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Basel II suggests that banks estimate downturn loss given default (DLGD) to capture
the systemic correlation between default rate and loss given default through
economic cycles. However, previous approaches in the literature may not be

internally consistent and may have bias in capital calculation. In this paper, we
propose a new consistent model framework based on our recent work on stochastic
spot recovery. We also compare numerically the downturn LGD in our model with
some of the previous approaches.

1. Introduction

Evidence from historic data suggests that recovery rates on corporate defaults tend to
decrease when default rates increase in an economic downturn [1]. This phenomenon
leads the BIS to suggest banks estimate downturn loss given default (DLGD) for capital
requirement calculation [4, 5]. The main reason for this requirement is that the Vasicek
model [22] used in the Basel Accord does not have systemic correlation between
probability of default (PD) and loss given default (LGD), which would underestimate
downturn risk.

There have been several attempts to model the dependence between PD and LGD, see for
example (2, 3,7, 8,9, 10, 12, 17, 18, 19, 20]. Most of the approaches model the term
LGD (LGD in a period of time) driven by a latent variable that is correlated with the
latent variable driving default. This kind of approach has some drawbacks, as will be
discussed in section 3 of the current paper. The key point is that the specification of the
correlation between PD and LGD may not be internally consistent in a multi-period or
continuous time setting or may lead to bias in capital calculation. Similar problems in
CDO pricing with stochastic recovery have led to the direct modeling of spot recovery (or
recovery at time of default) [6, 15]. The purpose of this paper is to use our recently
proposed stochastic spot recovery model to build a consistent downturn LGD model for
Basel II capital calculation. If we view the previous approaches as based on a structured
model where default can only occur at the end of a period, then spot recovery model is
related to the fact that default can actually be triggered any time during the period.
Essentially, term LGD is a weighted average of spot LGD such that direct specification
of term LGD may lead to inconsistent spot LGD. Our approach shows that a term
recovery model may not lead to a consistent spot recovery model, but the reverse is true:
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a consistent spot recovery model leads to a consistent term recovery model. Although
capital allocation is typically done for one year horizon, it should be part of a consistent
multi-period or continuous time credit model and thus restriction on modeling
assumptions may apply. The granularity of default at any time and recovery conditional
on default time requires more consistent modeling of term LGD.

The paper is organized as follows. In section 2, we discuss the general concept of spot
recovery and term recovery, and present the consistent condition for a term recovery
model. In section 3, we discuss the Tasche model and the Chabaane-Laurent-Salomon
model, and show the inconsistency or bias they may have if not used properly. In section
4, we present our stochastic spot recovery model using a two-factor setup. We also derive
the copula that correlates both default time and recovery rate. In section 5, we derive the
large homogeneous pool limit for the Tasche model, the Chabaane-Laurent-Salomon
model and our spot recovery model in a single systemic factor case. Then we show how
VaR can be calculated and define downturn LGD for all these models. In section 6, we
give numerical examples to compare downturn LGD and show the bias in the Chabaane-
Laurent-Salomon model. Section 7 concludes the paper.

2. The concept of spot recovery and term recovery

The spot recovery rate is the recovery rate paid on a debt at the time when the issuer
defaults. It happens at the time of default and is conditional on default. To simplify the
model, we ignore the time delay between issuer default and the actual recovery payout,
which is common in the literature and may be relaxed by adding a time-delay. Assume 7
is the default time random variable in a probability space (Q2,X,P) endowed with a
filtration (Z,),.,.., modeling the flow of market information through time. We do not

limit 7 by the maximum maturity of an issuer’s debts. 7 is a stopping time under the
filtration such that {@: 7(®) <t} € Z,. Assume there is a stochastic process r that

specifies the spot recovery rate at time of default as r, such that the mapping
@ —> 1, (@) is measurable and r, is indeed a random variable. Similarly, we can define

the LGD random variable as [ =1—r,. The spot recovery at time t is the conditional

random variable r |t =t . The term recovery rate in the time period (0,¢] is the

conditional random variable 7,

7 <t. Note that ¢ can be anytime in the future in a

continuous-time model. In the traditional credit capital modeling, people tend to look at a
fixed time horizon where term recovery is normally considered. But, for proper modeling
of credit risk, a continuous time model is preferred where default can happen at any time
and recovery is conditional on default time.

