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Abstract: Legal studies usually treat a policy of a manufacturer or retailer as socially harmful
if it reduces product output and increases the price. We consider a two-period model where the
first-period price is fixed by resale price maintenance (RPM) and resellers endogenously decide to
use another “collusion suspect,” meet-the-competition clause with a most-favored-customer clause
(MFC), to counteract strategic customer behavior. As a result of MFC, second-period (reduced)
price increases, and resellers’ inventories decrease. However, customer surplus may increase and
aggregate welfare increases in the majority of market situations. MFC can not only decrease the
losses in welfare and resellers’ profits due to strategic customers but, under reseller competition,
may even lead to higher levels of these values than with myopic customers, i.e., to gains from
increased strategic behavior. MFC may create “MFC-traps” for resellers, where one of possible
market outcomes yields a gain from increased strategic behavior while another results in a reseller
profit less than the worst profit in any stable outcome without MFC. With growing competition,
benefits or losses from MFC can be higher than losses from strategic customer behavior.

Keywords: most favored customer, strategic customer behavior, quantity competition, limited-
lifetime product
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1 Introduction

Legal studies usually treat a policy of a manufacturer or reseller as socially harmful if it reduces
product output and increases the price; see, e.g., Edlin (1997), MacKay and Smith (2014), and
Christensen and Løvbjerg (2014). Figure 1, which is similar to Figure 1 in Edlin (1997), provides
a simple illustration of such an argument. Part of the customer surplus transfers to retailer profit
and another part, which corresponds to the shaded triangle area, is the “deadweight loss” for the
aggregate welfare. This area benefits neither customers nor retailers.

Figure 1: Welfare loss in a one-period model
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In particular, legal studies are increasingly concerned about low-price-guarantees (LPG) as po-
tential anticompetitive practices. Hay (1982) was the first to argue that a price protection or
most-favored-customer clause (MFC) can facilitate noncompetitive pricing by reducing the incen-
tives of competing retailers to cut prices. As Christensen and Løvbjerg (2014) claim, “We expect
increased focus on [MFC] clauses in the future.” MFC guarantees that a customer will effectively
pay the lowest price suggested to any customer. Quoting Hay (1982), the clause implies also that
“a customer who pays list price today may receive a rebate if another customer is offered a lower
price within a specified future period.”

A meet-the-competition clause (MC) is another type of LPG, which guarantees to match a
competitor price at the time of purchase. Edlin (1997) concludes that MC can be “much more
socially costly than an ordinary monopoly or cartel.” This conclusion can be extended to MFC
using the same argument because “high prices can persist even when new firms enter the industry.”
MC and MFC are also called, respectively, concurrent and posterior price matching in the operations
management literature; see e.g., Lai, Debo, and Sycara (2010).

An empirical study by Arbatskaya, Hviid, and Shaffer (2004) shows that the use of various
forms of LPG, including MC and MFC, “is widespread, with no obvious missing retail sectors.” In
practice, customers can also exploit retailer return policy to achieve the effects of MFC. Quoting a
customer forum RedFlagDeals (2008), this behavior can be “referred to as ‘rebuy and return’ – you
buy the new item at the lower price first, then go return that same physical item with your OLD
receipt.” Customers can exhibit rebuy and return behavior for any product such that individual
items cannot be distinguished by the retailer even if this retailer is out of stock. According to
www.pricematching.us, all the retailers offering MC have either directly stated “price protection
period,” i.e., MFC, or return policy, which covers a period up to one year, or both. Thus, meeting
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a competitor’s price during the full-price season is often combined with matching the firm’s own
price in the future. Our study considers this combination of MC with MFC.

MFC attracts a particular attention of legal bodies when resellers’ prices are almost the same,
which may result from resale price maintenance (RPM). European Commission (2010) defines
RPM as an agreement between manufacturer and reseller or concerted practice intended for the
“establishment of a fixed or minimum resale price or a fixed or minimum price level to be observed by
the buyer.” European Commission (2010) stresses that price fixing is more effective when combined
with policies, such as MFC, which may reduce reseller’s incentives to lower the price.

As Butz (1996) pointed out, MC may also serve as an RPM-facilitating tool: “a manufacturer
coordinates retailers’ efforts by financing some or all of the meet-the-competition-related rebates
they make, so in equilibrium all retailers adopt the ‘suggested’ price [MSRP].” An individual
retailer has no incentive to markdown during the full-price season because the competitors’ MC
policy does not allow to increase market share by unilateral price cut. Such a deviation from MSRP
can lead only to a lower profit margin while the margins of the competitors are supported by the
manufacturer. Therefore, the resellers in our model do not deviate from MSRP explicitly in the
full-price season. A long history and empirical evidence of RPM is provided in Appendix.

Potentially high social cost of mistakes in determining a legal status of LPG and RPM requires a
comprehensive study of these phenomena. At the same time, a fixed price (MSRP) for the full-price
season, which is the same for all resellers, allows for a more detailed analysis of other effects, not
connected with the choice of this price. Our study focuses on the intertemporal effects of forward-
looking or strategic customer behavior and responses of competing resellers to this behavior on
aggregate welfare and resellers’ profits. These effects are an important and underestimated source
of misidentifying a legal status of resellers’ and manufacturers’ policies because legal studies usually
do not take them into account.

Extensive research, e.g., Shen and Su (2007), Aviv and Vulcano (2010), Aviv, Levin, and Ne-
diak (2009), and Lai, Debo, and Sycara (2010), confirms that strategic behavior can essentially
affect resellers’ profits and total customer surplus when customers are timing their purchases in
anticipation of price markdowns over the course of a sales season. The level of strategic behavior
can be different, e.g. within a business cycle, leading to various market outcomes. When economy
is expanding, more customers prefer to buy now than wait, and vice versa – an average customer is
more inclined to delay the purchase when economy shrinks. For example, a study of a Fortune 500
retailer sales by Allenby, Jen, and Leone (1996) shows that even “fashion-forward consumers who
purchase apparel early in the season are more sensitive to economic conditions and expectations
than previously believed.”

On the reseller side of the market, firms compete for the market shares and, eventually, maximize
profits. Therefore, resellers can compete under RPM not only in total-demand-enhancing services
but in other tools that attract customers. For example, “the adoption of point cards or loyalty
programs has been widely adopted by Japanese retailers, who use them to effectively circumvent
the [RPM] system by indirect discounting of product”; see Nippop (2005). In response to strategic
customer behavior, “companies are choosing to shorten the length of time before some new releases
or re-releases can be discounted, thus reducing prices for consumers who don’t mind waiting a while
before they buy”; see Nippop (2005).

In this context, MFC can be primarily viewed as a tool to increase market share. However,
it also serves as a response of resellers to strategic customer behavior. A theoretical idea of such
response was suggested by Coase (1972), who was the first to explain the negative impact of strategic
customer behavior for a monopolistic supplier of a durable good. Coase’s reseller offered customers a
buy-back agreement. Specifically, if the product is offered at any time in the future at a lower price,
the monopolist agrees to accept product returns and to issue the customers full refund. In fact,
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Figure 2: Welfare change in a two-period model
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in Coase’s model, this is equivalent to paying the customers the difference between their purchase
prices and the offered discounted price at any time. The rationale behind this strategy is that it
ties the hands of the monopolist’s future “replicas.” Since the customers know that future price
discounts require the reseller to pay back early purchasers, they do not anticipate the monopolist
to offer significant discounts. Consequently, such rational perception drives strategic customers
to purchase at premium prices. At the same time, when the first-period price is fixed by RPM,
MFC clause allows resellers to circumvent RPM system when the suggested price and the level of
strategic behavior are high. Thus, MFC can alleviate a decrease in customer surplus caused by
RPM using only market levers, without socially costly interventions of legal bodies.

Our study partly confirms that MFC can soften competition, i.e., increase prices and shrink
resellers’ inventories. However, when a product loses its value in time and customers are strategic,
changes in welfare include intertemporal effects. The two parts of Figure 2 illustrate these effects
for the cases with and without MFC. When MFC is not used (Figure 2(a)), there exists a valuation
threshold, which is higher than the first-period price (MSRP), such that strategic customers with
valuations below this threshold wait for the second-period price drop. This strategic behavior leads
to a first-period social loss depicted by the shaded area. Profit-maximizing retailers respond to the
strategic behavior by contracting inventory and increasing the second-period price. In this example,
second period price is below the unit cost, which results from retailer competition (10 retailers)
and a drop in customer valuations to 0.4 of the initial levels.

Keeping all market parameters fixed, the use of MFC (Figure 2(b)) eliminates customer incentive
for waiting. The first-period social loss caused by strategic customers vanishes, and the second-
period loss shrinks compared to the one in Figure 2(a). In this example, based on the results
provided in the paper, the use of MFC doubles the aggregate welfare despite the increase in the
second-period price and decrease in the total inventory. Moreover, for high levels of competition,
MFC leads to a welfare gain from increased strategic behavior, i.e., welfare under MFC with strategic
customers is greater than the one with no MFC and myopic customers. This effect can be seen by
comparing the areas of welfare loss in Figures 2(b) and (a), where the latter includes the area in
crosses for myopic customers. Thus, a higher price and lower output may be welfare-improving if
they result from a policy that leads to an intertemporal redistribution of demand.

We find that MFC is aggregate welfare improving in the majority of market situations in our
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setting. A comparative welfare gain from MFC increases in the level of competition keeping other
market parameters fixed. This result can shift a balance in the legal treatment of a specific MFC
case in favor of MFC under the total welfare standard. More generally, our study implies that
a conventional legal argument illustrated in Figure 1 may lead to socially costly mistakes when
product value depreciates and customers are strategic.

Lai, Debo, and Sycara (2010), using a two-period model with one retailer and strategic cus-
tomers, argue that MFC may increase both customer surplus and seller’s profit only when the un-
certainty in the number of customers with high valuations is high. We exclude uncertainty, which
allows for closed-form analysis, and show in a slightly different setup (see §2.6) that MFC indeed
may increase the surplus, and the welfare-improving effect of MFC is quite robust under reseller
competition. However, for the majority of market parameters, MFC is not surplus-increasing.

Intuitively, the efficacy of MFC as a tool to mitigate strategic customer behavior depends on
the degree to which the customers are strategic. Such behavior exerts a downward pressure on
the equilibrium product quantity in the market effectively becoming a force opposing competition,
which tends to increase the supply. We show that whenever MFC changes the equilibrium structure,
the aggregate quantity (total inventory) decreases, leading to a higher second-period price. It is
known in the literature that a monopolist using MFC can reduce, i.e. mitigate, the loss from
strategic customer behavior. Our study identifies when MFC leads to a higher reseller profit than
that with myopic customers and without MFC, i.e., to a gain from increased strategic behavior. To
the best of our knowledge, this result is new. The gain is possible only under reseller competition,
which was not considered in previous studies in settings with MFC and strategic customers. The
gain happens because MFC-equilibria, for majority of market situations, can be realized only when
customers are strategic. This endogenous behavior of resellers is consistent with the empirical
results of Arbatskaya, Hviid, and Shaffer (2004) who conclude that “a firm might be more likely to
combine its low-price guarantee with a most-favored-customer clause ... if it believes that consumers
are concerned about the product going on sale in the future,” i.e., if customers are strategic.

We show that beneficial effects of MFC for resellers increase in the level of competition. Ad-
ditionally, we provide the conditions when MFC results in sales in both periods, i.e., MSRP is
effectively void; thus, signaling to the manufacturer that the first-period price is too high. Finally,
in §5, we show that the cases of reseller monopoly and oligopoly have essential qualitative differ-
ences for market participants. We enhance qualitative insights by showing that, depending on the
levels of competition and strategic behavior, different types of MFC equilibria can lead to reseller
profit gains or losses exceeding the direct losses from strategic customer behavior. In particular,
there are sets of market parameters, which we call “MFC-traps” for resellers, that, due to multiple
equilibria, may result either in a gain from increased strategic behavior or in a profit less than the
worst equilibrium profit without MFC.

2 Model description

We consider a two-period model of a competitive market with n resellers. We call them “retailers”
when we assume that they sell a product to the end customers or consumers. The product has lim-
ited lifetime, and, for clarity, we assume that the resellers are identical and demand is deterministic.
Under the first-period price, p1, determined by RPM, the resellers select their profit-maximizing
inventory levels in anticipation of the market outcome. The unit cost of inventory is c, which
obviously includes the cost charged by the manufacturer, but also embeds the reseller’s effort to
increase its “market attraction.” We assume that the unit cost is equal for all resellers, driven in
part by our market structure in which the manufacturer is common, the product is undifferentiated,

5



and the resellers operate under similar conditions; see, e.g., §4.4 in Liu and Ryzin (2008).
Since the resellers know the market and consider MFC as a strategic-behavior mitigating tool,

we assume that they set their MFC policies at the same time they select their inventory levels. Let
yi denote the inventory (capacity) of reseller i at the beginning of the season, and mi ∈ {0, 1} be
reseller i’s decision on utilizing an MFC policy (where 0 and 1 mean “no” and “yes,” respectively);
define the vectors y =

(

y1, . . . , yn
)

and m =
(

m1, . . . ,mn
)

accordingly. In the second period, the
resellers are “free” to select their own prices, but we assume that under the competitive market
structure, they converge to a price that clears the market; see, e.g., Dixon (2001). To this end, we
utilize a Cournot model to predict the second (clearance) period price as a function of the remaining
inventory at the end of the first period.

In the first period, the market consists of regular customers with a mass normalized to 1
without loss of generality (change of scale). The first-period valuations of these regular customers
are uniformly distributed on the interval [0, 1] with 1 being a normalized highest valuation. Two
essential parameters affect customers’ behavior. First, we use parameter β ∈ [0, 1] to capture a
typical decrease in valuations for seasonal and limited lifetime products. For example, a product
may lose 25% of its value (i.e., β = 0.75) – from a customer’s standpoint – if that customer purchases
the product at the end (second period) rather than at the beginning (first period) of the season.
We refer to this parameter as product durability (we interpret durability as a measure of useful
product lifetime). We confine our analysis to the interesting case of β > c, which means that, in
the second period, a customer with the highest valuation β may be willing to purchase at a price
that is above cost. If that is not the case, it is easy to show that any MFC-equilibrium would have
to result in the first-period sales only.

Second, recall that a strategic customer is one that considers the possibility of postponing
the time of purchase to the second period, by taking into account the possible price reduction and
product availability in that period, as well as the MFC payback (that would become irrelevant if the
customer postpones the purchase). We use the parameter ρ ∈ [0, 1), to which we refer as the level
of strategic behavior, as a discount factor that the customers apply to the expected second-period
surplus and to any refunds from MFC. In particular, a value of ρ = 1, which can be considered as a
limiting case, means that the market consists of customers that are “fully” strategic, whereas ρ = 0
means that the customers are myopic, i.e., they always purchase in the first period unless their
valuations are less than p1. The customers are homogeneous in their level of strategic behavior.

Similarly to Lai, Debo, and Sycara (2010) and Cachon and Swinney (2009), we assume that in
addition to the regular customers, there is an infinite number of bargain-hunting customers who
can buy any number of units in the second period, at salvage value s < c. Alternatively, one can
think of this situation as a market setting in which remaining inventory can be returned to the
supplier for a reimbursement of s per unit, e.g., through buyback agreements, or the ability of the
supplier to divert the product to a secondary market channel. Thus, we analyze the market using
a game theoretical framework that follows the sequence of events listed below.

First, customers form rational expectations about the second period market for all possible
combinations of resellers’ MFC offerings. Second, given the customers’ expectations, the resellers
determine their MFC policies and inventories. Then, the first-period sales are realized (see §2.2
for details). Finally, in the second period, if the product remains on shelf, the resellers engage in
clearance sales and reimburse the difference in prices between two periods if they use MFC.

2.1 Customer behavior

Contingent on the MFC offering information m, the customers form rational expectations about
the product availability and the price in the second period, and make a decision about purchasing
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at p1 or waiting for the second period. We model their behavior according to the following lines.
Since customers do not observe inventories, they form expectations via two key parameters: first,
similar to Su and Zhang (2008), is the expected availability, ᾱ (m) ∈ {0, 1}, which indicates whether
inventory will be left at the end of the first period and hence will be cleared. Second, if inventory
is left (ᾱ (m) = 1), is the expected clearance price p̄2 (m). For brevity of exposition, when there is
no risk of confusion, we may avoid the explicit functional notation, using ᾱ and p̄2 in short.

Confined to the pair (ᾱ, p̄2) for given m, the customers make their buy-or-wait decisions using
a hierarchical procedure, as follows. At first, customers would compare their valuations v with the
price p1. If v < p1, the customer will wait for the second period. Otherwise, the customer who
can gain an immediate surplus of (v − p1) will bring into consideration the second period – the
essence of strategic behavior. Specifically, a customer who considers buying from an MFC reseller
will calculate the net gain that can be achieved in the second period by postponing the purchase;
i.e., in addition to the loss of the immediate surplus (v − p1). That net gain consists of two values:
(i) the expected MFC payback that will be forgone due to the wait; and (ii) the expected surplus
that would be gained in the second period. Altogether, we have

∆ (v) , −ᾱ (p1 − p̄2)
+ + ᾱ (βv − p̄2)

+ .

Recall that we use the parameter ρ to express the degree of strategic behavior in the market.
Following this approach, a customer with valuation v ≥ p1 will attempt to purchase a unit from an
MFC reseller in the first period if ρ∆(v)− (v − p1) ≤ 0. The left-hand side is always decreasing in
v, and hence, because ρ∆(p1) − (p1 − p1) ≤ 0, we conclude that any customer with valuation not
less than the threshold

vmin
1 (ᾱ, p̄2) = constant = p1 (1)

will attempt to buy a unit from an MFC reseller. Since vmin
1 does not depend on expectations, we

drop its functional dependence on (ᾱ, p̄2) in the rest of the paper.
In reality, some customers with v ∈ (p̄2, p1) might take a risk to buy in the first period in hope

to obtain the second-period refund, which, as they expect, may be greater than the first-period
negative surplus. However, real customers know that they may not receive the refund due to reasons
that may not depend on the reseller, e.g., canceled credit card. Therefore, we assume that since
customers strongly dislike negative surplus, they buy in the first period only if v ≥ p1. Relaxation
of this assumption would only reinforce the conclusion about welfare-improving property of MFC.

The first-period customers always prefer to buy at an MFC reseller rather than at a no-MFC
one because, in addition to the surplus v−p1 of the first-period purchase, they anticipate to gain the
expected value of refund ᾱρ (p1 − p̄2)

+. The customers are indifferent only when they are myopic
(ρ = 0) or expect no sales in the second period (ᾱ = 0). Therefore, only when the unit is not
available at an MFC reseller, a customer considers purchasing from a non-MFC one. In such case,
the decision would be based on whether (v − p1) ≥ ᾱρ(βv−p̄2)

+. Here, it is easy to verify that there
are three cases of interest: (i) p1 ≤ p̄2/β, for which the valuation threshold p1 would be adopted;
(ii) p̄2/β ≤ p1 ≤ 1− ᾱρ (β − p̄2), for which the threshold (p1 − ᾱρp̄2) / (1− ᾱρβ) would be adopted;
and (iii) p1 ≥ 1− ᾱρ (β − p̄2), for which no customer would buy in the first period, effectively using
the threshold 1. In summary, any customer with valuation larger than the threshold

vmin
0 (ᾱ, p̄2) = max

{

p1,min

{

p1 − ᾱρp̄2
1− ᾱρβ

, 1

}}

(2)

will attempt to buy a unit from a non-MFC reseller in the first period.
The above analysis demonstrates that an opportunity to buy from an MFC reseller completely

eliminates strategic customer behavior (vmin
1 = p1), regardless of its level ρ, the durability of the
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product β, or the expectations (ᾱ, p̄2). However, it is not clear at this point when such elimination
of strategic behavior is beneficial for the participants in the market.

2.2 First-period sales distribution among resellers

This section presents a sales allocation mechanism, which allows for the calculation of the first-
period sales, denoted by the vector q =

(

q1, . . . , qn
)

. Since the first-period customers prefer MFC
over no-MFC resellers, the first-period demand is allocated among the resellers with MFC and
then, the unsatisfied demand (due to stockouts) is split among no-MFC resellers. Inside each group
of resellers, customers buy in the order of their valuations. We assume also, similar to §6.5 in
Cachon (2003), that the ability of a reseller to attract sales is proportional to its level of inventory.

Let n1, Y1, and Q1 be, respectively, the number of MFC resellers, aggregate inventory, and
first-period sales for those resellers; similarly, define n0, Y0, and Q0 for the non-MFC resellers.
Moreover, consider specific expectations (ᾱ, p̄2) for the corresponding MFC policies m. The total
demand that the MFC resellers experience in the first period is (1− p1) as driven by the threshold
value vmin

1 = p1. Therefore, there are three cases of interest that depend on the aggregate inventory
Y1. (i) If Y1 ≥ 1 − p1, the MFC resellers satisfy all of the demand, each selling a quantity qi =
(1− p1) · yi/Y1, whereas the non-MFC resellers do not make any sales. Additionally, the regular
customers remaining for the second period would have valuations uniformly distributed in the
range [0, βp1] at that time. (ii) If 1 − vmin

0 (ᾱ, p̄2) ≤ Y1 < 1 − p1, the MFC resellers cannot
satisfy all of the demand. Thus, the sales for the MFC resellers are given by qi = yi, serving
the valuation segment [1− Y1, 1]. Next, since the latter segment turns its demand to the MFC
resellers, and since vmin

0 (ᾱ, p̄2) ≥ 1−Y1, it is easy to see that the non-MFC resellers will experience
no demand. Consequently, the regular customers remaining for the second period would have
valuations uniformly distributed in the range [0, β (1− Y1)] at that time. (iii) If Y1 ≤ 1−vmin

0 (ᾱ, p̄2),
the situation with the MFC resellers remains the same as in case (ii). However, it is easy to verify

that the non-MFC resellers would sell the quantities qi = min
(

(

1− Y1 − vmin
0 (ᾱ, p̄2)

) yi

Y0
, yi

)

. The

regular customers remaining for the second period would have valuations uniformly distributed in
the range

[

0, β ·max
{

1− Y1 − Y0, v
min
0 (ᾱ, p̄2)

}]

at that time.

2.3 Second-period clearance sales

Since the product offerings are undifferentiated, the resellers lower their prices until all remaining
inventory is cleared; i.e., the second period price p2 (identical for all resellers) would be set to a
sufficiently low level that would make demand equal to the total remaining inventory. Since MFC
and inventory decisions are made at the same time and the demand is deterministic, a reseller
would never have to withhold previously acquired inventory from clearance because of the MFC.
Instead, a rational reseller simply avoids stocking any inventory that is not eventually sold.

Let Y , Y1+Y0 and Q , Q1+Q0. Following the previous section, we anticipate that inventory
will be left only if vmin

0 (ᾱ, p̄2) > 1 − Y . In such case, clearance of the inventory (i.e., completing
the sales of all of the original inventory Y ) can be made either by targeting the customer with
the original valuation of (1− Y ), by setting p2 = β (1− Y ), or, turning to the stream of bargain-
hunters, by setting p2 = s. Obviously, the second-period price that would maximize revenue is

p2 = max {s, β (1− Y )} , (3)

which is independent of the MFC offers present in the market.
In the rest of the paper, we focus on situations in which the second period valuations are

sufficiently high so that β > s/p1 (a condition similar to the logical restriction β > c). If this
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condition does not hold, it is possible to show that, in a two-period equilibrium, the second period
price cannot exceed s, vmin

0 = p1 under rational expectations, and strategic customer behavior has
no effect on any of the possible equilibria.

2.4 The first period inventory and MFC decisions

We continue our analysis by looking at the resellers’ profit optimization problems in the first period.
Recall that since the second-period market is cleared, each reseller’s second period inventory (equals
to its sales) is yi − qi. Obviously, because of the interactions among the resellers, we must describe
any given reseller’s profit as a function of the other resellers’ decisions as well as the customers’
expectations (ᾱ(m), p̄2(m)). To this end, define y−i, m−i as the vectors of inventories and MFC
decisions of all resellers except i. We can now present the objective functions for the resellers:

ri(yi,mi, y−i,m−i, ᾱ(mi,m−i), p̄2(m
i,m−i))

= −cyi + p1q
i + p2(y

i − qi)− qi(p1 − p2)
+ · 1

{

{Y > Q} ∩
{

mi = 1
}}

(4)

where p2 depends on y, and the qi-values depend on the values (yi,mi, y−i,m−i, ᾱ(mi,m−i), p̄2(m
i,m−i)),

as explicitly described in §2.2. We conclude that the best response of reseller i belongs to a set of
(yi,mi) pairs:

BRi
(

y−i,m−i, ᾱ(·,m−i), p̄2(·,m−i)
)

, Argmax
yi,mi

{

ri(yi,mi, y−i,m−i, ᾱ(mi,m−i), p̄2(m
i,m−i))

}

,

where notation ᾱ(·,m−i), p̄2(·,m−i) emphasizes the dependence of the best response set on the
expectations corresponding to either value of mi ∈ {0, 1} but only the given value of m−i.

Using the set of best responses, one can proceed to characterize general Nash equilibria in the
reseller game. However, our primary focus is on two levels: the level of competition and the level of
strategic behavior. The resellers are identical and it is natural to consider cases when they behave
in the same way. As we show in §3 below, the resulting symmetric equilibria cover almost 100%
of all inputs. One cannot rule out the existence of asymmetric equilibria and they may provide
some additional insights, but, given a rich collection of results obtained for the symmetric case, the
asymmetry would merely distract from the main effects considered in this paper.

In a symmetric pure-strategy Nash equilibrium each reseller makes the same MFC decision
m̂ and procures the same fraction 1

n Ŷ of the total inventory Ŷ . Additionally, we consider sym-
metric expectations characterized by only two pairs of values (ᾱ(m̂, m̂, . . . , m̂), p̄2(m̂, m̂, . . . , m̂))
and (ᾱ(1− m̂, m̂, . . . , m̂), p̄2(1− m̂, m̂, . . . , m̂)) corresponding to, respectively, the equilibrium MFC
profile (m̂, m̂, . . . , m̂) and any possible one-reseller deviation. Formally, since expectations de-
pend only on the first argument, we drop the remaining arguments in the rest of the paper.
For n > 2, customers directly observe the firm that deviates from a symmetric MFC profile.
For duopoly, symmetry of expectations requires an assumption that customers can identify the
MFC decision that constitutes a deviation. For given symmetric expectations ᾱ(·), p̄2(·), a sym-
metric equilibrium is a pair (m̂, Ŷ )[ᾱ(·), p̄2(·)] (a pair (m̂, Ŷ ) as a function of ᾱ(·), p̄2(·)) such
that (m̂, 1

n Ŷ ) provides a best response to a symmetric strategy profile of other resellers, i.e.,

(m̂, 1
n Ŷ ) ∈ BRi

(

( 1n Ŷ , . . . , 1
n Ŷ ), (m̂, . . . , m̂), ᾱ(·), p̄2(·)

)

, where ( 1n Ŷ , . . . , 1
n Ŷ ) and (m̂, . . . , m̂) are

n− 1 dimensional vectors, which stand for y−i and m−i respectively.

2.5 Stable market outcomes

In order to gauge the effects of strategic customer behavior and resellers’ responses, a participant of
the market (a reseller, a manufacturer, or a local regulator) must first understand which equilibria
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are possible for that particular market scenario. Cachon and Swinney (2009), finding the outcomes
of the interaction between a reseller and strategic customers, assume that all players in the game
can form beliefs about the actions of the other players including customers’ beliefs about resellers’
inventories. For some products, however, customers may not form beliefs about resellers’ inventories
even when new versions of the product repeatedly emerge in the market. For example, a buyer of
a music or video record usually does not know the number of particular records in the market and
the number of customers interested in buying this record. This buyer, however, may form beliefs
about the availability of the product on sale and the clearance price depending on resellers’ MFC
policy because this information is observable ex post over multiple realizations of the market.

