regressive model augmented with the previous lagged

variables and GARCH effects:
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∆Yt = a0 +
∑7
i=1 ai∆EVt−i+

∑7
j=1 aj+7∆NVt−j + a15∆Wikit−1 +

∑n
j=16 aj∆Cj,t−1 + εt

εt ∼ N(0, ht)

ht = b0 + b1ε
2
t−1 + b2ht−1

(11)

where ∆ represents the first difference operator, Yt stands for either Bitcoin network or exchange volume,

Wiki for the Wikipedia Bitcoin traffic and Cj represents lagged returns for the previous control variables,

and for lagged exchange or network volume. The conditional volatility follows a GARCH(1,1) process.

They found that the both increases in Wikipedia searches and in exchange volumes do not impact network

volumes, and there is no migration between exchange and network volumes, so that they argued that

(uninformed) users mostly stay within exchanges, holding Bitcoin only as an alternative investment and

not as a currency. In a second step, they used a similar approach to analyze bitcoin returns:

rt = a0 +
∑7
i=1 airt−i+a8∆Wikit−1 + a9Igoodt + a10Ibadt +

∑n
j=11 aj∆Cj,t−1 + εt

εt ∼ N(0, ht)

ht = b0 + b1ε
2
t−1 + b2ht−1

(12)

where rt is the open-to-close Bitcoin return at date t, while Igood t and Ibad t are event dummies for

positive and negative news. Glaser et al. (2014) found that Bitcoin users seem to be positively biased

towards Bitcoin, because important negative events, like thefts and hacks, did not lead to significant

price corrections.

Bouoiyour and Selmi (2015), Bouoiyour et al. (2015) and Kancs et al. (2015) are the first studies

to consider three sets of drivers to model bitcoin price dynamics: technical drivers (bitcoin supply

and demand), attractiveness indicators and macroeconomic variables.

The variables used by Bouoiyour and Selmi (2015) and their descriptions are presented in table 1.

Bouoiyour and Selmi (2015) investigated the long-run and short-run relationships between bitcoin

prices and the previous set of variables by using the auto-regressive distributed lag (ARDL) bounds

testing procedure proposed proposed by Pesaran and Shin (1999). This approach has several advantages:

first, it is a single-equation cointegration method which can be estimated by OLS; second, it allows to

model both short-run and the long-run dynamics; third, this procedure can be used irrespective of

whether the underlying regressors are I(0) [i.e. stationary], I(1) [i.e. not-stationary], or fractionally

integrated. Lastly, it is a relatively more efficient estimation method in small samples compared to

alternative cointegration methods. However, this procedure will not work with I(2) regressors, when there

is more than 1 cointegration relationship or with endogenous regressors. The ARDL model employed by

Bouoiyour and Selmi (2015) is reported below:
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Variable Explanation

Technical drivers
The exchange-trade
ratio (ETR)

Bitcoins are used primarily for two purposes: purchases and exchange rate trad-
ing. The Blockchain website provides the total number of transactions and their
volume excluding the exchange rate trading. In addition, the ratio between vol-
ume of trade (primarily purchases) and exchange transactions is also provided.

Bitcoin monetary ve-
locity (MBV)

It is the frequency at which one unit of bitcoin is used to purchase tradable or
non-tradable products for a given period. In the Bitcoin system, the monetary
velocity of BitCoin circulation is proxied by the so-called BitCoin days destroyed.
This variable is calculated by taking the number of BitCoins in transaction and
multiplying it by the number of days since those coins were last spent.

The estimated output
volume (EOV)

It is similar to the total output volume with the addition of an algorithm which
tries to remove change from the total value. This estimate should reflect more
accurately the true transaction volume. A negative relationship between the
estimated output volume and bitcoin price is expected.

The Hash Rate The estimated number of giga-hashes per second (billions of hashes per second)
the bitcoin network is performing. It is an indicator of the processing power
of the Bitcoin network

Attractiveness indicators
Investors’ attractive-
ness (TTR)

daily Bitcoin views from Google, because it is able to properly depict the specu-
lative character of users

Macroeconomic variables
The gold price (GP) Bitcoin does not have an underlying value derived from consumption or produc-

tion process such as gold.
The Shangai market
index (SI)

The Shangai market is considered one of the biggest player in Bitcoin economy
and it is considered as a potential source of Bitcoin price volatility.

Table 1: Drivers of bitcoin price (BPI) employed by Bouoiyour and Selmi (2015)

∆ lnBPIt = a0 +
∑n
i=1 a1i∆lnBPIt−i +

∑m
i=0 a2i∆lnTTRt−i +

∑l
i=0 a3i∆lnETRt−i +

∑h
i=0 a4i∆lnMBVt−i+

+
∑v
i=0 a5i∆lnEOV t−i +

∑r
i=0 a6i∆lnHASHt−i +

∑s
i=0 a7i∆lnGP t−i +

∑z
i=0 a8i∆lnSIt−i+

+ b1 lnBPIt−1 + b2 lnTTRt−1 + b3 lnETRt−1 + b4 lnMBVt−1 + b5 lnEOVt−1 + b6 lnHASHt−1+

+b7 lnGPt−1 + b8SIt−1 + εt

(13)

Using a dataset spanning between 05/12/2010 and 14/06/2014, Bouoiyour and Selmi (2015) found

that in the short-run, the investors attractiveness, the exchange-trade ratio, the estimated output volume

and the Shangai index have a positive and significantly impact on Bitcoin price, while the monetary

velocity, the hash rate and the gold price have no effect. Instead, in the long-run, only the exchange-

trade ratio and the hash rate have a significant impact on bitcoin price dynamics. These results hold

also with the inclusion of a dummy variable to account for the bankruptcy of a major Chinese bitcoin

trading company in 2013, with oil prices, the Dow Jones index and a dummy variable to consider the

closure of the Road Silk by the FBI in October 2013. Similar results are also provided by the variance

decomposition for the Bitcoin price and Granger-causality tests computed using a VEC model (however,
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the coefficient estimates for this latter model are not reported).