In a factor model, we may have a large number of issuers and the probability space is
extended to include some random factors representing the economic state. Following the
discussion in [6], the conditional expected spot recovery rate for an issuer at time ¢ is
defined as



F(t,Z) = Elr|r =1,Z] (1)
and the conditional expected term recovery rate up to time ¢ is defined as
R(t,Z)=Elr|r<1,Z] )

where Z is a random variable in an extended probability space, representing some
systemic factor affecting default rate and recovery of all the issuers. As we will see later,
Z is introduced to correlate the credit quality of the issuers, but it will not affect
marginal distributions of default or recovery rate as in the copula models. The loss up to
time ¢ as a stochastic process is defined as

Lt)=1-r)-1 3)

Assume the conditional default probability is given by p(¢,Z) = P(7 < t|Z ), then the

conditional expected loss is

]

= j (A—7(s,2))-dp(s,Z) 4)

L(t.Z)=E[1-r)-1

<t

=(1-R(1,2))- p(t,Z)

where we have assumed that, conditional on Z , default and recovery are independent.
From this we have the following relationship between conditional expected spot recovery
and conditional expected term recovery

dp(s,Z)

R(1,2)= j( D

&)

If we define the conditional expected spot recovery first and derive the conditional
expected term recovery from the above relationship, term recovery will naturally fall in
the range of [0,1] as long as spot recovery is in the same range. However, if we define the
conditional expected term recovery first, the derived conditional expected spot recovery
is not guaranteed to be in the range [0,1]. As

0,(R(t,2)- p(t,2)) = O,R(t,Z)
=R(t.7Z Zy.
o.0(1.2) O+ P2 2 ©

rt,72)=

the consistent condition would be



0.R(t,Z) <1

0<7r(t,Z)=R(t,2)+ p(t,Z)- o p.2) "

(7)

Note that the condition should also hold without conditioning on Z , or by integrating out
Z . However, the consistent condition may be broken more for the reason that the
dependency on Z is not defined correctly, in which case, the spot recovery may no
longer be measurable in the extended probability space including Z .

If we look at the conditional expected spot LGD defined as

Lt.2)=E[0-r)r=1.2] 8)

and the conditional expected term LGD defined as
L, 2)=E[d-r)r<t,Z] 9)

then the conditional expected loss is

Lt,2)=L,(t,2)- p(t,2) = [1,(s,2)dp(s, Z) (10)
and

- _O0,L(,Z) - O,L,(1,Z)

1,(t,.2)= ) L,(t,2)+ p(t,Z) D) (11)

So the consistent condition for a term loss model can be stated as

0< OL@Z) _

_ oL, (t,27)
< =L (t,2)+p(t,Z2) ——1 "<
2 p(t,2) (Z2)+ p(t,2)

< (12)
0,p(t.2)
The consistent conditions can be extended beyond conditional expectation to conditional
probability distribution. The conditional probability distribution of term recovery can be
used to derive the conditional probability distribution of spot recovery, which can then be
used to derive a relationship between spot recovery and the factors using the quantile
function defined in the next section.

3. Issues with current LGD factor models

The models proposed for downturn LGD are mostly factor models. The Tasche model
[20] assumes the same latent variable drives both default and loss give default so that the



latent variable is actually driving the unconditional loss. All other models assume a
correlated latent variable drives the LGD, where the difference is in the number of
systemic or idiosyncratic factors. Frye [9] uses a single systemic factor with an
independent idiosyncratic factor to drive the LGD. Pykhtin [18] also uses a single
systemic factor but with an idiosyncratic factor that is correlated with the idiosyncratic
factor driving default. Hillebrand [12] and Barco [3] assume two systemic factors but no
idiosyncratic factor. Andersen and Sidenius [2] discuss two systemic factors with one
independent idiosyncratic factor. Chabaane, Laurent and Salomon [7] discuss a more
general factor correlation structure that is equivalent to two correlated systemic factors
and two correlated idiosyncratic factors. The two types of models both may have some
internal problems if not used carefully, which will be discussed below.

3.1. The Tasche Model

First we discuss the Tasche model following our previous work [14]. Let L(z) be the loss
up to time ¢ defined in equation (3). Then L(¢) will be zero with probability 1— p(¢)
when the obligor is not in default before time 7. L(f) may take positive values with
probability p(z) if the obligor defaults before time ¢ . Formally, the cumulative
distribution function F, of L(¢) has the following general form

F,(x)=P(Lt)<x)=1-p@)+ p()-F,(x) for x €[0,1] (13)

where F,(x)=P(L(t) < x|r <t)=P(_< x|r <t) is the cumulative distribution of term
LGD. Note that F,(x) could be independent of p(¢), e.g., when it is a Beta distribution

calibrated to historic data through economic cycles. Define the quantile function F, ' of
F, as

FL_l(y)zmjn{xe[O,l]:FL(x)Zy} for y €[0,1] (14)

Assume default of an obligor is linked to the latent variable V = \/;Z +4/1— p¢& through

a default threshold v=®"'(p(t)), where Z and & are independent standard normal
random variables, Z is the systemic factor, p is the correlation coefficient and ®(x) is

the cumulative normal distribution function. Then we can model the dependence of loss
and default by relating loss to the latent variable as

L(t) = F, (P(-V)) (15)
where the negative sign introduces a negative correlation between loss and asset value

represented by the latent variable V . Note that this representation will not change the
distribution of L(¢).



