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Basel II suggests that banks estimate downturn loss given default (DLGD) to capture 
the systemic correlation between default rate and loss given default through 
economic cycles. However, previous approaches in the literature may not be 

internally consistent and may have bias in capital calculation. In this paper, we 
propose a new consistent model framework based on our recent work on stochastic 
spot recovery. We also compare numerically the downturn LGD in our model with 

some of the previous approaches. 

 

 

1. Introduction 
 
Evidence from historic data suggests that recovery rates on corporate defaults tend to 
decrease when default rates increase in an economic downturn [1]. This phenomenon 
leads the BIS to suggest banks estimate downturn loss given default (DLGD) for capital 
requirement calculation [4, 5]. The main reason for this requirement is that the Vasicek 
model [22] used in the Basel Accord does not have systemic correlation between 
probability of default (PD) and loss given default (LGD), which would underestimate 
downturn risk.  
 
There have been several attempts to model the dependence between PD and LGD, see for 
example [2, 3, 7, 8, 9, 10, 12, 17, 18, 19, 20]. Most of the approaches model the term 
LGD (LGD in a period of time) driven by a latent variable that is correlated with the 
latent variable driving default. This kind of approach has some drawbacks, as will be 
discussed in section 3 of the current paper. The key point is that the specification of the 
correlation between PD and LGD may not be internally consistent in a multi-period or 
continuous time setting or may lead to bias in capital calculation. Similar problems in 
CDO pricing with stochastic recovery have led to the direct modeling of spot recovery (or 
recovery at time of default) [6, 15]. The purpose of this paper is to use our recently 
proposed stochastic spot recovery model to build a consistent downturn LGD model for 
Basel II capital calculation. If we view the previous approaches as based on a structured 
model where default can only occur at the end of a period, then spot recovery model is 
related to the fact that default can actually be triggered any time during the period. 
Essentially, term LGD is a weighted average of spot LGD such that direct specification 
of term LGD may lead to inconsistent spot LGD. Our approach shows that a term 
recovery model may not lead to a consistent spot recovery model, but the reverse is true: 

                                                 
* Email: xhuili@yahoo.com. The opinions expressed in this article are the author’s own and do not reflect 
the views of his employer. 

mailto:xhuili@yahoo.com


 2 

a consistent spot recovery model leads to a consistent term recovery model. Although 
capital allocation is typically done for one year horizon, it should be part of a consistent 
multi-period or continuous time credit model and thus restriction on modeling 
assumptions may apply. The granularity of default at any time and recovery conditional 
on default time requires more consistent modeling of term LGD. 
 
The paper is organized as follows. In section 2, we discuss the general concept of spot 
recovery and term recovery, and present the consistent condition for a term recovery 
model. In section 3, we discuss the Tasche model and the Chabaane-Laurent-Salomon 
model, and show the inconsistency or bias they may have if not used properly. In section 
4, we present our stochastic spot recovery model using a two-factor setup. We also derive 
the copula that correlates both default time and recovery rate. In section 5, we derive the 
large homogeneous pool limit for the Tasche model, the Chabaane-Laurent-Salomon 
model and our spot recovery model in a single systemic factor case. Then we show how 
VaR can be calculated and define downturn LGD for all these models. In section 6, we 
give numerical examples to compare downturn LGD and show the bias in the Chabaane-
Laurent-Salomon model. Section 7 concludes the paper.  
 
 

2. The concept of spot recovery and term recovery 

 
The spot recovery rate is the recovery rate paid on a debt at the time when the issuer 
defaults. It happens at the time of default and is conditional on default. To simplify the 
model, we ignore the time delay between issuer default and the actual recovery payout, 
which is common in the literature and may be relaxed by adding a time-delay. Assume   
is the default time random variable in a probability space ( , , ) endowed with a 

filtration  tt 0)(  modeling the flow of market information through time. We do not 

limit   by the maximum maturity of an issuer’s debts.   is a stopping time under the 

filtration such that tt  })(:{  . Assume there is a stochastic process r that 

specifies the spot recovery rate at time of default as r  such that the mapping 

)()(  r  is measurable and r  is indeed a random variable. Similarly, we can define 

the LGD random variable as  rl 1 . The spot recovery at time t is the conditional 

random variable tr  . The term recovery rate in the time period ],0( t  is the 

conditional random variable tr  . Note that t  can be anytime in the future in a 

continuous-time model. In the traditional credit capital modeling, people tend to look at a 
fixed time horizon where term recovery is normally considered. But, for proper modeling 
of credit risk, a continuous time model is preferred where default can happen at any time 
and recovery is conditional on default time. 
 