Kancs et al. (2015) employs a full multivariate VEC model as in (9), similarly to Kristoufek (2013),

using daily data for the 2009-2014 period. However, differently from the latter work and in the same line

of research of Bouoiyour and Selmi (2015), they considered three types of drivers to model bitCoin price

dynamics: bitcoin supply and demand, bitcoin attractiveness, and global macroeconomic and financial

factors. The variables used by Kancs et al. (2015) and their descriptions are presented in table 2.

Variable Explanation

Bitcoin supply and demand
Number of bitcoins The historical number of total BitCoins which have been mined to account for

the total stock of BitCoins in circulation.
Number of transac-
tions

Number of unique BitCoin transactions per day

Number of addresses Number of unique BitCoin addresses used per day
Days destroyed (mon-
etary velocity)

BitCoin days destroyed for any given transaction, calculated by taking the number
of BitCoins in a transaction and multiplying it by the number of days since those
coins were last spent

Attractiveness indicators
Views on Wikipedia Volume of daily BitCoin views on Wikipedia. It is a good measure of potential

investors’ interest, but it does not differentiate on whether the information is used
to guide investment decisions or online BitCoin denominated exchange of goods
and services

New members It is the number of new members on online BitCoin forums extracted from bit-
cointalk.org . It captures the size of the BitCoin economy but also attention-driven
investment behavior of new BitCoin members

New posts It is the number of new posts on online BitCoin forums extracted from bit-
cointalk.org . It captures the effect of trust and/or uncertainty, as it represents
the intensity of discussions among members.

Macroeconomic variables
Exchange rate Exchange rate between the US dollar and the Euro. It is chosen because the

bitcoin price is expressed in dollars
Oil price Oil prices are extracted from the US Energy Information Administration3

Dow Jones Dow Jones stock market index

Table 2: Drivers of bitcoin price employed by Kancs et al. (2015).

In terms of short-run effects, Kancs et al. (2015) found that bitcoin prices are influenced by its own

lagged prices, the total number of bitcoins in circulation, by bitcoin monetary velocity and Wikipedia

views. In terms of long-run effect, bitcoin demand related variables (e.g. days destroyed, number of

addresses) seem to have a stronger impact on bitcoin price than supply side drivers (e.g. number of

bitcoins). As expected by theory, an increase of the number of bitcoins in circulation leads to a decrease in

bitcoin price, whereas an increase in the size of the bitcoin economy (proxied by the number of addresses)

and its velocity lead to an increase in bitcoin price. The variables related to bitcoin attractiveness

have the strongest and statistically the most significant impact on bitcoin price: the number of new

members has a negative impact on bitcoin price, implying that attention-driven investment behavior
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of new investors dominates, whereas the number of new posts has a positive impact on bitcoin price,

reflecting an increasing acceptance and trust in the Bitcoin system. Similarly to Kristoufek (2013), the

number of Wikipedia views has a statistically significant and positive effect on bitcoin prices. Kancs et

al. (2015) found that all macroeconomic variables considered do not significantly affect BitCoin price in

the long-run, thus confirming similar evidence in Bouoiyour and Selmi (2015) and supporting the idea of

Yermack (2013) that bitcoin is relatively ineffective as a tool for risk management against adverse market

developments and it cannot be easily hedged against other assets that are driven by macroeconomic

developments. In general, the results reported in Kancs et al. (2015) confirms that bitcoin attractiveness

factors are still the main drivers of bitcoin price, followed by traditional supply and demand related

variables, while global macro-financial variables play no role. Kancs et al. (2015) stressed that he

speculative short-run behavior of bitcoin investors may not be not necessarily an undesirable activity

(absorbing excess risk from risk averse participants and providing liquidity on the BitCoin market), but

it may increase price volatility and create price bubbles as well as causing extensive hoarding of bitcoins.

Differently from the previous works, Kristoufek (2015) and Bouoiyour et al. (2015) analyzed the

bitcoin price from a frequency domain perspective. Kristoufek (2015) used a continuous wavelet approach

(wavelet coherence) to examine the evolution of correlations over time [14/09/2011-28/02/2014] and over

different frequencies between the bitcoin price and a wide set of variables, including supply-demand

fundamentals, speculative and technical drivers. He found out that fundamental factors such as the

trade-exchange ratio and the bitcoin supply play substantial roles in the long-run. Interestingly, the

Chinese stock index is an important source of Bitcoin price evolution, while the contribution of gold

price dynamics seems minor. Moreover, he finds that bitcoin prices are also driven by investors’ online

interest, which is driving prices further up during episodes of explosive prices, and further down during

rapid price declines, similarly to what found by Kristoufek (2013) and Garcia et al. (2014). Unfortunately,

this kind of analysis suffers from some drawbacks as highlighted by Bouoiyour et al. (2015): noisy data,

such as bitcoin prices, may strongly bias the estimated relationships, and this bias may even be magnified

in a time–frequency framework, see Ng and Chan (2012) for a larger discussion. Moreover, a wavelet

analysis with only two variables like in Kristoufek (2015) has a problem similar to a simple regression

without control variables where the estimated parameters can be strongly biased. These issues stimulated

Bouoiyour et al. (2015) to use the conditional frequency-domain Granger causality approach proposed

by Breitung and Candelon (2006). This approach allows to use several potential control variables and

it can distinguish between long-run trends, business cycles or short-run dynamics. Besides, it shows the

presence of causal links between two variables even in case of non-linear dependence, and it is robust

to the presence of volatility clustering, see Bodart and Candelon (2009). Given the importance of this

method, we describe it in details below.
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Let consider zt=[xt, yt] be a two-dimensional time series vector with the following finite-order VAR

representation:

Θ(L)zt = εt (14)

where Θ(L) = I −Θ1L− · · · −ΘpL
p is a 2 × 2 lag polynomial, the vector error term εt is a multivariate

white noise with E(εt) = 0 and E(εtε
′
t) = Σ, where Σ is positive definite, and deterministic terms are not

considered for ease of exposition. Let G be the lower triangular matrix of the Cholesky decomposition

G′G=Σ−1 such that E(ηtηt) = I and ηt=Gεt . If the system (13) is assumed to be stationary, the MA

representation is given by

zt = Φ(L)εt =







Φ11(L) Φ12(L)

Φ21(L) Φ22(L)













ε1t

ε2t






=







Ψ11(L) Ψ12(L)

Ψ21(L) Ψ22(L)













η1t

η2t






(15)

Using this representation, the spectral density of xt can be expressed as follows:

fx(ω) =
1

2π

{

|Ψ11(e
−iω)|2 + |Ψ12(e

−iω)|2
}

(16)

and the measure of causality suggested by Geweke (1982) is defined as

My→x(ω) = log

[

2πfx(ω)

|Ψ11(e−iω)|2

]

= log

[

1 +
|Ψ12(e

−iω)|2

|Ψ11(e−iω)|2

]

(17)

If the measure |Ψ12(e
−iω)|=0, then y does not Granger cause x at frequency ω . A similar derivation

can be obtained if zt are I(1) and co-integrated, see Breitung and Candelon (2006) for more details.

Breitung and Candelon (2006) proposed a simple approach to test for the null hypothesis of non-causality

(i.e. Ψ12(e
−iω)|=0 using,

Ψ12(L) = −
g22Θ12(L)

|Θ(L)|

where g22 is the lower diagonal element of G−1 and |Θ(L)| is the determinant of Θ(L). It follows that

y does not cause x at frequency ω if

|Θ12(e
−iω)| =

∣

∣

∣

∣

∣

p
∑

k=1

θ12,k cos(kω)−

p
∑

k=1

θ12,k sin(kω)i

∣

∣

∣

∣

∣

= 0

where θ12,k is the (1,2)-element of Θk . It follows that a necessary and sufficient set of conditions for

|Θ12(e
−iω)|=0 is given by
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p
∑

k=1

θ12,k cos(kω) = 0 (18)

p
∑

k=1

θ12,k sin(kω) = 0 (19)

Since sin(kω)=0 for ω=0 and ω=π, restriction (19) can be dropped in these cases. Breitung and

Candelon (2006) proposed to test the linear restriction (18) and (19) by rewriting the VAR equation for

xt as follows:

xt = α1xt−1 + ...+ αpxt−p + β1yt−1 + ...+ βpyt−p + εt (20)

The null hypothesis of no granger causality at frequency ω My→x(ω)=0 is equivalent to testing the

following linear restrictions

H0 : R(ω)β = 0 (21)

where β=[β1,..., βp]
′ and

R(ω) =







cos(ω) cos(2ω) · · · cos(pω)

sin(ω) sin(2ω) · · · sin(pω)







The ordinary F -statistic for (21) is asymptotically distributed as F (2,T−2p) for ω∈(0,π). Such a

method can be similarly extended to cointegrated VARs by replacing xt in regression (20) with ∆xt,

whereas the right-hand side of the equation remaining the same, see Breitung and Candelon (2006, 2007)

for more details. Interestingly, in the case the set of variables have a different order of integration [for

example xt ∼ I(0) and yt ∼ I(1)], or simply there is uncertainty about the cointegration rank, Breitung

and Candelon (2006) suggested to follow the approach by Toda and Yamamoto (1995) and Dolado and

Lu tkepohl (1996): they showed that the Wald test of restrictions involving variables which may be

integrated or cointegrated of an arbitrary order, has a standard asymptotic distribution if the VAR

model with optimal lag length k is augmented with a redundant number of lags dmax , where dmax is

the maximal order of integration that we suspect might occur in the our set of variables. The coefficient

matrices of the last dmax lagged vectors in the model can be ignored and we can test linear or nonlinear

restrictions on the first k coefficient matrices using the standard asymptotic theory. This approach can

also be used to establish standard inference for the frequency domain causality test.

The approach in (20) can be easily extended to test for causality in higher dimensional systems. For
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example, if we add a third variable in (20) so that we get,

xt = α1xt−1 + ...+ αpxt−p + β1yt−1 + ...+ βpyt−p + γ1zt−1 + ...+ γpzt−p + εt (22)

To test the null hypothesis of conditional Granger causality My→x|z(ω)=0 , we can use the usual

F-statistic to test the linear restrictions (21) on the parameter vector β=[β1,..., βp]
′. However, Hosoya

(2001) showed that the specification in (22) may give spurious inference on causality in some cases and

he suggested to use the F-statistic to test the linear restrictions (21) in the following modified regression:

xt = α1xt−1 + ...+ αpxt−p + β1yt−1 + ...+ βpyt−p + γ0wt + γ1wt−1 + ...+ γpwt−p + εt (23)

where wt are the residuals from a regression of zt on xt, yt and the past lags of all these variables.