Conditional on Z = z, the probability of default is

p(t.2)= P(V <& (p(1)| Z =z>=®(q’ (P (’))_J;ZJ (16)

J1I-p

The loss distribution conditional on Z =z is

PUL(1) = F@(V) <z = 2) = q{@ L @zj
-p

—0 ' (p(t)-(1-F, (X)))Jr\/PZJ
=D (17)
[ Vi-p

=1-p(t,2)+ p(t,2)- P(LO) SNt <1,Z = 2)

So the distribution of term LGD conditional on Z = 7 is

P(L(t) < x|r <t,Z=7)=1-p(t,z)" -CD(@ (p(®)- (%x))) — \/;ZJ (18)
The expected loss conditional on Z = 7 is
L(t,2) = E(L®)Z = 2) = [ x-d P(L() < Z = 2)
= p(t, Z)(l —jP(L(t) < x|r <t,Z=2)- dxj (19)

J q{@ <p<r)-(1—Fd(x))>—\/Zz]_ ”
0 \/l—p

Next we prove that the Tasche model cannot easily be derived from a consistent multi-
period model if the dependence on time is only through the default probability p(¢) . For

this purpose, we look at the conditional expected spot LGD defined in equation (8),



0,L(t,2) _0,E(LM|Z=2)
0,p(t,2) 0,p(t.2)

O (p(1)-(1-F, (X)))—\/;Z]
do /dp(t)
y s
) cD*@(r))—JEzJ
A /dp(2)
( Vi=p

_ jeXPLCD‘l (p)* =@ (p(t)- (A= F,(x)))’ =2/pz- (@ (p(t) - (p(t) - (1= F, (x))))

l_d(t,z)z

-dx

2(1-p)

O (p@)’ = (p(0)-(1-F,(x)))’
2

J-(I—Fd(x))-dx
(20)

As mentioned earlier, F,(x) can be independent of p as they are the marginal

distributions out of the joint distribution of LGD and default. It is obvious that, when

z — —o, the conditional expected spot LGD will go to +oo0 and the conditional expected
spot recovery will be negative. This would break the consistency condition defined in
equation (12) such that spot recovery is not a well-defined random variable. This problem
was initially found in the stochastic recovery models for CDOs [14] as the Tasche model
was extended beyond its intended use for one-period capital calculation to a multi-period
credit loss model. The other issue with the Tasche model is that it is very restrictive as the
same latent variable drives both default and loss, which can be extended as discussed in
the appendix.

3.2. The Chabaane-Laurent-Salomon Model

Chabaane, Laurent and Salomon [7] discussed the general factor structure for the
underlying latent variables driving default and term LGD under the assumption of a
homogeneous credit portfolio. Here we will discuss the problem with this model.

Again we assume V = \/;Z + /1 — p¢ drives the default of an obligor. The latent
variable driving term LGD has the following form

W =\BhZ +\1-1>Z,)+ 1= Be +\1-7>&) 21)

where Z, Z are independent systemic factors and ¢, & are independent idiosyncratic
factors. The parameters f and 7 are used to control the correlation with the two
systemic factors, while y is used to control the correlation between the idiosyncratic

variables. The term LGD is linked to W through L(1)|zr <7~ F,"(D(-W))V <@ (p(1)).



Conditional on Z and Z,, default and term LGD will be independent between obligors,
although they are still correlated through the idiosyncratic factors for each obligor. The
distribution of term LGD conditional on Z and Z, will be

P(L)<SAr<t,Z=2,Z,=2z,)
= P(F; (®(-W)) < x\v <O (p"),Z=22,=2z,)

i Z_cD*(Fd<x>>+ﬁ<nz+\/1—n2z,>gScD*l(p(t))—JZz’Z:Z’ZrZZr
1-p J1I=p

O(F,(0)) ++[ Bz +1-1z,) O (p()—+/pz.
5 5_7/
Ji-8 Ji-p

= p(t9Z)7l (I)z[
(22)
where @, (x,y; p) is the cumulative bivariate normal distribution with correlation p .

So the loss distribution conditional on Z and Z, is

P(L()<XNZ=2,Z,=2,)

-1 2 -1 _ 23
s, L E @10 O p0)pz |2
1-p NIEYo)

such that, after integration over z and z,,

P(L(1) < x) =1-p() + ®2((D71(Fd (), @ (p());—K ) (24)

where K =n./pf +y (11— p)1— p) is the correlation between V and W . We have

used the following formula to derive equation (24), see Appendix in [14],

T(Dz(az+b,cz+d;p)-¢(z)dz=q)2 b __d . actp (25)
k4 Vi+a® 1+c> Ja+a®)a+c)
where ¢(z) is the density function of the standard normal distribution.
So, combining equations (13) and (24), the term LGD distribution is
F) ()= P(L() <Az <1) = p(n)™ -‘132(‘1)_1 (F,(x)), @ (p(1)i—K ) (26)



Note that the term LGD distribution F,” implied by the model is different from the
calibrated marginal LGD distribution F, unless the correlation K is zero. The two

distributions should be the same if the model is to be fitted to observed data, but they are
not the same due to incorrect construction of the model. The correlation term is always
non-positive, which makes sense since an increase in F, means a decrease in the

expected LGD. When correlation is negative, F,” is smaller than F, such that the

expected loss from F,” is higher than the expected loss from F, . So the model tends to

overestimate VaR or downturn LGD. This kind of bias was also discussed in [11] and
will be confirmed in section 6.