In a factor model, we may have a large number of issuers and the probability space is 
extended to include some random factors representing the economic state. Following the 
discussion in [6], the conditional expected spot recovery rate for an issuer at time t  is 
defined as 
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   ZtrEZtr ,),(          (1) 

 
and the conditional expected term recovery rate up to time t  is defined as 
 

   ZtrEZtR ,),(         (2) 

 
where Z  is a random variable in an extended probability space, representing some 
systemic factor affecting default rate and recovery of all the issuers. As we will see later, 
Z  is introduced to correlate the credit quality of the issuers, but it will not affect 
marginal distributions of default or recovery rate as in the copula models. The loss up to 
time t  as a stochastic process is defined as 
 

  trtL   1)1()(        (3) 

 

Assume the conditional default probability is given by )(),( ZtPZtp   , then the 

conditional expected loss is  
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where we have assumed that, conditional on Z , default and recovery are independent. 
From this we have the following relationship between conditional expected spot recovery 
and conditional expected term recovery  
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If we define the conditional expected spot recovery first and derive the conditional 
expected term recovery from the above relationship, term recovery will naturally fall in 
the range of ]1,0[  as long as spot recovery is in the same range. However, if we define the 

conditional expected term recovery first, the derived conditional expected spot recovery 
is not guaranteed to be in the range ]1,0[ . As 
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the consistent condition would be  
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Note that the condition should also hold without conditioning on Z , or by integrating out 
Z . However, the consistent condition may be broken more for the reason that the 
dependency on Z  is not defined correctly, in which case, the spot recovery may no 
longer be measurable in the extended probability space including Z . 
 
If we look at the conditional expected spot LGD defined as  
 

 ZtrEZtld ,)1(),(         (8) 

 
and the conditional expected term LGD defined as 
 

   ZtrEZtLd ,)1(),(         (9) 

 
then the conditional expected loss is 
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So the consistent condition for a term loss model can be stated as 
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The consistent conditions can be extended beyond conditional expectation to conditional 
probability distribution. The conditional probability distribution of term recovery can be 
used to derive the conditional probability distribution of spot recovery, which can then be 
used to derive a relationship between spot recovery and the factors using the quantile 
function defined in the next section.  

 

 

3. Issues with current LGD factor models 
 
The models proposed for downturn LGD are mostly factor models. The Tasche model 
[20] assumes the same latent variable drives both default and loss give default so that the 
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latent variable is actually driving the unconditional loss. All other models assume a 
correlated latent variable drives the LGD, where the difference is in the number of 
systemic or idiosyncratic factors. Frye [9] uses a single systemic factor with an 
independent idiosyncratic factor to drive the LGD. Pykhtin [18] also uses a single 
systemic factor but with an idiosyncratic factor that is correlated with the idiosyncratic 
factor driving default. Hillebrand [12] and Barco [3] assume two systemic factors but no 
idiosyncratic factor. Andersen and Sidenius [2] discuss two systemic factors with one 
independent idiosyncratic factor. Chabaane, Laurent and Salomon [7] discuss a more 
general factor correlation structure that is equivalent to two correlated systemic factors 
and two correlated idiosyncratic factors. The two types of models both may have some 
internal problems if not used carefully, which will be discussed below.  
 
 

3.1. The Tasche Model 
 
First we discuss the Tasche model following our previous work [14]. Let )(tL  be the loss 

up to time t  defined in equation (3). Then )(tL  will be zero with probability )(1 tp  

when the obligor is not in default before time t . )(tL  may take positive values with 

probability )(tp  if the obligor defaults before time t . Formally, the cumulative 

distribution function LF  of )(tL  has the following general form  

 

 )()()(1))(()( xFtptpxtLPxF dL    for ]1,0[x   (13) 

 

where )())(()( txlPtxtLPxFd     is the cumulative distribution of term 

LGD. Note that )(xFd  could be independent of )(tp , e.g., when it is a Beta distribution 

calibrated to historic data through economic cycles. Define the quantile function 1
LF  of 

LF  as 

 

})(:]1,0[min{)(1
yxFxyF LL    for ]1,0[y   (14) 

 

