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Nicola Ciccarelli∗,

Tilburg University

Abstract

Financial data sets exhibit conditional heteroskedasticity and asymmetric volatility. In this paper we de-

rive a semiparametric efficient adaptive estimator of a conditional heteroskedasticity and asymmetric volatility

GARCH-type model (i.e., the PTTGARCH(1,1) model). Via kernel density estimation of the unknown density

function of the innovation and via the Newton-Raphson technique applied on the
√
n-consistent quasi-maximum

likelihood estimator, we construct a more efficient estimator than the quasi-maximum likelihood estimator.

Through Monte Carlo simulations, we show that the semiparametric estimator is adaptive for parameters in-

cluded in the conditional variance of the model with respect to the unknown distribution of the innovation.

JEL Classification: C14; C22.

Keywords: Semiparametric adaptive estimation; Power-transformed and threshold GARCH.

1 Introduction

Stock prices and other asset prices exhibit conditional heteroskedasticity, that is, volatility shocks are clustered

in some periods while other periods are characterized by low volatility. Engle (1982) proposed the ARCH model

to allow for the presence of conditional heteroskedasticity in asset prices. Bollerslev (1986) generalized Engle

(1982)’s idea with the GARCH(p,q) model. Additionally, Black (1976), Christie (1982), Engle (1990) and Engle

and Ng (1993) show that stock market prices are affected by asymmetric volatility. Essentially, the latter authors

show that stock prices tend to have higher volatility in the case of negative news than in the case of positive

news, leading to an asymmetric evolution of volatility through time. In order to capture the presence of volatility

asymmetry, many models were proposed starting with the Taylor-Schwert GARCH model [see Taylor (1986) and

Schwert (1989) for more details], the AGARCH(1,1) model proposed by Engle (1990) and the EGARCH model

proposed by Nelson (1991). One of the most recent asymmetric volatility models -i.e., the PTTGARCH(p,q)

model- was introduced by PWT (2008); the PTTGARCH(p,q) model is a very flexible model and, under certain
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conditions, it includes several ARCH/GARCH models such as Bollerslev (1986)’s GARCH(p,q) model. Engle

and Ng (1993) and Awartani and Corradi (2005) compare the standard GARCH model with several asymmetric

GARCH-type models, and they conclude that asymmetric GARCH-type models are more appropriate than the

symmetric GARCH(1,1) model to forecast financial markets volatility.

Building upon these results we construct a semiparametric efficient adaptive estimator for the PTTGARCH

model, and, through a series of Monte Carlo simulations, we show that this estimator regains most of the efficiency

loss of the inefficient quasi-maximum likelihood estimator whenever the true innovation is not distributed as a

standard normal random variable or as a Gaussian mixture random variable. For simplicity we restrict our

attention to the PTTGARCH(1,1) model; anyhow, the results can be generalized to the PTTGARCH(p,q) case.

The paper is organized along the following lines. Section 2 contains two main results. First, we show that the

quasi-maximum likelihood estimator is consistent and asymptotically normal in the case of the PTTGARCH(1,1)

model. Second, we show that the log-likelihood ratio of the PTTGARCH(1,1) model satisfies the Local Asymptotic

Normality (LAN) condition. Through the Convolution theorem, the semiparametric estimator -which is built upon

the quasi-maximum likelihood estimator- is shown to achieve the semiparametric lower bound for the variance. In

Section 3 we show how to compute the theoretical asymptotic variance of the maximum likelihood (ML) and quasi-

maximum likelihood (QML) estimators in the case of the PTTGARCH(1,1) model. The theoretical asymptotic

variance of the maximum likelihood (ML) and quasi-maximum likelihood (QML) estimators are obtained through

simulation, and can be used to check whether Monte Carlo simulations are appropriately set up. In Section 4 we

report the results of Monte Carlo simulations; in this section we compare estimators in terms of their efficiency,

and we check whether the asymptotic results of the ML and QML estimators from Monte Carlo experiments

approximate well enough the theoretical asymptotic behavior of the ML and QML estimators. Section 5 concludes.