It should be noted that the bias problem is due to the incorrect way of linking term LGD
to W as W no longer follows a normal distribution conditional on V <®~'(p). In the
Appendix, we will clarify the source of the bias and construct a correlated term LGD
model without the bias. It covers the models of Hillebrand [12] and Barco [3], and is also
a generalization of the Tasche model to multiple latent variables. However, that model
may still have the same inconsistency as the Tasche model.

4. Stochastic Recovery in the Default Time Copula Framework

The problems of the previous section can be resolved through a consistent stochastic spot
recovery model in a default time copula framework. The way is to model the spot LGD
or spot recovery directly to make sure it is in the range [0,1]. Here we generalize our one-
factor Gaussian model of spot recovery [15, 16] to two systemic factors with correlation
between idiosyncratic variables. We will follow the factor structure of Chabaane, Laurent
and Salomon [7]. It is straightforward to extend the model to multi-factor or non-
Gaussian copula cases.

In the default time copula framework of D. X. Li [13], the joint distribution of default
times is determined by the individual default time distributions (given by default
probability curve) and a copula function. In the Gaussian Copula setup, the latent variable

V= \/;Z + /1= pé& drives the default of an obligor. The default event 1__, can be

characterized by V <v =® "' (p(t)), where 7 is the default time random variable, p(¢) is

the default probability of the obligor. We relate the default time random variable 7 to V
as

r=p (D)) (27)

Note that 7 is not limited to a time range. It is the default time of an issuer, not that of a
loan with finite maturity. We assume that the stochastic spot recovery is driven by the

latent variable W = \[B(nZ +/1-n>Z. )+ J1— B(ye ++/1— y*&) through a time-

independent cumulative distribution function Fy(x)= P(r, < x|r =1) for spot recovery r,



at time 7 =¢. It turns out that spot recovery and term recovery share the same
distribution, as shown in equation (34).

Conditional on 7=t or V=®"'(p(¢)), W follows a normal distribution with mean

K -®'(p(t)) and standard deviation v1—K? , where K =1/ pfB + 71— p)1— ). To
ensure that F,(x) is indeed the cumulative distribution for the spot recovery at time ¢,
we specify the stochastic spot recovery at time ¢ as

rle=t~ FR‘(CD(W —K© (p(t))JJ\V =D~ (p(1)) (28)
J1-K?

The special case K =1 or V =W is excluded as spot recovery is deterministic. Thus

P(r,<xr=1)= P[FRI[Q)[W —K @ (pl ))D <x|V=d7 p(t))} = F,(x) (29)

1-K?

O~ (p(1)—+[pz
vi-p

conditional spot recovery distribution will be

for default time 7 =t and the

Ifwefix Z=z and Z, =z, ,then ¢ =

P(r.<x|t=t,Z=2,Z,=2z,)
=P(FR1{®(W_K'CD_ (p(’))nsﬂg: ¢ (p(lt))_‘/;Z Z=27 =2) (30)
1-K* -p

_ CI{—Dz—Jﬂ(l—p)a—nz)zr +Ja=p)1-K?) @7 (F,(x))+ Dy/p -@“@(r))}
Ja=p)a-pa-y)

where D = 77\/ pd—-p) — 7/\/ p(1—=p).1If D=0, then W is algebraically linear in V . We

may require D >0 such that, when z increases, the conditional cumulative distribution
decreases and conditional expected recovery will increase. The conditional default
probability for each obligor is given by

p(t,z)zp(rngzz):q{@ (p(t))—\/;zJ o

Ji-p

Now we can derive the distribution for the term recovery conditional on Z and Z, as

10



VP(c<t|Z=22 =z,)

P(s<r<s+ds,r.<x|Z=z2 =z,)

Ja=p)a-pya-»*

1 (—D,/l—pz—\/ﬁ(l—nz)zr V=KD (Fy () .
’ Ja=-p-yH+Dp ’

2 2 -l -
@[_Dz—\/ﬁ(l—p)(l—n )2, + 1= p)-K?) O (Fy()+ Difp @ (p(s»}.dl’(s,z)

(p, z);—ﬁJ

(32)

where

Dyp
Ja=pa-y)+p*p

_ 0 (p) -/pz
VI=p

c(p,2) =07 (p(t,2)) and p =

We also have

Pz <t,r.<x|Z=2,Z, =z,)
=P(r.<x|t<t,Z=2,Z, =2,) Pt <t|Z=7) (33)

—D1-pz—+BU-1*)z, + V1 - K7 (F, (x))

-0, - - ,c(p,2)i—p
Ja=B)a-y")+Dp
The term recovery distribution is as follows
<t,r <
P(r, < x|Z' <t) =M
Pt <1)
1
= —J-J' P(r<t,r.<x|Z=2,Z =2,) ¢(2)4(z,)dzdz, (34)
p(t)

= FR (X)
where we have used the formula in equation (25).