Bouoiyour et al. (2015) used the previous frequency-domain framework to test for unconditional

[i.e. using the specification in (20)] and conditional Granger causality [i.e. using the specification in

(22)] with bitcoin prices and a set of explanatory variables, to investigate the main factors influencing

bitcoin price dynamics under different frequencies. First, they showed that bitcoin prices (BPI) Granger-

causes the exchange-trade ratio (ETR) in the short- and the medium-run cyclical component, whereas

the null hypothesis of no Granger causality from ETR to BPI is not rejected at any frequency. This last

result is different from what found by Kristoufek (2015), who found a significant causality from ETR to

BPI, which becomes stronger in the long term. The results by Bouoiyour et al. (2015) did not change

when moving from unconditional causality to conditional causality analysis, where the employed control

variables were the Chinese market index and the hash rate.

Bouoiyour et al. (2015) also found that investors’ attractiveness (TTR) -as proxied by Google search

data- Granger causes bitcoin price at higher frequencies, which can be expected because the interest in

the Bitcoin system tends to increase gradually over time. Instead, the reverse causal causality from BPI

to TTR is significant at the lower frequencies, which may indicate that investors buy bitcoins mainly

for speculative reasons. Interestingly, these results changed considerably when the Hash rate and the

Chinese stock market index were considered as control variables in a conditional causality analysis: in

this case, there was no significant causal relationship from BPI to TTR, while the reverse causality

from TTR to BPI was significant at both lower and higher frequencies. This evidence highlights the

importance of the Chinese market and the Bitcoin technology in explaining these causalities: the former

may strongly influence short term speculative activities, while the latter may imply that higher investors’

interest increases the amount of hardware devoted to bitcoin mining , thus resulting in a higher technical

difficulty and subsequent higher bitcoin prices to cover the increased computational and power costs.

Robustness checks including additional control variables such as the monetary Bitcoin velocity and the
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estimated output volume do not change substantially the previous evidence. These findings are quite

similar to those reported by Kristoufek (2015).

In general, the analyses performed using frequency domain-based methods confirmed that the main

drivers of bitcoin price dynamics are still mainly of speculative nature. However, there are several other

significant factors involved, not all of them related to speculation, and the possibility to see the bitcoin

technology employed for a much larger fraction of business transactions in the long term cannot be

excluded.

Finally, we remark that there are also other papers which tried to model bitcoin price dynamics. How-

ever, they are less comprehensive than the previous ones, the datasets are smaller and almost all of them

are not peer-reviewed. We refer the interest reader to the bitcoinwiki webpage devoted to “publications in-

cluding research and analysis of Bitcoin or related areas” available at https://en.bitcoin.it/wiki/Research

for more details.

6 Detecting Bubbles and explosive behavior in bitcoin prices

The strong volatility in bitcoin prices has sparked a strong debate whether a “substantial speculative

component” (Dowd, 2014) can be an harbinger of a large financial bubble. Several statistical tests have

been developed for testing the existence of financial bubbles and some of them have been recently used

with bitcoin prices. These tests can be broadly grouped into two large families: tests intended to detect

a single bubble, and tests intended to detect (potentially) multiple bubbles.

6.1 Testing for a single bubble

MacDonell (2014) was the first to test for the presence of a bubble in bitcoin prices using the Log Periodic

Power Law (LPPL) approach proposed by Johansen et al. (2000) and Sornette (2003a,b). We describe

below its main structure, while we refer the interested reader to the previous three works as well as to

the recent survey by Geraskin and Fantazzini (2013) for more details.

The Johansen-Ledoit-Sornette (JLS) model considers the presence of two types of agents in the

market: traders with rational expectations and “noise” traders, who represent irrational agents with

herding behavior. Moreover, traders are organized into networks and can have only two states (buy or

sell), while their trading actions depend on the decisions of other traders and on external shocks. Over

time, agents can then create groups with self-similar behavior which can determine a bubble situation,

which is considered a situation of “order”, compared to the “disorder” of normal market conditions.

According to this model, a bubble can be a self-sustained process due to the positive feedbacks generated

by the increasing risk and the agents’ interactions, see Geraskin and Fantazzini (2013) for details. A
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textbook presentation of LPPLs for bubble modelling is given by Sornette (2003a), while the ex-ante

diagnoses of several bubble episodes were discussed by Sornette and Zhou (2006), Sornette,Woodard,

and Zhou (2009), Zhou and Sornette (2003), Zhou and Sornette (2006), Zhou and Sornette (2008) and

Zhou and Sornette (2009).

The expected value of the asset log price in a upward trending bubble according to the LPPL equation

is given by,

E[ln p(t)] = A+B(tc − t) + C(tc − t) · cos[ω ln(tc − t) − φ] (24)

where 0 < β < 1 quantifies the power law acceleration of prices and should be positive to ensure a finite

price at the so-called critical time tc, which is interpreted as the end of the bubble; ω represents the

frequency of the oscillations during the bubble; A > 0 is the value of [ln p(tc)] at the critical time tc,

B < 0 the increase in [ln p(t)] over the time unit before the crash, C 6= 0 is the proportional magnitude

of the oscillations around the exponential growth, while 0 < φ < 2π is a phase parameter. It has to

be noted that A, B, C and φ, are just units distributions of betas and omegas and do not carry any

structural information, see Sornette and Johansen (2001), Johansen (2003), Sornette (2003a), Lin et al.

(2014) and references therein.

The first condition for a bubble to take place within the JLS framework is 0 < β < 1, which

guarantees that the crash hazard rate accelerates, while the second condition proposed by Bothmer and

Meister (2003) is that the crash rate should be non-negative, so that

b = −Bβ − |C|
√

β2 + ω2 ≥ 0 (25)

Lin et al. (2014) added a third condition, requiring that the residuals from fitting equation (24) should

be stationary. Lin, Ren, and Sornette (2014) used the Phillips-Perron (PP) and the Augmented Dickey-

Fuller (ADF) to test for stationarity, whereas Geraskin and Fantazzini (2013) suggested to use the test

by Kwiatkowski et al. (1992), given the higher power of this test when the underlying data-generating

process is an AR(1) process with a coefficient close to one.