In our setting, each customer knows only his/her own valuation, the durability level β, and the
level of strategic behavior ρ, and observes the MSRP p1 prior to forming expectations and making
wait or buy decisions. Ex post customers observe only the second-period availability α and price
p2, not the inventory levels or market size. Given all available information, customers cannot even
infer the inventory levels. In such an environment, customer expectations in terms of directly
observable quantities such as the second-period availability and price are a natural model.

While there may be equilibria in which customer expectations are not rational, such equilibria
would not result in stable market outcomes. Therefore, we focus our attention on equilibria with
rational expectations. Specifically, we identify the set of decisions, made by the resellers, such that
they are optimal in the sense described earlier, but are also consistent with the customers’ expec-
tations (ᾱ(·), p̄2(·)). That is, the equilibrium inventory levels and MFC decisions of the resellers
must lead to precisely the same observed product availability and clearance prices as expected by
the customers. Recall that, according to (3), the observed second period price corresponding to
the total inventory Ŷ is equal to max{s, β(1 − Ŷ )}. Moreover, if the total first-period sales cor-
responding to (m̂, Ŷ ) are Q̂, then the observed second-period availability is 1{Ŷ > Q̂}. Thus, we
define rational expectations symmetric equilibrium (RESE) in pure strategies as follows:

Definition 1. The tuple (m∗, Y ∗, α∗(·), p∗2(·)) is a RESE if

• m∗ and Y ∗ are a symmetric equilibrium MFC decision and a total inventory level correspond-
ing to symmetric expectations α∗(·) and p∗2(·), i.e., (m∗, Y ∗) = (m̂, Ŷ )[α∗(·), p∗2(·)];

• the expected and the observed equilibrium second-period availabilities and prices coincide, i.e.,
for the corresponding first-period sales Q∗, α∗(m∗) = 1 {Y ∗ > Q∗} and p∗2(m

∗) = max {s, β(1− Y ∗)};

• and, for a single reseller deviating from m∗ into a different MFC strategy 1 − m∗ and this
reseller’s optimal inventory decision y′, we have, for the corresponding first-period sales Q′ un-
der the deviation, α∗(1−m∗) = 1

{

n−1
n Y ∗ + y′ > Q′} and p∗2(1−m∗) = max

{

s, β(1− n−1
n Y ∗ − y′)

}

.

The last requirement clarifies why expectations have to depend on the MFC profile. In the ab-
sence of such dependence, expectations may not match the availability and clearance price observed
under the deviations. Thus, a deviating reseller may be able to take advantage of these irrational
expectations breaking the equilibrium as the result. On the other hand, if customers adjust expec-
tations when they see an MFC deviation, the deviator no longer has this unfair advantage.

For resellers, it is important to know which outcomes can emerge depending on the market
situation. From the model perspective, the market situation is described by particular model
inputs and potential outcomes correspond to the equilibria that exist in the reseller game. In the
next section, we characterize all possible equilibria in closed form starting with those using MFC.
This characterization facilitates analysis of the impact of MFC on resellers, customers, and the
local economy. Moreover, switches between equilibrium types due to changes in the inputs (such as
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the levels of strategic behavior or competition) inform market participants about potential jumps
in profits, customer surplus, and welfare.

2.6 Discussion of model assumptions

A key challenge in the theoretical study of markets with strategic customers is the identification
and characterization of stable market outcomes (or equilibria in game-theoretic terms). To this
end, one must pay careful attention to the assumptions regarding the information available to the
decision makers: the customers and the resellers. For instance, in mature markets, where manufac-
turers regularly launch new versions of similar products, the resellers are typically able to conduct
comprehensive customer behavior studies. An empirical analysis in Fisher and Raman (1996) shows
that demand uncertainty in the fashion apparel industry can be significantly reduced by analyzing
preliminary sales of the product. Our research questions are not connected directly to demand
uncertainty. In this vein, for clarity of exposition and to avoid excessive generality, we assume that
the resellers know demand with certainty and can determine how MFC decisions affect the first-
period demand. Uncertain demand is an important element, e.g., in Cachon and Swinney (2009),
who study the value of quick inventory response after demand realization. Another example is
Lai, Debo, and Sycara (2010), who managed to shows that in their model posterior price-matching
(MFC) may benefit consumers only when the market uncertainty is high. The deterministic ap-
proach allows us to confirm the robustness of this finding in a different setting as well as provide a
detailed closed-form analysis, which otherwise is not possible.

Additionally, we assume that customers can form stable expectations regarding the information
that is repeatedly observable in mature markets: price changes and product availability in the
second period. Yet, similar to Lai, Debo, and Sycara (2010), the customers observe only resellers’
MFC-policies but not the inventory levels. Other similarities with Lai, Debo, and Sycara (2010)
include “no hassle cost to process the refund claim,” declining valuations in the second period, and,
unlike Cachon and Swinney (2009), no chances to replenish inventory during the selling season.
Our setup, besides retailers’ competition, differs from Lai, Debo, and Sycara (2010) in that we
study the effects of changes in the levels of competition and strategic behavior rather than changes
in the shares of fully strategic and myopic high-end customers with homogeneous valuations. The
difference in research questions motivate different modelling choice. In particular, valuations of our
regular customers are continuously distributed, but discount factor is the same.

The customer discount factor, similarly to Cachon and Swinney (2011), is a constant that
belongs to the range from zero to one, which is supported empirically by a review in Frederick,
Loewenstein, and O’Donoghue (2002). Typically, customers are myopic for inexpensive products.
Some studies, e.g., Hausman (1979), claim that the discount rate depends on income, i.e., customers
are heterogeneous. Other studies, however, argue that this dependence is not significant, see, e.g.,
Houston (1983).

For our study of MFC, we use the benchmark game where MFC is not available. Obviously,
the benchmark setup is identical to the one presented above except the MFC option. Some of
the results that refer to this benchmark are obtained in Bazhanov, Levin, and Nediak (2015) and
briefly cited in §3.2 and some proofs.

The assumption about sales proportional to the level of inventory is in congruence with our
uniform unit cost assumption, discussed in the beginning of the section: resellers that bring larger
capacity could possibly enjoy economies of scale in procurement costs, but on the other hand may
want to spend more on sales efforts in order to attract reasonable demand. This assumption stems
also from the literature on endogenous demand. Wolfe (1968) was the first who studied an empirical
evidence of sales proportional to inventory levels in apparel industry. The proportional allocation
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mechanism is not always the standard assumption. Admittedly, we utilize this assumption in order
to enable us to obtain clear and relatively-elegant theoretical results. For similar reasons of gaining
analytical tractability, papers such as Zhao and Atkins (2008), Liu and Ryzin (2008) and Bazhanov,
Levin, and Nediak (2015) have considered alternative allocation schemes.

In the presence of RPM, the main reseller decision is the quantity of the product. The liter-
ature underlines that quantity decisions are of particular importance in the presence of strategic
customers. Coase (1972) suggests that the seller can make a contractual arrangement with the
customers in which he agrees not to sell more than a given quantity of the product. This capacity
rationing proposition has been studied in papers such as Liu and Ryzin (2008). The authors find
that when the market consists of a large number of high-valuation risk-averse customers, capacity
rationing is useful; otherwise, the firm should serve the entire market at a low price. Under compe-
tition, the effectiveness of capacity rationing is reduced, and there exists a critical number of firms
beyond which rationing never occurs in a stable market outcome (equilibrium). Levin, McGill, and
Nediak (2010) and Cachon and Swinney (2009) demonstrate the effectiveness of capacity decisions,
and both provide a sharper understanding of the intricate relationship between the pricing and
quantity decisions; see also Su (2007) and Su and Zhang (2008). Since quantity competition of
resellers is another important characteristic of our setup, we model clearance sales as Cournot com-
petition. The Cournot model, which we use for the second period, is one of the approximations for
real markets; e.g., Flath (2012) shows that products such as music records, bicycles, and thermos
bottles are appropriately described by this model. In our study, this model helps to concentrate
on the intertemporal effects of strategic customer behavior and resellers’ responses (quantity and
MFC) without distracting effects of the second-period resellers’ price competition.

There are different opinions in the literature regarding the criterion of legality of a reseller policy.
Currently, a policy is treated as legal if it improves consumer welfare, which is often estimated
as total customer surplus. Many authors, mostly economists, argue that “the consumer welfare
standard has a number of shortcomings vis-à-vis the total welfare standard”; see Cseres (2007).
In particular, this measure counts only short-term customer benefits and discriminates among
different groups in society. In our paper, we characterize the “consumer welfare” in terms of the
total customer surplus and the “total welfare” (or “social welfare”) for the local economy in terms
of the aggregate welfare defined as the sum of the customer surplus and the reseller profits while
excluding a transnational manufacturer. Our results, which show that MFC is mostly socially
beneficial under the total welfare standard and harmful under the consumer surplus standard,
indicate that evaluation criteria used by lawyers, economists, and policymakers must be carefully
selected to match strategic policy objectives of the respective countries.

3 Characterization of stable market outcomes

There are two fundamental types of market outcomes that can potentially arise in the proposed
model: with MFC and without MFC. We will refer to them, respectively, as M and either N if
no-MFC is the reseller’s decision or NA if MFC is not available for other reasons. Each of these
principal types is further classified into subtypes based on the structure of the market outcome.
In particular, whether sales occur in both or only in one of the periods, and in which period they
occur. We discuss MFC first and then contrast it with no-MFC equilibria.

3.1 Stable market outcomes with MFC

When MFC is used by all resellers, there are two types of equilibria which differ in how customers
interpret the MFC offers: whether or not the clearance sales should be expected. As we show,
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the equilibrium with (without) the second-period sales is characterized by relatively high (low)
MSRP. The reader will also see that, in competitive markets (n ≥ 2), for sufficiently high level of
strategic behavior and cost-to-durability ratio there is even an interval of MSRP where the equilibria
of both types exist. This indicates that consumer expectations is the only determinant of MFC
equilibrium structure in such markets. The persistence of equilibria is ensured, per standard game
theory reasoning, because it is not rational for a profit-maximizing reseller to deviate unilaterally.
Overall, the characterization drives the point that strategic customer behavior critically affects the
equilibrium type and the resulting profit.

Following the general logic of Nash equilibrium in the reseller game, we consider two types
of one-reseller deviations: into a no-MFC strategy with its corresponding best-possible inventory
decision and an MFC and inventory strategy that also changes the availability of the product. The
second type of deviation is possible because the profit function is discontinuous at the point where
Y = Q. For example, in the first part of the theorem below, customers rationally expect that the
product is available in the second-period under the equilibrium MFC and inventory strategies, i.e.,
α∗(1) = 1 and Y ∗ > Q∗ = 1 − p1. The MFC-deviation by reseller i in that case would result in
a smaller total inventory level Y ′ = yi + n−1

n Y ∗ = 1 − p1 = Q′ and no availability in the second
period: α = 1 {Y ′ > Q′} = 0. The comparison of the associated profits leads to a quadratic
inequality in p1 (keeping all other inputs fixed) resulting in case (M1.2). Similarly, the comparison
with a no-MFC deviation leads to (M1.1) under the additional condition of rationality of clearance
price expectations p∗(0) in a no-MFC deviation. We provide a point-by-point discussion of the
conditions immediately following the theorem. In the rest of the section, v∗ is the equilibrium value
of vmin

1 , which, along with other equilibrium values, may be explicitly identified with the type of
equilibrium, e.g., v∗,M1 or Y ∗,M2 if necessary.

Theorem 1. If MFC is possible, the MFC-equilibria with the following structure exist if and only
if (iff) the respective conditions hold:

M1 (Clearance) α∗ = 1, v∗ = p1, p
∗
2 = c + β−c

n+1 , Y
∗ = n

n+1 (1− c/β) , r∗ = (β−c)2

(n+1)2β
iff p1 ≥ PM

1 ,

where

PM
1 =

{

P11 , 1− n−1+ρβ
n+1 (1− c/β) if c/β < CB1(ρ, β, n) ,

1−2ρ+ρ2β
(1−ρβ)2+(1−β)ρ[n−(1−ρβ)]

, (M1.1)

P12(c, β, n) otherwise, (M1.2)

where P12 is the larger root of a quadratic equation (formula (10) in Appendix);

M2 (No clearance) α∗ = 0, v∗ = p1, Y
∗ = 1− p1, and r∗ = 1

n(p1 − c)(1− p1) iff p1 ≤ PM
2 , where

PM
2 =

{

P21 ,
c
β

(1−ρβ)2

1−2ρ+βρ2
if c/β < CB2(ρ, β, n) ,

1−2ρ+ρ2β
(1−ρβ)2+(1−β)nρ2β

, (M2.1)

P22(c, β, n) otherwise, (M2.2)

where P22 is the larger root of a quadratic equation (formula (19) in Appendix).

All bounds P11, P12, P21, and P22 are greater than c/β if n < ∞, ρ > 0, and β < 1; P11, P12, P22 →
c/β as n → ∞, and P21 = c/β if either ρ = 0 or β = 1;P11, P12, P22 → 1 as c/β → 1.

Condition p1 ≥ P11 in case (M1.1) characterizes a scenario that a possible deviator into no-MFC
has sales only in the second period under rational expectations in a deviation, i.e., α∗(0) = 1 and
vmin
0 (α∗(0), p∗2(0)) ≥ 1 − n−1

n Y ∗. As a result, the effective price in this case is the same for both
MFC and no-MFC resellers implying that the best deviator profit and inventory level remain the

13



same as before the deviation. By (2), valuation threshold associated with the demand of a deviating

no-MFC reseller vmin
0 (α∗(0), p∗2(0)) =

p1−ρp∗
2
(0)

1−ρβ depends on ρ. The resulting rational expectation
of clearance price p∗2(0) = β(1 − Y ∗) (by (3)) changes with the level of strategic behavior leading
to the dependence of the bound P11 on ρ. As shown in the proof, no-MFC deviations under other
scenarios would dominate.

Condition p1 ≥ P12 in case (M1.2) results from a quadratic inequality stating that MFC deviator
profit with sales only in the first period does not exceed the equilibrium one: (p1 − c)yi = (p1 −
c)(1− p1 − n−1

n Y ∗) ≤ r∗. The threshold value P12 is the larger root of the corresponding quadratic
equation. Intuitively, an increase in competition reduces the ability of a single reseller to control
the availability of the stock in the second period. Therefore, p1 ≤ P12 becomes less restrictive with
an increase in n as shown in Corollary 1 below and illustrated in Figure 4 (the area of inputs where
M1 exists increases in n).

In case (M2), customers rationally expect no sales in the second period when all resellers
use MFC. Condition p1 ≤ P21 in (M2.1) guarantees that the reseller’s equilibrium profit is not
dominated by the profit of a deviator into no-MFC with sales in both periods. Similarly to (M1.1),
the level of strategic behavior enters this condition through the dependence of vmin

0 on ρ, which
affects the rational expectation of clearance price p∗2(0) under deviations into no-MFC. Condition
p1 ≤ P22 in (M2.2) guarantees that the profit of a deviator into MFC with sales in both periods
does not exceed the equilibrium one (similarly to (M1.2), this profit comparison leads to a quadratic
inequality). Any other forms of deviations do not dominate equilibrium profits.

The conditions of Theorem 1 obviously do not depend on salvage value s because either there
are no second-period sales (M2) or the second-period price is above the unit cost to avoid negative
profits due to refunds (M1). Theorem 1 also points to a special role played by the cost-to-durability
ratio c/β. Indeed, low values of this ratio in combination with a relatively high first-period price
lead to high profitability of the second-period sales, which is one of the key determinants of the
equilibrium structure. Cost-to-durability thresholds CB1 and CB2 provided in the statement are
the intersection points of the pairs of p1-boundaries P11, P12 and P21, P22, respectively. In par-
ticular, when c/β < CB1, the condition p1 ≥ P11 (comparison with a no-MFC deviation) is more
restrictive than p1 ≥ P12 (comparison with MFC deviation). We illustrate the areas of existence of
M1 and M2 equilibria in the (p1, c/β) cross-section of the parameter space for ρ = 0.3, n = 4, and
β = 0.5 in Figure 3. Both CB1 and CB2 are simultaneously positive, zero, or negative depending on
the level of strategic behavior (since both denominators are positive, and the numerator is positive
if and only if ρ <

(

1 − √
1− β

)

/β). When CB1 and CB2 are positive, CB1 ≤ CB2 ≤ 1 where
the first inequality is strict unless β = 1, ρ = 0, or n = 1. Moreover, when β = 1 or ρ = 0, both
CB1 and CB2 equal one. As a result, positive CB1 and CB2 split cost-to-durability ratio values
into relatively low, intermediate, and high ranges (0, CB1), [CB1, CB2), and [CB2, 1) that deter-
mine the functional forms of the equilibrium boundaries. For a specific cost-to-durability ratio, the
classification depends on other inputs because, as follows from above, a given c/β can be less than
CB1 only for small levels of competition (if β < 1 and ρ > 0) and strategic customer behavior.

Equilibrium M1 includes the cases with relatively low cost-to-durability ratio and relatively
high first-period price leading to attractive sales in the second period. All customers with v ≥ p1
buy in the first period and obtain reimbursement p1 − p∗2 in the second one. The customers with
v ∈ [p∗2, p1) wait for clearance sales. Since the effective price for all customers is p∗2, we call this a
“clearance” MFC equilibrium.

In the case of M2, the relatively high cost-to-durability ratio, as well as relatively low p1, make
two-period sales with reimbursement less attractive than first-period sales only. All customers
with valuations p1 or higher buy in the first period. Resellers divide the profit associated with
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Figure 3: M1 and M2 regions for fixed ρ = 0.3, n = 4, and β = 0.5
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the total inventory that is just enough to cover the first-period market. Since the inventory is
determined by externally set MSRP, reseller competition is effectively eliminated and this case can
be interpreted as an MSRP-facilitated collusion. Since there are no second-period sales we refer
to M2 as a “no-clearance” equilibrium. M2 cannot exist if customer valuations remain constant
(β = 1 implies P21 = c and CB2 = 1). This outcome is intuitive because the less the decrease
in customer valuations between two periods, the more profitable the second-period sales. In both
MFC-equilibria, customers behave as if they are myopic (v∗ = p1) and, consequently, inventory
level Y ∗ and profit r∗ do not depend on the level of strategic behavior.

The fraction of model inputs where MFC-equilibria exist is illustrated in Figure 4 as a function
of 1 ≤ n ≤ 1, 000. The fraction is computed by volume in the region of all inputs (ρ, β, c, s, p1)
satisfying the feasibility constraints 0 ≤ ρ < 1, 0 ≤ s < c < β ≤ 1, and max{s/β, c} < p1 ≤ 1.
The figure is an area plot that shows the fractions of inputs resulting in a particular equilibrium
(M1 only, both M1 and M2, M2 only, and neither M1 nor M2) as the heights of the respective
shaded areas for each n. As n increases, the fraction of inputs where M1 exists increases whereas
the fractions of inputs with M2 only, both M1 and M2, as well as neither equilibrium decrease.

The corollary below augments Figure 4 by establishing a full set of monotonic properties of the
M1 and M2 regions. In particular, it characterizes the overlap of M1 and M2 as well as the area
where neither MFC equilibrium exists.

Corollary 1. 1. If CB1 > 0, for low cost-to-durability ratio c
β < CB1, we have P21 < P11 and

there are no MFC-equilibria for P21 < p1 < P11. Moreover, P11 = P12 = P21 if c
β = CB1.

2. For any c
β , we have P12 < P22 if n > 1 and P12 = P22 = P2 ,

1
2

[

1 + c+
√

(1− β) (1− c2/β)
]

if n = 1. Therefore, for high cost-to-durability ratio c
β ≥ CB2 (possible only if β < 1, ρ > 0)

there is an overlap P12 ≤ p1 ≤ P22 in the MSRP-range of M1 and M2 existence. In this
overlap, r∗,M1 < r∗,M2 if n > 1 and r∗,M1 = r∗,M2 if n = 1.

3. If c
β > CB1 > 0, then P12 < P21. Thus, for n > 1 and intermediate cost-to-durability ratio

CB1 ≤ c
β < CB2 (possible only if β < 1, 0 < ρ < (1 − √

1− β)/β), there is an overlap

P12 ≤ p1 ≤ P21 in the MSRP-range of M1 and M2 existence. In this overlap, r∗,M1 < r∗,M2.
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Figure 4: Fractions of model inputs where a particular MFC equilibria structure exists for given n
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4. Inequality c
β ≥ CB1 is equivalent to a lower bound on ρ.

5. The lower p1-bounds P11, P12 and upper p1-bounds P21, P22 depend on inputs as follows:

c β ρ n

P11 ր ց ց ց
P12 ր ց ≡ ց
P21 ր ց ր ≡
P22 ր ց ≡ ց

The overlap in MSRP ranges of M1 and M2 equilibria established in Corollary 1 (Parts 2 and
3) is exclusive for oligopolistic MFC-resellers and intermediate values of MSRP. That is natural
because the monopolist optimally chooses whether to supply the product in one or both periods.
For competitive settings, very low MSRP means that the second-period regular-customer market is
small and has an extremely low margin. In contrast, a very high MSRP means that the first-period
market is very small. Thus, the possibility of either type of equilibrium arises only for intermediate
MSRP. Moreover, by Part 4, since c/β ≥ CB1 in the overlap, it can take place only if customers are
sufficiently strategic. Thus, it is natural that customer expectations start to affect the equilibrium
outcome. While M2 is always better for competing resellers in the overlap, the magnitude of its
difference with M1 deserves a further study and we return to it in subsequent sections. The overlap
does not exist for a monopoly, the highest-possible level of durability, or myopic customers.

While Theorem 1 provides a complete characterization of MFC equilibria for a given market
situation, market participants may want to forecast adjustments to equilibrium structure when the
market situation changes. By Part 5 of Corollary 1, the areas where M1 or M2 exist expand when
customers become more strategic. The changes in other parameters affect the areas of M1 and M2
existence in the opposite way. For example, when the level of competition increases, the area of
M1 expands while the area of M2 shrinks.

The knowledge of possible shifts in the equilibrium structure is of particular importance when
a market situation is close to the boundary between equilibria with notably different profits. In
such situations, equilibrium can be unstable with respect to parameter changes or misestimations.
Part 1 of Corollary 1 implies that for small levels of strategic behavior, i.e., ρ <

(

1 −√
1− β

)

/β,
which yields CB1 > 0, MFC equilibria may not exist. This observation stimulates an interest in
the properties of equilibria when the MFC-option is not available or when MFC is available but
remains unused. These equilibrium structures are considered below.
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3.2 Stable market outcomes when MFC is not allowed (NA)

There are four types of symmetric rational expectations NA equilibria identified in Theorems 2
and 3 cited from Bazhanov, Levin, and Nediak (2015) below. Comparative statics, summarized in
Table 1, show that resellers’ profits, customer surplus, and aggregate welfare can be non-monotonic
in ρ.

Monotonicity in n Monotonicity in ρ
NA 1 2 3 4 1 2 3 4

Y ∗ ր ≡ ր ր ≡ ≡ ց ց
v∗ ≡ ≡ ր ≡ ≡ ≡ ր ր
nr∗ ց ≡ ց ց ≡ ≡ ց,min ց
Σ∗ ր ≡ ր ≡ ≡ ≡ ր,ց,max ր
W ∗ ր ≡ ր,ց,max ց ≡ ≡ ր,ց,max ր,ց,max

Table 1: Summary of monotonic properties in n and ρ by equilibrium form

Here and in other no-MFC equilibria, we use v∗ to denote the equilibrium value of vmin
0 . Sim-

ilarly, the theorems below provide the equilibrium expectations α∗(0) and p∗2(0) in the absence of
MFC. When MFC is not available, the expectations α∗(1) and p∗2(1) corresponding to a one-reseller
deviation into MFC are undefined.

Theorem 2. A unique NA with the stated structure exists iff the respective conditions hold:

NA1 (No sales in the first period) v∗ = 1, α∗(0) = 1, p∗2(0) = c+ β−c
n+1 , Y

∗ = n
n+1(1−c/β), and

r∗ = (β−c)2

(n+1)2β
under condition p1 ≥ 1− n

n+1ρ(β − c) , PN
1 .

NA2 (No sales in the second period) v∗ = p1, α
∗(0) = 0, Y ∗ = 1− p1, and r∗ = 1

n(p1− c)(1−
p1) under condition p1 ≤ nc

n−1+β , PN
2 .

NA3 (Sales in both periods, p∗2 > s) v∗ = p1−ρβ(1−Y ∗)
1−ρβ , α∗(0) = 1, p∗2(0) = β(1 − Y ∗), and

r∗ = 1
n [(p1 − c)(1− v∗) + (p∗2 − c)(Y ∗ − 1 + v∗)] , where Y ∗ is the larger root of a quadratic

equation (Eq. (22) in Appendix), under condition PN
2 < p1 < PN

1 and one of the following:

(a) n−1
n (p1−s) (1− v∗)Y ∗ ≤ (c−s)(1−s/β)2, or (b) condition (a) does not hold, Y ∗ < 1−s/β,

and r∗ ≥ r̃i, where r̃i is the maximum profit of a firm deviating from this equilibrium in such
a way that p2 = s (the total inventory is greater than 1− s/β).

The equilibrium characteristics Y ∗, v∗, and r∗ are continuous on the boundaries between these
forms of NA. Moreover, under NA3, Y ∗ > max

{

n
n+1(1− c/β), (1− p1)

}

.

The following proposition shows the relationships between p1-bounds in NA and MFC-equilibria.

Proposition 1. (1) The area of NA2 existence is always inside the area of M2 existence, i.e.,
PN
2 ≤ min {P21, P22} .

(2) For n > 1, the area of NA1 existence is always inside the area of M1 existence, i.e., PN
1 > P11

and PN
1 ≥ P12 (strict for β < 1). For n = 1, the area of M1 existence is always inside the

area of NA1 existence, i.e., PN
1 = P11 and, for c/β > CB1, P

N
1 < P12.

17



Notably, there are inputs for which either MFC equilibrium can be realized if resellers use MFC,
or a price-discriminating equilibrium NA3 is realized if MFC is not available. Due to differences in
equilibrium structures, the change in profit can be discontinuous when MFC becomes available.

For a monopoly (n = 1), Theorem 2 exhaustively covers all feasible parameter values. Starting
from a duopoly, there is an area of inputs where none of the equilibria described in Theorem 2 may
exist. At the same time, for oligopoly resellers with strategic customers, by the theorem below,
there exists one more form of NA with sales in both periods and p∗2 = s (NA4). This form exists
only inside the p1-range of NA3, i.e., there exists a non-empty set of input parameters where both
NA3 and NA4 may exist and, by Proposition 1, either M1 or M2 may exist if MFC is available.

Theorem 3 (“Salvaging” NA4). NA with v∗ = p1−ρs
1−ρβ , α∗(0) = 1, p∗2(0) = s, Y ∗ = n−1

n
p1−s
c−s (1− v∗),

and r∗ = p1−s
n2 (1− v∗) exists iff one of the following mutually exclusive conditions hold:

(a) salvaging is forced on resellers, i.e., n−1
n Y ∗ ≥ 1− s

β ;

(b) condition (a) does not hold and the deviator profit is strictly increasing in the interval corre-

sponding to p2 > s, which is equivalent to 1− s
β > n−1

n Y ∗ ≥
(

1− s
β

)2 c+βv∗−2s
β(1−s/β)2+(p1−β)(1−v∗)

;

(c) conditions (a) and (b) do not hold, Y ∗ > 1 − s
β , and either the deviator profit is strictly

decreasing in the interval corresponding to p2 > s (in this case the deviator profit never
exceeds r∗), or r∗ ≥ r̃i, where r̃i is the maximum deviator profit in this interval.

Conditions of NA3 and NA4 existence indicate proximity of the market situation to a boundary
of the area of existence. Namely, if the equilibrium exists only because the equilibrium profit r∗

exceeds the profit of a potential deviator r̃i (condition (b) for NA3 and (c) for NA4), the equilibrium
can be very sensitive to parameter changes.