Assume default of an obligor is linked to the latent variable   1ZV  through 

a default threshold ))((1
tpv

 , where Z  and   are independent standard normal 

random variables, Z  is the systemic factor,    is the correlation coefficient and )(x  is 

the cumulative normal distribution function. Then we can model the dependence of loss 
and default by relating loss to the latent variable as   
 

    ))(()( 1
VFtL L        (15) 

 
where the negative sign introduces a negative correlation between loss and asset value 
represented by the latent variable V . Note that this representation will not change the 
distribution of )(tL . 
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Conditional on zZ  , the probability of default is  
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The loss distribution conditional on zZ   is 
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So the distribution of term LGD conditional on zZ   is 
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The expected loss conditional on zZ   is 
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Next we prove that the Tasche model cannot easily be derived from a consistent multi-
period model if the dependence on time is only through the default probability )(tp . For 

this purpose, we look at the conditional expected spot LGD defined in equation (8), 
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As mentioned earlier, )(xFd  can be independent of p  as they are the marginal 

distributions out of the joint distribution of LGD and default. It is obvious that, when 
z , the conditional expected spot LGD will go to   and the conditional expected 

spot recovery will be negative. This would break the consistency condition defined in 
equation (12) such that spot recovery is not a well-defined random variable. This problem 
was initially found in the stochastic recovery models for CDOs [14] as the Tasche model 
was extended beyond its intended use for one-period capital calculation to a multi-period 
credit loss model. The other issue with the Tasche model is that it is very restrictive as the 
same latent variable drives both default and loss, which can be extended as discussed in 
the appendix. 
 
 

3.2. The Chabaane-Laurent-Salomon Model 
 
Chabaane, Laurent and Salomon [7] discussed the general factor structure for the 
underlying latent variables driving default and term LGD under the assumption of a 
homogeneous credit portfolio. Here we will discuss the problem with this model. 
 

Again we assume   1ZV  drives the default of an obligor. The latent 

variable driving term LGD has the following form 
 

)1(1)1( 22   rZZW    (21) 

 

where Z , rZ  are independent systemic factors and  ,   are independent idiosyncratic 

factors. The parameters   and   are used to control the correlation with the two 

systemic factors, while   is used to control the correlation between the idiosyncratic 

variables. The term LGD is linked to W  through ))(())((~)( 11
tpVWFttL d

  . 
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Conditional on Z  and rZ , default and term LGD will be independent between obligors, 

although they are still correlated through the idiosyncratic factors for each obligor. The 
distribution of term LGD conditional on Z  and rZ  will be 
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where );,(2 yx  is the cumulative bivariate normal distribution with correlation  .  

 

So the loss distribution conditional on Z  and rZ  is 
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such that, after integration over z  and rz , 
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where )1)(1(  K  is the correlation between V  and W . We have 

used the following formula to derive equation (24), see Appendix in [14], 
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where )(z  is the density function of the standard normal distribution. 

 
So, combining equations (13) and (24), the term LGD distribution is 
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Note that the term LGD distribution M

dF  implied by the model is different from the 

calibrated marginal LGD distribution dF  unless the correlation K  is zero. The two 

distributions should be the same if the model is to be fitted to observed data, but they are 
not the same due to incorrect construction of the model. The correlation term is always 

non-positive, which makes sense since an increase in dF  means a decrease in the 

expected LGD. When correlation is negative,  M

dF  is smaller than dF  such that the 

expected loss from M

dF  is higher than the expected loss from dF  . So the model tends to 

overestimate VaR or downturn LGD. This kind of bias was also discussed in [11] and 
will be confirmed in section 6. 
 
 It should be noted that the bias problem is due to the incorrect way of linking term LGD 

to W  as W  no longer follows a normal distribution conditional on )(1
pV

 . In the 

Appendix, we will clarify the source of the bias and construct a correlated term LGD 
model without the bias. It covers the models of Hillebrand [12] and Barco [3], and is also 
a generalization of the Tasche model to multiple latent variables. However, that model 
may still have the same inconsistency as the Tasche model. 
 
 

4. Stochastic Recovery in the Default Time Copula Framework 
 
The problems of the previous section can be resolved through a consistent stochastic spot 
recovery model in a default time copula framework. The way is to model the spot LGD 
or spot recovery directly to make sure it is in the range ]1,0[ . Here we generalize our one-

factor Gaussian model of spot recovery [15, 16] to two systemic factors with correlation 
between idiosyncratic variables. We will follow the factor structure of Chabaane, Laurent 
and Salomon [7]. It is straightforward to extend the model to multi-factor or non-
Gaussian copula cases. 
  