The calibration of LPPL models can be difficult due to the presence of many local minima of the

cost function where the minimization algorithm can get stacked, see Fantazzini (2010), Geraskin and

Fantazzini (2013) and Filimonov and Sornette (2013) for more details and for some possible solutions.

MacDonell (2014) used the LPPL model to forecast successfully the bitcoin price crash that took place

on December 4, 2013, showing how LPPL models can be a valuable tool for detecting bubble behavior

in digital currencies.

Cheah and Fry (2015) tested for the presence of financial bubbles in Bitcoin prices using a test

proposed by Fry (2014) and whose starting point is the same as Johansen et al. (2000). More specifically,
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Cheah and Fry (2014) assumed that,

P (t) = P1(t)(1 − k)j(t) where

dP1(t) = [µ(t) + σ2(t)/2]P1(t)dt+ σ(t)P1(t)dWt

where Wt is a Wiener process, j(t) is a jump process

j(t) =











0 before the crash

1 after the crash

while k represents the % loss in the asset value after the crash. Before a crash, we have that P (t) = P1(t)

and using the Ito’s lemma it is possible to show that Xt = log(P (t)) satisfies

dXt = µ(t)dt+ σ(t)dWt − vdj(t),

v = − ln[(1 − k)] > 0
(26)

Then, Fry (2014) and Cheah and Fry (2015) introduced the following two assumptions:

Assumption 1 (Intrinsic Rate of Return): the intrinsic rate of return is assumed constant and equal

to µ:

E[Xt+∆ −Xt|Xt] = µ∆ + o(∆) (27)

Assumption 2 (Intrinsic Level of Risk): the intrinsic level of risk is assumed constant and equal to

σ2:

V ar[Xt+∆ −Xt|Xt] = σ2 ∆ + o(∆) (28)

Moreover, supposing that a crash has not occurred by time t, they get

E[j(t+ ∆) − j(t)] = ∆h(t) + o(∆) (29)

V ar[j(t+ ∆) − j(t)] = ∆h(t) + o(∆) (30)

where h(t) is the hazard rate. Using eq. (27) in assumption 1 together with eqs. (26) and (29), it follows

that

µ(t) − vh(t) = µ; µ(t) = µ+ vh(t) (31)
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which shows that the rate of return must increase in order to compensate an investor for the risk of a

crash.

Fry (2014) and Cheah and Fry (2015) showed that in a bubble not only prices have to grow, but also

volatility must diminish. Using eqs. (26), (28) and (30), they get

σ2(t) + v2h(t) = σ2; σ2(t) = σ2 − v2h(t) (32)

The key equations (31) and (32) show that during a bubble an investor should be compensated for

the crash risk by an increased rate of return with µ(t) > µ (where µ is the long-term rate of return),

whereas market volatility decreases, representing market over-confidence (Fry, 2012, 2014). Moreover, it

is possible to test for the presence of a speculative bubble by testing the one-sided hypothesis

H0 : v = 0 H1 : v > 0 (33)

Fry (2014) further showed that, given the previous assumptions, the fundamental asset price when

there is no bubble (v = 0) is given by :

PF (t) = E(P (t)) = P (0)eµ̃t (34)

where µ̃ = µ+ σ2/2. Instead, during a bubble (v > 0),

Xt = N(X0 + µt+ vH(t), σ2t− v2H(t)) , where

H(t) =
∫ t

0
h(u)du

(35)

so that the asset value is given by

PB(t) = E(P (t)) = P (0)e
µ̃t+

(

v− v
2

2

)

H(t)
(36)

Equations (34) and (36), together with a proper hazard function h(t), can then be used to compute

the bubble component in the asset price, defined as the “average distance” between fundamental and

bubble prices. Fry (2014) and Cheah and Fry (2015) used the following hazard function

h(t) =
βtβ−1

αβ + tβ
(37)

so that the bubble component is given by,

Bubble component = 1 −
1

T

T
∫

0

PF (t)

PB(t)
dt = 1 −

1

T

T
∫

0

(

1 +
tβ

αβ

)

−
(

v− v
2

2

)

dt. (38)
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where T is the sample dimension. It follows from (34) that if µ̃ < 0 the fundamental asset value is zero:

lim
t→∞

PF (t) = 0 (39)

Following MacDonell (2014), Fry (2015) tested for the presence of a bubble in bitcoin prices from

January 1st 2013 till November 30th 2013, before the price crash of December 2013. He rejected the

null hypothesis (33) and found that the parameter µ̃ is not statistically different from zero, which is

compatible with a long-term fundamental value of zero. Moreover, he found that the bubble component

amounts to approximately 48.7% of observed prices. These results are confirmed by several robustness

checks.

6.2 Testing for multiple bubbles

The previous tests are designed to test for the presence of a single bubble and can be used to detect

multiple bubbles only if repeated with a moving time window, as done by Sornette et al. (2009) Jiang

et al. (2010), Geraskin and Fantazzini (2013) and Cheah and Fry (2015). Tests specifically designed

for detecting multiple bubbles were recently proposed by Phillips and Yu (2011), Phillips et al. (2011)

and Phillips et al. (2015) and they share the same idea of using sequential tests with rolling estimation

windows. More specifically, these tests are based on sequential ADF-type regressions using time windows

of different size, and they can consistently identify and date-stamp multiple bubble episodes even in

small sample sizes. These tests were employed by Malhotra and Maloo (2014) to test for the presence

of explosive behaviour in bitcoin prices. We will focus below on the generalized-supremum ADF test

(GSADF) proposed by Phillips, et al. (2015) -PSY henceforward- which builds upon the work by Phillips

and Yu (2011) and Phillips et al. (2011), because it has better statistical properties in detecting multiple

bubble than the latter two tests.