Proposition 2. (1) NA4 exists only if c−s < n−1
n

β(1−s)2

4(β−s) (otherwise, there are no p1 and ρ leading

to p∗2 = s) and p1 < PN
4 , 1−ρ(β−s) (otherwise, NA4 form of v∗ does not permit sales in the first

period). Moreover, PN
4 < PN

1 and p1-bounds are equivalent to upper bounds on ρ, with ρN4 ,
1−p1
β−s

and ρN1 , n+1
n

1−p1
β−c > ρN4 . (2) For any inputs where both NA3 and NA4 exist, r∗,NA4 < r∗,NA3.

Moreover, r∗,NA4 < 1
n(p1 − c)(1− p1).

Proposition 2 implies, first, that NA4 exists only when the unit salvage value is relatively close
to the cost and when the first-period price is relatively low, resulting in first-period sales that are
enough to compensate for the second-period loss. Since the p1-upper bound in NA4 is strictly below
PN
1 , the p1-upper bound in NA3, NA4 never coexists with NA3 if p1 ∈ [PN

4 , PN
1 ). If NA4 exists

for ρ = 0, keeping other inputs fixed, it may also exist for ρ < ρN4 . Thus, part (2) of Proposition 2
in conjunction with a nonempty range [ρN4 , ρN1 ) may lead to a substantial “discontinuous” gain
from increasing strategic behavior. Indeed, for ρ ∈ [ρN4 , ρN1 ), NA4 does not exist and no other
NA-equilibria may exist except NA3, whose profit is higher than that of NA4.

3.3 Stable market outcomes without MFC when MFC is allowed

The introduction of MFC decision into resellers’ game increases the set of possible strategies. Thus,
in the MFC-game, no-MFC equilibria may still exist but under more restrictive conditions than
in the no-MFC game since a reseller has an additional dimension to deviate. We denote by N
an equilibrium where MFC option is available but not used. A formal statement (Proposition 9,
Appendix), illustrated in Figure 5, shows that the additional flexibility for resellers in the form of
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Figure 5: For given n, fractions of inputs resulting in different types of

(a) N3 within NA3 (b) N within no-MFC
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MFC-option indeed restricts the areas of existence of N-equilibria (except for N2 and for N1 with
n > 1) in comparison with the corresponding areas of NA-equilibria. These additional restrictions
can be interpreted as conditions of “stability” of NA-equilibria with respect to MFC option.

The information about MFC-policy gives an additional signal for customer expectations. For
example, if p1 is relatively high, implying sales in the second period, the declaration of MFC by a
profit-maximizing reseller may lead to a higher p2 than without MFC since, under MFC, p2 cannot
be below unit cost. On the other hand, if p1 and β are relatively low, any second-period sales may
result in p2 < c. In this case, the declaration of MFC implies the absence of second-period sales.

According to the definition of RESE, customer expectations need to be specified both for a
symmetric MFC decision profile and for all one-reseller deviations into no-MFC. In this section,
α∗(0) and p∗2(0) specify equilibrium expectations for a symmetric no-MFC strategy profile, while
α∗(1) and p∗2(1) – for a one-reseller deviation into MFC. Rational customer expectations associated
with a deviation determine two different subtypes of N3, which we call N3.1 (for α∗(1) = 0) and
N3.2 (for α∗(1) = 1). Both these subtypes correspond to an otherwise identical NA3 structure.
A summary of these outcomes is presented visually in Figure 5(a) as fractions of NA3 instances.
There is a very small area of inputs where both N3.1 and N3.2 can exist. The incidence of N3.1 and
no-N3 quickly diminishes and tends to zero as the market approaches perfect competition (n → ∞).
On the other hand, N3.2 type becomes dominant and absorbs the entire NA3 area as n → ∞.

The behavior of fractions of NA4 instances is similar but the decreases in N4.1, an overlap of
N4.1 and 4.2, and no-N4 are more rapid. The highest values of these fractions occur in a duopoly
and are, respectively, 7.0%, 0.17%, and 0.26%.

By Propositions 1 and 9, the areas of N1 and N2 existence are inside the areas of M1 and M2
existence respectively, i.e., N1 and N2 cannot exist in an area where MFC-equilibria do not exist.
On the other hand, by Theorems 2, 3, and Proposition 9, N3 and N4 can exist in this area. We
examine the fractions of no-MFC model instances, where N3 and/or N4 exist, visually in the area
plot of Figure 5(b). The overwhelming majority of no-MFC instances corresponds to N-equilibria.
The remaining fraction of no-MFC instances where neither N3 nor N4 exist is too small to be seen
on the figure (its maximum over n is just 0.044%).

For brevity, we use N(A) to refer to either N-equilibrium if MFC is available but resellers do not
use it or NA if MFC is not available due to other reasons. Visualizations of possible equilibrium
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types across model inputs are provided in Figures 7 and 8 (illustrating Examples 1 and 3 in §5).

4 When is MFC beneficial for participants in the market?

By affecting the equilibrium, MFC impacts all market participants. Thus, in this section, we
consider MFC effects on resellers in terms of their profit, on the manufacturer in terms of the total
inventory, and on the customers in terms of the surplus, as well as on the local economy in terms
of the aggregate welfare, which is the sum of the customer surplus and the reseller profits.

4.1 MFC effect on reseller profits

As shown above, the availability of the MFC option does not always lead to the existence of MFC
equilibria. But even if M1 or M2 exists, there are areas of inputs where MFC-equilibria coexist with
various forms of N(A), and it is not obvious that MFC-profits are always greater in these areas.
Indeed, it turns out that MFC leads sometimes to a lower total profit than N(A)3 and/or N(A)4.

Assuming that, for given inputs, equilibria X and Y exist (possibly in different games), we
say that X is beneficial (equivalent, detrimental) for resellers compared to Y if benefit BX,Y ,

r∗,X − r∗,Y > 0 (BX,Y = 0, < 0). Equilibrium X is beneficial (equivalent, detrimental) in an area
of inputs if it is beneficial (equivalent, detrimental) for any inputs in this area.

Figure 6 (a) displays the area plot of fractions of M1 inputs where N3 and/or N4 may also
exist (implying the existence of NA3 and/or NA4 for these inputs). The overlap is quite large, and
Figure 6 (b) shows that M1 is detrimental compared to N3 and/or N4 in approximately 30% of the
model inputs where M1 coexists with either M2 or N3 and/or N4. Recall that, depending on n,
as illustrated in Figure 4, M1 exists in approximately 10% to 70% of the volume of model inputs.
Hence, up to 20% of possible model inputs may lead to an MFC equilibrium that is detrimental
compared to a no-MFC equilibrium.

The plot for the overlap of M2 with N3 and/or N4 is similar to Figure 6 (a) with the only
difference that the cumulative fraction of the overlap is around 80% for n = 2 and approaches
100% for n closer to 100. However, unlike M1, M2 is either beneficial or equivalent to all other
equilibria in the areas of coexistence. For a monopolist, M1 coexists only with N1, therefore the
n-axes in the plots of Figure 6 start from n = 2.

The proposition below provides conditions for the dominance of an equilibrium profit either
under MFC, or N(A)3 and N(A)4. For the convenience of exposition, we use r∗,N3, r∗,N4 instead
of r∗,N(A)3, r∗,N(A)4, and we let w2 denote the ratio of profits r∗,M1 over r∗,N4, normalized by
n2/(n+ 1)2, i.e., w2 , (β − c)2(1− ρβ)/{β(p1 − s)[1− p1 − ρ(β − s)]}.

Proposition 3. (1) For any inputs in the overlap of M1 and the corresponding N(A),

(1.1) r∗,M1 < r∗,N3 if p1 > 1− n
n+1(β − c) and c ≥ 3β − 2

(

1 + 1−β
n

)

;

(1.2) r∗,M1 > r∗,N4 iff either w > 3
2 , or 1 < w ≤ 3

2 , and n > 1
w−1 (w increases in ρ).

(2) For any inputs in the overlap of M2 and the corresponding N(A),

(2.1) r∗,M2 ≥ r∗,N3 with strict inequality if n > 1 or n = 1 and p1 < P21;

(2.2) r∗,M2 > r∗,N4.
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Figure 6: For given n, (a) fractions of M1 outcomes where N3 or N4 are possible; (b) fractions of
M1 outcomes where M2, N3, or N4 are possible and the respective profit is the greatest
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Part (1.1) implies that M1 can be less profitable than N(A)3 when the product is not durable
because, as we mentioned above, low durability decreases the second-period profits and, conse-
quently, the attractiveness of M1. Indeed, the lower bound on c in part (1.1) holds for any c and
n if β ≤ 2

3 and never holds for β > 4+c
5 .

By part (1.2), since w increases in ρ, the more strategic customers are, the lower the minimum
level of competition n when M1 is beneficial compared to N(A)4. The necessary condition w > 1

for M1 to be beneficial is equivalent to a lower bound on M1 profit, i.e. (β−c)2

β > (p1−s)(1−p1−ρ(β−s))
1−ρβ .

4.2 MFC effect on the total inventory

An important part of this investigation is the MFC effects on reseller inventory policies with the
associated impact on all participants in the market. The total inventory, in turn, affects the
existence of the second-period sales and, when these sales exist, the second period price. The
results are summarized in the following proposition.

Proposition 4. For the same inputs except MFC-policy, in the areas where an MFC-equilibrium
and N(A) coexist, the total inventory under MFC is not greater than under N(A), namely,

(1) MFC total inventory and prices are the same as under N(A) if M1 coexists with N(A)1 or
M2 coexists with N(A)2;

(2) MFC total inventory is less than under N(A) if M1 or M2 coexists with N(A)3 or N(A)4.

Hence, when the introduction of MFC changes the realized equilibrium structure, the total in-
ventory decreases. This result is consistent with the literature that shows that MFC, by encouraging
early purchases, allows resellers to increase prices (Png (1991), Lai, Debo, and Sycara (2010)).

Given that the wholesale price is fixed, the smaller inventory reduces the manufacturer’s profit.
Therefore, a current-profit-maximizing manufacturer, that is able to set the first-period price, may
want to prevent the use of MFC by resellers. On the other hand, a branded product manufacturer
may prefer resellers to sell only at MSRP to maintain product reputation (e.g., Orbach (2008)),
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supporting M2 as a result. The manufacturer’s benefits from this support depend on the particular
conditions of M2 because the first-period price of branded products is usually high whereas M2
exists for relatively low p1.

Compared to N(A)3 or N(A)4, M1 does not bring any benefits even for a branded product
manufacturer. If M1 is realized in the areas of equilibria coexistence, it means that resellers, using
MFC, avoid too high an MSRP. This situation is a signal for the manufacturer to target a lower
first-period price. Alternatively, the manufacturer may negotiate a restriction against using MFC.
This no-MFC restriction may benefit resellers, because, as shown in the previous subsection, reseller
profits under M1 may be even lower than under “salvaging” N(A)4, which is the worst equilibrium
for resellers in a no-MFC game (Figure 6 (b) and part (1.2) of Proposition 3).

4.3 MFC effects on customers and the local economy

The above results partially support the findings in the literature that MFC may be used as an
anti-competitive practice. Indeed, recall that the price in M2 is regulated by MSRP and, when
another equilibrium with a lower second-period price is also possible, M2-profit is always higher.
If MFC is not available and NA2 (which is equivalent to M2 in profit) exists, then, as n increases,
the outcome changes to NA3 or NA4 with p2 < p1. On the other hand, M2 is guaranteed to exist
for such inputs. Thus, a declaration of MFC under M2 merely serves as a tool to avoid competitive
pricing. Customers do not receive any reimbursements. Nevertheless, as we show below, M2 can
improve the aggregate welfare.

The consequences of MFC for customers and resellers are not that obvious for another MFC-
equilibrium M1. In this equilibrium, customers do obtain reimbursements in the second period.
This RESE is the most beneficial for resellers in approximately 40% to 50% of inputs for which the
other RESE may also exist. On the other hand, there is a significant share of inputs (Figure 6 (b))
where M1 is detrimental compared to no-MFC equilibria N(A)3 and even “salvaging” N(A)4. When
M1 is indeed detrimental for resellers, it is not clear whether it is beneficial for customers compared
to N(A)3 or N(A)4. M1 is indeed better than N(A)3 or N(A)4 for high-valuation customers who
buy in the first period because their surplus is larger under M1 due to reimbursements. In contrast,
the low-valuation customers, who would buy in the second period under N(A)3 or N(A)4, are worse
off under M1 because, by Proposition 4, the MFC-price is always higher than the second-period
price under N(A)3 or N(A)4. Such mixed effects of MFC raise a non-trivial question: is it possible
that an MFC-equilibrium is beneficial for the total customer surplus and/or aggregate welfare?

The total equilibrium customer surplus is the sum of the actual first-period and second-period
surpluses. We consider the actual or realized surplus, which is greater than the expected surplus.
In the latter one, the second-period surplus would be discounted by ρ similarly to the individual
second-period surplus used to determine the customer choice of buying or waiting. In contrast,
the actual surplus measures the realized customer benefits depending on a type of equilibrium.
The present value of the surplus is not an adequate measure for this purpose because it ignores or
underestimates the realized second-period surplus of customers if they are myopic or, respectively,
have low ρ. The result below shows that M1 is better for customers than N(A)1 and M2.

Proposition 5. For the same inputs, the change of equilibrium structure from N(A)1 to M1 in-
creases the total customer surplus except for a durable product (β = 1) and p1 = 1 when the surplus
remains the same; the change from any structure to M2 decreases the surplus.

Moreover, MFC is beneficial for the local economy in terms of aggregate welfare for the inputs
where N(A)1 and M1 coexist. Indeed, the total profit nr is the same in both equilibria, whereas,
under MFC, part of sales occurs in the first period where the consumers enjoy fresh product
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effectively paying the reduced second-period price due to the reimbursements. For n ≥ 2, M1 can
exist for the same inputs as N(A)3 or N(A)4. For n = 2, the fraction of inputs with a welfare-
increasing switch from N(A)3 to M1 is 81.5% (of the inputs where both NA3 and M1 exist), and
this fraction increases in n. Figure 2 in Introduction illustrates this welfare-increasing switch for
n = 10, ρ = 0.95, p1 = 0.7, β = 0.4, c = 0.2, and s = 0. For N(A)4, the fraction of inputs where M1
improves welfare is even higher.

This result complements the finding of Lai, Debo, and Sycara (2010) for a single retailer, who
show, contrary to the literature, that posterior price matching (i.e., MFC) can increase customer
surplus when the uncertainty in the number of customers with high valuations is high. In our
setting, MFC can be surplus- and welfare-improving even without uncertainty, e.g., when p1 and ρ
are sufficiently high leading to N(A)1 and M1 existence.

Unlike M1, M2 is always disadvantageous for customers. However, by Proposition 3, M2 is
profitable for resellers, which raises a non-trivial question about the welfare-improving ability of
M2. M2 improves welfare for n = 1 in 78% of inputs where M2 and NA3 exist: intermediate p1,
relatively high difference c − s, high ρ and small β. Similarly to M1, this share increases in n. In
the area where M2 and NA4 exist: s close to c, high ρ, n, and low β, p1. This share starts from
99.9987% for n = 2 and increases in n. Thus, the local policymakers may help the retailers to
escape from the “salvaging” N(A)4 by encouraging the use of MFC.

Hence, when retailers operate under allegedly anti-competitive RPM, another “collusive” sus-
pect, MFC, improves social welfare for the local economy in most of the cases when customers are
strategic. This effect results, first, from the fixed first-period price and, second, from an increase
in the first-period sales. The latter effect increases the first-period surplus and the total profit —
always under M2 and, in some cases, under M1 despite reimbursements since the second-period
price is higher under M1 than under no-MFC equilibria. When MFC is welfare improving, these
increases exceed the loss of the second-period surplus under M2 or its decrease under M1.

5 Effectiveness of MFC in counteracting strategic behavior

While previous sections provided qualitative description of MFC-effects, the results below show that
possible benefits or losses from MFC can be essentially higher than losses from strategic customers.
We contrast the cases of monopoly and oligopoly because the effects of MFC are more pronounced
under competition and can be qualitatively different in these two cases.

5.1 MFC performance

This subsection introduces a suitable measure of MFC performance as a profit-increasing tool
relative to the effect on profit from an increase in the level of strategic behavior. Assume that all
inputs except ρ are fixed and customers are more strategic for ρH than for ρL < ρH . Moreover, in
the no-MFC game, one of NA equilibria (denoted as NAL) is realized for ρL and, possibly, another
NA equilibrium (denoted as NAH) is realized for ρH . Finally, an MFC equilibrium is realized when
customers are more strategic (Figure 7(b)), while the theoretical existence of a no-MFC equilibrium
with the same structure as NAH in the MFC-game is not excluded. The corresponding no-MFC
profits are r∗,NAH at ρH and r∗,NAL at ρL. The MFC-profit at ρH is r∗,MFC .

Suppose the increase in ρ leads to a loss in the no-MFC game, namely, r∗,NAH − r∗,NAL < 0.
The performance of MFC as a tool for mitigating the loss from customer strategic behavior is the
ratio of the benefit from MFC at ρH to the absolute value of the loss, i.e., η(NAL,NAH,MFC) ,
r∗,MFC−r∗,NAH

r∗,NAL−r∗,NAH . For brevity, we omit the arguments of the measure when it does not lead to
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confusion. This measure is negative when MFC is detrimental, η ∈ (0, 1] when MFC leads to a
mitigation, and η > 1 when MFC results in a gain. For example, η = 1 means that MFC mitigates
100% of the loss from increase in ρ. Theoretically, η can go to infinity when the change in ρ is close
to zero, the profit in the no-MFC game is continuous in ρ, and r∗,MFC − r∗,NAH is separated from
zero due to discontinuous changes in the equilibrium structure resulting from the introduction of
MFC.

Similarly, suppose the increase in ρ leads to a gain in the no-MFC game, e.g., as a result of the
switch from NA4 to NA3 or under NA3 for large ρ and β. The performance of MFC as a tool for
enhancing the gain from increasing strategic behavior is the ratio of the benefit from MFC at ρH

to the absolute value of the gain, i.e., η(NAL,NAH,MFC) , r∗,MFC−r∗,NAH

r∗,NAH−r∗,NAL .
We keep to the following refinement of the notion “the gain from increasing strategic behavior.”

If equilibria A and B exist for both ρH and ρL < ρH with r∗,A|ρ=ρH < r∗,A|ρ=ρL < r∗,B|ρ=ρH , A is

realized only for ρL, and B is realized only for ρH , the difference r∗,B|ρ=ρH − r∗,A|ρ=ρL > 0 cannot
be conclusively considered a gain from increased ρ because the reason for the switch to B is not
necessarily related to the increase in ρ. This difference may be a gain from another undetermined
factor causing the switch.

Since equilibria can be multiple for both MFC and no-MFC, and for both ρH and ρL, the
analysis below is concentrated on the cases when the benefits from MFC are maximal as well as on
the cases when MFC is detrimental with the description of the corresponding areas of inputs.

5.2 Monopoly

We first consider the case of monopoly because of its analytical simplicity and qualitative differences
from oligopoly. In particular, MFC benefits neither the reseller nor customers if customers are
myopic. Indeed, by Theorems 1 and 2 with myopic customers, a two-period MFC-equilibrium
(M1) and a no-MFC equilibrium without first-period sales (N(A)1) exist only in a degenerate case
with p1 = 1. An MFC-equilibrium without second-period sales (M2) exists only for a non-durable
product (β < 1) and overlaps only with a no-MFC equilibrium that has the same structure (N(A)2).
Thus, when customers are myopic and the drop in valuations is relatively low, the major area of
inputs belongs to a no-MFC price-discriminating equilibrium N(A)3 (“salvaging” equilibrium N(A)4
does not exist for a monopolist).

The situation changes when customers are strategic and the product is not durable. Findings
below, illustrated in Figure 7, specify the dependence of MFC-benefits on the market parameters.
In particular, there is an area leading to an MFC-benefit only for the monopolist. This area, the
overlap of M2 and NA1, is not covered by Proposition 3 and exists only for high levels of strategic
behavior. Indeed, the following lemma (illustrated in Figure 7(b)) shows that MFC-equilibria exist
only for sufficiently high ρ.

Lemma 1. For n = 1, the conditions of MFC-equilibria existence p1 ≥ P11 and p1 ≤ P21 are

equivalent to lower bounds on ρ : ρ ≥ 2(1−p1)
β−c , ρM1, and ρ ≥ 1

β

[

1−
√

p1(1− β)/(p1 − c)
]

, ρM2

respectively, where ρM2 ∈ (0, 1], ρM2 → 0 if p1β → c+ 0, and ρM2 = 1 if β = 1.

Recall that the boundaries of MFC-equilibria (Theorems 1 and Corollary 1) and their intersec-
tion points are such that P12|n=1 = P22|n=1 = P2 and CB1|n=1 = CB2|n=1 = CB.

Proposition 6. (1) An MFC-equilibrium is beneficial for a monopolist compared to a no-MFC
equilibrium in and only in the union of (1.1) the overlap of M2 and NA1 leading to ben-

efit BM2,NA1 = (p1 − c)(1 − p1) − (β−c)2

4β > 0, which is constant in ρ, decreasing in β
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Figure 7: Monopoly (n = 1) market outcomes with β = 0.85 in (a) (c/β, p1) cross-section of inputs
for fixed ρ = 0.7; and (b) (ρ, p1) cross-section for fixed c = 0.1
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and increasing in c; and (1.2) the overlap of M2 and NA3 leading to benefit BM2,NA3 =
βp1−c
2−ρβ

[

p1(1− β)− (1− ρβ)2(p1 − c)
]

> 0, which is increasing in ρ.

(2) Reseller is indifferent between MFC and no-MFC equilibria in and only in the union of the
overlaps of M1 and N(A)1, M2 and N(A)2, and the boundary between N3 and M2.

(3) MFC is less profitable than price discrimination (and, consequently, MFC is not used) iff
c
β < CB, p1 >

c
β and ρ < min{ρM1, ρM2}.

Moreover, MFC-equilibria do not lead to a gain from an increase in ρ.

The proposition illustrates the nature of the relations between p1-bounds in MFC and N(A)-
equilibria. When the second-period sales are relatively attractive, i.e., cost-to-durability ratio is
low ( cβ < CB), MFC can be preferred to price discrimination (N3) only if the level of strategic
behavior is high. When the second-period sales are less attractive, i.e., c

β ≥ CB, MFC is always
no worse than price-discrimination. In this case, bound P2, which does not depend on ρ, separates
two forms of MFC-equilibria — with sales in both periods (M1) and only in the first one (M2).

For a monopolist, MFC-equilibria, when they exist, are never detrimental. However, MFC never
leads to a gain from increased strategic behavior. The following example illustrates Proposition 6.

Example 1. p1 = 0.4, β = 0.85, c = 0.1, ρL = 0.65, ρH = 0.95.

Price-discriminating no-MFC equilibrium NA3 exists for both ρ (Figure 7(b)) and, if MFC is
not available, the loss from increased ρ is r∗,NA3|ρ=0.95 − r∗,NA3|ρ=0.65 = 0.170294 − 0.180010 =

−0.009716. If MFC is available at ρH , M2 is realized (ρH > ρM2 = 1−
√
0.2

0.85 = 0.6503) with r∗,M2 =
0.18, which mitigates almost all the loss. The performance of MFC is η(NA3,NA3,M2) = 0.9989.
The performance decreases with the difference ρM2 − ρL (ρL moves to the left from ρM2).
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5.3 Oligopoly

This subsection shows that in the oligopoly, unlike monopoly, MFC can lead to substantial gains
from strategic behavior as well as amplify losses depending on the market situation.

The competitive case has the following major differences from monopoly: “salvaging” equilib-
rium N(A)4, which may coexist with N(A)3, and the area of coexistence of M1 and M2. These
differences lead to a much richer pattern of overlaps of MFC and no-MFC equilibria than under
monopoly. The analysis of MFC in the overlaps is simplified by the following results obtained
above: (i) M2-profit always exceeds the profit of M1 (Corollary 1); (ii) N(A)3-profit always exceeds
the profit of N(A)4 (Proposition 2); (iii) M2 is always beneficial compared to N(A)3 and 4 (Propo-
sition 3). By (ii) and (iii), the maximum benefit from M2 belongs to the area where M2 overlaps
with N(A)4, which is specified in the following proposition.

Proposition 7. For given inputs with ρH > 0, let M2 and N(A)4 exist and, additionally, N(A)4
exists for the same inputs except ρL < ρH . Then M2 at ρH leads to a gain from increased strategic be-
havior, bounded from below by η(NA4,NA4,M2)|ρL=0 as follows: η(NA4,NA4,M2) ≥ η(NA4,NA4,M2)|ρL=0 =

1 + (1−ρHβ)(1−p1)[n(p1−c)−(p1−s)]
(p1−s)ρH(p1β−s)

> 1.

The following example illustrates the minimum value of η(NA4,NA4,M2)|ρL=0 in n (attained
at n = 2) for moderate values of other parameters (the existence of the equilibria in the examples
below is shown in the appendix).

Example 2. n = 2, ρL = 0, p1 = β = ρH = 0.5, c = 0.1, s = 0.05.

The performance of MFC is η(NA4,NA4,M2)|ρL=0 = 1 + 3
4 · 0.5·(0.8−0.45)

0.45·0.5·0.2 = 1 + 3·0.35
0.36 , i.e., the

increase in profit due to the introduction of M2 at ρ = 0.5 is almost four times greater than the
loss of profit under NA4 due to increased strategic behavior from ρ = 0 to ρ = 0.5. This gain is
impossible without strategic customers because, for these data and small ρ, M2 does not exist.

The case p1 = β used in Example 2 also provides a simple characterization of inputs where M1
is beneficial compared to NA3:

Proposition 8. Under the conditions of M1 (Theorem 1) and NA3 (Theorem 2) with p1 = β,

r∗,M1 > r∗,NA3 iff β > 1+c
2 and either ρ > 21−β

β−c , or ρ ∈
(

1−β
β−c , 2

1−β
β−c

]

and n > 1−β
(β−c)ρ−1+β .

This proposition shows that M1 is never beneficial compared to NA3 for β close to c, namely,
for β ≤ 1+c

2 . If the necessary conditions β > 1+c
2 and ρ > 1−β

β−c hold, M1 may be better for resellers
than NA3. M1 is better for any level of competition n if the level of strategic behavior is quite
high, i.e., ρ > 21−β

β−c , and for sufficiently high n > 1−β
(β−c)ρ−1+β , if the level of strategic behavior is

moderate i.e., ρ ∈
(

1−β
β−c , 2

1−β
β−c

]

.

M1 is beneficial compared to NA4 for p1 = β only if (β − c)2 > β(β − s)(1− β−ρs
1−ρβ ), which, by

part (1.2) of Proposition 3, is equivalent to w > 1. This condition never holds for β close to c and,
when it holds (for large ρ), M1 is beneficial for large n.

There is an important qualitative difference between M1 and M2 that should not be neglected
by resellers. The difference is that, under competition, M1 may be detrimental compared to no-
MFC equilibria N(A)3 or 4. This property leads to the situation that can be called an MFC-trap for
resellers. Assume, for the following data, that resellers are not using MFC and N(A)4 is realized.

Example 3. n = 3, ρ = 0.5, c = 0.1, s = 0.05, p1 = 0.7, β = 0.25.
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Figure 8: Market outcomes near inputs of (a) Example 3: (ρ, p1) cross-section for fixed n = 3,
c = 0.1, s = 0.05 and β = 0.25; and (b) Example 4: Equilibrium profit as a function of ρ for fixed
p1 = β = 0.5, n = 4, c = 0.1, s = 0.
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Figure 8(a) shows RESE types in the neighborhood of these inputs in a (ρ, p1) cross-section of the
feasible inputs for fixed n = 3, c = 0.1, s = 0.05 and β = 0.25. For these inputs, r∗,N(A)4 = 0.0165,
and MFC can be beneficial since M2 exists and r∗,M2 = 0.06, which is 3.6 times higher than
r∗,N(A)4. However, the attractive comparison of r∗,M2 with r∗,N(A)4 may work as a bait in a trap.
For these inputs, there also exists M1 with the profit r∗,M1 = 0.0056, which is approximately 1/3
of r∗,N(A)4. The example illustrates Theorems 1, 3 and Corollaries 1, 3 showing that, depending on
customer expectations, MFC can lead to losses when theoretically, for the same inputs, a beneficial
equilibrium exists.