2 The Semiparametric Efficient Adaptive Estimator for the PTTGARCH(1,1)

model

The power-transformed and threshold GARCH(p, q) model [henceforth PTTGARCH(p, q) model] was introduced

by PWT (2008) [see equation (1.2) of PWT (2008), page 353], and it includes several conditional heteroskedasticity

models. In this paper we use the PTTGARCH(1,1) model without power-transformation, that is, we set δ = 1

and, for notational simplicity, we set p = 1 and q = 1 in equation (1.2) of PWT (2008). The PTTGARCH(1,1)

model used in this paper incorporates conditional heteroskedasticity and asymmetric volatility. Let {Yt} denote an

observed real-valued discrete-time stochastic process; the stochastic process {Yt} is conditionally heteroschedastic:

Yt =
√

htηt, ηt ∼ iid(0, 1), (2.1)
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where the unobservable heteroskedasticity factors {ht}t∈Z
follow a PTTGARCH(1,1) process:

ht = ω + βht−1 + α+(Y +
t−1)2 + α−(Y −

t−1)2, (2.2)

where (and in the sequel) the notation [see Hwang and Kim (2004), page 296]

a+
t = max(at, 0) and a−

t = max(−at, 0) is used so that at = a+
t − a−

t ,

and where ω > 0, α+ ≥ 0, α− ≥ 0, β ≥ 0, h1 = ω
1−β− 1

2
(α+)− 1

2
(α−)

.

It is not possible to obtain a semiparametric estimation of the PTTGARCH(1,1) model in eq. (2.1)-(2.2) that

is fully efficient since the score space is not orthogonal to the tangent space generated by the nuisance parameter

(i.e., the distribution of the standardized innovation), thus a reparametrization of the PTTGARCH(1,1) model

is needed to obtain a semiparametric efficient adaptive estimator. We set ω = 1 and we introduce the location

parameter µ and the scale parameter σ in the PTTGARCH(1,1) model so that the orthogonality relation (3.6) of

DKW (1997) is satisfied.1

Let µ ∈ R, σ > 0, α+ > 0, α− > 0, β > 0 be parameters2 and let {ηt : t ∈ Z} be an i.i.d. sequence of innovation

errors with zero mean, unit variance and density f . Put ξt = µ+σηt, thus ξt is a random variable with location µ,

scale σ and density σ−1f({ξt − µ} /σ). Consider the reparametrized PTTGARCH(1,1) model with observations

Yt =
√

htξt = µ
√

ht + σ
√

htηt, ηt ∼ iid(0, 1), (2.3)

where the unobservable heteroskedasticity factors {ht}t∈Z
follow a PTTGARCH(1,1) process:

ht = 1 + βht−1 + α+(Y +
t−1)2 + α−(Y −

t−1)2 = 1 + ht−1

[

β + α+

(

ξ+
t−1

)2
+ α−

(

ξ−
t−1

)2
]

, (2.4)

where the notation [see Hwang and Kim (2004), page 296]

a+
t = max(at, 0) and a−

t = max(−at, 0) is used so that at = a+
t − a−

t ,

where h1 = 1
1− 1

2
(α+)− 1

2
(α−)−β

, and where α+ > 0, α− > 0, β > 0, µ ∈ R and σ > 0.3 Observe that the Euclidean

parameter θ = (α+, α−, β, µ, σ)′ ∈ Θ ⊂ R
5 is identifiable.

1Similar reparametrizations are used in DK (1997) for the GARCH(1,1) model and in Sun and Stengos (2006) for the AGARCH(1,1)
model.

2From this point onwards in this paper, unless explicitly stated otherwise, we restrict our attention to the case of strictly positive
conditional variance parameters (i.e., α+ > 0, α− > 0, β > 0). We assume that parameters α+ and α− are strictly positive as it is
needed for the consistency of the quasi-maximum likelihood estimator [see Assumption QML4 in Section 2.4], and, for simplicity, we
assume that β is strictly positive.