So the distribution of term recovery rate is the same as the distribution of spot recovery
rate and is time-independent. Note that, if the spot recovery distribution Fj (x) is time
dependent, then the integration in equation (32) would be more complicated.

Consider two obligors with correlated default and recovery rate, here we derive the
copula of default time and term recovery rate. The one factor case has been discussed in

11



[16]. Conditional on Z and Z_, the default and term recovery processes are independent
for the two obligors, and we have

P(r, <t,(r), x50, <1,(n), <X, |Z=2,Z,=2,)

_o, —DIHZ_\/ﬂI(l_nI )Z;+\/1_2K1 @ (FRI (XI)),cl(pl(tl)’Z);_ﬁl )
Ja-B)1-7)+Dp,

-® {DZ Vl_pzz_‘\fﬂz(l_nzz)zr +‘\)1_K22(D_1(FR2(X2))

Ja=B)1-7.+D,2p,

,Cz(pz (tz)a Z);_ﬁz]

Integrating over z and z,, we will have the copula as
C(p, (), Fy (1): Py (1), Fo (5)) = P(z, <1, (1), S 337, £1,,(ry), € x,)
=[Pz, <1,(0), <337, <6,,(1),, <%, | Z= 2.2, =2,)- J(2)h(z,)dedz,

=@, (@7 (p, (1)), D (Fy (%)), D (P, (1,)), @ (F (x,));Z,)
(36)

where @, is the 4-variable cumulative normal distribution and the correlation matrix is

defined as
D? ](1_ 2)
1 0 Jop, #
1-K,
: | Dp=p) DDAI-p)i-p) +{BAN- 1 1)
5 - -k’ (I-K’)1-K,)
p_ —
m Dip(1-py) | 0
1-K/
Dlp1=p) DDAI-pNI-p) +JBB0-n-n) |
I-K,’ (1-K))1-K,)

Equation (36) can be compared with the standard Gaussian copula of default times with
fixed recovery

C(p, (), p,(t,))=P(r, <t,,7, <t,) = @2(q)—1 (p, (1, ))’CD_1 (P2 @2))i7 P1P2) (37)

Note that, in equation (36), default time and recovery of the same obligor have
correlation coefficient zero. This is because recovery is always conditional on default

12




such that loss is the direct product of PD and LGD. This again shows a constraint on
constructing a copula factor model of correlated default time and recovery, which may
not be obvious as PD and LGD are correlated through the systemic factor Z . The copula
for default time and recovery is still Gaussian. Equation (36) can be extended to more
than two obligors, multi-factors and other types of copulas.

For numeric purpose, we consider the recovery distribution discussed in [15], which has
the same form as the limiting portfolio loss distribution found by Vasicek [22]:

Fo(x0)=P(r, <xr=1)=D(a- O (x)—V1+a’ D' (1)) (38)

where a >0 and r, €[0,1] is a constant. This distribution will simplify calculation for
Gaussian Copula model. The expected recovery rate is 7, and the variance of recovery
rate is

V= cpz[qa‘ (1), @™ (ro);%j -1’ (39)
1+a

When a goes to zero, the variance goes to the maximum value 7, (1—r,), which

corresponds to the case where recovery takes the extreme value O or 1. When a goes to
infinity, the variance goes to zero and the distribution reduces to a constant recovery 7, .

The original spot recovery equation (28) can be written as

W — KO (p(1)) | =
lr=t~® ————+,[1+ 5O (rp) [V =D (p(1)) (40)
r|t ( T ; A }‘ p

Then we have

P(r.<x|t=t,Z=2,Z,=2,)

_ Q(—Dz—Jﬂ(l—p)a—nz)z, 1= p)1-K?) (@@ (1) =1+a’ ®7 (1)) + Dyfp - @ (p(1))

Ja-p)a-pa-y?
41)

The expected spot recovery conditional on Z and Z, is

13



1
F(t’z’zr):.[x.de(rr leT:t,Z:Z’Zr =Z,)

0

Dz+BA=p)1-n")z, +:(=p)1-K?) N1+a> D7 (1)~ Dy p - (p(t)
Ja=p)a-pa-y>)+a*1-p)i-K>)

=0

(42)

The expected loss up to time ¢ conditional on Z and Z, is

L(t,2,z,) = I(l —7(5,2,2,))-dp(s,2) =D, (c(p,2),b(2,2,)i—P) (43)

where c(p, z) is defined in equation (32) and

D,/l—pz+\/,6’(1—772)zr +J1-K* \/1+a2CD_1(r0)

Ja=-p -y +D*p+a’(1-K?)