The differences in MFC-trap profits may be even higher, e.g., for the same data except p1 = 0.85
and β = 0.15 (the equilibria exist by the same conditions), namely, r∗,N(A)4 = 0.0096, r∗,M2 =
0.0375 (3.9 times higher than r∗,N(A)4), and possible outcome r∗,M1 = 0.00104 is 9.2 times less
than the initial profit r∗,N(A)4. The area of the MFC-trap shrinks with n since CB1 and CB2

decrease to zero in n and both P12 and P22 go to c
β , reducing to zero the area of coexistence of M1

and M2.
If resellers are trapped in the detrimental M1, it is profitable for the manufacturer to help them

out by adding to the contract a “no-MFC” condition since, by Proposition 4, Y ∗,N4 always exceeds
both Y ∗,M1 and Y ∗,M2. However, local policymakers may counteract manufacturer activity because
the aggregate welfare is greater for M1 in both examples. Besides the MFC-trap, the overlap of
N(A)4 with M1 and M2 contains the inputs where r∗,M1 > r∗,N4. By part (1.2) of Proposition 3,
these inputs correspond to larger ρ, n, and differences β− c. In this area, the welfare is still greater
for M1, and the only part of the market suffering from MFC is the manufacturer.

Example 3 quantifies the result of Proposition 3 showing the amount by which M1-profit may
be less than the least profit without MFC. Compared to no-MFC equilibria, M1 can become detri-
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mental when the level of strategic customer behavior is increasing even if it was beneficial for lower
values of ρ. The following example shows the extent of the negative effect in this case.

Example 4. n = 4, p1 = β = 0.5, ρH = 0.65, ρL = 0.2, c = 0.1, s = 0.

This example illustrates another MFC-trap for resellers, which can be called a “regulator-
facilitated MFC-trap.” The regulators may encourage resellers to switch to another equilibrium
(with MFC) at ρ = 0.32 (Figure 8(b)) since, under M1, both resellers’ profit and welfare are
higher than under N4 (the M1-welfare is 0.34 and N4-welfare is 0.26). For larger ρ, there also
exist equilibria M2 and N3 with higher profits than under M1, but the regulators may discourage
reseller switching away from M1 since the welfare attains maximum under M1 in this example. The
manufacturer, who is also worse off under M1 than under N3, could initiate the switch to no-MFC
for large ρ. However, the regulators may restrict manufacturer’s interventions since, from their point
of view, a socially-optimal outcome is realized. The negative performance of MFC as a tool for
enhancing the gain from increasing ρ, when ρ increases from 0.2 to 0.65, is η(NA4,NA3,M1) = −1.1.
That is, the loss from MFC is greater than the gain from increased strategic behavior without MFC.
On the other hand, by Proposition 3, the performance of M1 as a mitigating tool can be positive
and, as the following example shows, M1 may even lead to a notable gain.

Example 5. n = 4, p1 = 0.4, β = 0.65, ρH = 0.4, ρL = 0.3, c = 0.05, s = 0.

NA4-profit decreases in ρ by 8.7% from r∗,NA4|ρ=0.3 = 0.01258 to r∗,NA4|ρ=0.4 = 0.01149.
If MFC becomes available and M1 is realized at ρH = 0.4 (M1 does not exist at ρL = 0.3),
profit at ρH almost doubles to r∗,M1|ρ=0.4 = 0.02215, which in terms of MFC performance is
η(NA4,NA4,M1) = 9.776 — the increase in profit due to use of MFC is almost ten times greater
than the loss from increased strategic behavior under NA4. Moreover, the aggregate welfare of
0.346 in M1 is greater than in NA4, where it is 0.277.

6 Conclusions

The fundamental effects of the most-favored-customer clause (MFC) under resale price maintenance
(RPM) in the presence of strategic customers include a reduction in the total inventory and the
corresponding increase in the clearance prices or even elimination of the clearance sales. Legal
studies treat such cases as socially harmful. However, a higher price and lower output of a limited
lifetime product can be welfare-improving if they result from a policy that leads to an intertemporal
redistribution of demand. We show that MFC with clearance sales (M1) can improve the total
customer surplus since a high MSRP is effectively void in this case. Thus, M1 can alleviate a
decrease in customer surplus caused by RPM using only market levers, without socially costly
interventions of legal bodies. In addition, MFC is welfare-improving for the majority of model
inputs. This welfare gain increases in the level of competition.

Since resellers also tend to decrease inventories in response to strategic customer behavior,
MFC can amplify this reduction in the presence of strategic customers. As a result, by using MFC,
resellers can mitigate losses from strategic customer behavior and even gain from an increase in its
level, i.e., obtain a profit level higher than with myopic customers. This gain, however, is impossible
for a monopolistic reseller. When MSRP is relatively high, the resellers cannot take advantage of it
in a stable market outcome with MFC and clearance (M1) because of reimbursements. As a result,
reseller profit in M1 can be less than without MFC for low levels of strategic behavior, competition,
and product durability as well as for a high unit cost. In particular, there may exist an “MFC-trap”
for resellers — an input area leading to the worst “salvaging” stable outcome (N4) without MFC.

28



Depending on expectations, an MFC outcome in this area can be either no-clearance M2 (with a
greater profit than in the “salvaging” N4) or the clearance M1 (with the profit less than in N4 as
in Example 3).

These effects of MFC and strategic behavior lead to the following implications for resellers.
(i) Stable market outcome with MFC and no clearance is always efficient as a strategic-customer
mitigating tool and always better than clearance stable outcomes with and without MFC for any
given inputs. (ii) MFC can hurt resellers when multiple stable outcomes are possible and the
clearance outcome with MFC is realized. (iii) A profit increase due to MFC can be smaller than
a profit gain without MFC due to a switch to a more profitable equilibrium (Example 4). This
drawback of MFC may arise when “salvaging” no-MFC outcome is possible and the level of strategic
behavior is increasing.

There are several implications for a manufacturer that is able to influence reseller MFC policy.
(i) Since MFC is never beneficial for a current-profit-maximizing manufacturer, it may use contract
terms to discourage resellers from this policy. (ii) A branded product manufacturer may support
the no-clearance MFC outcome. This support is possible only for a sufficiently low first-period
price when this outcome is possible.

The closed-form analysis provided in the paper can be used for further research, e.g., for studying
a game between manufacturer and resellers, which may endogenize MSRP, wholesale price, and buy-
back value. Alternatively, the results may serve as a benchmark in a game where resellers compete
in prices and MFC-policies. Both extensions require complicated analysis and deserve consideration
in separate papers.
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Table 2: Main abbreviations and notation
Symbol Definition

p1, p2 first- and second-period price
c, s unit cost and salvage value
I = {1, . . . , n} set of all resellers
yi, qi reseller i inventory and sales in the first period
mi most-favored-customer (MFC) decision: mi = 1 — MFC, mi = 0 — no-MFC
Yk, Qk combined first-period inventories and sales of resellers with mi = k
Y,Q total first-period inventories and sales
v first-period customer valuation of the product
β factor of decrease of customer valuation by the second period
ᾱ, p̄2 customer expectations about product availability and price in the second period
ρ the level of customer strategic behavior
vmin
k minimum valuation level of customers who, given a choice, would purchase from

resellers with decision mi = k in the first period
y−i,m−i vectors of inventories and MFC decisions of all resellers except i
ri profit of reseller i
BRi best response of reseller i

m̂, Ŷ symmetric equilibrium MFC and inventory decision
(m∗, Y ∗, α∗, p∗2) rational expectations symmetric equilibrium (RESE)
r∗,Σ RESE-profit and total customer surplus
CB1, CB2 c/β-bounds for RESE M1 and M2
P11, P12 p1-low bounds for M1
P21, P22 p1-upper bounds for M2
PN
1 p1-bound between RESE NA1 and NA3

PN
2 p1-bound between RESE NA2 and NA3

PN
4 p1-upper bound (necessary) for RESE NA4

η MFC performance as a tool for mitigating the loss from customer strategic behavior
a ∨ b, a ∧ b max{a, b} and min{a, b} respectively

7 Supplemental material

7.1 History and empirical evidence of RPM

The problem of a proper legal treatment of minimum and fixed resale price maintenance (RPM)
has an old and controversial history across countries. The legal status of this practice fluctuated
in the USA from per se legal to per se illegal since the first half of the nineteenth century; see
Orbach (2008). In 2007, the Supreme Court, by a narrow 5–4 vote, decreed to consider RPM under
the rule of reason, which recognizes that the social effects of RPM can be either beneficial or adverse.
As of December 2015, RPM was still treated as per se illegal in Australia, New Zealand, UK,
Japan, EU, and some states in the USA. For some products, exceptions are made but, in general,
not consistently across countries. For example, the use of RPM is legal in Japan for copyrighted
materials such as music records and books. Despite several attempts to prohibit RPM completely,
the Japan Fair Trade Commission announced in 2001 “that for the time being it would retain the
saihan [RPM] system, thus ending the discussion about the controversial system” explaining the
decision by “widespread public support for resale price maintenance”; see Nippop (2005).
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A review in Overstreet (1983) refers to empirical evidence of RPM prevalence when it was
considered as legal. For example, RPM affected up to 10 percent of retail sales in the USA, 44
percent of consumer expenditures in the UK, 20 percent of goods sold through grocery stores
and 60 percent of goods sold through drug stores in Canada. When RPM was per se illegal,
Butz (1996) quoted antitrust authorities arguing that RPM is “ubiquitous” and “endemic”, “but
based upon ‘winks and nods’ rather than written agreements that could be used in court.” An
empirical support of this viability of RPM can be found in Overstreet (1983), e.g., for Sweden and
Denmark, where RPM developed during 1930’s, was abolished in 1954 and 1955 respectively, “but
suggested retail prices continued to be followed on a large number of articles.” There are a number
of explanations for this phenomenon. For example, Buehler and Gärtner (2013) claim that retailers
may follow the manufacturer suggested retail price (MSRP) under repeated interactions with the
manufacturer, even if this price is not binding since the manufacturer may use it to communicate
private information on marginal cost and consumer demand to the retailers. Using the data before
and after the Supreme Court decision, MacKay and Smith (2014) show that, after 2007, RPM
became more common in the USA.

7.2 Proof of Theorem 1 (MFC-equilibria)

The proof uses the following technical lemma.

Lemma 2. The roots (p1)1,2(x) of the following equation exist for x ≥ c/β :

p21 − (x+ c)p1 +
β

4
(x+ c/β)2 = 0. (5)

Moreover, (p1)2(x) is increasing in x if x > c/β, and (p1)1(x) ≤ 1
2(x + c/β) ≤ (p1)2(x) ≤ x with

strict inequalities if x > c/β and, for the first two inequalities, if β < 1.

Assume that expectations are defined when all resellers use MFC as well as when any reseller i
deviates into no-MFC, which, recall, we denote as ᾱ(0), p̄2(0).

The proof of Theorem 1 is based on the lemma below that provides the necessary and sufficient
conditions for MFC response with positive inventory to consistent MFC strategies of others. This
consideration excludes the following trivial case where the MFC best response can only have zero
inventory: Y −i ≥ 1− c/β and Y −i ≥ 1−p1. Indeed, under these conditions the second-period sales
are always below cost and it is impossible for reseller i to have positive sales in the first period only.
The conditions in the form of p1-bounds with (p1)2 in parts (a.2) and (b) of Lemma 3 guarantee
that the maximum profit of an MFC-reseller with the same product availability as other resellers
(no second period sales or there are second-period sales) is not dominated by the profit of a deviator
who also uses MFC but has a different inventory policy: with second period sales in part (a.2) and
without second-period sales in part (b). Condition (6) guarantees that the maximum profit of an
MFC-reseller without second-period sales is not dominated by the profit of a deviator into no-MFC
with sales in both periods.

Lemma 3. There exists BR with MFC and positive inventory to consistent MFC strategies of
others iff one of the following hold

(a) (no second-period sales) 1− Y −i
1 > p1 and either of

(a.1) c
β ≥ 1− Y −i

1 , or

(a.2) c
β < 1−Y −i

1 , vmin
0 6∈

(

c
β , 1−Y −i

1

)

and p1 ≤ (p1)2 (where (p1)2 = (p1)2(x)|x=1−Y −i
1

> c
β ),

or
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(a.3) c
β < 1− Y −i

1 , vmin
0 ∈

(

c
β , 1− Y −i

1

)

and

p21 − (vmin
0 + c)p1 +

β

4

(

vmin
0 + c/β

)2
≤ 0. (6)

(b) (there are second-period sales) c
β < 1 − Y −i

1 , vmin
0 6∈

(

c
β , 1 − Y −i

1

)

, and p1 ≥ (p1)2 (where
(p1)2 >

c
β ).

The BR level of inventory yi1 is: in case (a) yi1 = 1 − p1 − Y −i
1 , and in case (b) yi1 = 1

2(1 −
Y −i
1 − c/β); the optimal inventory of a deviator into no-MFC in case (a.3) is

ỹi0 = 1− Y1 −
1

2

(

vmin
0 + c/β

)

. (7)

M1. By part (b) of Lemma 3, the symmetric inventory of a reseller is 1
nY

∗
1 = 1

2(1−n−1
n Y ∗

1 −c/β),

resulting in Y ∗
1 = n

n+1(1 − c/β) and Y −i
1 = n−1

n+1(1 − c/β). Then condition c/β < 1 − Y −i
1 is

n−1
n+1(1−c/β) < 1−c/β, which always holds. Inequality vmin

0 ≤ c/β, as a part of vmin
0 6∈ (c/β, 1−Y −i

1 ),

is not relevant because vmin
0 = vmin

0 (ᾱ(0), p̄2(0)) ≤ c/β implies (see the proof of Lemma 3) that a
possible deviator into no-MFC selects yi0 = y̆i0 (no second-period sales). Then, by rationality, ᾱ = 0
and vmin

0 = p1 ≤ c/β, which cannot hold together with p1 ≥ (p1)2 > c/β.
Hence, the existence of M1 is determined only by vmin

0 ≥ 1 − Y −i
1 and p1 ≥ (p1)2. Inequality

vmin
0 ≥ 1 − Y −i

1 means that a possible deviator into no-MFC has sales only in the second period

with ri0 = [β(1−Y1 − yi0)− c]yi0, the first-order condition
∂ri

0

∂yi
0

= −2βyi0 + β(1−Y1)− c = 0, and the

resulting profit-maximizing inventory

ỹi0 =
1

2
(1− Y1 − c/β) = ỹi1, (8)

giving ᾱ = 1, p̄2 = p∗2 = β(1− Y ∗
1 ), and vmin

0 =
p1−ρβ(1−Y ∗

1
)

1−ρβ . Then inequality vmin
0 ≥ 1− Y −i

1 is

p1 − ρβ[1− n
n+1(1− c/β)]

1− ρβ
≥ 1− n− 1

n+ 1
(1− c/β) ⇔

p1 − ρβ +
nρβ

n+ 1
(1− c/β) ≥ 1− ρβ − n− 1

n+ 1
(1− c/β) + ρβ

n− 1

n+ 1
(1− c/β) ⇔

p1 ≥ 1− n− 1 + ρβ

n+ 1
(1− c/β) = P11. (9)

P11 is less than (p1)2(x)|x=1−n−1

n+1
(1−c/β) = P12 if after substitution of P11 for p1 and x = 1 −

n−1
n+1(1−c/β) into (5) the LHS of (5) becomes negative. This condition takes the form of a quadratic

inequality in c with the coefficient in front of c2 equal to (1−ρβ)2+(1−β)ρ[n−(1−ρβ)]
β(n+1)2

> 0 and the roots

{β · CB1, β}, The first root is not greater than β (strictly less if β < 1). Therefore, P11 ≤ P12 if
c/β ≥ CB1. Then M1 exists under condition

p1 ≥ P12 =
1

2

[

x+ c+
√

(1− β)(x2 − c2/β)
]

(part (1.2) of the Theorem). (10)

Now we show that the substitution of P11 and x = 1− n−1
n+1(1− c/β) into (5) results in positive

LHS of (5) only if P11 > P12. This conclusion results from the following chain of inequalities that
is proved below:

P11 = 1− n− 1 + ρβ

n+ 1
(1− c/β) >

1

2
(x+ c/β) ≥ (p1)1(x),
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where (p1)1(x) is the smaller root of (5) and x = 1− n−1
n+1(1− c/β). Indeed, the first inequality is

2− ρβ

n+ 1
+

n− 1 + ρβ

n+ 1

c

β
>

1

n+ 1
+

n

n+ 1

c

β
⇔ 1− ρβ

n+ 1
>

1− ρβ

n+ 1

c

β
,

which always holds, and the second inequality 1
2(x+c/β) ≥ (p1)1(x) holds by Lemma 2. Therefore,

whenever c/β < CB1, we have P11 > P12 yielding case (M1.1) of the Theorem. Moreover, P11 = P12

when c/β = CB1.
M2. By part (a) of Lemma 3, the symmetric inventory in this case is Y ∗

1 = 1−p1 and condition
1− Y −i

1 > p1 holds for yi > 0. The condition of part (a.1), resulting in the existence of M2, takes
the form c/β ≥ 1 − n−1

n (1 − p1) ⇔ p1 ≤ 1 − n
n−1(1 − c/β) = c/β − 1

n−1(1 − c/β) < c/β. The
complementary case to this inequality is covered by parts (a.2) and (a.3) of Lemma 3.

When vmin
0 ≤ c/β, a possible deviator into no-MFC has no sales in the second period, and

vmin
0 = p1 ≤ c/β implying p1 ≤ (p1)2 by part (a.2) of Lemma 3. Therefore, M2 exists for any
feasible p1 ≤ c/β.

Consider vmin
0 ∈ (c/β, 1−Y −i

1 ) (part (a.3) of Lemma 3). This condition in combination with (6)

excludes vmin
0 = p1 because (6) becomes p21−(p1+c)p1+

β
4 (p1+c/β)2 ≤ 0 ⇔ β

4 (p1−c/β)2 ≤ 0, which
is impossible for vmin

0 = p1 > c/β. The case vmin
0 = 1 is also irrelevant here because it contradicts

vmin
0 < 1− Y −i

1 . Since the range vmin
0 ∈ (c/β, 1− Y −i

1 ) means that a possible deviator into no-MFC
has sales in both periods (sales only in the first period yield profit that is not greater than under
M2), i.e., ᾱ = 1, the only relevant case for vmin

0 is vmin
0 = p1−ρp2

1−ρβ , where p2 = β(1 − Y1 − yi0), and,

by (7), yi0 = ỹi0 = 1− Y1 − 1
2(v

min
0 + c/β), yielding

vmin
0 =

p1 − ρβ 1
2(v

min
0 + c/β)

1− ρβ
⇔ (1− ρβ)vmin

0 = p1 − ρβvmin
0 /2− ρβc/2 ⇔

(1− ρβ/2)vmin
0 = p1 − ρc/2 ⇔ vmin

0 =
2p1 − ρc

2− ρβ
.

Then condition vmin
0 < 1− Y −i

1 becomes

2p1 − ρc

2− ρβ
< 1− n− 1

n
(1− p1) ⇔ 2p1 − ρc < (2− ρβ)

( 1

n
+

n− 1

n
p1

)

⇔
(

2− n− 1

n
(2− ρβ)p1

)

p1 <
2− ρβ

n
+ ρc ⇔ p1 <

2− ρβ + ρcn

2 + (n− 1)ρβ
, (11)

and condition vmin
0 > c/β is 2p1−ρc

2−ρβ > c/β ⇔ 2p1 − ρc > 2c/β − ρc ⇔ p1 > c/β. Under the
combination of this inequality with (11), by part (a.3) of Lemma 3, an equilibrium with Y ∗

1 = 1−p1
exists iff inequality (6) holds. With the rational “symmetric” vmin

0 this inequality becomes

p21 −
(2p1 − ρc

2− ρβ
+ c

)

p1 +
β

4

(2p1 − ρc

2− ρβ
+

c

β

)2
≤ 0. (12)

The coefficient in front of p21 is a2 = 1 − 2
2−ρβ + β

(2−ρβ)2
= β(1−2ρ+ρ2β)

(2−ρβ)2
, which is positive iff ρ <

(1 − √
1− β/β (the larger root of 1 − 2ρ + ρ2β = 0 is (1 +

√
1− β)/β > 1 – irrelevant here). If

a2 = 0, (which means that 1−2ρ+ρ2β = 0) the inequality above becomes p1 ≥ −a0/a1, where a0 =
β
4

(

c/β− ρc
2−ρβ

)2
and a1 = −(2−2ρβ−2ρ+ρ2β+ρ2β2)/(2−ρβ)2 = −[(1−ρβ)2+1−2ρ+ρ2β]/(2−ρβ)2

= −(1− ρβ)2/(2− ρβ)2, yielding p1 ≥ c/β, which always holds in this case.
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If a2 > 0, the reduced form of (12), after collecting the terms with p1 and dividing by a2, is

p21 −
c

β

(

1 +
(1− ρβ)2

1− 2ρ+ ρ2β

)

p1 +
( c

β

)2( (1− ρβ)2

1− 2ρ+ ρ2β

)

≤ 0 (13)

with the roots of the corresponding equation (p1)1,2 = { c
β ,

c
β

(1−ρβ)2

1−2ρ+ρ2β
}, which can be seen by

observing that −[(p1)1+(p1)2] equals the coefficient in front of p1 and (p1)1(p1)2 – the free coefficient
of (13). The roots are distinct iff β < 1. Both (12) and (13) hold if p1 is between the roots:

c

β
≤ p1 ≤

c

β

(1− ρβ)2

1− 2ρ+ βρ2
= P21. (14)

In the case a2 < 0 (implying 1− 2ρ+ ρ2β < 0), inequality (13) is inverted and holds if p1 does
not exceed the smaller root, which is irrelevant since P21 < 0 in this case, or if p1 is not less than
the larger root: p1 ≥ c/β, which always holds in this case.

Hence, the case vmin
0 ∈ (c/β, 1−Y −i

1 ) yields two upper bounds on p1 that guarantee M2 existence,
namely, conditions (11) and (14). The bound on c/β below shows when P21 is less than the bound
from (11).

P21 =
c

β

(1− ρβ)2

1− 2ρ+ βρ2
<

2− ρβ + nρβ c
β

2− ρβ + nρβ
⇔ c

β

[

(1− ρβ)2(2− ρβ + nρβ)

1− 2ρ+ ρ2β
− nρβ

]

< 2− ρβ ⇔

c

β

(1− ρβ)2(2− ρβ) + nρβ[(1− ρβ)2 − 1 + 2ρ− ρ2β]

(2− ρβ)(1− 2ρ+ ρ2β)
< 1 ⇔ c

β

(1− ρβ)2 + nρ2β(1− β)

1− 2ρ+ ρ2β
< 1 ⇔ c

β
< CB2.

(15)
Consider vmin

0 ≥ 1 − Y −i
1 (part (a.2) of Lemma 3). Since a possible deviator to no-MFC has

no first period sales, the optimal inventory, by (8), is ỹi0 = 1
2(1 − Y −i

1 − c/β), and inequality

vmin
0 ≥ 1− Y −i

1 is

p1 − ρβ[1− Y −i
1 − 1

2(1− Y −i
1 − c/β)]

1− ρβ
≥ 1− Y −i

1 ⇔

p1 − ρβ(1− Y −i
1 ) + ρβ(1− Y −i

1 − c/β)/2 ≥ (1− Y −i
1 )(1− ρβ) ⇔ p1 + ρβ(1− Y −i

1 )/2− ρc/2 ≥ 1− Y −i
1 ,

which with 1− Y −i
1 = 1

n + n−1
n p1 is

p1 +
ρβ

2

( 1

n
+

n− 1

n
p1

)

− ρc

2
≥ 1

n
+

n− 1

n
p1 ⇔

( 1

n
+

ρβ(n− 1)

2n

)

p1 ≥
ρc

2
+

1

n

(

1− ρβ

2

)

yielding [2 + ρβ(n− 1)]p1 ≥ ρcn+ 2− ρβ, which gives inequality complementary to (11). vmin
0 = 1

is included in this condition since vmin
0 = 1 ≥ 1 − Y −i

1 always holds; vmin
0 = p1 is irrelevant here

because vmin
0 = p1 ≥ 1− Y −i

1 contradicts the necessary condition of part (a) Lemma 3.
Hence, when vmin

0 ≥ 1− Y −i
1 = x > c/β, the existence of M2 is guaranteed by condition

2− ρβ + ρcn

2 + (n− 1)ρβ
≤ p1 ≤ (p1)2(x)|x= 1

n
+n−1

n
p1
. (16)

Similar to above, the resulting condition for c/β below is equivalent to the non-emptiness of this
range. Consider inequality

p1 ≤ (p1)2(x)|x= 1

n
+n−1

n
p1
, (17)
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which, by (5), is equivalent to 2p1 − (x + c) ≤
√

(x+ c)2 − β(x+ c/β)2. The LHS is 2p1 −
(

1
n +

n−1
n p1 + c

)

= n+1
n p1 − 1+nc

n , which is non-negative for p1 ≥ (1 + nc)/(n+ 1), implying that (17) is

equivalent to
[

p21 − (x+ c)p1 + β(x+ c/β)2/4
]∣

∣

x= 1

n
+n−1

n
p1

≤ 0 (18)

with the coefficient in front of p21 equal to 1 − n−1
n + β

(

n−1
n

)2
/4 > 0. Moreover, for p1 = (1 +

nc)/(n + 1), conditions (17) and (18) hold trivially. Therefore, p1 = (1 + nc)/(n + 1) is between
the roots of (5) with x = 1

n + n−1
n p1.

Observe also that the LHS of range (16) is

2− ρβ + ρcn

2 + (n− 1)ρβ
=

2− ρβ + nρβ − nρβ + nρβc/β

2− ρβ + nρβ
= 1− nρβ(1− c/β)

2− ρβ + nρβ
= 1− n(1− c/β)

2/ρβ − 1 + n
,

which is decreasing in both ρ and β implying that 2−ρβ+ρcn
2+(n−1)ρβ > 1+nc

n+1 for any feasible ρ and β.

Therefore, 2−ρβ+ρcn
2+(n−1)ρβ is greater than the smaller root of (5) with x = 1

n + n−1
n p1. Hence, the

condition of non-emptiness of range (16) follows from inequality (18) with p1 = 2−ρβ+ρcn
2+(n−1)ρβ . The

resulting condition takes the form of a quadratic inequality in c

( 2− ρβ + ρcn

2 + (n− 1)ρβ

)2
−
( 1

n
+
n− 1

n

2− ρβ + ρcn

2 + (n− 1)ρβ
+c

) 2− ρβ + ρcn

2 + (n− 1)ρβ
+
β

4

( 1

n
+
n− 1

n

2− ρβ + ρcn

2 + (n− 1)ρβ
+
c

β

)2
≤ 0

with the coefficient in front of c2 equal to ρ2βn(1−β)+(1−ρβ)2

β[2+(n−1)ρβ]2
> 0 and the roots {β · CB2, β} , where

CB2 = 1−2ρ+ρ2β
(1−ρβ)2+nρ2β(1−β)

≤ 1 implying that range (16) is not empty iff c is between these roots.

The denominator of CB2 is always positive. Therefore, if 1− 2ρ+ ρ2β ≤ 0, we have CB2 ≤ 0 and
range (16) is not empty for any feasible c : 0 < c < β.

If 1 − 2ρ + ρ2β > 0, range (16) is not empty for any c
β such that CB2 ≤ c

β ≤ 1. The LHS of
this condition is complementary to (15), which means that when it does not hold, range (16) is
empty and M2 exists if p1 ≤ P21 (part (2.1) of the Theorem); and when it holds, M2 exists if (17)
is satisfied.