3See Footnote 2.
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We assume that the observed data Yt are stationary given the starting value h1(θ) = h01 initializing (2.4). The

necessary and sufficient condition for a unique strictly stationary and ergodic solution for the (non-reparametrized)

PTTGARCH(1,1) model is reported in Liu (2006) [Theorem 2.1, page 1324]. We adapt the necessary and sufficient

condition given in Liu (2006) to the case of the reparametrized PTTGARCH(1,1) model.

Assumption 2.1. Strict Stationarity of the Reparametrized PTTGARCH(1,1) Model Based on The-

orem 2.1 of Liu (2006)

E ln
[

β + α+(ξ+
t )2 + α−(ξ−

t )2
]

< 0. (2.5)

If E
[

α+(ξ+
t−k)2 + α−(ξ−

t−k)2 + β)
]

< 1, then the necessary and sufficient condition for the strict stationarity of

{ht : t ∈ Z} reported in eq. (2.5) is satisfied [see Assumption QML3 in Section 2.4 for the proof].

2.1 The Data Generating Process

We assume that there is an underlying probability distribution, or data generating process (DGP), for the observ-

able Yt and a true parameter vector θ0 = (α0+, α0−, β0, µ0, σ0)′ which is a characteristic of that DGP, with

Yt = µ0

√

ht + σ0

√

htηt, ηt ∼ iid(0, 1),

ht = 1 + β0ht−1 + α0+(Y +
t−1)2 + α0−(Y −

t−1)2 = 1 + ht−1

[

β0 + α0+

(

ξ+
t−1

)2
+ α0−

(

ξ−
t−1

)2
]

,

where a+
t = max(at, 0) and a−

t = max(−at, 0) is used so that at = a+
t −a−

t [see Hwang and Kim (2004), page 296],

where h1 = 1
1− 1

2
(α+)− 1

2
(α−)−β

, and where α+ > 0, α− > 0, β > 0, µ ∈ R and σ > 0.

The probability density functions used for the innovation ηt are: Normal(0,1), Laplace(0,1), Balanced Mixture

of two Normals, N (−2, 1) and N (+2, 1), t-student distributions with 5, 7, 9 degrees of freedom, Chi-squared

distributions with 6 and 12 degrees of freedom; all densities are rescaled so that the innovation has zero mean and

unit variance. The eight probability density functions for the standardized innovation ηt are reported in Table 1.

[Table 1]

2.2 The general form of the log-likelihood function of the PTTGARCH(1,1) model

The joint density function for a sample Y = (Y1, ..., YT ) is the product of the conditional densities of {Yt : t = 2, ..., T}

and of the marginal density of Y1:

f (Y; θ) = f (Y1, ..., YT ; θ) = f (YT |YT −1, ..., Y1; θ) × ...

×f (YT −1|YT −2, ...Y1; θ) × ...× f (Y2|Y1; θ) × f (Y1; θ)

(2.6)
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Equation (2.6) can be rewritten as:

f (Y; θ) =

(

T
∏

t=2

f (Yt|It−1; θ)

)

f (Y1; θ)

where It = {Yt, ..., Y1} denotes the information available at time t, and Y1 denotes the initial value. The log-

likelihood function may then be expressed as:

lnL(θ|Y) =
T
∑

t=2

ln f (Yt|It−1; θ) + ln f(Y1; θ) (2.7)

The first term contained in eq. (2.7) is the conditional log-likelihood function while the second term in eq. (2.7)

is the marginal log-likelihood for the initial value. The marginal density of Y1 is dropped from the conditional

likelihood function because its contribution is negligible when the number of observations is large, thus eq. (2.7)

can be rewritten as:

lnL(θ|Y) =
T
∑

t=2

ln f (Yt|It−1; θ) (2.8)

Given eq. (2.3), for any t = 2, ..., T , the conditional density of Yt given It−1 = Yt−1, ..., Y1 is:

f (Yt|It−1; θ) =
1

σ
√
ht
f (ηt) =

1

σ
√
ht
f

(

Yt − µ
√
ht

σ
√
ht

)

(2.9)

Using (2.8) and (2.9), the conditional log-likelihood function is:

lnL(θ|Y) =
T
∑

t=2

ln

(

1

σ
√
ht
f

(

Yt − µ
√
ht

σ
√
ht

))

(2.10)

2.3 The log-likelihood function of the PTTGARCH(1,1) model for each type of innovation

Using the probability density functions reported in Table 1 and using eq. (2.10) we can obtain the conditional

log-likelihood function for each type of (zero mean and unit variance) innovation ηt. The conditional log-likelihood

function for each type of (zero mean and unit variance) innovation is reported in Table 2.