In the default time copula framework of D. X. Li [13], the joint distribution of default 
times is determined by the individual default time distributions (given by default 
probability curve) and a copula function. In the Gaussian Copula setup, the latent variable 

  1ZV  drives the default of an obligor. The default event t1 can be 

characterized by ))((1
tpvV

 , where   is the default time random variable, )(tp  is 

the  default probability of the obligor. We relate the default time random variable   to V  
as 
 

    ))((1
Vp        (27)  

 
Note that   is not limited to a time range. It is the default time of an issuer, not that of a 
loan with finite maturity. We assume that the stochastic spot recovery is driven by the 

latent variable )1(1)1( 22   rZZW  through a time-

independent cumulative distribution function )()( txrPxFR    for spot recovery r  
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at time t . It turns out that spot recovery and term recovery share the same 
distribution, as shown in equation (34).  
 

Conditional on t  or ))((1
tpV

 , W   follows a normal distribution with mean 

))((1
tpK

  and standard deviation 21 K , where )1)(1(  K . To 

ensure that )(xFR  is indeed the cumulative distribution for the spot recovery at time t , 

we specify the stochastic spot recovery at time t  as 
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The special case 1K  or WV   is excluded as spot recovery is deterministic. Thus 
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If we fix zZ   and rr zZ  , then 
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where )1()1(  D . If 0D , then W  is algebraically linear in V . We 

may require 0D  such that, when z  increases, the conditional cumulative distribution 
decreases and conditional expected recovery will increase. The conditional default 
probability for each obligor is given by 
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Now we can derive the distribution for the term recovery conditional on Z  and rZ  as 
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The term recovery distribution is as follows 
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where we have used the formula in equation (25). 
 
So the distribution of term recovery rate is the same as the distribution of spot recovery 

rate and is time-independent. Note that, if the spot recovery distribution )(xFR  is time 

dependent, then the integration in equation (32) would be more complicated.  
 
Consider two obligors with correlated default and recovery rate, here we derive the 
copula of default time and term recovery rate. The one factor case has been discussed in 
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[16]. Conditional on Z  and rZ , the default and term recovery processes are independent 

for the two obligors, and we have 
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Integrating over z  and rz , we will have the copula as  
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where 4  is the 4-variable cumulative normal distribution and the correlation matrix is 

defined as 
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Equation (36) can be compared with the standard Gaussian copula of default times with 
fixed recovery 
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Note that, in equation (36), default time and recovery of the same obligor have 
correlation coefficient zero. This is because recovery is always conditional on default 
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such that loss is the direct product of PD and LGD. This again shows a constraint on 
constructing a copula factor model of correlated default time and recovery, which may 
not be obvious as PD and LGD are correlated through the systemic factor Z . The copula 
for default time and recovery is still Gaussian. Equation (36) can be extended to more 
than two obligors, multi-factors and other types of copulas. 
 
For numeric purpose, we consider the recovery distribution discussed in [15], which has 
the same form as the limiting portfolio loss distribution found by Vasicek [22]: 
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where 0a  and ]1,0[0 r  is a constant. This distribution will simplify calculation for 

Gaussian Copula model. The expected recovery rate is 0r  and the variance of recovery 

rate is 
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When a  goes to zero, the variance goes to the maximum value )1( 00 rr  , which 

corresponds to the case where recovery takes the extreme value 0 or 1. When a  goes to 

infinity, the variance goes to zero and the distribution reduces to a constant recovery 0r . 

 
The original spot recovery equation (28) can be written as  
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Then we have 
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The expected spot recovery conditional on Z  and rZ  is 
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The expected loss up to time t  conditional on Z  and rZ  is 
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where ),( zpc  is defined in equation (32) and 
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5. Large Homogeneous Pool Limit and Downturn LGD 
 
In the Basel II capital requirement calculation, the portfolio is normally assumed to be 
fully granular which corresponds to the large homogeneous pool (LHP) limit. We look at 
the LHP limit for the Tasche model, the Chabaane-Laurent-Salomon model and our spot 
recovery model, and compare them to the standard Vasicek model. 
 
In all these models, conditional on the systemic factors, loss of each obligor is 
independent. So in the LHP limit with total exposure equal to 1, the portfolio loss can be 

described by the expected loss of one obligor conditional on the systemic factors, )(ZL  

or ),( rZZL , see [7] for a proof. 