It remains to specify condition (17) by expressing the larger root of (5) with x = 1
n + n−1

n p1.
After the substitution and collection of terms, (5) becomes

[

1

n
+

β

4

(

n− 1

n

)2
]

p21 +

[

1

2n

(

β
n− 1

n
+ c(n− 1)

)

− 1

n
− c

]

p1 +
β

4

(

1

n
+

c

β

)2

= 0,

which, multiplied by 4n2, is
[

4n+ β(n− 1)2
]

p21+2 [β(n− 1)− cn(n+ 1)− 2n] p1+β (1 + nc/β)2 =
0. The larger root is

2[cn(n+ 1) + 2n− β(n− 1)] +
√
D

2[4n+ β(n− 1)2]
,

where D = 4
{

[β(n− 1)− cn(n+ 1)− 2n]2 −
[

4n+ β(n− 1)2
]

β (1 + nc/β)2
}

, where the squared

bracket [·]2 is β2(n−1)2+c2n2(n+1)2+4n2−2β(n−1)cn(n+1)−4β(n−1)n+4cn2(n+1), and the
second term in the bracket {·} is −

[

4n+ β(n− 1)2
]

β
(

1 + 2nc/β + n2c2/β2
)

, which can be written
as −

[

4nβ + 8n2c+ 4n3c2/β + β2(n− 1)2 + 2βnc(n− 1)2 + (n− 1)2n2c2
]

. After simplifications,

D = 4
{

4n3c2 + 4n2 − 2βcn(n2 − 1 + n2 − 2n+ 1)− 4βn2 + 4cn2(n+ 1)− 8n2c− 4n3c2/β
}

= (4n)2
{

nc2 + 1− βc(n− 1)− β + c(n+ 1)− 2c− nc2/β
}

= (4n)2 {nc[c− β + 1− c/β] + 1− β + βc− c} = (4n)2(1− β) {nc (1− c/β) + 1− c}
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and the expression for the larger root is

P22 =
n(n+ 1)c+ 2n− β(n− 1) + 2n

√

(1− β) [nc(1− c/β) + 1− c]

4n+ β(n− 1)2
. (19)

The fact P11, P12, P22 → 1 as c
β → 1 can be shown by direct substitution of c

β = 1 into the formulas
for P11, P12, and P22.

7.3 Proof of Corollary 1 (profit M2 exceeds M1)

Part (1). When c
β < CB1, equilibria M1 or M2 exist (Theorem 1) if, respectively, p1 ≥ P11 or

p1 ≤ P21. Therefore, MFC-equilibria do not exist for P21 < p1 < P11 if P11 > P21. By the definition
of P11 and P21, inequality P11 ≥ P21, multiplied by n+ 1 is

n+ 1− n+ 1− ρβ + (n− 1 + ρβ)
c

β
≥ c

β

(1− ρβ)2(n+ 1)

1− 2ρ+ βρ2
⇔

2− ρβ ≥ c

β

(1− ρβ)2(n+ 1)− (n− 1 + ρβ)(1− 2ρ+ βρ2)

1− 2ρ+ βρ2
.

Since 1 − 2ρ + βρ2 = (1 − ρβ)2 − ρ(1 − β)(2 − ρβ), the numerator of the second fraction can be
written as (1−ρβ)2(2−ρβ)+(n−1+ρβ)ρ(1−β)(2−ρβ). Then, after dividing both sides by 2−ρβ

and expressing c
β , the inequality becomes c

β ≤ 1−2ρ+ρ2β
(1−ρβ)2+(1−β)ρ[n−(1−ρβ)]

= CB1. Hence, P11 ≥ P21

is equivalent to c
β ≤ CB1. By the proof of part M1 of Theorem 1, we also know that P11 = P12 if

c
β = CB1.

Part (2). By Theorem 1, both P12 and P22 are greater than c
β if n < ∞, and, by Lemma 3,

both are the larger roots of (5) at different (for n > 1) x, namely x12 = 1 − n−1
n+1 (1− c/β) and

x22 = 1
n + n−1

n p1. For n = 1, x12 = x22 = 1, and the expression for P12 = P22 = P2 results from
direct substitution. For n > 1, by Lemma 2, x12 > c

β and x22 > c
β , and inequality P12 < P22

follows from x12 < x22 since the larger root of (5) increases in x. Inequality x12 < x22 is

2

n+ 1
+

n− 1

n+ 1

c

β
<

1

n
+

n− 1

n
p1 ⇔ p1 >

n

n− 1

[

2

n+ 1
− 1

n
+

n− 1

n+ 1

c

β

]

=
β + nc

(n+ 1)β
.

This inequality holds for any p1, corresponding to M1 (including the overlap with M2) if β+nc
(n+1)β <

P11, i.e.,
β+nc
(n+1)β < 1 − n−1+ρβ

n+1

(

1 − c
β

)

⇔ 1 + n c
β < n + 1 − n + 1 − ρβ + (n − 1 + ρβ) cβ , which is

equivalent to (1− ρβ)c/β < 1− ρβ and always true.
Assume, for n ≥ 1, that P12 ≤ p1 ≤ P22, which determines the overlap of M1 and M2 only if

c
β ≥ CB2, i.e., CB2 < 1 must hold (β < 1, ρ > 0). Inequality r∗,M1 ≤ r∗,M2 is equivalent to

p21 − (1 + c)p1 + c+
n(β − c)2

(n+ 1)2β
≤ 0. (20)

It can be shown that the LHS of (20) equals the LHS of (5) at x = 1 for n = 1 and strictly less for
n > 1. This property implies, first, by Lemma 2, that for any β < 1 there are two distinct roots of
the equation corresponding to (20), and, second, that, for n > 1, the larger root is greater, and the
smaller root is less than the corresponding roots of (5) at x = 1 (for n = 1 the equations coincide).
Indeed, the free coefficient in the LHS of (20) can be written as

c+
n(β − c)2

(n+ 1)2β
− β

4

(

1 +
c

β

)2
+

β

4

(

1 +
c

β

)2
=

β

4

(

1 +
c

β

)2
+

1

4β

[

4n(β − c)2

(n+ 1)2
− (β + c)2 + 4βc

]

,
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where the bracket [·] = 4n(β−c)2

(n+1)2
− (β − c)2 equals zero for n = 1 and decreases in n.

It can be shown also that range [P12, P22] is strictly (for n > 1) between the roots of the equation,
corresponding to (20). First, by Lemma 2, P22 is not greater than the greater root of (5) at x = 1
since c

β < x22 ≤ 1. For n = 1, P22 equals this root and equals P12, implying that (20) holds as

equality yielding r∗,M1 = r∗,M2 if p1 = P12 = P22 = P2. Second, for n > 1, P12 is always greater than
the smaller root of the equation, corresponding to (20), which follows from the chain of inequalities:
first, by Lemma 2, P12 = (p1)2(x)|x=x12

≥ 1
2(x+ c/β)

∣

∣

x=x12
and, second, 1

2(x+ c/β)
∣

∣

x=x12
is

greater than the smaller root of the equation, corresponding to (20). The last inequality holds if
the LHS of (20) becomes negative after the substitution of 1

2(x+ c/β)
∣

∣

x=x12
= 1

n+1 +
n

n+1
c
β for p1.

Indeed, this substitution yields

(

1

n+ 1
+

n

n+ 1

c

β

)2

− (1 + c)

(

1

n+ 1
+

n

n+ 1

c

β

)

+ c+
n(β − c)2

(n+ 1)2β
,

which, multiplied by (n+1)2β2 becomes (β + nc)2−(1+c)(n+1)
(

β2 + ncβ
)

+c(n+1)2β2+nβ(β−c)2

= n{n[c2− (1+ c)cβ+ cβ2]+ cβ−β2+β3− cβ2}, where {·} is n[c2(1−β)− cβ(1−β)]+β(c−β)−
β2(c− β) = nc(1− β)(c− β) + β(c− β)(1− β) < 0 for any n > 1. Hence, p1 ∈ [P12, P22] results in
satisfaction of (20) as a strict inequality and r∗,M1 < r∗,M2.

Part (3). This part is relevant only for n > 1, β < 1, and 0 < ρ < (1 − √
1− β)/β leading

to 0 < CB1 < CB2. By part (1), P12 = P21 if c
β = CB1 > 0. Then P12 < P21 for c

β > CB1 if
∂P12

∂(c/β) <
∂P21

∂(c/β) for all
c
β > CB1. Denoting x = 1− n−1

n+1 (1− c/β) , the derivatives ∂P12

∂(c/β) and
∂2P12

[∂(c/β)]2

are

∂P12

∂ (c/β)
=

1

2

{

n− 1

n+ 1
+ β + (1− β)

(

x
n− 1

n+ 1
− β

c

β

)

/
√

(1− β) [x2 − c2/β]

}

,

∂2P12

[∂ (c/β)]2
=

1

2

{

(

n− 1

n+ 1

)2

− β −
(

x
n− 1

n+ 1
− c

)2

/
[

x2 − c2/β
]

}

√

(1− β)/ [x2 − c2/β].

Since P12 is a branch of a second-order curve, and such a branch is either convex or concave
in its entire domain, the concavity of P12(c/β) can be shown at c/β = 0, where x|c/β=0 = 2

n+1 .

Namely, ∂2P12

[∂(c/β)]2

∣

∣

∣

c/β=0
= −β

4 (n+ 1)
√
1− β ≤ 0. Since P12(c/β) is concave, P12|c/β=0 =

1+
√
1−β

n+1 >

P21|c/β=0 = 0, and P12 = P21 at c/β = CB1, we have ∂P12

∂(c/β) < ∂P21

∂(c/β) at c/β = CB1. The last

inequality combined with the concavity of P12(c/β) implies that ∂P12

∂(c/β) <
∂P21

∂(c/β) for all c/β > CB1.

Inequality r∗,M1 < r∗,M2 for P12 ≤ p1 ≤ P21 follows from part (2) since P21 < P22 for c/β <
CB2.

Part (4). c/β ≥ CB1 is 1− 2ρ+ ρ2β ≤ [1− 2ρβ+ ρ(1− β)(n− 1)+ ρ2β]c/β or ρ2(β− c)− ρb+
1− c/β ≤ 0, where b , 2+ [n(1−β)− 1]c/β− c. The discriminant of the corresponding equation is
D = b2−4(β−c)2/β, which is non-negative since ∂D

∂β = 2b(−nc+c)/β2−4[2(β−c)−(β−c)2]/β2 < 0

and D|β=1 = 0. The larger root is irrelevant since b
2(β−c)

∣

∣

∣

n=1
≥ 1 and b increases in n. Therefore,

c/β ≥ CB1 ⇔ ρ ≥ ρ̄, where ρ̄ , 1
2(β−c)

[

b−
√

b2 − 4(β − c)2/β
]

is the smaller root, which goes to

zero with n → ∞.
Part (5). The monotonicity of P11 and P21 in c, ρ, β, and n follows directly from the definitions

of these bounds given in Theorem 1. In particular,

∂P21

∂ρ
=

c

β(1− 2ρ+ βρ2)2
[

−2β(1− ρβ)(1− 2ρ+ βρ2)− (1− ρβ)2(−2 + 2ρβ)
]

,
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where [·] = 2(1 − ρβ){(1 − ρβ)2 − (β − 2ρβ + ρ2β2)}, where {·} = 1 − β, leading to ∂P21

∂ρ =
c
β
2(1−ρβ)(1−β)
(1−2ρ+βρ2)2

≥ 0.

Both P12 and P22 are decreasing in n since they are the larger roots of (5), which, by Lemma 2,
are increasing in x for any x > c

β , and both x12 = 1 − n−1
n+1 (1− c/β) and x22 = 1

n + n−1
n p1 are

greater than c/β and decreasing in n.

∂P12

∂c
=

1

2

[

∂x

∂c
+ 1 +

1

2

√

1− β · 2
(

x
∂x

∂c
− c

β

)

/
√

x2 − c2/β

]

,

where ∂x
∂c = n−1

β(n+1) is increasing in n, and the last fraction in [·] is also increasing in n either for

any c and n ≤ 3 or for n > 3 and c ≥ c0 = 1
2 − 1

n−1 . This monotonicity follows from the expression

for x∂x
∂c = (n−1)[2+c(n−1)]

β(n+1)2
and the derivative

∂

∂n

(

x
∂x

∂c

)

=
2(n+ 1)

β(n+ 1)4
([1 + c(n− 1)] (n+ 1)− (n− 1)[2 + c(n− 1)])

=
2

β(n+ 1)3
(2− (n− 1) + 2c(n− 1)) =

2[2 + (n− 1)(2c− 1)]

β(n+ 1)3
,

where the last bracket [·] ≥ 0 under the above conditions on c and n. Then, denoting d(x) ,

x2 − c2/β,

∂

∂n

(

x
∂x

∂c
/
√

d(x)

)

=
1

d(x)

{

2[2 + (n− 1)(2c− 1)]

β(n+ 1)3

√

d(x)− x
∂x

∂n

(n− 1)[2 + c(n− 1)]

β(n+ 1)2
/
√

d(x)

}

,

where ∂x
∂n = −2(1−c/β)

(n+1)2
< 0. Consider n > 3 and c < c0. Then {·} , multiplied by β(n+1)3

2

√

d(x) > 0,

becomes [2+(n−1)(2c−1)]d(x)+[2+c(n−1)]n−1
n+1 (1− c/β)x, where n−1

n+1 (1− c/β) = 1−x. Collecting

the terms with x, we have x {x [(n− 1)(2c− 1)− c(n− 1)] + 2 + c(n− 1)}−c2[2+(n−1)(2c−1)]/β,
where the last term is positive for n > 3 and c < c0, and the bracket {·} in the first term is

{·} = (n− 1) [x(c− 1) + c] + 2 is minimized at c = 0. Namely, {·} |c=0 = (n− 1)
[

−1 + n−1
n+1

]

+ 2 =

2
[

1− n−1
n+1

]

> 0. Hence, since ∂P12

∂c is increasing in n, it remains to show that it is positive at n = 1.

Indeed, ∂P12

∂c |n=1 = 1
2

(

1− c
β

√

1−β
1−c2/β

)

, and since c2

β < β, leading to
√

1−β
1−c2/β

< 1, we obtain

∂P12

∂c |n=1 >
1
2 (1− c/β) > 0.

Using (19) for P22, we have

∂P22

∂c
=

1

4n+ β(n− 1)2

[

n(n+ 1) +
n(1− β) (n (1− 2c/β)− 1)

√

(1− β) (nc (1− c/β) + 1− c)

]

,

where [·] = n(n+ 1) + n (n (1− 2c/β)− 1)
√

1−β
nc(1−c/β)+1−c and

√

1−β
nc(1−c/β)+1−c < 1 since the LHS

is decreasing in n and less than one for n = 1. Then ∂P22

∂c > 0 if n(n+1)+n (n (1− 2c/β)− 1) > 0.
The last inequality is equivalent to n2 (1 + 1− 2c/β) > 0, which always holds.

Consider β < 1 since CB1|β=1 = CB2|β=1 = 1 and both P12 and P22 are irrelevant — MFC-
equilibria are determined either by condition (1.1) or (2.1) of Theorem 1. Since P12 and P22 are
the larger roots of (5), ∂P12

∂β and ∂P22

∂β can be found from the differentiation of (5):

2p1
∂p1
∂β

− (x+ c)
∂p1
∂β

− ∂x

∂β
p1 +

1

4

[

(x+ c/β)2 + 2β (x+ c/β)
(

−c/β2
)

]

= 0,
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which can be written as ∂p1
∂β [2p1− (x+c)] = ∂x

∂βp1− 1
4

(

x2 − c2/β2
)

. The RHS is negative since both

x12 and x22 are greater than c
β ,

∂x22

∂β = 0, and ∂x12

∂β = −n−1
n+1c/β

2 ≤ 0. The bracket [·] in the LHS is

positive since, by Lemma 2, 2p1 > x+ c
β > x+ c for β < 1. Therefore, ∂P22

∂β = −1
4
(x2

22
−c2/β2)

2P22−(x22+c) < 0

and ∂P12

∂β = −
[

n−1
n+1cP12/β

2 + 1
4

(

x212 − c2/β2
)

]

/ [2P12 − (x12 + c)] < 0.

7.4 Proof of Proposition 1 (p1-bounds of MFC and NA)

Part (1) follows from maxn P
N
2 = c

β ≤ min{P21, P22}. The inequality is shown in Theorem 1.

Part (2). PN
1 ≥ P11 is 1 − n

n+1ρ(β − c) ≥ 1 − n−1+ρβ
n+1 (1 − c/β) ⇔ nρβ ≤ n − 1 + ρβ ⇔

1 − ρβ ≤ n(1 − ρβ), which is strict for n > 1. When n = 1, we have PN
1 ≡ P11, and, for

c
β > CB1, the p1-boundary of M1 dominates PN

1 since P12 > P11. For n > 1, PN
1 ≥ P12 for

any ρ ∈ [0, 1) if infρ P
N
1 ≥ P12, which is 1 − n

n+1(β − c) ≥ 1
2

[

x+ c+
√

(1− β)(x2 − c2/β)
]

.

Substitution for x = 1 − n−1
n+1 (1− c/β) leads to

√· − 1 + c − (β−c)[n(1−2β)−1]
β(n+1) ≤ 0, where

√· and
the last term are decreasing in n. Indeed, considering n as a continuous variable, the deriva-
tive of the last term w.r.t. n is −1

β(n+1)2
{(β − c)(1− 2β)β(n+ 1)− β(β − c)[n(1− 2β)− 1]} =

−(β−c)
(n+1)2

{(1− 2β)(n+ 1)− n(1− 2β) + 1} = −2(β−c)
(n+1)2

(1−β) ≤ 0. Therefore, inequality infρ P
N
1 ≥ P12

holds if it holds for n = 2, which is

√

(1− β)(x2 − c2/β) ≤ 1− c+ (β − c)(1− 4β)/(3β), (21)

where x|n=2 = (2β+c)/(3β) and
(

x2 − c2/β
)

|n=2 = [(2β+c)2−9βc2]/(3β)2. Then (21), multiplied

by 3β, can be written as
√

(1− β) [·] ≤ 4β + βc − 4β2 − c or
√

(1− β) [·] ≤ (1 − β)(4β − c),
which holds as equality for β = 1. Consider β < 1. Then (21), squared, is (2β + c)2 − 9βc2 ≤
(1 − β)(4β − c)2, which, divided by β, can be written as (4β − c)2 − 12β + 12c − 9c2 ≤ 0 or
12β2 − 12c2 + 4(β − c)2 − 12(β − c) ≤ 0 ⇔ (β − c)(β + c− 3) + (β − c)2 ⇔ 2β − 3 ≤ 0, which holds
strictly.

7.5 Proof of Proposition 2 (NA4-profit less than NA3)

Part (1). NA4 exists only if p∗2 = s or Y ∗ > 1− s
β , which can be written as c−s < n−1

n
β(p1−s)
β−s (1−v∗).

The RHS is maximal at ρ = 0 (v∗ = p1 is minimal) and p1 =
1+s
2 yielding c− s < n−1

n
β(1−s)2

4(β−s) . NA4

can also exist (profit is positive) only if there are first-period sales, i.e., v∗,NA4 < 1 ⇔ p1 − ρs <
1− ρβ ⇔ p1 < 1− ρ(β − s) = PN

4 , which is less than PN
1 = 1− n

n+1ρ(β − c). These bounds can be

written as ρ < 1−p1
β−s = ρN4 and ρ < n+1

n
1−p1
β−c = ρN.

1 respectively.
Part (2) follows from the observations: (a) the second-period sales under NA4 are always at

loss with p∗,NA4
2 = s < p∗,NA3

2 while Y ∗,NA4 > Y ∗,NA3; and (b) since, by (2) and rationality of
expectations in equilibrium, v∗ is nonincreasing in p∗2, we have v∗,NA4 ≥ v∗,NA3 implying that the
first-period profit is less under NA4. A similar argument leads to r∗,NA4 < 1

n(p1−c)(1−p1) for any
inputs where NA4 exists. The RHS of this inequality is the first-period profit in NA4 for ρ = 0,
coinciding with the expression for profit under NA2 or M2. Since v∗,NA4 is increasing in ρ, the
first-period profit in NA4 is decreasing ρ. Consequently, because the second-period sales are at
loss, the equilibrium profit is strictly less than the RHS.
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7.6 Proposition 9 (RESE N)

The conditions of N-equilibria existence result from comparison of profit in various options, which
leads to quadratic inequalities in z , 1− n−1

n Y ∗
0 − c/β. When z is non-negative, one can interpret

it as inventory of a reseller deviating from a symmetric equilibrium that makes a clearance price
equal to the unit cost. Thus, if z ≤ 0, the second-period price, by (3), cannot be above cost
regardless of a one-reseller deviation from a symmetric strategy profile. Several thresholds on z

result from quadratic inequalities and, below, we denote z1 ,
2
β

[

p1 − c−
√

(p1 − c)p1(1− β)
]

and

z̃1 ,

{

z1, if n = 1, or ρ = 0, or β = 1, or p1 = c/β,
(p1−c)(2−ρβ)

β(1−ρβ)

[

1−
√

1− 4(βp1−c)(1−ρβ)
(p1−c)(2−ρβ)2

]

otherwise,

as the smaller roots of the corresponding equations, and ẑ2 , ẑ2(β, c, n, s) – as the larger one.

Proposition 9. If MFC is available, N-equilibria with the following structure exist iff the respec-
tive conditions apply. The set of necessary and sufficient conditions is given in each case by the
combination of the conditions in the corresponding NA-equilibrium and the additional conditions
listed below.

N1 requires no additional conditions for n > 1 and, for n = 1, the condition p1 ≥ P2; α
∗(1) = 1.

N2 requires no additional conditions and α∗(1) = 0.

N3 under the following additional conditions, where Y ∗ is the larger root of the quadratic equation

Y 2 − (β − c)n(1− ρβ) + β(1− p1)n− (p1 − β)ρβ(n− 1)

β(n+ 1− ρβ)
Y − (p1 − β)(1− p1)(n− 1)

β(n+ 1− ρβ)
= 0.

(22)
and r∗,N3 is defined by part NA3 of Theorem 2:

(3.1) inequality r∗,N3 ≥ r̆i1 = (p1− c)
(

1− p1 − n−1
n Y ∗) holds and either p1 ≤ c

β and n−1
n Y ∗ ≤

1− p1, or p1 > c
β and n−1

n Y ∗ ≤ 1− c
β − z1 with the corresponding rational expectations

α∗(1) = 0; or

(3.2) either p1 ≤ c
β and n−1

n Y ∗ > 1 − p1, or p1 > c
β and either n−1

n Y ∗ ≥ 1 − c
β , or 1 −

c
β −min

{

z̃1, 2
√

r∗,N3/β
}

≤ n−1
n Y ∗ < 1− c

β with the corresponding rational expectations
α∗(1) = 1.

N4 under the following additional conditions, where Y ∗ = n−1
n

p1−s
c−s

(

1− p1−ρs
1−ρβ

)

:

(4.1) inequality (1 − p1)
[

1 + c−s
(n−1)2(p1−c)

]−1
≤ n−1

n Y ∗ (r∗,N4 ≥ r̆i1) holds and either p1 ≤ c
β

and n−1
n Y ∗ ≤ 1− p1, or p1 >

c
β and n−1

n Y ∗ ≤ 1− c
β − z1 with the corresponding rational

expectations α∗(1) = 0; or

(4.2) either p1 ≤ c
β and n−1

n Y ∗ > 1 − p1, or p1 > c
β and either n−1

n Y ∗ ≥ 1 − c
β , or 1 − c

β −
min{ẑ2, z̃1} ≤ n−1

n Y ∗ < 1− c
β with the corresponding rational expectations α∗(1) = 1.

Equation (22) is derived in the proof of Theorem 2. This proof can be found in Bazhanov,
Levin, and Nediak (2015).

Proof of Proposition 9 is based on the following lemma, which uses the notations z0 , 2 (p1 − c/β) .
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Lemma 4. Consider reseller i using MFC and a profile of competitor strategies not using MFC
with combined inventory Y0 ≥ 0. There exist optimal inventory of reseller i and the corresponding
rational expectations of customers in one of the forms given below. No other forms can exist.

(a) y̆i1 = 1 − p1 − Y0 = z − z0
2 (no second-period sales) with positive profit r̆i1 = y̆i1(p1 − c) and

rational expectations ᾱ = 0 iff either of the two conditions holds: (a.1) p1 ≤ c
β and z > z0

2

(Y0 < 1− p1 ⇒ p1 < 1), or (a.2) p1 >
c
β and z ≥ z1 (r̆i1|ᾱ=0 ≥ r̃i1);

(b) ỹi1 = z
2 (with second-period sales) with positive profit r̃i1 = β(ỹi1)

2 and rational expectations
ᾱ = 1, p̄2 = p2 = β(1−Y0 − ỹi1) iff p1 >

c
β , z > 0 and either of the two conditions holds: (b.1)

p1 = 1, or (b.2) p1 < 1, and z ≤ z̃1 (r̆i1|ᾱ=1 ≤ r̃i1) for Y0 > 0 or z ≤ z1 for Y0 = 0;

(c) the optimal inventory and profit are zero iff z ≤ 0 ∧ z0
2 . Rational expectations are ᾱ = 0 if

z = z0
2 and ᾱ = 1, p̄2 = β(1− Y0) if z < z0

2 .

Moreover, under the conditions of part (a.2), z0
2 < z1 ≤ z0; part (b), c < p2 < βp1; part (b.2),

z̃1 ≤ z0, p1 > c
β + z

2 , and vmin
0 is not decreasing in ρ; under the conditions of both (a.2) and (b.2),

z1 ≤ z̃1 with strict inequality if ᾱ = 1, β < 1, p1 > c
β , and ρ > 0; the condition of part (c) never

holds for Y0 = 0 (a monopoly). The profit value r̃i1 and the corresponding ỹi1 do not depend on the
specific values of rational expectations and are identical in parts (a) and (b). The general expression
for the optimal inventory of a reseller who limits the sales to the first period is y̆i1 = 1− vmin

0 − Y0.

The three parts of lemma correspond to the following mutually exclusive cases. Parts (a) and
(b) describe positive optimal inventory decisions corresponding to rational customer expectations
of sales, respectively, only in the first period and in both periods. Part (c) describes a trivial
(zero) optimal inventory decision and corresponding rational expectations. Necessary and sufficient
conditions of parts (a) and (b) allow an overlap of input parameter regions when p1 > c/β and
z1 ≤ z ≤ z̃1. In this case, a potential form of reseller i decision, (a) or (b), depends on customer
expectations, i.e., both ᾱ = 0 and ᾱ = 1 can be rational.

When MFC is possible, a RESE N with the corresponding expectations for a one-reseller de-
viations into MFC, α∗(1), exists if and only if either of the two conditions hold: (i) both possible
deviations of a reseller i into MFC are trivial (part (c) of the lemma) or (ii) at least one of the devi-
ations is not trivial (parts (a) or (b) of the lemma) and optimal deviator’s profit does not exceed the
equilibrium profit under the corresponding RESE NA. Since Y0 =

n−1
n Y ∗ and z = 1− n−1

n Y ∗−c/β,
case (i) is characterized by n−1

n Y ∗ ≥ (1 − p1) ∨ (1 − c/β). Rational expectations under deviation
are α∗(1) = 0, when n−1

n Y ∗ ≤ 1− p1, and α∗(1) = 1, otherwise.

N1. By part NA1 of Theorem 2, r∗,N1 = (β−c)2

(n+1)2β
and Y ∗ = n

n+1 (1− c/β) , yielding Y0 =
n−1
n+1 (1− c/β) . Since p1 > c/β, this situation is covered by case (ii). By Lemma 4, ỹi1 =

1
2 (1− Y0 − c/β) =

z
2 = 1

n+1 (1− c/β) , which is strictly positive (i.e., z > 0). The resulting total inventory would

be the same as in NA1, therefore, the rational expectations under deviation into ỹi1 would lead
to vmin

0 = 1 for n > 1. Under this scenario y̆i1 = 1 − vmin
0 − Y0 ≤ 0 is infeasible. Since the

optimal deviator’s profit r̃i1 = β(ỹi1)
2 = (β−c)2

(n+1)2β
coincides with r∗,N1, N1 with α∗(1) = 1 ex-

ists without any additional conditions. For n = 1, y̆i1 = 1 − p1 ≥ 0 is feasible, and N1, by
part (b) of Lemma 4 exists if and only if z ≤ z1 (Y0 = 0). This inequality is 1 − c/β ≤
2
β

[

p1 − c−
√

(p1 − c)p1(1− β)
]

⇔
√

(p1 − c)p1(1− β) ≤ p1− β+c
2 ⇔ p21−p1(1+c)+ 1

4β (β+c)2 ≥ 0.