. Dp

p: 2 2 2 2
JI- A=)+ D*p+a*(1-K?)

b(z,z,)=—

5. Large Homogeneous Pool Limit and Downturn LGD

In the Basel II capital requirement calculation, the portfolio is normally assumed to be
fully granular which corresponds to the large homogeneous pool (LHP) limit. We look at
the LHP limit for the Tasche model, the Chabaane-Laurent-Salomon model and our spot
recovery model, and compare them to the standard Vasicek model.

In all these models, conditional on the systemic factors, loss of each obligor is
independent. So in the LHP limit with total exposure equal to 1, the portfolio loss can be

described by the expected loss of one obligor conditional on the systemic factors, L(Z)
or L(Z, Z ), see [7] for a proof.

In the Tasche model, the conditional expected loss is shown in equation (19). We will use
the recovery distribution in equation (38) as an example for calculation purpose. Since
[ =1-r_, we have

F,(0)=P(, <xr<t)=P(r,21-Ar <1)=1-F(1-x) (44)

So the conditional expected loss is

14



L2)=| cl{q’ (P(’)'(v‘l’_”_dp(x)”‘@z j.dx: | q{q’ (p(r)-l;,f;))—ﬁz]. i

0

(45)

The portfolio loss in the LHP limitis L, = L(Z) . The portfolio loss distribution can be
calculated as

F, (x)=P(L, <x)=P(L(Z) < x)=D(-L " (x)) (46)

where the negative sign is because L(z) is a monotonically decreasing function of z .

Here we abuse the notion L temporarily by treating it also as a function of z to arrive at
the correct formula for VaR. Equivalently, we have x = L(-® ' (F L, (x))) . This gives an

easy way to calculate VaR (see [7]) by replacing z in L(z) with —® ()
VaR(a)=F, (&)= L(-® (@)= L(® ™' (1-a)) (47)

where « 1is the confidence level.

For the Tasche model with the recovery distribution defined in equation (38), we have

VaR(@) - Iq{fb (p(): Fy (1) +/p® (a)j. "
0 VI=p

_j.q) (D—l(p(;).(p(atb‘l(r)— 1+a2®_1(r0)))+\/;®_1(a) J
- -dr
0 Vi-p

The integration in equation (48) does not have analytical solution and numerical
integration or Monte Carlo method has to be used for calculation.

(48)

Next, we look at the Chabaane-Laurent-Salomon model as discussed in section 3.2. For
the two-factor model, loss is no longer a monotonic function and calculation is more
complicated. Here we will confine to the special case of a single systemic factor with

1 =1 where loss is again monotonic. The loss distribution conditional on Z is from

equation (22)
P <SXZ=2)=P(r<i|Z=2)-P(L() <Xt <1,Z =2)

o (@“(Fd ) +fz @ (p)-+/pz. ] (49)
- 2 ) ,_7/
1-p NI,

The conditional expected loss is
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zXZ):jxwhqb{Q_(E*x”+Jz7'Q_(p“”‘J;Z?WJ

q 1-B T 1-p
¢ (O (F,(0))+BZ O (pt)—pZ
=P(t,2)— | D , d (50)
R e e i
o [cb*(F () -JBZ ©(p)-pZ y] s
0 : \/ -p \/1 P
So VaR will be

O (Fp(0)+/BD (@) O (p(1)+/pd () j%u (51)
1-8 ’ Vi-p

In the special case of the recovery distribution in equation (38), we have

VaR (o) = jdb {

VaR(a) = —\/1+a2cp—1(r0)+\/ﬁcp-l(a) q)—l(p(t))Jr\/;cD_l(a)‘ y ’_l—ﬂ )
2 1-p+a’ ’ Ji-p N-pra

This can be derived by plugging equation (38) into equation (51), changing variable
x =®(y) and integrating out y.

For our new model, again we assume 7 =1. Equation (33) simplifies to

. o ( Di=pzt 1=K (F,(x) & (p(0)=lp:. -DyJp J
(t<t,r,<xZ=2)=,
Ja-p1-7>)+D%p Ji-p  Ja-pa-yH+pp
(53)

where D = \/ pd—-p) — 7/\/ p(1—= ) . So the conditional expected loss is

L(Z)= j(l x)-d P(r<t,r, <x|Z) = J.P(z'<t r. <x|Z)dx

zjq)( D= pZ + 1= K207 (F,(x)) @0~ JrZ. ~DJp }'dx
0 Ja=p)1-y>)+D*p Vi=p \/(1 L)1-y*)+D*p
(54)

So VaR will be
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Ve < [ PAIZE0 @+ 1=K 0 ) 0o+ Jp0 @) D o
0 \/(1—,3)(1—72)+D2p H \/(1—ﬁ)(1—}/2)+D2p
(55)

In the special case of the recovery distribution in equation (38), we have

VaR(ax)
o V1=K 1+a*®7' (1) + D1 p®~' (@) O (p(1)+[p® ' (a) -D\p
| Ja-pa-H+piprata-ky Ji-p Ja=pa-yH)+Dprat(-K?)