This test employs an ADF regression with a rolling sample, where the starting point is given by the

fraction r1 of the total number of observations, the ending point by the fraction r2, while the window

size by rw = r2 − r1. The ADF regression is given by

yt = µ+ ρyt−1 +

p
∑

i=1

φirw
∆yt−i + εt (40)

where µ, ρ, and φirw
are estimated by ordinary least squares, and the null hypothesis is of a unit root

ρ = 1 versus an alternative of a mildly explosive autoregressive coefficient ρ > 1. The backward sup

ADF test proposed by PSY (2015) fixes the endpoint at r2 while the window size is expanded from an

initial fraction r0 to r2, so that the test statistic is given by:
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BSADFr2(r0) = sup
r1∈[0,r2−r0]

ADF r2r1 (41)

It is important to note that the test by Phillips et al. (2011) is a special case of the BSADF test with

r1 = 0, so that the sup operator becomes superfluous.

The generalized sup ADF (GSADF) test is finally calculated by repeatedly performing the BSADF

test for each endpoint r2 ∈ [r0, 1]:

GSADF (r0) = sup
r2∈[r0,1]

BSADF (
r2r0) (42)

The limiting distribution of (42) under the null of a random walk with asymptotically negligible drift

is given by the Theorem 1 in PSY (2015), while critical values are obtained by numerical simulation.

In case the null hypothesis of no bubbles is rejected, the starting and ending points of one (or more)

bubble(s) can be found in a second step: the starting point is given by the date -denoted as Tre - when the

sequence of BSADF test statistics crosses the critical value from below, while the ending point -denoted

as Trf - when the BSADF sequence crosses the corresponding critical value from above:

r̂e = inf
r2∈[r0,1]

{

r2 : BSADFr2(r0) > cvβT

r2

}

r̂f = inf
r2∈[r̂e+δ log(T )/T,1]

{

r2 : BSADFr2(r0) < cvβT

r2

}

(43)

where cvβT

r2 is the 100(1 - βT )% right-sided critical value of the BSADF statistic based on ⌊Tr2⌋ observa-

tions, and ⌊·⌋ is the integer function. δ is a tuning parameter which determines the minimum duration

for a bubble and is usually set to 1, see Philips et al. (2011), PSY (2015) and references therein, thus

implying a minimum bubble-duration condition of ln(T ) observations. However, different values can be

used depending on the data frequency, see Figuerola-Ferretti et al. (2016) for a discussion.

Malhotra and Maloo (2014) tested for the presence of multiple bubbles using the GSADF test with

a dataset ranging from mid-2011 till February 2014: they found evidence of explosive behaviour in the

bitcoin-USD exchange rates during August – October 2012 and November, 2013 – February, 2014. They

suggested that the first episode of bubble behaviour (August – October 2012) could be attributed to the

sudden increase in media attention towards bitcoin, whereas the second episode to a large set of reasons

including the US debt ceiling crisis, the shutdown of Silk Road by the FBI, the rise of Chinese exchange

BTC-China, and the increasing number of warnings issued by regulatory authorities and central banks

worldwide following the shutdown of the Japanese exchange Mt.Gox.
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7 Price discovery

Brandvold et al. (2015) are the first (and so far the only ones) to study the price discovery process in

the Bitcoin market, which consists of several independent exchanges. This topic is frequently discussed

in the bitcoin community because knowing which exchange reacts most quickly to new information (thus

reflecting the value of Bitcoin most precisely), is clearly of outmost importance for both short-term

traders and long-term investors. The price discovery literature employs mainly three methodologies: the

information share method by Hasbrouck (1995), the permanent-transitory decomposition by Gonzalo

and Granger (1995) and the structural multivariate time series model by de Jong et al. (2001) which is

an extension of class of models originally proposed by Harvey (1989). Brandvold et al. (2015) used the

method by de Jong et al. (2001) because it has the advantage that the information share is uniquely

defined, unlike the information share computed with the Hasbrouck’s (1995) model, and it takes the

variance of innovations into account, unlike Gonzalo and Granger (1995), so that a price series with low

innovation variance gets a low information share. Given its importance, the model by de Jong et al.

(2001) is described below.

This multivariate model by de Jong et al. (2001) was proposed to estimate the information share

of various exchanges with respect to the information generated by the whole market. The prices are

composed of two components, one common (unobserved) underlying random walk and an idiosyncratic

specific noise for each exchange. The random walk component is interchangeably referred to either as

the efficient price or the fundamental news component. It follows immediately from this model structure

that the exchanges’ prices are cointegrated by construction, while the idiosyncratic component can be

due to specific conditions at an exchange, traders’ strategic behaviour, or other shocks.

The theoretical setup in Brandvold et al. (2015) assumes n individual exchanges and m corresponding

markets, with m = n, whereas a market for an exchange is defined as all the other exchanges combined.

Brandvold et al. (2015) denote P e as the vector of exchange prices, Pm as the vector of market prices,

while Ue and Um represents the vectors of idiosyncratic shocks for the exchanges and the markets,

respectively. P ∗denotes the efficient price, pe= ln P e, ue= ln Ue and p∗= ln P ∗, so that the logarithm

of the n-vector of exchange prices and the m-vector of market prices are given by:

pet = p∗t + uet

pmt = p∗t + umt

(44)

where p∗ is a random walk. This is a special case of an unobserved components structural model, see

Harvey (1989) for more details. If we denote the log-returns of the efficient price over the interval (t−1,t)

as denoted rt = p∗t − p∗t−1 , then the model assumptions are given below:
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E[r2t ] = σ2

E[rtu
e
it] = ψi

E[rtu
m
jt ] = ψj

E[rtu
e
i,t+l] = γli, l ≥ 0

E[rtu
m
j,t+l] = γlj , l ≥ 0

E[rtu
e
i,t−k] = 0, k ≥ 0

E[rtu
m
j,t−k] = 0, k ≥ 0

E[ueit] = Ωe

E[ueitu
m
jt ] = Ω, i = j

E[uei,t−k] = 0, k 6= 0

E[ueitu
m
j,t−k] = 0, k 6= 0

(45)

where i refers to exchange i, j to market j, while ψ , γ are (n×1) vectors and Ω, Ωe are (n×n) matrices.