The smaller root of the corresponding equation is irrelevant since 1+c
2 is less than the p1−lower

bound in NA1: 1+c
2 < 1− ρ

2(β− c). This inequality holds for any ρ < 1 since the RHS is minimized
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at ρ → 1 and 1 + c ≤ 2− β + c. Therefore, the additional condition of existence of N1 for n = 1 is
p1 ≥ (p1)2, where (p1)2 is the larger root of the equation, corresponding to the quadratic inequality

above, and (p1)2 = 1
2

[

1 + c+
√

(1 + c)2 − 1
β (β + c)2

]

. The expression under the square root is

1 + 2c+ c2 − β − 2c− c2/β = (1− β)
(

1− c2/β
)

.
N1 cannot exist with α∗(1) = 0 because the rationality of expectations would imply optimality

of y̆i1 (part (a) of Lemma 4). Under the conditions of the lemma, this means that r∗,N1 = r̃i1 is
dominated by r̆i1.

N2. The equilibrium profit in NA2 is not dominated by a possible deviation into MFC with
yi1 = y̆i1 because the prospective deviator’s profit coincides with the equilibrium one: r̆i1

∣

∣

vmin
0

=p1
=

r∗,N2 = 1
n(p1− c)(1− p1). The equilibrium profit is also not dominated by a possible deviation into

MFC with yi1 = ỹi1 because, by Lemma 4, a non-trivial ỹi1 is optimal only if z ≤ z̃1 ≤ 2 (p1 − c/β) ,
which is incompatible with the condition p1 ≤ nc

n−1+β of the existence of NA2. Indeed, in this case,

Y0 =
n−1
n (1− p1) implying z = 1− Y0 − c/β = 1

n + n−1
n p1 − c/β. Inequality z ≤ 2 (p1 − c/β) yields

the following lower bound on p1 :

1

n
+

n− 1

n
p1 − c/β ≤ 2 (p1 − c/β) ⇔ n+ 1

n
p1 ≥ c/β +

1

n
⇔ p1 ≥

nc+ β

(n+ 1)β
,

which exceeds the upper bound given in NA2:

nc+ β

(n+ 1)β
>

nc

n− 1 + β
⇔ (nc+β)(n− 1+β) > nc(n+1)β ⇔ n2c(1−β)+n(β− c)−β(1−β) > 0.

The last inequality always holds because the LHS is increasing in n and positive for n = 1 :
c(1− β) + β − c− β(1− β) = (β − c)− (β − c)(1− β) = β(β − c) > 0.

N3 and N4. By part (c) of Lemma 4, both possible deviations into MFC are trivial if and
only if z ≤ 0 ∧ z0

2 . Therefore, N3 and N4 exist under this condition, part of which, z = z0
2 ≤ 0,

corresponding to α∗(1) = 0, is included into the conditions of parts (3.1) and (4.1), and the
remaining part, corresponding to α∗(1) = 1, — into the conditions of parts (3.2) and (4.2).

By part (a) of Lemma 4, a pair of optimal deviator’s inventory y̆i1 with the corresponding
α∗(1) = 0 exists if and only if either p1 ≤ c/β and n−1

n Y ∗ < 1 − p1 (z > z0
2 ), or p1 > c/β and

z ≥ z1 ⇔ n−1
n Y ∗ ≤ 1 − c/β − z1. Inequality z ≥ z1 implies, by Lemma 4, z > z0

2 . In this case,
N3 and 4 exist if the corresponding equilibrium profit is not dominated by the profit of potential
deviator: r∗,N3 ≥ r̆i1 =

(

1− p1 − n−1
n Y ∗) (p1 − c) for N3 and r∗,N4 ≥ r̆i1 for N4. By Theorem 3,

Y ∗ = n−1
n

p1−s
c−s (1− v∗) and r∗,N4 = c−s

n(n−1)Y
∗; therefore inequality r̆i1 ≤ r∗,N4 becomes

1− p1 −
n− 1

n
Y ∗ ≤ c− s

n(n− 1)(p1 − c)
Y ∗ ⇔ (1− p1)

[

1 +
c− s

(n− 1)2(p1 − c)

]−1

≤ n− 1

n
Y ∗. (23)

The combination of the conditions p1 ≤ c
β (z0 ≤ 0) and n−1

n Y ∗ = 1 − p1 (z = z0
2 ), which is the

part of the condition z ≤ 0 ∧ z0
2 that corresponds to α∗(1) = 0, can be trivially included into the

conditions of parts (3.1) and (4.1) because r̆i1 = 0 in this case while r∗,N3 and r∗,N4 are strictly
positive.

When ᾱ(1) = 1, the conditions of the existence of N3 and N4 do not include the comparison
of the equilibrium profit with the profit of a deviator if both possible deviations into MFC are
trivial, which is covered by the remaining conditions of part (c), Lemma 4. Namely, if z ≤ 0
(n−1

n Y ∗ ≥ 1 − c
β ) and z < z0

2 (n−1
n Y ∗ > 1 − p1). The case p1 = c

β and n−1
n Y ∗ = 1 − c

β is included
into parts (3.1) and (4.1). Therefore, the remaining combination of the conditions, yielding the
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existence of N3 and 4 with trivial deviations into MFC and ᾱ(1) = 1, is p1 ≤ c/β and n−1
n Y ∗ > 1−p1

or p1 > c/β and n−1
n Y ∗ ≥ 1− c/β.

Recall that p1 < 1 under the conditions of both NA3 and NA4. Therefore, by part (b.2) of

Lemma 4, the pair of positive optimal deviator’s inventory ỹi1 =
z
2 with profit r̃i1 =

β
4

(

1− c/β − n−1
n Y ∗)2

and ᾱ(1) = 1 exists if and only if p1 > c/β and 0 < z ≤ z̃1, where the last condition is equiva-
lent to 1 − c/β − z̃1 ≤ n−1

n Y ∗ < 1 − c/β. Then N3 and 4 exist if the corresponding equilibrium

profit is not dominated by the profit of the deviator: r∗,N3 ≥ r̃i1 = β
4 z

2, which can be written as

z ≤ 2
√

r∗,N3/β, and r∗,N4 ≥ r̃i1. The last inequality is c−s
n(n−1)Y

∗− β
4

(

1− c/β − n−1
n Y ∗)2 ≥ 0 or, in

terms of z, β4 z
2 − c−s

(n−1)2
(1− z − c/β) ≤ 0 ⇔ β

4 z
2 + c−s

(n−1)2
z − c−s

(n−1)2
(1− c/β) ≤ 0, which is strict

at z = 0. Therefore, the condition of N4 existence in this case is z ≤ ẑ2, where ẑ2 is the larger root
of the corresponding equation, namely,

ẑ2 =
2

β

[

− c− s

(n− 1)2
+

√

(c− s)2

(n− 1)4
+

(c− s)(β − c)

(n− 1)2

]

=
2(c− s)

β(n− 1)2

[

√

1 +
(n− 1)2(β − c)

c− s
− 1

]

.

The combination of the inequalities z ≤ ẑ2 and z ≤ z̃1 yields 1− c/β − z̃1 ∧ 2
√

r∗,N3/β ≤ n−1
n Y ∗.

7.6.1 Analysis of additional conditions

The additional conditions of N-equilibria existence nontrivially restrict the parameter regions cor-
responding to NA3 and NA4, i.e., the conditions may hold or not hold depending on the market
situation. For example, conditions of parts (3.1) and (4.1) hold for ρ = 0. Indeed, the profit of a
deviator from NA3 (Theorem 2) or NA4 (Theorem 3) to no-MFC with sales only in the first period
is (p1− c)

(

1− v∗(∅, I)− n−1
n Y ∗) , which coincides with r̆i1 in both parts if ρ = 0. Since equilibrium

profits r∗,N3 and r∗,N4 are not dominated by deviator profit, inequalities r∗,N3 ≥ r̆i1 and r∗,N4 ≥ r̆i1
hold under the corresponding NA if ρ = 0.

Combination of p1 ≤ c
β with n−1

n Y ∗ ≤ 1− p1 in parts (3.1) and (4.1) hold for p1 near the lower
bound for both NA3 and NA4 (which is below c

β for n > 1) since Y ∗, by continuity, approaches
1− p1. On the other hand, the following lemma illustrates that for large ρ and small n, inequality
r∗,N3 ≥ r̆i1 may not hold.

Lemma 5. For n = 1, c → 0, β → 1, and ρ =
(

1−√
1− β

)

/β → 1, conditions p1 > c
β and

n−1
n Y ∗ ≤ 1− c

β − z1 of part (3.1) of Proposition 9 hold, while r∗,N3 ≥ r̆i1 does not hold.

By parts (3.2) and (4.2), equilibria N3 and N4 exist under the combination of conditions p1 ≤ c
β

and n−1
n Y ∗ > 1− p1. The first condition implies p2 ≤ c, preventing deviation into MFC with sales

in both periods, and the second one prevents any deviations with sales only in the first period. The
following lemma shows that this combination has a non-empty intersection with the input areas of
NA3 and NA4.

Lemma 6. Under NA3 or 4, there exist β < 1 and N > 1 such that the condition nc
β+n−1 ∨ 1 −

n−1
n Y ∗ < p1 ≤ c

β may hold for any n ≥ N.

When condition 1− n−1
n Y ∗ < p1 ≤ c

β does not hold, the following lemma provides an example,

where inequality r∗,N3 ≥ r̃i1 of part (3.2) is satisfied.

Lemma 7. If p1 >
1+c
2 , n = 1, ρ = 0, and β = 1, inequalities p1 >

c
β , 1− c

β − z̃1 ≤ n−1
n Y ∗ < 1− c

β ,

and r∗,N3 ≥ r̃i1 of part (3.2) hold.
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The opportunity to deviate into MFC is stipulated by the combined inventory of other resellers,
i.e., Y −i = n−1

n Y ∗. Namely, if Y −i is such that, regardless of the inventory of reseller i, there are
sales in the second period, or these sales are such that p2 ≤ c, the corresponding non-trivial forms
of deviation into MFC cannot exist. Combination of these conditions for Y −i with the necessary
conditions of existence of some NA-equilibria yield simple sufficient conditions of existence of N-
equilibria under the conditions of NA.

Lemma 8. If MFC is available, N4 exists under the conditions of NA4 if n ≥ β−s
p1β−s ∨

β−s
c−s .

7.7 Proof of Proposition 4 (MFC inventory is not greater than no-MFC)

Part (1) follows directly from Theorem 1, and parts NA1 and NA2 of Theorem 2.
Part (2) follows from the facts that (a) under NA3, Y ∗ > n

n+1 (1− c/β) ∨ (1 − p1) (Theorem
2), where, by Theorem 1, n

n+1 (1− c/β) is the total equilibrium inventory under M1 and 1− p1 —
under M2; and (b) under N4, p2 = s, which is always less than p2 under N3. Therefore, by formula
(3) for p2, the total inventory under N4 is always greater than under N3, which, by the argument
above, is always greater than under M1 or M2.

7.8 Proof of Proposition 3 (profits of M1, M2 and N(A)3, N(A)4)

Part (1.1). The RHS of inequality p1 > 1 − n
n+1(β − c) is the p1-boundary between N(A)3 and

N(A)1 for ρ → 1. Therefore, if this inequality holds under N(A)3 (p1 < 1), there exists ρN1 =
n+1
n

1−p1
β−c ∈ (0, 1) such that p1 = 1 − n

n+1ρ
N
1 (β − c) and, for the same given inputs except ρ, N(A)

can be realized as N(A)3 for ρ < ρN1 and as N(A)1 for ρ ≥ ρN1 . By Proposition 4 in Bazhanov,
Levin, and Nediak (2015), profit r∗,N3 is decreasing in ρ for all p1 ≥ β − n

2(n+1)(β − c), and, by

continuity of the profit without MFC, r∗,N3 = r∗,N1 at ρ = ρN1 . The last inequality is implied by

p1 > 1− n
n+1(β−c) if 1− n

n+1(β−c) ≥ β− n
2(n+1)(β−c), which is equivalent to 2(n+1)

n (1−β) ≥ β−c

or c ≥ 3β − 2
(

1 + 1−β
n

)

. Hence, since r∗,N1 ≡ r∗,M1, and r∗,M1 is constant in ρ, we have, under

the conditions of part (1.1), that r∗,M1 < r∗,N3 for any ρ < ρN1 . The lower bound on c above holds
for any c and n if β ≤ 2

3 and never holds for β > 4+c
5 . Indeed, the lower bound on c yields an upper

bound on n, which is less that one if β > 4+c
5 . The lower bound on p1 can be written as a lower

bound on n: n > 1−p1
β−c−(1−p1)

.

Part (1.2). By Theorems 1 and 3, inequality r∗,M1 > r∗,N4 is equivalent to

n2(β − c)2

(n+ 1)2β
> (p1 − s)

(

1− p1 − ρs

1− ρβ

)

⇔ n

n+ 1
>

√

β(p1 − s)(1− p1 − ρ(β − s))

(β − c)2(1− ρβ)
=

1

w
,

where the expression under the root is always positive. The last inequality implies that r∗,M1 >
r∗,N4 can hold only if w > 1 and holds for any n ≥ 2 if w > 3

2 . If w ∈ (1, 32 ], inequality
n

n+1 > 1
w ,

which is equivalent to r∗,M1 > r∗,N4, can be written as w > 1 + 1
n or n > 1

w−1 . By Theorem 3,

fraction 1−p1−ρ(β−s)
1−ρβ is 1− v∗ > 0, where v∗ increases in ρ implying that w increases in ρ.

Part (2.1). By Proposition 10 in Bazhanov, Levin, and Nediak (2015), nr∗,N3 decreases in n
while nr∗,M2 is constant. Therefore, r∗,M2 ≥ r∗,N3 for any n ≥ 1 and any other inputs that are in
the area where M2 overlaps with N(A)3 for n = 1 if, in this area, r∗,M2 ≥ r∗,N3 for n = 1. Indeed,
for n = 1, r∗,N3 coincides with the profit of the deviator to no-MFC with sales in both periods, and,
in the area of M2 existence, this profit does not exceed the equilibrium profit r∗,M2. By the proof of
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part M2 of Theorem 1 for n = 1, inequality r∗,M2 ≥ r∗,N3 is equivalent to p1 ≤ c
β

(1−ρβ)2

1−2ρ+βρ2
= P21,

where P21 does not depend on n. Therefore, first, inequality r∗,M2 ≥ r∗,N3 is strict for n = 1
and p1 < P21; second, since nr∗,N3 is decreasing in n while nr∗,M2 is constant, r∗,M2 > r∗,N3 for
p1 ≤ P21 if n > 1; and third, the p1-bound of the overlap P21, which is relevant for c

β < CB2, does

not change with n. For c
β ≥ CB2, the p1-upper bound for N(A)3 is PN

1 and, for M2, — P22. By

Proposition 1, PN
1 is the p1-bound of the overlap for n = 1 and c

β ≥ CB2 since PN
1 < P22 for n = 1

and c
β > CB1 = CB2 (PN

1 = P22 at c
β = CB2). P

N
1 is decreasing in n, resulting in shrinking of the

overlap. For n > 1, the overlap area shrinks also due to conditions (a), (b) of part NA3 of Theorem
2 and additional conditions (3.1) and (3.2) for N3 existence (Proposition 9). For n = 1, all these
conditions hold trivially.

The only bound that leads to the expansion of the overlap with n is p1-lower bound for N(A)3
PN
2 = nc

β+n−1 that separates N(A)3 from N(A)2. This bound decreases from c
β for n = 1 to c for

n → ∞. Recall that M2 and N(A)2 exist only if β < 1. PN
2 is strictly less than c

β for any n > 1 while
the upper p1−bounds for M2, P21 and P22 are not less than c

β . Therefore, if p1 ≤ c
β , the equality

p1 =
nc

β+n−1 yields n2 =
p1(1−β)
p1−c such that, for the same given inputs except n, N(A) can be realized

as N(A)2 for all n ≤ n2 and as N(A)3 for all n > n2. Since profits are continuous under N(A), i.e.,
r∗,N3 = r∗,N2 at n = n2, and, by Proposition 10 in Bazhanov, Levin, and Nediak (2015), nr∗,N3

is decreasing in n, while nr∗,N2 ≡ nr∗,M2 is constant, we have r∗,M2 > r∗,N3 for any n > n2, i.e.,
for p1 ∈

(

PN
2 , c/β

]

and any other inputs in the overlap of N(A)3 and M2, inequality r∗,M2 > r∗,N3

also holds.
Part (2.2) follows from the facts: (a) for N(A)4, v∗ is increasing in ρ, i.e., the total first-period

profit nr∗,N4 does not exceed nr∗,N4|ρ=0 = (p1 − c)(1− p1) = nr∗,M2, and (b) the second period is
always at loss under N(A)4 since s < c.

7.9 Proof of Proposition 5 (customer surplus with MFC vs. no-MFC)

The total equilibrium customer surplus is Σ = Σ1 + Σ2, where Σ1 and Σ2 are the first-period and
second-period surpluses respectively.

Lemma 9. Under the conditions of the corresponding RESE, the total customer surplus is

(1) under M1: ΣM1 = (1−p1)2

2 + (1− p1)(p1 − p∗2) +
(βp1−p∗

2
)2

2β ;

(2) under M2 and N(A)2: ΣM2 = ΣN2 = (1−p1)2

2 ;

(3) under N(A)1: ΣN1 =
(β−p∗

2
)2

2β ;

(4) under N(A)3 and 4, Σ has the same form: Σ = (1−p1)2

2 − (v∗−p1)2

2 +
(βv∗−p∗

2)
2

2β , where p∗,N4
2 =

s < p∗,N3
2 and v∗,N4 ≥ v∗,N3, which is strict for any ρ ∈ (0, 1).

The value ∆ΣA,B , ΣA−ΣB below denotes the change in the total surplus that results from the
switch from equilibrium B to equilibrium A given the same inputs when both RESE are possible.
Consider ΣN1 as ΣN1 =

∫ βp1
p∗
2

(ṽ − p∗2)
dṽ
β +

∫ β
βp1

(ṽ − p∗2)
dṽ
β where the first integral is ΣM1

2 . Then

∆ΣM1,N1 = ΣM1
1 −

∫ β

βp1

(ṽ−p∗2)
dṽ

β
=

∫ 1

p1

(v−p∗2)dv−
∫ 1

p1

(βv−p∗2)dv =

∫ 1

p1

v(1−β)dv =
(1− β)

2
(1−p21),

which is positive for any p1 < 1 and β < 1.
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The result for ∆ΣM1,M2 follows directly from parts (1) and (2) of Lemma 9 after substitution
for p∗2 = p∗,M1

2 = c+ β−c
n+1 leading to ∆ΣM1,M2 = (1− p1)(p1 − c− β−c

n+1) +
1
2β (βp1 − c− β−c

n+1)
2 > 0.

By Lemma 9, ∆ΣM2,N1 = 1
2

[

(1− p1)
2 − 1

β (β − p∗2)
2
]

= 1
2

{

(1− p1)
2 − 1

β

[

n
n+1(β − c)

]2
}

, be-

cause, by part NA1 of Theorem 2, β − p∗2 = (β − c) n
n+1 . Since ∆ΣM2,N1 decreases in p1, it is

always negative if ∆ΣM2,N1 < 0 at p1−lower bound, which, minimized at ρ → 1, by Theorem 2, is

pLB1 = 1− n
n+1(β − c). Indeed, ∆ΣM2,N1|p1=pLB

1
= 1

2

[

n
n+1(β − c)

]2
(1− 1

β ) < 0 for any β < 1.

By Lemma 9, ∆ΣM2,N3 = 1
2

[

(v∗ − p1)
2 − 1

β (βv
∗ − p∗2)

2
]

, where, by part NA3 of Theorem 2,

v∗−p1 =
p1 − ρp∗2 − p1 + p1ρβ

1− ρβ
=

ρβ(p1 − 1 + Y ∗)
1− ρβ

and βv∗−p∗2 =
βp1 − βρp∗2 − p∗2 + p∗2ρβ

1− ρβ
=

β(p1 − 1 + Y ∗)
1− ρβ

,

yielding ∆ΣM2,N3 = β
2

[

Y ∗,N3−(1−p1)
1−ρβ

]2
(ρ2β − 1) < 0.

The sign of ∆ΣM2,N4 can be shown in the same way using p∗2 = s and v∗ = v∗,N4 = p1−ρs
1−ρβ . Then

v∗ − p1 =
ρ(p1β−s)
1−ρβ and βv∗ − s = p1β−s

1−ρβ , yielding ∆ΣM2,N4 = 1
2β

(

p1β−s
1−ρβ

)2
(ρ2β − 1) < 0.

7.10 Proof of Lemma 1 ( p1-bounds are equivalent to ρ-bounds)

By the proof of Theorem 1 for n = 1, the p1-bounds P11 and P21 separate M1 and M2 respectively
from NA3. These bounds can be written as bounds on ρ. Indeed, p1 ≥ P11 ⇔ 1− p1 ≤ ρ

2(β − c) ⇔
ρ ≥ ρM1 = 2(1−p1)

β−c , and p1 ≤ P21 ⇔ p1
[

(1− ρβ)2 − (1− β)
]

≤ c(1−ρβ)2 ⇔ (1−ρβ)2 ≤ p1(1−β)
p1−c ⇔

ρ ≥ ρM2 = 1
β

[

1−
√

p1(1−β)
p1−c

]

, where
√

p1(1−β)
p1−c < 1 under NA3 since p1β > c. Inequality ρM2 ≤ 1 is

equivalent to 1−
√

p1(1−β)
p1−c ≤ β, which holds as equality if β = 1. Consider β < 1. Then inequality

ρM2 ≤ 1 can be written as 1− β ≤ p1
p1−c or −c− β(p1 − c) ≤ 0, which is strict for any feasible c, p1,

and β. In the same way, ρM2 > 0 is equivalent to p1(1− β) < p1 − c, which always holds.

7.11 Proof of Proposition 6 (benefit from MFC, n = 1)

Lemma 10. For n = 1 and c
β < p1 < 1− ρ

2(β−c), NA3 exists and unique with v∗ = 2p1−ρc
2−ρβ , Y ∗ = 1−

βp1+c(1−ρβ)
β(2−ρβ) , p∗2 = c+βp1−c

2−ρβ , r∗,N3 = (p1−c)[2(1−p1)−ρ(β−c)]
2−ρβ + (βp1−c)2

β(2−ρβ)2
, Σ∗ = (1−p1)2

2 +1
2

(

βp1−c
2−ρβ

)2 (
1
β − ρ2

)

.

The proof of the Proposition follows from the properties of the boundaries between RESE,
established in Theorems 1, 2, Corollary 1, Proposition 9, and the fact that, for n = 1, a monopolist
is indifferent between two RESE at the boundary. For n = 1, the area where M1 exists is inside
the area where NA1 exists because, by Proposition 1, PN

1 = P11 and PN
1 < P12.

Part (1.1). By part M2 of Theorem 1, M2 exists if c
β ≥ CB and p1 ≤ P2 (if p1 = P2, the form

of a realized RESE depends on the expectations: for α∗ = 1 it is M1, for α∗ = 0 — M2). By part
NA1 of Theorem 2, NA1 exists if p1 ≥ PN

1 . The benefit from MFC is BM2,NA1 = r∗,M2 − r∗,NA1 =

(p1 − c)(1 − p1) − (β−c)2

4β , which is increasing in c because ∂BM2,NA1

∂c = −(1 − p1) +
1
2β (β − c) =

p1 − 1
2β (β + c) > 0. The last inequality holds since p1 ≥ PN

1 = 1 − ρ
2(β − c) under NA1, and

1
2β (β + c) < 1 + ρ

2(β + c) − ρβ ⇔ 1
2

(

1 + c
β

)

(1 − ρβ) < 1 − ρβ ⇔ β+c
2 < β holds for any

c < β. Then BM2,NA1 ≥ 0 for any c if BM2,NA1|c=0 ≥ 0, which is −p21 + p1 − β
4 ≥ 0. This

inequality holds between the roots (p1)1,2 = 1
2

[

1∓√
1− β

]

. Inequality p1 ≥ (p1)1 always holds
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if (p1)1 ≤ PN
1 |c=0 = 1 − ρβ

2 , which is satisfied for any ρ < 1 since PN
1 |c=0 is decreasing in ρ and

(p1)1 ≤ PN
1 |c=0 holds for ρ = 1 : 1

2

[

1−√
1− β

]

≤ 1 − β
2 ⇔ β − √

1− β ≤ 1 (always holds).
Inequality p1 ≤ (p1)2 always holds if (p1)2 is not less than p1-upper bound for M2, which, for c = 0,
is P2 because if 0 = c

β < CB (part 2.1 of Theorem 1), inequality p1 ≤ P21 = 0 never holds. Equality

P2|c=0 = 1
2

[

1 +
√
1− β

]

≡ (p1)2 implies BM2,NA1|c=0 ≥ 0. Benefit BM2,NA1 decreases in β since
∂BM2,NA1

∂β = − 1
4β2

[

2(β − c)β − (β − c)2
]

= −β2−c2

4β2 < 0.

Part (1.2). By Lemma 10, NA3 exists. By part M2 of Theorem 1, M2 exists either if c
β ≥ CB

(since p1 < PN
1 < P2) or

c
β < CB and p1 ≤ P21, which, by Lemma 1, is equivalent to ρ ≥ ρM2. The

benefit from MFC is BM2,NA3 = r∗,M2−r∗,NA3 = (p1−c)(1−p1)− (p1−c)2(1−p1)−ρ(β−c)
2−ρβ − (βp1−c)2

β(2−ρβ)2

=
1

2− ρβ

[

(p1 − c)ρ(βp1 − c)− (βp1 − c)2

β(2− ρβ)

]

=
βp1 − c

2− ρβ

[

(p1 − c)ρ− βp1 − c

β(2− ρβ)

]

=
βp1 − c

2− ρβ

[

c(1− 2ρβ + ρ2β2)− p1(β − 2ρβ + ρ2β2)
]

=
βp1 − c

2− ρβ

[

p1(1− β)− (1− ρβ)2(p1 − c)
]

,

which is increasing in ρ. Since βp1 − c > 0 under NA3 for n = 1, BM2,NA3 > 0 if and only if

1 − ρβ <
√

p1(1−β)
p1−c , which is, indeed, equivalent to ρ > 1

β

[

1−
√

p1(1−β)
p1−c

]

= ρM2. By Lemmas 9,

and 10, ∆ΣM2,NA3 = 1
2

(

βp1−c
2−ρβ

)2 (

ρ2 − 1
β

)

< 0.

Part (2). Since the profits in the pairs M1 – N(A)1 and M2 – N(A)2 are identical, reseller is
indifferent between these equilibria in the correspondent areas where (2.1) M1 exists: c

β < CB and

p1 ≥ P11 ⇔ ρ ≥ ρM1 or c
β ≥ CB and p1 ≥ P2; (2.2) N(A)2 exists: β < 1, any ρ and c

β , and p1 ≤ c
β .

Part (2.3) follows from the proof of part (1.2) since BM2,NA3 = 0 at the boundary between N3 and
M2 where ρ = ρM2.

Part (3). The remaining area with c
β < CB, p1 > c

β , p1 < P11 = PN
1 (ρ < ρM1), and p1 > P21

(ρ < ρM2) corresponds to inputs where only price-discriminating N(A)3 exists and MFC-equilibria
do not exist because of a lower profit.

MFC never leads to a gain from increased strategic behavior because (i) profit is constant in
ρ for both M1 and M2; (ii) profit is continuous at the boundaries between equilibria. Moreover,
N(A)3 is realized for any ρL < ρM1∧ρM2 and one of MFC-equilibria (denote it as MFC) is realized
for any ρH ≥ ρM1∧ρM2. Therefore, since r∗,NA3 is decreasing in ρ for n = 1 (Bazhanov, Levin, and
Nediak (2015)), inequality r∗,NA3|ρ=ρL > r∗,MFC |ρ=ρH always holds yielding η(NA3,NA3,MFC) =
(r∗,MFC−r∗,NA3)|

ρ=ρH

r∗,NA3|
ρ=ρL

−r∗,NA3|
ρ=ρH

< 1.