(56)

This can be derived by plugging equation (38) into equation (55), changing variable
x =®(y) and integrating out y .

In the limit a — oo, the recovery distribution converges to the constant case, which is just
the original Basel II formulation based on Vasicek [22] with no correlation between
default and LGD:

VaR,,...(a) = ELGD- CD[(D_ (p®)+ \/;CD" (a)] (57)

Ji-p

where ELGD =1-r, is the expected LGD of each obligor. This limit can also be
obtained if K =0, which is equivalentto =0 and y =0.

The downturn LGD ( DLGD) for a general LGD model can be defined as (see [3])

VaR (o) (58)
(D[(D_l(p)+\/;®_l (0:)}

I-p

DLGD(a) =

which is the same as ELGD for the Vasicek model, and may be greater than ELGD for
correlated loss models with more tail risk. We will study this phenomenon in the next
section. For expected shortfall calculation, see previous version of the current paper.

6. Numeric Examples

We present some numerical examples here to compare downturn LGD in our model with
those of Tasche and Chabaane-Laurent-Salomon models. The confidence level is set to
a =99.9% and p is for 1-year probability of default. Below is a table showing the ratio

between DLGD and ELGD =1-r, under various parameter combinations (any
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parameter change from the first case is colored in yellow). The ratio is equivalent to the
ratio between VaR of the correlated model and VaR of the Vasicek model.

DLGD(x) _ VaR(x)

ratio =
ELGD VaR,,....(a)

Ty a |P | P B V4 Tasche | Chabaane | Ours
40% | 10 | 1% | 15% | 15% 25% | 101.9% 110.0% | 104.0%
1 112.3% 154.4% | 127.0%
0.1 116.1% 163.3% | 136.7%
40% | 10 | 5% | 15% | 15% 25% | 102.6% 109.2% | 104.4%
1 116.7% 151.9% | 129.3%
0.1 121.7% 161.8% | 139.5%
40% | 10 | 1% | 50% | 15% 25% | 103.2% 108.9% | 101.2%
1 120.9% 150.9% | 108.5%
0.1 127.4% 161.1% | 111.9%
40% | 10 | 1% | 15% | 50% 25% | 101.9% 115.4% | 109.0%
1 112.3% 165.1% | 153.4%
0.1 116.1% 166.7% | 164.1%
40% | 10 | 1% | 15% | 15% 50% | 101.9% 112.4% | 103.0%
1 112.3% 160.8% | 120.8%
0.1 116.1% 166.1% | 128.7%
70% | 10 | 1% | 15% | 15% 25% | 103.5% 119.0% | 107.3%
1 127.5% 245.4% | 155.8%
0.1 139.6% 293.5% | 180.7%
40% | 10 | 1% | 50% | 15% 50% | 103.2% 110.2% 99.4%
1 120.9% 156.0% | 95.4%
0.1 127.4% 164.6% | 93.6%

From the table we can see that, in general, the Chabaane-Laurent-Salomon model
overstates the ratio and the Tasche model understates the ratio comparing to our model.
The ratio is less than 100% for our model in the case D <0 which leads to negative
correlation between default and LGD, and should be avoided. The bias in the Chabaane-
Laurent-Salomon type model was also discussed in [11].

As for the estimation of the parameters, we note that it may follow similar schemes using
maximum likelihood method as discussed in other term LGD models, as our model also
includes formulas for term LGD. The difference is that our model allows for consistent
spot recovery specification while previous approaches may lead to bias or inconsistency
in multi-period setting. The difference is more in the correlation structure involving
recovery such that the marginal distributions of default rate and recovery rate should be
calibrated in the same way for all models. The default correlation is also the same. Thus
the comparison with the same parameters 7, a, p, p makes sense. The parameters f

and y will be hard to calibrate and could be different between our model and the
Chabaane-Laurent-Salomon model.
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7. Conclusion

In this paper, we present a new model framework for the quantification of downturn LGD
due to systemic correlation between default and loss in the Basel II capital requirement.
We show that previous approaches may not be internally consistent if not used properly
and may lead to bias in downturn LGD calculation. The inconsistency and bias are
avoided in our new model, which directly models stochastic spot recovery in a default
time copula framework. We also discuss the large homogeneous pool limit and derive
analytic formula for VaR for a single systemic factor given a specific form of recovery
distribution. The downturn LGD in the new model is compared with two previous models
with numerical examples to demonstrate the bias of one of them.