[Table 2]

2.4 The Asymptotic Properties of the QML Estimator in the Case of the PTTGARCH(1,1)

Model

Hamadeh and Zaköıan (2011) prove that, under assumptions QML0-QML6 reported below, the quasi-maximum

likelihood estimator is consistent and asymptotically normal for the generic PTTGARCH(p,q) model in their

Theorem 2.1 and Theorem 2.2, respectively. In this section we show that the assumptions needed for consistency
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and asymptotic normality of the quasi-maximum likelihood estimator are satisfied in the case of the reparametrized

PTTGARCH(1,1) model studied in this paper. The consistency of the QML estimator is crucial to construct the

semiparametric efficient adaptive estimator; see Section 2.6 for more details. Assumptions QML0-QML6 reported

below correspond to Assumptions A0-A6 of Hamadeh and Zaköıan (2011).

Assumption QML0. ηt is a sequence of independent and identically distributed (i.i.d.) random variables with

E|ηt|r< ∞ for some r > 0.

First, ηt is generated as an i.i.d. random variable. Second, E|ηt|r can be rewritten as E

(

√

η2
t

)r

; choosing r = 2 we

obtain E

(

√

η2
t

)r

= E

(

√

η2
t

)2

= E
(

η2
t

)

. Since the innovation has zero mean and unit variance by construction,

then E
(

η2
t

)

= 1 < ∞. Thus, Assumption QML0 is satisfied.

Assumption QML1. θ0 ∈ Θ and Θ is compact.

The vector of the true parameters in the PTTGARCH(1.1) model is:

θ0 = (α0+, α0−, β0, µ0, σ0)′

and belongs to a parameter space Θ ⊂]0,∞[4×R with Θ compact since Θ is a bounded and closed set. Therefore,

Assumption QML1 is satisfied.

Assumption QML2. Eη2
t = 1 and P [ηt > 0] ∈ (0, 1). If P (ηt ∈ Γ) = 1 for a set Γ, then Γ has a cardinal

|Γ|> 2.

Assumption QML2 is satisfied by construction: the (rescaled) innovation is created such that Eη2
t = 1 and such

that the (rescaled) innovation includes both positive and negative values, thus P [ηt > 0] ∈ (0, 1). The cardinality

of the set Γ is |Γ|> 2 since the innovation ηt is generated as an i.i.d. random variable with a continuous probability

density function.

Assumption QML3. γ(A0) < 0 and for all θ ∈ Θ,
∑p

j=1 βj < 1.

Assumption QML3 is satisfied if E
[

α+(ξ+
t−k)2 + α−(ξ−

t−k)2 + β
]

< 1. In order to show that Assumption QML3

is satisfied in the case of our model, we use the notation of Example 2.1 (GARCH(1,1)) of Francq and Zaköıan

(2010) [page 34], and we use other results presented in Chapter 2.2 of Francq and Zaköıan (2010).

Proof. In the PTTGARCH(1,1) model the matrix At can be written as [see Francq and Zaköıan (2010), page 34]

At = ((ξ+
t )2, (ξ−

t )2, 1)′ (α+, α−, β) .

We thus have

AtAt−1...A1 =
t−1
∏

k=1

(α+(ξ+
t−k)2 + α+(ξ−

t−k)2 + β)At.
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It follows that

ln ‖AtAt−1...A1‖ =
t−1
∑

k=1

ln(α+(ξ+
t−k)2 + α+(ξ−

t−k)2 + β) + ln ‖At‖ .

The top Lyapunov exponent γ(A0) is defined as [see eq. (2.23) in Francq and Zaköıan (2010)]

γ(A0) = lim
t→∞

a.s.
1

t
ln ‖AtAt−1...A1‖ .