7.12 Proof of Proposition 7 (gain from M2)

Assume that N(A)4 and M2 exist for the same inputs including ρH > 0, and N(A)4 exists for these
inputs except ρL < ρH . The loss from increased strategic behavior without MFC is r∗,NA4|ρ=ρH −
r∗,NA4|ρ=ρL < 0 and the performance of M2 is η(NA4,NA4,M2) =

r∗,M2−r∗,NA4|
ρ=ρH

r∗,NA4|
ρ=ρL

−r∗,NA4|
ρ=ρH

= 1 +

r∗,M2−r∗,NA4|
ρ=ρL

r∗,NA4|
ρ=ρL

−r∗,NA4|
ρ=ρH

. Since r∗,NA4 is decreasing in ρ, profit r∗,M2 = 1
n(p1 − c)(1 − p1) does not

depend on ρ, and, by Proposition 2, 1
n(p1 − c)(1− p1) > r∗,NA4 for any inputs in the area of NA4

existence (implying that r∗,M2 > r∗,NA4|ρ=ρL), M2 leads to a gain (η > 1). A lower bound of η

in ρL is at ρL = 0 where the denominator in the expression for η attains maximum. Then, the
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substitution of the expressions for profits yields

η(NA4,NA4,M2) ≥ 1+
(1− p1) [n(p1 − c)− (p1 − s)]

(p1 − s)(v∗,NA4 − p1)
= 1+

(1− ρHβ)(1− p1) [n(p1 − c)− (p1 − s)]

(p1 − s)ρH(p1β − s)
.

This measure is unbounded in n since nr∗,NA4 decreases in n to zero while nr∗,M2 is constant.

7.13 Equilibria existence in Example 2 (gain from M2)

NA4 exists for both ρ = 0.5 and ρ = 0, and, when MFC is available and used by resellers at ρ = 0.5,
N4 exists for ρ = 0 and M2 — for ρ = 0.5. Indeed, by Theorem 3 for ρ = 0, v∗,N4 = p1 =

1
2 , Y

∗,N4 =
1
4
0.45
0.05 = 9

4 , and condition (a) of Theorem 3 holds: n−1
n Y ∗,N4 = 9

8 > 1 ≥ 1 − s
β > 1 − c

β . The last
inequality means that the additional condition (4.2) of Proposition 9 for the existence of N4 also
holds since p1 = 0.5 > c

β = 0.2. M2, by Theorem 1, does not exist because, for ρ = 0, CB2 = 1 > c
β

and P21 = c
β = 0.2 < 0.5 = p1. For ρ = 0.5, v∗,N4 = 1−0.05

2(3/4) = 1.9
3 , and Y ∗,N4 = 1

2
0.45
0.05

1.1
3 = 3.3

2 .

Condition (a) of Theorem 3 does not hold: n−1
n Y ∗,N4 = 3.3

4 = 0.825 < 1 − s
β = 0.9, but condition

(b) holds: n−1
n Y ∗,N4 β

c+βv∗−2s = 3.3
4·2·(0.1+1.9/6−0.1) =

9.9
7.6 > 1. M2 exists since CB2 =

1−1+1/8

(1−1/4)2+ 1

2
·2· 1

8

=

2
11 < c

β = 2
10 and P22 =

2(4.6−0.5+4
√
53/10)

17 > 8.2+8·0.7
17 > p1 = 0.5.

7.14 Proof of Proposition 8 (MFC-profit exceeds NA3, p1 = β)

The proof uses the following lemma where p1-bounds between NA3, 2, and 1 are written as the
bounds on c

β with CBN1 , 1− n+1
nρβ (1− β) and CBN2 , 1− 1−β

n .

Lemma 11. If p1 = β, the forms of NA3 and NA4 simplify as follows:

NA3 (p∗2 > s) Y ∗ = [(1−c/β)(1−ρβ)+1−β]n
n+1−ρβ and r∗,NA3 = β(Y ∗/n)2; condition PN

2 < p1 < PN
1 is

equivalent to c
β < CBN2 and either β < 1 for ρ = 0 or, for ρ > 0, c

β > CBN1; condition (a)

becomes n−1
n

β2(1−v∗)Y ∗

(c−s)(β−s) ≤ 1; and condition Y ∗ < 1 − s
β becomes either c − s ≥ β(1 − β) or

c− s < β(1− β) and n < (1−ρβ)(1−s/β)
(1−ρβ)(1−c/β)−β+s/β .

NA4 (p∗2 = s) Y ∗ = n−1
n

β−s
c−s

(

1− β−ρs
1−ρβ

)

and r∗,NA4 = β−s
n2

(

1− β−ρs
1−ρβ

)

; condition (b) becomes

β(n− 1)Y ∗ ≥ n(c+ βv∗ − 2s).

As to equilibria NA1 and NA2, both of them may exist and have overlaps with M1 and M2 for
some feasible inputs when p1 = β. NA1 exists if and only if c

β ≤ CBN1 for ρ > 0 or β = 1 for
ρ = 0; and NA2 — if and only if c

β ≥ CBN2.

By Theorem 1 and Lemma 11, inequality r∗,M1 > r∗,N3 is

(β − c)2

(n+ 1)2β
>

[β(1− β) + (β − c)(1− ρβ)]2

β(n+ 1− ρβ)2
⇔ n [(β − c)ρ− 1 + β] > 1− β, (24)

which holds for any n ≥ 1 if (β − c)ρ > 2(1− β) since, under this condition, it holds for n = 1 and
the LHS is increasing in n. On the other hand, (24) may hold only if [·] > 0, which is equivalent

to ρ > 1−β
β−c . Then, if ρ ∈

(

1−β
β−c , 2

1−β
β−c

]

, inequality r∗,M1 > r∗,N3 is equivalent to n > 1−β
(β−c)ρ−1+β .

Condition β > 1+c
2 follows from inequality 1−β

β−c ≥ 1.
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7.15 Equilibria existence in Examples 3-5

Example 3. Condition (a) of Theorem 3 holds: Y ∗,NA4 = 208
105 and n−1

n Y ∗,NA4 = 416
315 > 1 >

1− s
β , i.e., “salvaging” is forced on resellers and N(A)4, indeed, exists with v∗ = 27

35 and the profit

r∗,NA4 = 0.65
9 (1 − v∗) = 26

1575 = 0.0165. M2 exists since c
β = 4

10 > 4
58 = CB2 and p1 < P22 = 0.93

with r∗,M2 = 0.06. M1 exists since c
β = 4

10 > 4
100 = CB1 and p1 > P12 = 0.69, with the profit

r∗,M1 = 0.152

42·0.25 = 0.0056.
Example 4. Equilibrium profits in Figure 8 (b) are computed under the existence conditions

of the corresponding RESE types. In particular, for ρ = 0.2 and ρ = 0.65 the existence can be
demonstrated as follows. For ρ = 0.65, NA3 is realized in no MFC game since, by Lemma 11,
Y ∗,NA3 = 0.89 < 1 = 1 − s

β , condition (b) of Theorem 2 holds: r∗,NA3 = 0.0247 > r̃i = 0.0188

(which can be shown using the expression for r̃i =
{

√

(p1 − s) (1− v∗)−
√

n−1
n Y ∗ (c− s)

}2

given

in Bazhanov, Levin, and Nediak (2015)), and NA4 does not exist because the necessary condition
Y ∗,NA4 > 1 − s

β does not hold: Y ∗,NA4 = 105
108 < 1. For ρ = 0.2, the only existing equilibrium is

NA4 without MFC or N4 with MFC. Indeed, 1− v∗,NA4 = 4
9 , Y

∗,NA4 = 3·5
4

4
9 = 5

3 and n−1
n Y ∗,NA4 =

5
4 > 1 = 1 − s

β > 1 − c
β , which means that condition (a) of Theorem 3 holds and additional

condition (4.2) of Proposition 9 for existence of N4 holds (p1 > c
β = 0.2). At the same time, NA3

does not exist since Y ∗,NA3|ρ=0.2 = 488
490 , condition (a) of part NA3 of Theorem 2 does not hold:

n−1
n

β2(1−v∗)Y ∗

(c−s)(β−s) = 3·4.5
4

488
490 > 1, and condition (b) does not hold: r∗,NA3 = 0.152 < r̃i = 0.158.

MFC-equilibria also do not exist for ρ = 0.2. M1: CB1 = 31
56 > 20

100 = c
β and P11 = 2.52

5 > p1;

M2: CB2 = 62
85 > 20

100 = c
β and P21 = 8.1

31 < 15.5
31 = p1. When ρ = 0.65 and MFC is available,

M1 exists since CB1 < 0 and P12 = 0.487 < p1. The MFC performance is η(NA4,NA3,M1) =
(r∗,M1−r∗,NA3)|ρ=0.65

r∗,NA3|ρ=0.65−r∗,NA4|ρ=0.2
= 0.0128−0.0247

0.0247−0.0139 = 0.0119
0.0108 = −1.102.

Example 5. Condition (a) of Theorem 3 holds for both ρH = 0.4 and ρL = 0.3. M1 exists
at ρH since CB1 = 304

1004 > 100
1300 = c

β and P11 = 0.398 < p1, and M1 does not exist at ρL since
CB1 = 0.466 > c

β and P11 = 0.410 > p1.

8 Proofs of auxiliary statements

8.1 Proof of Lemma 2 (roots of equation r̆i = r̃i)

Equation (5), i.e. p21 − (x + c)p1 + β
4

(

x + c
β

)2
= 0, originates from comparing the expressions

r̆i = (p1 − c)(x − p1) and r̃i = β
4

(

x− c
β

)2
, and collecting the terms in the equation r̃i − r̆i = 0.

The roots of (5) exist since the discriminant D = (x+ c)2 − β
(

x+ c
β

)2 ≥ 0. Indeed,

D = x2(1− β) + c2
(

1− 1

β

)

= (1− β)
[

x2 − c2

β

]

≥ (1− β)
[ c2

β2
− c2

β

]

≥ 0.

1
2

(

x+ c
β

)

is between the roots with strict inequalities when x > c
β and β < 1 because substituting

p1 =
1
2

(

x+ c
β

)

into the LHS of (5) we obtain:

1

4

(

x+
c

β

)2
−
[

(

x+
c

β

)

+ c− c

β

]

1

2

(

x+
c

β

)

+
β

4

(

x+
c

β

)2

=
1

4

{

−
(

x+
c

β

)2
− 2c

β
(β − 1)

(

x+
c

β

)

+ β
(

x+
c

β

)2
}

=
1

4

(

x+
c

β

)

(β − 1)

[

x− c

β

]

≤ 0.
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Inequality (p1)2(x) ≤ x follows from r̃i − r̆i
∣

∣

p1=x
≥ 0, which is strict unless x = c

β .

The larger root is increasing in x if x > c
β , which is evident from the implicit differentiation of

the equation with respect to x

[2p1 − (x+ c)]
∂p1
∂x

= p1 −
β

2

(

x+
c

β

)

,

since, for the larger root 2p1 > x + c and p1 − β
2

(

x + c
β

)

= p1 − 1
2(βx + c) ≥ p1 − 1

2(x + c) > 0

implying that ∂p1
∂x > 0.

8.2 Proof of Lemma 3 (MFC BR)

When all resellers use MFC, the general expression for reseller i profit, by (4), is

ri1 =

{

(p1 − c)yi1, if Y = Q,
(p2 − c)yi1, if Y > Q.

In this case, Q = Y ∧ (1− vmin
1 ), where, by (1), vmin

1 = p1. Therefore, Y = Q if Y ≤ 1− p1 (sales
only in the first period) and p2 is not defined. Otherwise (Y > 1−p1), there are second-period sales
and, by (3), p2 < p1. Thus, r

i
1 has a discontinuity at Y = Q. Moreover, the profit at Y = Q+ 0 is

strictly less than at Y = Q.
Consider two principal cases: (a’) the maximum-profit MFC response without the second-period

sales (i.e., Y1 ≤ 1− p1) is not dominated by any MFC response with the second period sales (i.e.,
Y1 > 1 − p1), and (b’) the maximum-profit MFC response with the second period sales is not
dominated by any MFC response without the second period sales.

We start by describing the nontrivial BR candidates for the cases (a’) and (b’). The profit
ri1 = (p1 − c)yi1 in case (a’) is strictly increasing in yi1, implying that, if BR exists in this region,
reseller i sets yi1 to y̆i1 = 1− p1−Y −i

1 resulting in Y1 = 1− p1. The nontrivial BR of this form exists
if and only if y̆i1 > 0, i.e., 1− Y −i

1 > p1, and the corresponding profit r̆i1 = (p1 − c)(1− p1 − Y −i
1 ) is

not dominated by that of case (b’) or by the profit corresponding to the no-MFC response.
The nontrivial responses for case (b’) are constrained by Y1 > 1 − p1 or, equivalently, yi1 >

1− p1−Y −i
1 , and yi1 > 0. The profit function in this case, ri1 = (p2− c)yi1 = [β(1−Y −i

1 − yi)− c]yi,
is strictly concave.

The profit-maximizing yi1 must satisfy the first-order condition
∂ri

1

∂yi
1

= β(1−Y −i
1 )−c−2βyi1 = 0,

yielding ỹi1 ,
1
2(1− c

β − Y −i
1 ). The profit corresponding to ỹi1 is

r̃i1 =

{

β

[

1− Y −i
1 − 1

2

(

1− c

β
− Y −i

1

)]

− c

}

× 1

2

(

1− c

β
− Y −i

1

)

=
β

4

(

1− c

β
− Y −i

1

)2

.

By feasibility constraints, ỹi1 is a nontrivial BR candidate only if ỹi1 > 0 and ỹi1 > 1 − p1 − Y −i
1 .

The first inequality is equivalent to 1− Y −i
1 > c

β . The second one is equivalent to

1

2

(

1− c

β
− Y −i

1

)

> 1− p1 − Y −i
1 ⇔ p1 >

1

2

(

1− Y −i
1 +

c

β

)

, (p1)0.

If either of these conditions is violated, the profit function is strictly decreasing in the entire region
of case (b’). Thus, a nontrivial BR of this form exists if and only if 1 − Y −i

1 > c
β , p1 > (p1)0 and

r̃i1 is not dominated by the profit r̆i1 of case (a’) and the one corresponding to a no-MFC response.
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We now establish conditions when the maximum profit within case (a’) is not dominated by
the maximum profit within case (b’) and vice versa. In particular, when either c

β ≥ 1 − Y −i
1 or

p1 ≤ (p1)0, ỹ
i
1 is not within the feasible region of case (b’) and r̆i1 dominates the profit corresponding

to any response within case (b’) as long as y̆i1 is feasible and nontrivial, i.e., 1− Y −i
1 > p1.

If ỹi1 is feasible and nontrivial, i.e., 1− Y −i
1 > c

β and p1 > (p1)0, the response of case (a’) is not

dominated by that of case (b’) if and only if y̆i1 is feasible, nontrivial, and r̆i1 ≥ r̃i1. This inequality

is (p1 − c)(1− p1 − Y −i
1 ) ≥ β

4

(

1− c/β − Y −i
1

)2
, which is equivalent to

p21 − (1 + c− Y −i
1 )p1 +

β

4

(

1− Y −i
1 + c/β

)2
≤ 0. (25)

By Lemma 2, the roots (p1)1,2 of (5) exist with x = 1 − Y −i
1 ≥ c

β . Then (25) holds if and only if

(p1)1 ≤ p1 ≤ (p1)2. By Lemma 2, (p1)1 ≤ (p1)0 ≤ (p1)2 ≤ 1−Y −i
1 where the last inequality is strict

unless 1− Y −i
1 = c

β .
Combining all situations where the maximum profit in case (a’) is strictly positive and not

dominated by responses in case (b’), we obtain the following conditions: 1 − Y −i
1 > p1 (i.e., y̆i1 is

feasible and nontrivial) and either (a’.1) c
β ≥ 1− Y −i

1 (i.e., ỹi1 ≤ 0 because the second-period sales

are always at p2 ≤ c) or (a’.2) c
β < 1 − Y −i

1 (i.e., ỹi1 > 0) and p1 ≤ (p1)0 (i.e., ỹi1 ≤ y̆i1 because

the profit function decreases for all yi1 > y̆i1) or (p1)0 < p1 ≤ (p1)2 (i.e., even though ỹi1 is feasible,
r̆i1 ≥ r̃i1). Since c

β < 1 − Y −i
1 implies (p1)0 ≤ (p1)2, the subcase (a’.2) can be compactly described

by the pair of conditions c
β < 1− Y −i

1 and p1 ≤ (p1)2.
Symmetrically, combining all situations where the maximum profit in case (b’) is strictly positive

and not dominated by responses in case (a’), we obtain the following conditions: 1 − Y −i
1 > c

β

(i.e., ỹi1 is nontrivial) and either (b’.1) 1 − Y −i
1 ≤ p1 (i.e., y̆i1 is infeasible or trivial) or (b’.2)

1 − Y −i
1 > p1 ≥ (p1)2. Indeed, for case (b’.1), there is no need to compare r̃i1 with r̆i1 and the

feasibility condition p1 > (p1)0 is implied by p1 ≥ 1 − Y −i
1 > c

β since, then, (p1)0 < 1 − Y −i
1 . For

case (b’.2), r̃i1 ≥ r̆i1 if and only if p1 ≥ (p1)2 or p1 ≤ (p1)1, but the feasibility condition p1 > (p1)0
cannot be satisfied together with p1 ≤ (p1)1 because (p1)1 ≤ (p1)0. On the other hand, p1 > (p1)0
is implied by p1 ≥ (p1)2 and 1− Y −i

1 > c/β (recall that the latter implies (p1)2 > (p1)0).
We now determine when the maximum profit of case (a’) is not dominated by responses without

MFC, implying that Y1 is equivalent to Y −i
1 above. Recall that these responses correspond to

expectations ᾱ(0), p̄2(0). First, response that results in first-period sales only cannot lead to profits
higher than r̆i1 because the potential first-period demand under such response does not exceed the
first-period demand under MFC. Second, a response with sales only in the second period results in
all stock sold at p2 and profit no higher than r̃i1 ≤ r̆i1. The third remaining case is a response with
sales in both periods characterized by vmin

0 = vmin
0 (ᾱ(0), p̄2(0)) < 1 − Y1 and yi0 > 1 − Y1 − vmin

0 .
The profit in this case is concave quadratic of the form

ri0 = (p1 − c)(1− Y1 − vmin
0 ) + (β(1− Y1 − yi0)− c)(yi0 − [1− Y1 − vmin

0 ])

with
∂ri

0

∂yi
0

= −2βyi0+β[1−Y1− vmin
0 ]+β(1−Y1)− c, the unique solution to the first-order condition

ỹi0 = 1− Y1 − 1
2(v

min
0 + c/β), yielding total inventory ỹi0 + Y1 = 1− 1

2(v
min
0 + c/β) < 1− s/β (since

c > s and vmin
0 ≥ p1 >

s
β ) and profit

r̃i0 = (p1 − c)(1− Y1 − vmin
0 ) +

β

4
(vmin

0 − c/β)2. (26)

If vmin
0 ≤ c/β, then ỹi0 ≤ 1 − Y1 − vmin

0 and ri0 is decreasing for all yi0 ≥ 1 − Y1 − vmin
0 . Thus,

the profit-maximizing level of inventory without MFC is y̆i0 = 1 − Y1 − vmin
0 that results only in
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the first-period sales. In this case, we have already established that no-MFC response does not
dominate r̆i1.

If vmin
0 > c/β, we need to check when r̆i1 = (p1 − c)(1 − p1 − Y1) ≥ r̃i0 which is equivalent to

inequality (p1− c)(vmin
0 −p1) ≥ β

4 (v
min
0 − c/β)2 and, in turn, (6). The corresponding equation is (5)

with x = vmin
0 , and, by Lemma 2, its roots exist for vmin

0 ≥ c/β. Moreover, relation vmin
0 < 1 − Y1

implies that the larger root is less than (p1)2|x=1−Y −i
1

. Thus, when c/β < vmin
0 < 1− Y1, there is a

non-empty interval of p1 in which (6) holds and, for any p1 in this interval, p1 ≤ (p1)2 holds.
Summarizing all conditions where no-MFC responses cannot dominate r̆i1 we obtain: either (i)

vmin
0 ≥ 1−Y1, or (ii) v

min
0 < 1−Y1 and vmin

0 ≤ c/β, or (iii) c/β < vmin
0 < 1−Y1 and (6). Combining

these conditions with those of case (a’), we obtain the conditions of case (a) in the lemma. Indeed,
in case (a’.1) c/β ≥ 1 − Y1 implies that either (i) or (ii) holds. In the complementary case (a’.2),
subcases vmin

0 ≥ 1−Y1 or vmin
0 ≤ c/β require only additional condition p1 ≤ (p1)2 (vmin

0 < 1−Y1 is
implied by vmin

0 ≤ c/β and c/β < 1−Y1. An additional useful observation is that since (p1)0 > c/β
in this case, we have (p1)2 > c/β. On the other hand, if c/β < vmin

0 < 1− Y1, condition p1 ≤ (p1)2
is superseded by a stronger condition (6).

We complete the proof by describing when the maximum profit of case (b’) is not dominated by
responses without MFC. Two out of three possibilities are ruled out in a way almost identical to
the reasoning for the case (a’). First, response with the first-period sales only cannot lead to profits
higher than r̃i1 because the potential first-period demand under such response does not exceed the
first-period demand under MFC while the latter would result in r̆i1 ≤ r̃i1. Second, a response with
sales only in the second period results in all stock sold at p2 and profit no higher than r̃i1. The
remaining case is a response with sales in both periods characterized by vmin

0 = vmin
0 (ᾱ(0), p̄2(0)) <

1− Y1 and yi0 > 1− Y1 − vmin
0 .

Similarly to a comparison with r̆i1, no-MFC response cannot dominate r̃i1 if either (i) vmin
0 ≥

1− Y1 or (ii) vmin
0 < 1− Y1 and vmin

0 ≤ c/β. The condition vmin
0 < 1− Y1 in (ii) is always satisfied

for (b’) because 1 − Y1 > c/β. Examine c/β < vmin
0 < 1 − Y1. The MFC BR with inventory level

ỹi1 exists in this case if and only if r̃i1 ≥ r̃i0:

β

4
(1− c/β − Y1)

2 ≥ (p1 − c)(1− Y1 − vmin
0 ) +

β

4
(vmin

0 − c/β)2 ⇔
β

4
(1− Y1 − vmin

0 )(1− 2c/β − Y1 + vmin
0 ) ≥ (p1 − c)(1− Y1 − vmin

0 ) ⇔
β

4
(1− 2c/β − Y1 + vmin

0 ) ≥ p1 − c ⇔ β

4
(1 + 2c/β − Y1 + vmin

0 ) ≥ p1

(recall that Y1 in r̃i0 and Y −i
1 in r̃i1 are equivalent here). The left-hand-side of the last inequality

does not exceed (p1)2 because β
4 (1 + 2c/β − Y1 + vmin

0 ) < β
4 [2(1 − Y1) + 2c/β] = β(p1)0 < (p1)2.

However, this implies that p1 < (p1)2 which is incompatible with case (b’) because it requires
p1 ≥ (p1)2. Thus, there is a no-MFC BR that dominates r̃i1 when c

β < vmin
0 < 1 − Y1. Combining

(i) and (ii) with conditions of case (b’), we get the statement of the lemma.

8.3 Proof of Lemma 4 (deviation from no-MFC RESE into MFC)

The form of ri1 follows from general formula (4) and the expressions for the first-period sales given in
§2.2 with Y1 = yi1. There are two cases: (1) 1−yi1 ≥ vmin

0 with Q1 = yi1 (MFC-reseller i has no sales
in the second period) and Q0 = (1− yi1 − vmin

0 )∧ Y0, and (2) 1− yi1 < vmin
0 with Q1 = (1− p1)∧ yi1

and Q0 = 0.
(1.1) If 1− yi1 − vmin

0 ≥ Y0, then Q0 = Y0 implying Q = Y (sales in the first period only) with
ri1 = (p1 − c)yi1.
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(1.2) If 1 − yi1 − vmin
0 < Y0, which is possible only if Y0 > 0, we have Q0 = 1 − yi1 − vmin

0 and
Y > 1− vmin

0 = Q. This subcase implies sales in the second period with p2 = s∨ [β(1− Y )] , which
exceeds p1 if β(1 − Y ) ≥ p1 ⇔ yi1 ≤ 1 − Y0 − p1/β. This inequality may hold for a non-trivial yi1
only if Y0 < 1− p1/β, which, in turn, is possible in this subcase if vmin

0 > p1/β. Then ri1 is

ri1 =

{

(p1 − c)yi1, if yi1 ≤ 1− Y0 − p1/β,
(p2 − c)yi1, if yi1 > 1− Y0 − p1/β,

(27)

which is continuous in yi1 (since p2 = β(1− Y0 − yi1) = p1 at yi1 = y̌i1 , 1− Y0 − p1/β) and concave.
Since (p1 − c)yi1 increases in yi1, a profit maximizing reseller would not consider inventory levels
below y̌i1 implying p2 ≤ p1.

(2.1) If 1 − p1 ≥ yi1, then Q1 = yi1. If Y0 = 0, there are no sales in the second period and
ri1 = (p1 − c)yi1. If Y0 > 0, profit ri1 is the same as in (1.2).

(2.2) If 1 − p1 < yi1, then Q1 = 1 − p1, Q0 = 0, and there are sales in the second period with
ri1 = (p2 − c)yi1 and p2 < βp1.

Summarizing all cases, we conclude that ri1 is defined by (27) if vmin
0 > p1

β and, otherwise, by

ri1 =

{

(p1 − c)yi1, if yi1 ≤ 1− Y0 − vmin
0 ,

(p2 − c)yi1, if yi1 > 1− Y0 − vmin
0 .

If Y0 = 0 (reseller i is a monopolist), vmin
0 in the formula above for ri1 is substituted by p1 because

sales in the second period occur only when yi1 exceeds 1 − p1 (unlike the case of Y0 > 0 for which
the second period sales occur whenever yi1 is not less than 1− vmin

0 ).
Throughout the proof, we use the following notation:

y̆i1 , 1− Y0 − vmin
0 , r̆i1 , (p1 − c)y̆i1,

ỹi1 , (1− Y0 − c/β) /2 = z/2, r̃i1 , β(ỹi1)
2.