 
In the Tasche model, the conditional expected loss is shown in equation (19). We will use 
the recovery distribution in equation (38) as an example for calculation purpose. Since 

 rl 1 , we have 

 

)1(1)1()()( xFtxrPtxlPxF Rd      (44) 

 
So the conditional expected loss is 
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The portfolio loss in the LHP limit is )(ZLLp  . The portfolio loss distribution can be 

calculated as 
 

))(())(()()( 1
xLxZLPxLPxF pLp

    (46) 

 

where the negative sign is because )(zL  is a monotonically decreasing function of z . 

Here we abuse the notion L  temporarily by treating it also as a function of z  to arrive at 

the correct formula for VaR. Equivalently, we have )))((( 1
xFLx

pL

 . This gives an 

easy way to calculate VaR (see [7]) by replacing z  in )(zL  with )(1  : 

 

  ))1(())(()()( 111   
LLFVaR

pL    (47) 

 
where   is the confidence level.  
 
For the Tasche model with the recovery distribution defined in equation (38), we have 
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 (48) 

 
The integration in equation (48) does not have analytical solution and numerical 
integration or Monte Carlo method has to be used for calculation. 
 
Next, we look at the Chabaane-Laurent-Salomon model as discussed in section 3.2. For 
the two-factor model, loss is no longer a monotonic function and calculation is more 
complicated. Here we will confine to the special case of a single systemic factor with 

1  where loss is again monotonic. The loss distribution conditional on Z  is from 

equation (22) 
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The conditional expected loss is 
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So VaR will be 
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In the special case of the recovery distribution in equation (38), we have 
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This can be derived by plugging equation (38) into equation (51), changing variable 

)(yx   and integrating out y . 

 
For our new model, again we assume 1 . Equation (33) simplifies to 
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where )1()1(  D . So the conditional expected loss is 
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So VaR will be 
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In the special case of the recovery distribution in equation (38), we have 
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This can be derived by plugging equation (38) into equation (55), changing variable 

)(yx   and integrating out y . 

 
In the limit a , the recovery distribution converges to the constant case, which is just 
the original Basel II formulation based on Vasicek [22] with no correlation between 
default and LGD: 
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  (57) 

 

where 01 rELGD   is the expected LGD of each obligor. This limit can also be 

obtained if 0K , which is equivalent to 0  and 0 . 

 
The downturn LGD ( DLGD) for a general LGD model can be defined as (see [3]) 
 

   

























1
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11
p

VaR
DLGD     (58) 

 
which is the same as ELGD  for the Vasicek model, and may be greater than ELGD  for 
correlated loss models with more tail risk. We will study this phenomenon in the next 
section. For expected shortfall calculation, see previous version of the current paper. 
 
 

6. Numeric Examples 
 
We present some numerical examples here to compare downturn LGD in our model with 
those of Tasche and Chabaane-Laurent-Salomon models. The confidence level is set to 

%9.99  and p  is for 1-year probability of default. Below is a table showing the ratio 

between DLGD and 01 rELGD   under various parameter combinations (any 
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parameter change from the first case is colored in yellow). The ratio is equivalent to the 
ratio between VaR of the correlated model and VaR of the Vasicek model. 

 

)(

)()(




VasicekVaR

VaR

ELGD

DLGD
ratio   

 

0r  a  p        Tasche Chabaane Ours 

40% 10 1% 15% 15% 25% 101.9% 110.0% 104.0% 

  1         112.3% 154.4% 127.0% 

  0.1         116.1% 163.3% 136.7% 

40% 10 5% 15% 15% 25% 102.6% 109.2% 104.4% 

  1         116.7% 151.9% 129.3% 

  0.1         121.7% 161.8% 139.5% 

40% 10 1% 50% 15% 25% 103.2% 108.9% 101.2% 

  1         120.9% 150.9% 108.5% 

  0.1         127.4% 161.1% 111.9% 

40% 10 1% 15% 50% 25% 101.9% 115.4% 109.0% 

  1         112.3% 165.1% 153.4% 

  0.1         116.1% 166.7% 164.1% 

40% 10 1% 15% 15% 50% 101.9% 112.4% 103.0% 

  1         112.3% 160.8% 120.8% 

  0.1         116.1% 166.1% 128.7% 

70% 10 1% 15% 15% 25% 103.5% 119.0% 107.3% 

  1         127.5% 245.4% 155.8% 

  0.1         139.6% 293.5% 180.7% 

40% 10 1% 50% 15% 50% 103.2% 110.2% 99.4% 

  1         120.9% 156.0% 95.4% 

  0.1         127.4% 164.6% 93.6% 

 
 
From the table we can see that, in general, the Chabaane-Laurent-Salomon model 
overstates the ratio and the Tasche model understates the ratio comparing to our model. 
The ratio is less than 100% for our model in the case 0D  which leads to negative 
correlation between default and LGD, and should be avoided. The bias in the Chabaane-
Laurent-Salomon type model was also discussed in [11]. 
 