By the strong law of large numbers, the top Lyapunov exponent can be written as [see Francq and Zaköıan (2010),

page 34]

γ(A0) = E ln
(

α+(ξ+
t−k)2 + α−(ξ−

t−k)2 + β
)

.

By the Jensen Inequality we obtain

γ(A0) = E ln
(

α+(ξ+
t−k)2 + α−(ξ−

t−k)2 + β
)

≤ ln
[

E
(

α+(ξ+
t−k)2 + α−(ξ−

t−k)2 + β
)]

.

Using the assumption E
[

α+(ξ+
t−k)2 + α−(ξ−

t−k)2 + β
]

< 1, we finally obtain

γ(A0) = E ln
(

α+(ξ+
t−k)2 + α−(ξ−

t−k)2 + β
)

≤ lnE
(

α+(ξ+
t−k)2 + α−(ξ−

t−k)2 + β
)

< 0

The second part of Assumption QML3 reduces in PTTGARCH(1,1) model to β < 1 and this assumption is

satisfied since γ(A0) < 0 as shown above and α+ > 0 and α− > 0 [see the restrictions below eq. (2.4)].

Let Aθ+(z) =
∑q

i=1 αi+z
i,Aθ−(z) =

∑q
i=1 αi−zi and Bθ(z) = 1 −∑p

j=1 βjz
j . In the case of PTTGARCH(1,1)

model the previous equations simplify to Aθ+ (z) = α+z, Aθ− (z) = α−z and Bθ (z) = 1 − βz.

Assumption QML4. If p > 0, Bθ0(z) has no common root with Aθ0+(z) and Aθ0−(z). Moreover Aθ0+(1) +

Aθ0−(1) 6= 0 and α0+ + α0− + β0 6= 0.

Assumption QML4 is satisfied. Aθ0+(1)+Aθ0−(1) 6= 0 is verified since α0+ > 0 and α0− > 0. The root of Aθ0+ (z)

is:

Aθ0+ (z) = 0 = α0+z ⇒ z = 0.

The root of Aθ0− (z) is:

Aθ0+ (z) = 0 = α0−z ⇒ z = 0.

and Bθ0(0) 6= 0. If β0 6= 0, the unique root of Bθ0 (z) is:

Bθ0 (z) = 0 = 1 − β0z ⇒ z = 1/β0.
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The unique root of Bθ0 (z) is 1/β0 > 0 (if β0 = 0, the polynomial does not admit any root) and because the

coefficients α0+ and α0− are positive, Aθ0+ (1/β0) 6= 0 and Aθ0− (1/β0) 6= 0.

Given the above results, α0+ + α0− + β0 6= 0.

Theorem 2.1.[Hamadeh and Zaköıan (2011)] Let (θ̂QML
n ) be a sequence of QML estimators satisfying (2.1)

of Hamadeh and Zaköıan (2011). Then, under assumptions QML0-QML4, θ̂QML
n → θ0, a.s. as n → ∞.

Proof. See Hamadeh and Zaköıan (2011), Proof of Theorem 2.1, pages 497-499.

Two additional assumptions are needed for the asymptotic normality of the QML estimator.

Assumption QML5. θ0 ∈ Θ̇, where Θ̇ denotes the interior of Θ.

Assumption QML5 is satisfied: if θ̂n is consistent, it also belongs to the interior of Θ, for large n.

Assumption QML6. κη := Eη4
t < ∞.

Assumption QML6 is satisfied since the kurtosis of each (zero mean and unit variance) innovation ηt is finite; see

Table 3 for the kurtosis of each innovation.

[Table 3]

Theorem 2.2.[Hamadeh and Zaköıan (2011)] Under assumptions QML0-QML6,

√
n
(

θ̂QML
n − θ0

)

⇒ N (0, (κη − 1)J−1),

where J = Eθ0

(

∂2ℓt(θ0)
∂θ∂θ′

)

= 4Eθ0

(

1
h2

t (θ0)
∂ht(θ0)

∂θ
∂ht(θ0)

∂θ′

)

.