Appendix Extension of the Tasche Model to Multiple Latent
Variables

In the Tasche model, default and LGD are driven by the same latent variable. Here we
extend the Tasche model to allow LGD be driven by a different latent variable, which is
also the correct way to construct the Chabaane-Laurent-Salomon model. This will
remove the bias discussed in Sec. 3.2, but it may still have the inconsistency discussed in
Sec. 3.1. Note that the models by Hillebrand [12] and Barco [3] belong to this class.

We assume V = \/;Z +4/1— p¢& drives the default of an obligor. The obligor default

before time ¢ (7 <t) is equivalent to V < ®'(p(¢)). The latent variable driving LGD
has the same form as in equation (21)

W =Bz +1-1°Z,) + 1= Bre+ 1=y &) (A1)
Conditional on V <®~'(p(1)), the distribution of —W is

P(-W <w,V <D ' (p(1))) _
P(V <O (p(1)) p()

P(-W <w|V <0 (pt) = @, (w, @ (p(1);~K) = F, (W)

(A2)
Note that F, , (w) depends on p(t), thus could be time-dependent. This distribution is
not normal so L(t)|r <t~F d_l(CD(—W))‘V <®'(p(t)) will introduce bias to F ;(x). The

correct specification of term LGD is L(t)|r <t~F d"l(F N (—W))‘V <d'(p)).

Conditional on Z and Z_, default and loss will be independent between obligors,
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although they are still correlated through the idiosyncratic factors within each obligor.
The LGD distribution conditional on Z and Z_ will be

P(LO)SAr<t,Z=2,Z,=2,)=P(F;'(F, ((-W) <V < (p(t),Z=22, =2,)

F' (F, 1—n?
B PPN [ (x))+JE([;71+x/ n°z,)
F:K(Fd(x))+\/z(77z+\/1—7722,) CD_I(P(t))—\/;z_

= p(t,2)" - @ : =
p 2 =3 — y

V<O (p(n),Z=22Z, =z

(A3)

So the loss distribution conditional on Z and Z, is

P(L(<NZ=2,Z,=2,)

F' (F,(0)++Buz+1-1"2,) CD_'(p(t))—\/;z._y (A4)
1-B o 1-p

=1-p(t,2)+ D,

such that, after integration over z and z,,

P(Lt) <) =1 p(0)+ @, (F ! (F,(x).@7 (p(t):~K)
=1-p@®)+ p@)-F,(x)

(A5)

So the model implied term LGD distribution is indeed F,(x), which does not have the
bias in equation (26). In the limit K =1, the model reduces to the Tasche model.

Similar to equation (19), we have the expected loss conditional on Z and Z, as

E(LW|Z=2,Z,=z,)= p(t,z)-[l—JP(L(t) <Nr<t,Z=2Z = Zr)'de

L[ F'(F, JI-7° -1 _
=p(t,z)—j<b2 M( (x))+\/ﬁ(77z+ n Z,),CD (p(®)) \/;Z;—;/ dx (A6)

0 1-p JI-p

= p(t,2) = [®,(8(p.x 2,2, ),0(p, 2 )-dx

where
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F(F,)+BOr+1-1z,)
J1-5

g(p,x,2,z2,) =

and c(p, z) is defined in equation (32).

If the only dependence on time in a multi-period model is through the default probability
p(t), the conditional expected spot LGD will be

. _OELMNZ=22,=1,)

l,(t,z
d( ) azp(t,Z)
(0 s X5 Zs c(p.2)’-8(pxz.z,)’ )
=1—I ]7g(p X Z Zr).e 2 'CD 7/ g(P,X,Z,Zr)—i—c(p,Z) .dx (A7)
0 apc(p,Z) M
1
—j@ 8(p,x,2,2)+y-c(p.2) | .
o Sy
where
F_lx (Fd (x))+K'CD_1(p)
Fd(x)—Q) Lo :
88(P,x,z,zr): K
i O (p)+K-F ! (F,(x)
M-¢(FP_L( (Fd (x)))q)[ p;K d
| 1-K
and
oc(p,z) _ 1

o Jl-p-g@(p)

c(p.2)’ =g (p.x,2,2,)°
The exponential term e 2 in equation (A7) determines if the spot LGD is

inconsistently defined. When 77 #1, z, can cancel out z in g(p,x,z,z,)but c(p,z) can
be unbounded such that the model becomes inconsistent. When =1, if p > £, then
c(p, z)* will dominate g(p,x,z, z,)2 in the exponential term, which leads to
inconsistency. If 7 =1 and p= £, there is a linear term in z in the exponential term
similar to the Tasche model, so the model is inconsistent. If 7 =1 and p < £, then the

exponential term is bounded and the model may be consistent. Both the Hillebrand model
and the Barco model have 77 #1, so they may not be consistent as multi-period models.
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Another way to extend the Tasche model to multiple latest variables was discussed in
[21].
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