The fundamental news component rt can be correlated with concurrent and future idiosyncratic com-

ponents, but is otherwise uncorrelated. Instead, the idiosyncratic components are serially uncorrelated

and they reflect the noise present in intradaily data. These restrictions on the correlation structure are

needed to identify the model, see Harvey (1989) details. Given the previous structure, the log-returns of

observed prices are defined as followed:

yit = pit − pi,t−1 = p∗t + uit − p∗t−1 − uit−1 = rt + uit − uit−1 (46)

so that the vectors of exchanges prices and market prices are given by,

Y et = ιrt + uet − uet−1

Y mt = ιrt + umt − umt−1

(47)

where ι is a vector of ones with n = m elements. Given the assumptions in (45), the serial covariances

of Yt are

E[YtY
′
t ] = σ2ιι′ + ιψ′ + ψι′ + 2Ω

E[YtY
′
t−1] = −ψι′ − Ω + γι′

E[YtY
′
t−2] = −γι′

(48)

Similarly, the serial covariance between an exchange and its corresponding market, that is the covari-

ance between an element in vector Y e and the corresponding element in vector Y m , is given by
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E[yjtyit] = σ2 + ψj + ψi + 2ωij

E[yjtyi,t−1] = −ψj − ωij + γj

E[yjtyi,t−2] = −γj

(49)

while the first order autocorrelation for exchanges is

ρ1,ii =
−(ψi + ωeii − γi)

σ2 + 2(ψi + ωeii)
(50)

The parameter ψi -which is the covariance between the fundamental news component and the id-

iosyncratic component- is of crucial importance because it shows how the market learns after a price

change from an individual exchange: a high value for ψi implies that a price update from that exchange

has an high information content for the whole market. To explain this issue, consider the covariance

between the fundamental news component and a price change at an exchange:

Cov(yit,rt) = σ2 + ψi (51)

which is derived from (45) and (46). It follows immediately that the n covariances between the exchange

updates and the fundamental news component are determined by n+1 parameters, so that an identifying

restriction is needed. In this regard, de Jong et al. (2001) suggested the idea that the information

generated by the price update of each exchange should be equal on overage to σ2, the variance of rt .

Therefore, if we consider the average covariance between the price change of a selected exchange and the

fundamental news,
n
∑

i=1

πiCov(yit,rt) = π′(σ2ι+ ψ) =σ2 + π′ψ (52)

where π is a vector of weights adding to one (to be defined below), then the assumption that σ2 is the

unconditional covariance of a exchange price change and the news component imposes the restriction

π’ψ = 0. This restriction is sufficient to identify the model parameters and also leads to a definition of

πi as the activity share of an exchange, defined as the fraction of trades that happened on exchange i,

or simply, the probability that a trade took place on exchange i (Brandvold et al., 2015). If we multiply

the covariance between the fundamental news component and the price change of exchange i -eq. (51)-

with the probability πi , we get a measure of how much information is generated by the price change of

exchange i. Dividing this by the total information generated in the market σ2, we obtain the information

share for exchange i:

ISi =
(σ2 + ψi)πi

σ2
= πi

(

1 +
ψi
σ2

)

(53)
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de Jong et al. (2001) and Brandvold et al. (2015) highlighted that this definition of information share

has some appealing properties. First, the information shares add to 1, thus simplifying interpretation

and making it trivial to add or remove exchanges from the model. Second, the joint information share of

two exchanges simply equals the sum of their individual information shares. Third, an exchange with a

contemporaneous covariance between its idiosyncratic component and the fundamental news component

greater than zero ψi > 0) has a higher information share than activity share.

The estimation procedure of the model parameters consists of two steps: first, the sample covariances

E[yjtyi,t−k], where k=0,1,2, and the autocorrelations ρ1,ii are estimated, then the structural parameters

are computed using (49)-(50) and a nonlinear program solver. Besides, some parameters can be found

directly: given that σ 2is the variance of rt and given the assumption by Brandvold et al. (2015) that

the seven exchanges in their dataset represent the whole Bitcoin market, σ2 can be computed as the

variance of the aggregated return of the seven exchanges. Similarly γ can be computed directly using

the sample covariance between the market returns and its corresponding exchange returns lagged two

intervals This leaves only ωeii, ωij , ψi and ψi to be estimated in a second step. The objective function

used by Brandvold et al. (2015) to find the remaining parameters with a nonlinear programming solver

is given below:

Z =

n
∑

i=1

|πiψi| = 0 (54)

subject to the following set of constraints

ρ1,ii =
−(ψi+ω

e

ii
−γi)

σ2+2(ψi+ωe

ii
) (i = 1, . . . , n)

E[yjtyi,t−1] = −ψj − ωij + γj (i = j = 1, . . . , n)

E[yjtyi,t−2] = −γj (i = j = 1, . . . , n)

E[yityj,t−2] = −γi (i = j = 1, . . . , n)

ωeii ≥ 0 (i = 1, . . . , n)

(55)