Proof. See Hamadeh and Zaköıan (2011), Proof of Theorem 2.2, pages 499-502.

2.5 Local Asymptotic Normality and the Convolution Theorem

Let µ ∈ R, σ > 0, α+ > 0, α− > 0, β > 0 be parameters4 and let {ηt : t ∈ Z} be an i.i.d. sequence of innovation

errors with zero mean, unit variance and density f . Put ξt = µ+ σηt, thus ξt is a random variable with location

µ, scale σ and density σ−1f({ξt − µ} /σ).

Consider the reparametrized PTTGARCH(1,1) model with observations

Yt =
√

htξt = µ
√

ht + σ
√

htηt, ηt ∼ iid(0, 1), (2.11)

4See Footnote 2.
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where the unobservable heteroskedasticity factors {ht}t∈Z
follow a PTTGARCH(1,1) process:

ht = 1 + βht−1 + α+(Y +
t−1)2 + α−(Y −

t−1)2 = 1 + ht−1

[

β + α+

(

ξ+
t−1

)2
+ α−

(

ξ−
t−1

)2
]

, (2.12)

where the notation [see Hwang and Kim (2004), page 296]

a+
t = max(at, 0) and a−

t = max(−at, 0) is used so that at = a+
t − a−

t ,

where h1 = 1
1− 1

2
(α+)− 1

2
(α−)−β

, and where α+ > 0, α− > 0, β > 0, µ ∈ R and σ > 0. Observe that the Euclidean

parameter θ = (α+, α−, β, µ, σ)′ ∈ Θ ⊂ R
5 is identifiable. The necessary and sufficient condition for a unique

strictly stationary solution {ht : t ∈ Z} is reported in Assumption 2.1.

In this section we show that the log-likelihood ratio of the PTTGARCH(1,1) model in (2.11)-(2.12) satisfies

the Local Asymptotic Normality condition defined in Theorem 2.5.1 below. This condition was introduced by Le

Cam (1960), and it requires that, in large samples, the log-likelihood ratio is approximately quadratic in a small

neighborhood of the true parameter [Linton (1993)]. The LAN condition is necessary to establish the properties of

the semiparametric estimator presented in Section 2.6; Fabian and Hannan (1982) show that if the log-likelihood

ratio satisfies the LAN condition, then the Local Asymptotic Minimax bound is achieved by estimators equivalent

to the MLE [Linton (1993)].

Le Cam (1960), Swensen (1985) and Roussas (1979) give conditions under which the log-likelihood ratio

of a general stochastic process satisfies the LAN condition [Linton (1993)]; these conditions have been verified

for stationary ARMA processes by Kreiss (1987), and DKW (1997) generalized the results of Kreiss (1987) to

classes of non-linear time-series (location-scale) models [Wellner et al. (2006)]. In this paper, following DKW

(1997), we show that the LAN property holds in the case of the reparametrized PTTGARCH(1,1) model as the

reparametrized PTTGARCH(1,1) model is a non-linear time-series (location-scale) model that satisfies conditions

in DKW (1997). Following DKW (1997), we also give the relevant assumptions such that semiparametric efficient

adaptive estimation is possible for π = (α+, α−, β).

In order to derive asymptotic results, we assume that the observed data Y1,...,Yn are stationary given the

starting value h1(θ) = h01 initializing equation (2.12); this is insured by Assumption 2.1. The parameter vector

θ can be estimated based on h01,Y1,...,Yn, in the presence of the infinite-dimensional nuisance parameter f . We

fix the nuisance parameter f in this section,5 and we show that the resulting parametric model satisfies the LAN

(Local Asymptotic Normality) property. Finally, we derive a bound on the asymptotic performance of regular

estimators of θ (ie., the Convolution Theorem).6

5On the contrary, in section 2.6 the nuisance parameter f(ηt) is unknown and is estimated using the kernel density estimator.
6See Newey (1990) for the definition of regular estimator.
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Observe that if we also fix α+, α−, β, then our model is the location-scale model for i.i.d. random variables

[DK (1997)]; thus, the location-scale model is a parametric submodel of our time-series model and it is reasonable

to assume that this submodel is regular [DK (1997)],7 i.e.:

Assumption 2.2. f is an absolutely continuous Lebesgue density function with first order derivative f ′ and finite

Fisher information for location

Il(f) =

∫ {

f ′

f

}2

f(η)dη < ∞, (2.13)

and finite Fisher information for scale:

Is(f) =

∫ {

1 + η
f ′

f

}2

f(η)dη < ∞. (2.14)

Furthermore, the random variable η has location zero and scale one.