Quantity y̆i1 is the maximizer of (p1 − c)yi1 on the interval yi1 ≤ 1 − Y0 − vmin
0 , and ỹi1 is an

unconstrained maximizer of (p2 − c)yi1 = [β(1− Y0 − yi1)− c]yi1.
We can rule out any yi1 ≤ 1 − Y0 − p1 as a candidate for the optimal solution under rational

expectations leading to vmin
0 > p1 (which may take place only if ρ > 0 and Y0 > 0). Indeed, for

such yi1, we have 1 − Y ≥ p1, resulting in p2 ≥ βp1 and rational vmin
0 =

(

p1 ∧ p1−ρp2
1−ρβ

)

∨ 1 = p1, a

contradiction. On the other hand, any yi1 > 1− Y0 − p1 would result in p2 < βp1.
Hence, under rational expectations, an optimal inventory level of reseller i that deviates into

MFC may lead to the following three principal cases:
(a) Reseller i has positive inventory but sales occur only in the first period and ᾱ(1) = 0, leading

to vmin
0 (ᾱ(1), p̄2(1)) = p1. The inventory and profit are yi1 = y̆i1|ᾱ=0 = 1 − Y0 − p1 = z − z0

2 and
ri1 = r̆i1|ᾱ=0 = (p1 − c)y̆i1|ᾱ=0. This inventory level can be a candidate for optimum only if it is
positive, i.e., Y0 < 1−p1 or z > z0

2 . Since y̆
i
1|ᾱ=0 ≥ y̆i1|ᾱ=1∨y̌i1, the necessary and sufficient conditions

for y̆i1 to be the maximizer, include z > z0
2 and either y̆i1|ᾱ=0 ≥ ỹi1 (i.e., z − z0

2 ≥ z
2 ⇔ z ≥ z0) or

y̆i1|ᾱ=0 < ỹi1 (i.e., z < z0) and r̆i1|ᾱ=0 ≥ r̃i1.
(b) Reseller i has positive inventory while sales occur in both periods, ᾱ(1) = 1, and any

vmin
0 (ᾱ(1), p̄2(1)) from the interval [p1, 1] is plausible a priori. Since, under rational expectations,
p2 < βp1 ≤ p1, case (b) involves reimbursements and the general expression for the profit of
reseller i is ri1 = (p2 − c)yi1 regardless of the specific value of vmin

0 . The maximum must be internal,
can only be at ỹi1, and the corresponding profit is r̃i1. Rationality of expectations requires that
ỹi1 > 1 − Y0 − p1, which implies p2 < βp1, and can be written either as p1 > c

β + z
2 , or z >
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2(1 − Y0 − p1) = 2z − 2(p1 − c
β ), or z < z0. Since vmin

0 ≥ p1 and p1 ≤ p1/β, inequality z < z0

implies that ỹi1 does belong to the range of inventory levels where the profit function has the form
ri1 = (p2 − c)yi1, i.e., ỹ

i
1 > y̆i1|ᾱ=1 = 1 − vmin

0 − Y0 and ỹi1 > y̌i1. Thus, the inventory ỹi1 is the
maximizer under rational expectations if and only if

• (feasibility) ỹi1 > 0 or, equivalently, Y0 < 1− c/β ⇔ z > 0;

• (rationality) z < z0; and

• (optimality) either y̆i1|ᾱ=1 ≤ (y̌i1)
+ (i.e., profit function is continuous and concave, and there

is no need to compare profits), or y̆i1|ᾱ=1 > (y̌i1)
+ (profit is discontinuous at y̆i1|ᾱ=1) and

r̃i1 ≥ r̆i1|ᾱ=1 = y̆i1|ᾱ=1(p1 − c).

(c) MFC reseller i chooses to exit the market by setting yi1 = 0 if and only if neither y̆i1|ᾱ=0 > 0
nor ỹi1 > 0 can be a candidate for the optimal solution. This outcome is possible if and only if
z ≤ z0

2 (Y0 ≥ 1− p1 — positive y̆i1|ᾱ=0 with sales only in the first period is impossible) and either
z ≤ 0 (Y0 ≥ 1 − c/β), or z ≥ z0, or both (if p1 ≤ c/β) hold — positive ỹi1 is impossible under
rational expectations. For z0

2 > 0, z0 ≤ z ≤ z0
2 cannot hold, and only z ≤ 0 is compatible with

a weaker condition z ≤ z0
2 . For z0

2 ≤ 0, at least one of z ≤ 0 or z ≥ z0 holds for any z ≤ z0
2 . A

combination of these two cases yields the condition of part (c). Any z < z0
2 results in the second

period sales and rational expectations ᾱ = 1. If z = z0
2 , sales take place in the first period only

with ᾱ = 0. For Y0 = 0, yi1 = 0 is never optimal since Y0 ≥ 1 − p1 may hold only for p1 = 1 and
then ỹi1 =

1
2 (1− c/β) > 0 satisfies z < z0, which becomes 1− c/β > 0.

It remains to show the equivalence of the above necessary and sufficient conditions in parts (a)
and (b) to the corresponding conditions in the statement of the lemma.

Part (a.1) If z0 ≤ 0 (i.e., p1 ≤ c/β), then z > z0
2 implies z ≥ z0 and there is no need to compare

profits.
Part (a.2). If z0 > 0 (i.e., p1 > c/β), it is still possible that z ≥ z0 and there is no need

to compare profits. Consider z0
2 < z < z0, where the profits need to be compared. In this case,

y̆i1|ᾱ=0 is not less profitable than ỹi1 if and only if r̆i1|ᾱ=0 ≥ r̃i1, which is a quadratic inequality
in z : β

4 z
2 − z(p1 − c) + z0

2 (p1 − c) ≤ 0 with the discriminant (p1 − c)2 − β (p1 − c/β) (p1 − c) =
(p1 − c)p1(1 − β) ≥ 0 (strict inequality if β < 1), and the roots of the corresponding equation

z1,2 = 2
β

[

p1 − c∓
√

(p1 − c)p1(1− β)
]

, implying that r̆i1|ᾱ=0 ≥ r̃i1 is equivalent to z1 ≤ z ≤ z2.

The roots and z0 are such that z0
2 < z1 ≤ z0 ≤ z2. Indeed, the LHS of the quadratic inequality in z is

β
4 z

2
0 > 0 at z = z0

2 and non-positive at z = z0 : β(p1−c/β)2−2(p1−c/β)(p1−c)+(p1−c/β)(p1−c) ≤
0 ⇔ p1β − c ≤ p1 − c, which always holds. Hence, since in case (a) the comparison of r̆i1|ᾱ=0 with
r̃i1 is relevant only in the range z0

2 < z ≤ z0, we can conclude that r̆i1|ᾱ=0 ≥ r̃i1 if z ≥ z1. This
inequality includes as a particular case the condition z ≥ z0 for p1 > c/β, when y̆i1|ᾱ=0 is optimal
without comparing the profits.

Part (b), possible values of vmin
0 . As shown above, feasibility of ỹi1 and rationality of expectations

require z be in the range 0 < z < z0. It remains to specify the conditions of optimality of ỹi1.
These conditions depend on y̆i1|ᾱ=1 = 1 − Y0 − vmin

0 , which equals 1 − p1 if Y0 = 0. In this case,
y̆i1|ᾱ=1 = y̆i1|ᾱ=0 and, by part (a), the condition of optimality is z ≤ z1.

Consider Y0 > 0. Denote V (z) , p1−ρc−ρβz/2
1−ρβ . Then, in part (b),

vmin
0 = p1 ∨

(

p1 − ρβ(1− Y0 − z/2)

1− ρβ
∧ 1

)

= p1 ∨ [V (z) ∧ 1] . (28)

Given 0 < z < z0, the possible values of vmin
0 include the following subcases.
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vmin
0 = p1 if p1 − ρc − ρβz/2 ≤ p1 − ρβp1 ⇔ ρβp1 − ρc ≤ ρβz/2, which holds either if ρ = 0

or ρ > 0 and ρβ (p1 − c/β) ≤ ρβz/2. The last inequality contradicts z < z0, therefore vmin
0 = p1

may hold only if ρ = 0. Thus, for ρ = 0, y̆i1|ᾱ=1 = y̆i1|ᾱ=0, and, again, by part (a), the condition of
optimality is z ≤ z1.

Consider ρ > 0. Then vmin
0 > p1 if p1 < 1 and vmin

0 = 1 iff either p1 = 1 or p1 < 1 and

p1 − ρc− ρβz/2 ≥ 1− ρβ ⇔ z ≤ 2(p1 − ρc+ ρβ − 1)/(ρβ). (29)

In this case, y̆i1|ᾱ=1 = −Y0 < 0.
Part (b), condition z ≤ z̃1 ( r̆i1|ᾱ=1 ≤ r̃i1). Recall that in the range 0 < z < z0, inventory ỹi1

is optimal iff (I) there is no need to compare profits (y̆i1|ᾱ=1 ≤ (y̌i1)
+), or (II) y̆i1|ᾱ=1 > (y̌i1)

+ and
r̆i1|ᾱ=1 ≤ r̃i1.

(I). Consider y̌i1 ≤ 0. Condition y̆i1|ᾱ=1 ≤ 0 trivially holds for vmin
0 = p1 = 1.

For p1 < 1, condition y̆i1|ᾱ=1 ≤ 0 is equivalent to vmin
0 ≥ 1−Y0, or, in terms of z, vmin

0 −c/β ≥ z,
which, for V (z) ∈ (p1, 1], becomes

p1 − ρc− ρβz/2 ≥ (z + c/β)(1− ρβ) ⇔ z(1− ρβ + ρβ/2) ≤ p1 − c/β ⇔ z ≤ z0
2− ρβ

.

Combining the last inequality with (29), we obtain that inequality y̆i1|ᾱ=1 ≤ 0 is equivalent to
z ≤ 2

ρβ (p1 − ρc + ρβ − 1) ∨ z0
2−ρβ , where the RHS is the maximum from the two bounds because

z ≥ 2(p1 − ρc + ρβ − 1)/(ρβ) is equivalent to V (z) ∈ (p1, 1]. Both bounds are always strictly less
than z0. Indeed, 2− ρβ > 1, and

2[p1 − ρc+ ρβ − 1]/(ρβ) < z0 ⇔ p1 − ρc+ ρβ − 1 < ρβp1 − ρc ⇔ 1− ρβ > p1(1− ρβ),

which holds for any p1 < 1.
Consider y̌i1 > 0. Inequality y̆i1|ᾱ=1 ≤ y̌i1 is 1 − Y0 − vmin

0 ≤ 1 − Y0 − p1/β ⇔ p1/β ≤ vmin
0 ,

which, for ρ > 0, may hold only if p1 ≤ β. Under this condition, p1/β ≤ vmin
0 is equivalent to

p1(1− ρβ)/β ≤ p1 − ρc− ρβz/2 or z ≤ 2 (p1 − ρc+ ρp1 − p1/β) /(ρβ).
(II). This subcase contains two conditions: z ∈ (0, z0) ∩

{

z : y̆i1|ᾱ=1 > (y̌i1)
+
}

and r̆i1|ᾱ=1 ≤ r̃i1.
The last inequality, after the substitution of y̆i1|ᾱ=1 = z + c/β − vmin

0

= z +
c

β
− p1 − ρc− ρβz/2

1− ρβ
=

c

β
− p1 − ρc

1− ρβ
+

z

2

2− ρβ

1− ρβ

into r̆i1|ᾱ=1 = y̆i1|ᾱ=1(p1 − c), becomes
(

z
2
2−ρβ
1−ρβ + c/β−ρc−p1+ρc

1−ρβ

)

(p1 − c) ≤ β
4 z

2 or

z2 − 2z(p1 − c)(2− ρβ)

β(1− ρβ)
+

2z0(p1 − c)

β(1− ρβ)
≥ 0. (30)

The LHS of (30) at z = z0 is z0 {z0 − 2(p1 − c)/β} = 2z0 {βp1 − c− p1 + c} /β ≤ 0. Inequality is
strict if β < 1, i.e., the roots z̃1 and z̃2 of the corresponding equation always exist and z̃1 ≤ z0 ≤ z̃2.

It is easy to show that z0
2−ρβ < z̃1. Indeed, the LHS of (30) with z = z0

2−ρβ becomes
(

z0
2−ρβ

)2
> 0.

The bound 2
ρβ [p1−ρc+ρβ−1] that corresponds to vmin

0 = 1 is also strictly below z̃1 because, by (28)

with z = z̃1, we have vmin
0 < 1. Otherwise, by (29) with z = z̃1, v

min
0 = 1 implying r̆i1|vmin

0
=1 < 0,

and equality r̆i1|vmin
0

=1 = r̃i1 cannot hold.
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The bound 2
ρβ (p1 − ρc+ ρp1 − p1/β) , which results from p1/β ≤ vmin

0 , also does not exceed z̃1

since the LHS of inequality r̆i1|ᾱ=1 ≤ r̃i1, i.e.,
(

z + c/β − vmin
0

)

(p1 − c), is decreasing in vmin
0 , and

the inequality holds for vmin
0 = p1/β. Indeed,

(

z +
c

β
− p1

β

)

(p1 − c) ≤ β

4
z2 ⇔ β

4
z2 − z(p1 − c) +

(p1 − c)2

β
≥ 0 ⇔

(

z
√
β

2
− p1 − c√

β

)2

≥ 0.

Hence, we have 0 < 2
ρβ [p1 − ρc + ρβ − 1] ∨ z0

2−ρβ ∨ 2
ρβ (p1 − ρc+ ρp1 − p1/β) < z̃1 ≤ z0 ≤ z̃2, and,

combining all the conditions in case (b) for ρ > 0 and Y0 > 0, ỹi1 is optimal iff z > 0 and either
p1 = 1 or p1 < 1 and z ≤ z̃1. Namely, for p1 < 1, a positive ỹi1 is optimal in the subrange z ≤ z̄,
where

z̄ =

{

2
ρβ [p1 − ρc+ ρβ − 1] ∨ z0

2−ρβ , if p1 > β,
2
ρβ [p1 − ρc+ ρβ − 1] ∨ z0

2−ρβ ∨ 2
ρβ (p1 − ρc+ ρp1 − p1/β) , if p1 ≤ β

because in this subrange a positive y̆i1|ᾱ=1 cannot be feasible and rational; and ỹi1 is optimal in the
subrange z ∈ (z̄, z̃1] because both positive ỹi1 and y̆i1|ᾱ=1 are feasible and rational, and r̆i1|ᾱ=1 ≤ r̃i1.

When positive ỹi1, y̆
i
1|ᾱ=0, and y̆i1|ᾱ=1 are feasible and rational, it can be shown that z1 ≤ z̃1

with equality only if ᾱ = 0, Y0 = 0, or ρ = 0. Indeed, if we assume that z1 > z̃1 for ᾱ = 1, Y0 > 0,
and ρ > 0, then, for any z ∈ (z̃1, z1), we have r̆i1|ᾱ=1 > r̃i1 and, at the same time, r̆i1|ᾱ=0 < r̃i1,
contradicting the fact that r̆i1|ᾱ=1 is decreasing in vmin

0 . Therefore, ỹi1 is optimal for any z ∈ [z1, z̃1]
when ᾱ = 1, and y̆i1|ᾱ=0 is optimal for z ≥ z1 = z̃1 when ᾱ = 0.

The expression for z̃1 (for n > 1) is z̃1 =
1
2

[

2(p1−c)(2−ρβ)
β(1−ρβ) −

√

4(p1−c)2(2−ρβ)2

β2(1−ρβ)2
− 8z0(p1−c)

β(1−ρβ)

]

, which

can be written as z̃1 = (p1−c)(2−ρβ)
β(1−ρβ)

[

1−
√

1− 2z0β(1−ρβ)
(p1−c)(2−ρβ)2

]

. For β = 1, this formula yields z̃1 =

z1 = z0 = z2. Indeed, z̃1|β=1 = (2−ρ)(p1−c)
1−ρ

[

1−
√

1− 4(1−ρ)
(2−ρ)2

]

, where the expression under the

square root is ρ2/(2−ρ)2 resulting in z̃1|β=1 =
p1−c
1−ρ [2−ρ−ρ] = 2(p1−c) = z1|β=1 = z0|β=1 = z2|β=1.

In the general case, z̃1|β=1 6= z̃2|β=1.
If p1 = c/β, then z̃1 = z1 = z0 = 0, where z̃1 = z1 = 0 since the free coefficient in both quadratic

equations for z1,2 and for z̃1,2 contains z0, which is zero in this case.

vmin
0 from part (b) is not decreasing in ρ if V (z) ∈ (p1, 1] since

∂vmin
0

∂ρ = A
(1−ρβ)2

, where A =

{(−c− βz/2)(1− ρβ) + β(p1 − ρc− ρβz/2)} = (c+ βz/2) (ρβ−1−ρβ)+βp1 = β (p1 − z/2− c/β) ,
which, as shown above, is positive for vmin

0 ≥ p1. If V (z) ≥ 1, vmin
0 is constant in ρ and equals one.

8.4 Proof of Lemma 5 (condition of N3.1 does not hold)

For n = 1, r̆i1 ≡ r∗,M2 (Theorem 1) and r∗,N3 is equal to the profit of a deviator from M2 into no-
MFC with sales in both periods (see (26) with Y −i = 0 in the proof of Lemma 3). By Theorem 1,
M2 exists in the area that intersects with the area of NA3 existence, which, for n = 1, requires
p1 > c/β, and, by part (2.2) of Theorem 1, M2 exists for β → 1− 0 and ρ = (1−√

1− β)/β → 1,
implying CB2 = 0, and p1 ≤ P22, where P22 > c/β, yielding a non-empty range c/β < p1 ≤ P22,

where P22|n=1 =
1
2

[

1 + c+
√

(1− β) (1− c2/β)
]

(Corollary 1), which, for c → 0 and β → 1 goes to
1
2 . For these inputs, inequality

n−1
n Y ∗ ≤ 1− c/β− z1 is z1 ≤ 1,which is equivalent to p1 ≤ P22 =

1
2 .

Indeed, z1 ≤ 1 ⇔ p1 − c−
√

(p1 − c)p1(1− β) ≤ β
2 ⇔ p1 ≤ 1

2 .
At the same time, by Lemma 2 with x = vmin

0 > c/β, inequality r∗,M2 ≥ r̃i0 may be strict for
β < 1, resulting, by continuity of r∗,N3 and r̆i1, in violation of r∗,N3 ≥ r̆i1 in the vicinity of the area
with β = ρ = 1and c = 0.
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8.5 Proof of Lemma 6 (condition of N3.2 and N4.2 holds)

Under NA3, by Theorem 2, Y ∗ > 1− p1 for any n ≥ 1, and, under NA4, Y ∗ ≥ 1− s/β > 1− p1 for
any n > 1 since p2 = s and p1 > s/β. Therefore, there exists N > 1 such that n−1

n Y ∗ > 1 − p for
any n ≥ N. If β < 1 and n > 1, the lower bound for p1 in both NA3 and NA4, nc

β+n−1 , is strictly
less than c/β and approaches c with n → ∞. Hence, for β < 1 and n ≥ N, there exist a non-empty
range for p1 such that nc

β+n−1 ∨ 1− n−1
n Y ∗ < p1 ≤ c/β.

8.6 Proof of Lemma 7 (condition for profits of N3.2 holds)

For n = 1, ρ = 0, and β = 1, the NA3 p1−range is p1 ∈ (c, 1), hence the condition p1 > c/β
holds and inequality n−1

n Y ∗ ≥ 1 − c/β − z̃1 becomes p1 − c ≥ 1−c
2 or p1 ≥ 1+c

2 . Since, in this
case, v∗ = p1, the inventory, p∗2, and the profit are Y ∗ = 1

2(2 − c − p1), p∗2 = 1
2(c + p1), r

∗,N3 =
(p1 − c)(1− p1) + (p∗2 − c)[p1 − 1

2(c+ p1)]. Then inequality r∗,N3 ≥ r̃i1 takes the form

(p1 − c)(1− p1) +
1

4
(p1 − c)2 ≥ 1

4
(1− c)2 ⇔ 4(p1 − c)(1− p1) ≥ (1− p1)(1 + p1 − 2c)

or p1 ≥ 1+2c
3 , which holds for any p1 ≥ 1+c

2 since c < 1.

8.7 Proof of Lemma 8 (N4 existence, sufficient conditions)

Lemma 4 yields necessary conditions of existence of positive y̆i1 and ỹi1 as upper bounds on Y0.
Namely, Y0 < 1 − p1 for y̆i1, and Y0 < 1 − c/β (z > 0) for ỹi1. At the same time, by Theorem
3, Y ∗ > 1 − s/β, which is a lower bound: Y0 > n−1

n (1− s/β) . Hence, a deviation from NA4
into one of the forms of MFC is impossible if both Y0-ranges are empty, i.e.,

(

1− 1
n

)

(1− s/β) ≥
(1− p1) ∨ (1− c/β) , which can be written as 1

n (1− s/β) ≤ (p1 − s/β) ∧ c−s
β or n ≥ β−s

p1β−s ∨
β−s
c−s .

8.8 Proof of Lemma 9 (Total equilibrium customer surplus)

The total surplus is Σ = Σ1 +Σ2, where Σ1 =
∫ 1
v∗(v − p1)dv without MFC and Σ1 =

∫ 1
p1
(v − p∗2)dv

with MFC. When there are second-period sales, Σ2 =
∫ v∗

p∗
2
β

(βv − p∗2)dv =
∫ βv∗

p2
(ṽ − p∗2)

dṽ
β without

MFC and Σ2 =
∫ βp1
p2

(ṽ − p∗2)
dṽ
β with MFC. Straightforward integration specifies Σ as follows.

Part (1). ΣM1
1 =

∫ 1
p1
(v−p∗2)dv =

(

v2/2− p∗2v
)∣

∣

1

p1
= 1

2 −p∗2−p21/2+p∗2p1+p1−p1+p21/2−p21/2

= (1−2p1+p21)/2+p1(1−p1)−p∗2(1−p1) = (1−p1)
2/2+(1−p1)(p1−p∗2), and ΣM1

2 =
∫ βp1
p∗
2

(ṽ−p∗2)
dṽ
β =

(

ṽ2/2− p∗2ṽ
)

/β
∣

∣

βp1
p∗
2

=
[

β2p21/2− βp∗2p1 − (p∗2)
2 /2 + (p∗2)

2
]

/β = (βp1 − p∗2)
2/(2β).

Part (2). Since v∗ = p1 under N2, ΣM2 = ΣN2 = ΣM2
1 =

∫ 1
p1
(v−p1)dv = 1/2−p1−p21/2+p21 =

(1− p1)
2/2.

Part (3). Since v∗ = 1 under N1, ΣN1 = ΣN1
2 =

∫ β
p∗
2

(ṽ − p∗2)
dṽ
β = (β − p∗2)

2/(2β).

Part (4). Under N3 and 4, Σ1 =
∫ 1
v∗(v − p1)dv = 1

2 − p1 − (v∗)2 /2 + p1v
∗ + p21/2 − p21/2 =

(1−p1)
2/2−(v∗−p1)

2/2, and Σ2 =
∫ βv∗

p∗
2

(ṽ−p∗2)
dṽ
β = (βv∗−p∗2)

2/(2β). Under N3 and N4, inequality

p∗,N4
2 = s < p∗,N3

2 always hold. In both N3 and N4, v∗ =
p1−ρp∗

2

1−ρβ , which is decreasing in p∗2 except

the case ρ = 0 when v∗,N3 = v∗,N4 = p1. Therefore, v
∗,N4 > v∗,N3 for any ρ ∈ (0, 1).
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8.9 Proof of Lemma 10 (NA3, n = 1)

By part NA3 of Theorem 2 with n = 1, condition (a) always holds, and the equation (22) in Y

reduces to Y
[

Y − (β−c)(1−ρβ)+β(1−p1)
β(2−ρβ)

]

= 0 yielding Y ∗ = (β−c)(1−ρβ)+β(1−p1)
β(2−ρβ) = 1 − βp1+c(1−ρβ)

β(2−ρβ) ,

v∗ = 1
1−ρβ

[

p1 − ρβp1+c(1−ρβ)
2−ρβ

]

= 1
1−ρβ

2p1−p1ρβ−ρβp1−cρ(1−ρβ)
2−ρβ = 2p1−ρc

2−ρβ , and p∗2 = β(1 − Y ∗) =

βp1+c(1−ρβ)
2−ρβ = c+βp1−c

2−ρβ . Substitution into the formula for r∗,N3 results in r∗,N3 = (p1−c)2(1−p1)−ρ(β−c)
2−ρβ +

βp1−c
2−ρβ

(

2p1−ρc
2−ρβ − βp1+c(1−ρβ)

β(2−ρβ)

)

, where the bracket in the last term is 2βp1−ρβc−βp1−c(1−ρβ)
β(2−ρβ) = βp1−c

β(2−ρβ) ,

leading to the expression in the lemma. The expression for Σ∗ results from direct substitution of
v∗ and p∗2 into the general formula (Lemma 9).

8.10 Proof of Lemma 11 (NA3, NA4, p1 = β)

NA3. The equation in Y with p1 = β yields the expression for Y ∗. With this Y ∗ and p1 = β we
have v∗ = β n+1−ρβ−ρ[1−ρβ−n(1−c/β)(1−ρβ)+nβ]

(1−ρβ)(n+1−ρβ) = β 1−ρ+n[1+ρ(1−c/β)]
n+1−ρβ . Then r∗,N3 is

r∗,N3|p1=β =
1

n
[(β − c)(1− v∗) + (β(1− Y ∗)− c)(Y ∗ − 1 + v∗)] =

Y ∗

n
[β − c− β(Y ∗ − 1 + v∗)] ,

which after substitutions for Y ∗ and Y ∗ − 1 + v∗ = 1
n+1−ρβ {n (1− c/β)− (1− β)} becomes

r∗,N3|p1=β =
(1− c/β) (1− ρβ) + 1− β

(n+ 1− ρβ)2
{(β − c)(n+ 1− ρβ)− β [n (1− c/β)− (1− β)]} ,

where {·} = (1−ρβ)(β−c)+β(1−β), yielding the expression for r∗,N3|p1=β . Condition c/β < CBN2

results from the p1-lower bound p1 > nc
β+n−1 ; the upper bound is β < 1 for ρ = 0 and, for ρ > 0,

it can be written as c/β > 1 − n+1
nρβ (1 − β) = CBN1. Condition (a) is specified for p1 = β. Using

the expression for Y ∗, inequality Y ∗ < 1 − s/β is equivalent to n [(1− c/β) (1− ρβ)− β + s/β] <
(1 − ρβ) (1− s/β) , which always holds if [·] ≤ 0 or β2 − s − (β − c)(1 − ρβ) ≥ 0. Since the LHS
is increasing in ρ, this inequality holds for any ρ ≥ 0 if c − s ≥ β(1 − β). Otherwise, [·] > 0 and
Y ∗ < 1− s/β for any n < (1− ρβ) (1− s/β) / [·] .

NA4. The expressions for Y ∗, v∗, r∗,N4 and condition (a) follow directly from Theorem 3 with
p1 = β. Condition (b) is n−1

n
βY ∗

c+βv∗−2s ≥ 1, which, after substitution for Y ∗ and v∗, becomes

(c− s)
(

c− s+ β2−s
1−ρβ

)

≤
(

n−1
n

)2
β(β − s)

(

1− β−ρs
1−ρβ

)

.

The requirement in condition (c) that conditions (a) and (b) do not hold and the deviator profit
is strictly decreasing in the interval corresponding to p2 > s is equivalent, as shown in Bazhanov,
Levin, and Nediak (2015), to the following: “there are no real roots of equation

2Y 3 −
(

2− v∗ − c/β +
n− 1

n
Y ∗

)

Y 2 + (1− p1/β) (1− v∗)
n− 1

n
Y ∗ = 0 (31)

in the interval (1−v∗, 1−s/β).” If p1 = β, the single root of (31) is Ỹ = 1
2

(

2− v∗ − c/β + n−1
n Y ∗) .

This root is not in the interval (1 − v∗, 1 − s/β) if and only if either Ỹ ≤ 1 − v∗, which, us-

ing n−1
n Y ∗ =

(

n−1
n

)2 β−s
c−s (1 − v∗), becomes 1 − c/β ≤ (1 − v∗)

[

1−
(

n−1
n

)2 β−s
c−s

]

, or Ỹ ≥ 1 −
s/β, which, in the same way, becomes 1 + c−2s

β ≤ (1 − v∗)
[

1 +
(

n−1
n

)2 β−s
c−s

]

. When Ỹ ∈ (1 −
v∗, 1 − s/β), NA4 exists if r∗,N4 ≥ r̃i =

(

Ỹ − n−1
n Y ∗

) [

β
(

2− v∗ − Ỹ
)

− c+ (p1−β)(1−v∗)

Ỹ

]∣

∣

∣

p1=β
=

(

Ỹ − n−1
n Y ∗

) [

β(2− v∗ − Ỹ )− c
]

, where β(2 − v∗ − Ỹ ) − c = β
2

(

2− v∗ − c/β − n−1
n Y ∗) and
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Ỹ − n−1
n Y ∗ = 1

2

(

2− v∗ − c/β − n−1
n Y ∗) = 1

2

[

(1− v∗)
(

1−
(

n−1
n

)2 β−s
c−s

)

+ 1− c/β
]

. These ex-

pressions yield

r̃i = β
4

[

(1− v∗)
(

1−
(

n−1
n

)2 β−s
c−s

)

+ 1− c/β
]2
.
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