As for the estimation of the parameters, we note that it may follow similar schemes using 
maximum likelihood method as discussed in other term LGD models, as our model also 
includes formulas for term LGD. The difference is that our model allows for consistent 
spot recovery specification while previous approaches may lead to bias or inconsistency 
in multi-period setting. The difference is more in the correlation structure involving 
recovery such that the marginal distributions of default rate and recovery rate should be 
calibrated in the same way for all models. The default correlation is also the same. Thus 

the comparison with the same parameters 0r , a , p ,   makes sense. The parameters   

and    will be hard to calibrate and could be different between our model and the 

Chabaane-Laurent-Salomon model. 
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7. Conclusion 
 
In this paper, we present a new model framework for the quantification of downturn LGD 
due to systemic correlation between default and loss in the Basel II capital requirement. 
We show that previous approaches may not be internally consistent if not used properly 
and may lead to bias in downturn LGD calculation. The inconsistency and bias are 
avoided in our new model, which directly models stochastic spot recovery in a default 
time copula framework. We also discuss the large homogeneous pool limit and derive 
analytic formula for VaR for a single systemic factor given a specific form of recovery 
distribution. The downturn LGD in the new model is compared with two previous models 
with numerical examples to demonstrate the bias of one of them. 
 
 

Appendix  Extension of the Tasche Model to Multiple Latent 

Variables  
 
In the Tasche model, default and LGD are driven by the same latent variable. Here we 
extend the Tasche model to allow LGD be driven by a different latent variable, which is 
also the correct way to construct the Chabaane-Laurent-Salomon model. This will 
remove the bias discussed in Sec. 3.2, but it may still have the inconsistency discussed in 
Sec. 3.1. Note that the models by Hillebrand [12] and Barco [3] belong to this class.  
 

We assume   1ZV  drives the default of an obligor. The obligor default 

before time t  ( t ) is equivalent to ))((1
tpV

 . The latent variable driving LGD 

has the same form as in equation (21) 
 

)1(1)1( 22   rZZW    (A1) 

 

Conditional on ))((1
tpV

 , the distribution of W  is  
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           (A2) 
 

Note that )(, wF Kp   depends on )(tp , thus could be time-dependent. This distribution is 

not normal so ))(())((~)( 11
tpVWFttL d

   will introduce bias to )(xFd . The 

correct specification of term LGD is ))(())((~)( 1
,

1
tpVWFFttL Kpd




  . 

Conditional on Z  and rZ , default and loss will be independent between obligors, 
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although they are still correlated through the idiosyncratic factors within each obligor. 

The LGD distribution conditional on Z  and rZ  will be 
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So the loss distribution conditional on Z  and rZ  is 
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such that, after integration over z  and rz , 
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    (A5) 

 

So the model implied term LGD distribution is indeed )(xFd , which does not have the 

bias in equation (26). In the limit 1K , the model reduces to the Tasche model.  
 
Similar to equation (19), we have the expected loss conditional on Z  and rZ  as 
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where 
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and ),( zpc  is defined in equation (32). 

 
If the only dependence on time in a multi-period model is through the default probability 

)(tp , the conditional expected spot LGD will be 
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The exponential term 2

),,,(),( 22
rzzxpgzpc

e



  in equation (A7) determines if the spot LGD is 

inconsistently defined. When 1 , rz  can cancel out z  in ),,,( rzzxpg but ),( zpc  can 

be unbounded such that  the model becomes inconsistent. When 1 , if   , then 
2),( zpc  will dominate 2),,,( rzzxpg  in the exponential term, which leads to 

inconsistency. If 1  and   , there is a linear term in z  in the exponential term 

similar to the Tasche model, so the model is inconsistent. If 1  and   , then the 

exponential term is bounded and the model may be consistent. Both the Hillebrand model 
and the Barco model have 1 , so they may not be consistent as multi-period models. 
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Another way to extend the Tasche model to multiple latest variables was discussed in 
[21]. 
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