In order to derive the local asymptotic normality results of an estimator, we need a sequence of non-stochastic

values θn = (αn+, αn−, βn,µn, σn)′ and θ̃n = (α̃n+, α̃n−, β̃n, µ̃n, σ̃n)′ near the true parameter vector θ0 =

(α0, β0, γ0, µ0, σ0)′ such that |θn − θ0|= O(n−1/2), |θ̃n − θ0|= O(n−1/2), and even

λn =
√
n
(

θ̃n − θn

)

→ λ, as n → ∞. (2.15)

In the rest of this section expectations, convergences, etc. are implicitly taken under θn and f .

In order to obtain a uniform LAN theorem we consider the log-likelihood ratio Λn of h01, Y1,..., Yn for θ̃n with

respect to θn under θn (and f fixed). To derive the joint density of Y1,..., Yn, using h1(θ) = h01, we calculate the

residuals and conditional variances recursively for t = 1, 2, ...

ξt(θ) =
Yt

√

ht(θ)
, (2.16)

ηt(θ) =
ξt(θ) − µ

σ
, (2.17)

ht+1(θ) = 1 + βht(θ) + α+(Y +
t )2 + α−(Y −

t )2. (2.18)

The density of Y1,..., Yn under θn, conditionally on h01, is

n
∏

t=1

σ−1
n h

−1/2
nt f(σ−1

n

{

h
−1/2
nt Yt − µn

}

) =

n
∏

t=1

σ−1
n h

−1/2
nt f({ξnt − µn} /σn) =

n
∏

t=1

σ−1
n h

−1/2
nt f(ηnt), (2.19)

where hnt = ht(θn), ξnt = ξt(θn) and ηnt = ηt(θn).

To emphasize the link between the present time-series model and the i.i.d. location-scale model we introduce

7See Newey (1990) for the definition of regular model.
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the notation h̃nt = ht(θ̃n),

l {µ, σ} (x) = log f({x− µ} /σ) − log σ,







Mnt

Snt






= n1/2σ−1

n h
−1/2
nt







µ̃nh̃
1/2
nt − µnh

1/2
nt

σ̃nh̃
1/2
nt − σnh

1/2
nt






, (2.20)

and η̃nt = ηt(θ̃n). Denoting the log-likelihood ratio for the initial value h01 as Λs
n, we can write the log-likelihood

ratio Λn as

Λn = log

{

n
∏

t=1

σ̃−1
n h̃

−1/2
nt f(η̃nt)/

n
∏

t=1

σ−1
n h

−1/2
nt f(ηnt)

}

+ Λs
n = ...

=
n
∑

t=1

{ℓ{(µn, σn) + σnn
−1/2(Mnt, Snt)}(ξnt) − ℓ{µn, σn}(ξnt)} + Λs

n = ...

=
n
∑

t=1

{ℓ{(0, 1) + n−1/2(Mnt, Snt)}(ηnt) − ℓ{0, 1}(ηnt)} + Λs
n. (2.21)

Equation (2.21) is similar to the log-likelihood ratio statistic for the i.i.d. location-scale model but the deviations

Mnt and Snt are random in equation (2.21); in the following discussion we will apply the results of DKW (1997)

which allow for such random sequences.

To eliminate asymptotically the dependence of the log-likelihood ratio statistic on the initial value h01, we will

use the following regularity condition [see Assumption A in DKW (1997)].