Brandvold et al. (2015) tried also alternative objective functions and starting values, but the esti-

mated parameters showed only minimal differences. Brandvold et al. (2015) highlighted that there is

no agreement in the financial literature on how to measure the trading activity of a specific exchange

relative to all trading activity in the market (i.e πi), so that they preferred to use a linear combination

of trading volume and number of trades. However, they also highlight that the choice of πi only affects

the magnitude of the information share, but not the relation between information and activity share,

that is whether ψi is positive or negative (Brandvold et al. 2015). In this regard, they suggested to also

consider the simple case of equal πi for each exchange to verify the robustness of the model results.
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Brandvold et al. (2015) used data from seven exchanges: Bitfinex, Bitstamp, BTC-e (Btce), BTC

China(Btcn) and Mt.Gox (Mtgox), Bitcurex and Canadian Virtual Exchange (Virtex). The original

tick data were transformed into 5 minutes intervals and covered the period April 1st 2013–February

25th 2014, till the bankruptcy of Mtgox. They found that the two exchanges with positive ψ for the

entire period were Btce and Mtgox, thus indicating that these exchanges were more informative than

their competitors. Similar evidence was provided by the information share, which was highest for Btce

and Mtgox (0,322 and 0.366, respectively). However, Brandvold et al. (2015) highlighted that, even

if the other exchanges have negative ψ and lower information share, they still provide information to

the market, only less informative. Brandvold et al. (2015) also investigated how the information share

changed over time: the information share of Btcn first increased from 0.040 in April 2013 to 0.325 in

December 2013 because some large Chinese companies (like Baidu) started accepting Bitcoin as payment,

but then its information share fell to 0.124 in January 2014 after the Chinese government banned payment

companies from clearing Bitcoin. Mtgox had the largest information share at the beginning (0.667), then

it gradually decreased over time, with a last jump in January and February 2014, related to the increasing

uncertainty about its possible bankruptcy.

Brandvold et al. (2015) further examined what happened during and after the price shock on October

2nd 2013, when the owner of the Silk Road marketplace was arrested by American authorities and the

site was shut down, see Konrad (2013) for details. They found that Btce is the only exchange with

positive ψ in this period, and has a significant higher information share than activity share. They argues

that either a large fraction of informed traders switched to Btce in this period, or simply that traders

at Btce suddenly became more informed. Moreover, they also highlighted that Btce is renowned in the

Bitcoin community for having a good API for traders to place trading bots, which can react extremely

quickly, and this may help explaining why Btce contributed more to the price discovery process in this

period than its competitors.
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8 Conclusions

We reviewed the econometric and mathematical tools which have been proposed so far to model the

bitcoin price and several related issues. More specifically, we first reviewed the methods employed to

determine the main characteristics of bitcoin users, finding that the majority of users seem to be computer

programming enthusiasts and people possibly engaged in illegal activity, whereas only a small part seem

to be driven by political reasons or by investment motives. Nevertheless, these analyses are plagued by

several limitations, like the possibility that the samples examined may not be representative of the full

population of users and the speed with which bitcoin markets and users change over time, so that all

analyses may be quickly out of date. We then examined the main models proposed to assess the bitcoin

fundamental value, ranging from market sizing –which is more suitable for the medium-long term-, to the

bitcoin marginal cost of production based on electricity consumption, which represents a lower bound

in the short term. Moreover, we described several econometric approaches suggested to model bitcoin

price dynamics, starting with cross-sectional regression models involving the majority of traded digital

currencies and then moving to univariate and multivariate time series models, till models in the frequency

domain. In general, all these methods confirmed that the main drivers of bitcoin price dynamics are still

mainly of speculative nature, followed by traditional supply and demand related variables, while global

macro-financial variables play no role. We then reviewed the tests employed for detecting the existence of

financial bubbles in bitcoin prices and which can be broadly classified into two large families, depending

on whether they are intended to detect a single bubble, or (potentially) multiple bubbles. Most of these

tests examined the months before the price crash that started in December 2013, while one analysis looked

for multiple bubbles over the sample 2011-2014, finding evidence of explosive behavior in the bitcoin-

USD exchange rates during August – October 2012 and November, 2013 – February, 2014. Finally, we

examined a recent study dealing with the price discovery process in the Bitcoin market, which is of great

importance for both short-term traders and long-term investors who want to know which exchange reacts

most quickly to new information, thus reflecting the value of Bitcoin most precisely and efficiently.

This review clearly shows that there are several possible avenues for further research. For example,

econometric methods for market risk management with bitcoin prices are almost non-existent: the only

work to our knowledge which fitted several parametric distributions to estimate the Value at Risk (VaR)

and the Expected Shortfall (ES) is the one by Chu et al. (2015). Unfortunately, they considered only

unconditional estimates which neglect conditional heteroskedasticity and therefore are not advisable for

an extremely volatile time series such as the bitcoin price, see in this regard Fantazzini (2009) and Weiß

(2011,2013) for large scale simulation and empirical studies about VaR and ES for linear portfolios.

Moreover, despite the changes in local regulations, arrival of new investors, police intervention (Silk
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Road) and massive improvements in mining hardware, there is no research work dealing with structural

breaks and long memory in bitcoin prices. Besides, there is a large body of the econometric and statistical

literature dealing with forecasting with structural breaks and this can be of interest for bitcoin algorithmic

trading, see Zhao (2015) for a recent Monte Carlo Study of several algorithms. Furthermore, all models

examined so far are (log-)linear but, considering the behavior of bitcoin prices, nonlinear models could be

useful particularly for forecasting purposes, see Tong (1990), Franses and Dijk (2000), Wood (2006) and

Terasvirta et al. (2011) for a discussion at the textbook level. Probably, the most interesting discrepancy

that we found when preparing this review is that IT related papers focused mainly on electricity costs and

energy and computational efficiency, whereas economic related papers rarely considered these factors.

Therefore, another avenue of future research is a multi-disciplinary analysis able to consider all these

aspects together.
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