Assumption 2.3. The density fθ of the initial value h01 satisfies, under θn,

Λs
n = log{f θ̃n

(h01)/fθn
(h01)} P→ 0 as n → ∞. (2.22)

In order to make an expansion of Λn, we introduce the notation ℓ̇nt for the five-dimensional conditional score

at time t. Denote the three-dimensional vector derivative of the conditional variance by

Ht(θ) =
∂ht(θ)

∂ (α+, α−, β)
= βHt−1(θ) +















(Y +
t−1)2

(Y −
t−1)2

ht−1(θ)















, (2.23)

with H1(θ) = 03. Define the (5×2)-derivative matrix Wt(θ) -which is motivated by differentiation of (Mnt, Snt)

with respect to θ̃n at θn- by

Wt(θ) = σ−1







1
2h

−1
t (θ)Ht(θ)(µ, σ)

I2






, (2.24)
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where I2 is the (2×2) identity matrix. Denote the location-scale score by

ψt(θ) = −







f ′(ηt(θ))
f(ηt(θ))

1 + ηt(θ)
f ′(ηt(θ))
f(ηt(θ))






= −







ℓ′(ηt(θ))

1 + ηt(θ)ℓ
′(ηt(θ))






, (2.25)

where we denote ℓ′ = f ′

f , and put

ℓ̇t(θ) = Wt(θ)ψt(θ).

Using the previous notation, the conditional score at time t can be denoted by ℓ̇nt = ℓ̇t(θn). An expansion of

(2.21) shows that the log-likelihood ratio Λn can be written as

Λn = λ′n−1/2
n
∑

t=1

ℓ̇nt − 1

2
n−1

n
∑

t=1

{λ′ℓ̇nt}2 +Rn. (2.26)

In Appendix B we show that the following LAN theorem [Theorem 2.1 of DKW (1997)] holds for the parametric

version of model (2.11),(2.12).

Theorem 2.5.1. LAN

Suppose that Assumptions 2.1, 2.2, 2.3 are satisfied. Then the local log-likelihood ratio statistic Λn, as defined by

(2.21) and by (2.26) is asymptotically normal. More precisely, under θn,

Rn
P→ 0, Λn

D→ N(−1

2
λ′I(θ0)λ, λ′I(θ0)λ) as n → ∞, (2.27)

where I(θ0) is the probability limit of the averaged score products ℓ̇ntℓ̇′nt.

Proof. See Appendix B.

This LAN theorem implies that the sequences of probability measures {Pθn,f } and {Pθ̃n,f } are contiguous. We

can now apply the Convolution Theorem of Hájek (1970) [see Theorem 2.3.1 of BKRW (1993)].

Theorem 2.5.2. Convolution Theorem

Under the assumptions of the LAN Theorem 2.5.1, let {Tn : n ∈ N} be a regular sequence of estimators of q(θ),

where q : R5 → R
k is differentiable with total differential matrix q̇. As usual, regularity at θ = θ0 means that there

exists a random k-vector Z such that for all sequences {θn : n ∈ N}, with n1/2(θn − θ0) = O(1),

n1/2 {Tn − q(θn)} D→ Z as n → ∞, (2.28)

12



where the convergence is under θn. Let ℓ̃ = q̇(θ0)I(θ0)−1ℓ̇(θ0) be the efficient influence function, then, under θ0,







n1/2{Tn − q(θ0) − n−1∑n
t=1 ℓ̃t}

n−1/2∑n
t=1 ℓ̃t







D→







∆0

Z0






as n → ∞, (2.29)

where ∆0 and Z0 are independent and Z0 is N(0, q̇(θ0)I(θ0)−1q̇(θ0)′). Furthermore, {Tn : n ∈ N} is efficient if

{Tn : n ∈ N} is asymptotically linear in the efficient influence function, i.e. if ∆0 = 0 (a.s.).

From the Convolution Theorem we obtain that a regular estimator θ̂n of θ satisfies, under θ0,
√
n(θ̂n−θ0)

D→ ∆0+Z0,

that is, the limit distribution of θ̂n is the convolution of the random vector ∆0 and a Gaussian random vector

Z0 with mean zero and variance equal to the inverse of the information matrix I(θ0) (ie., the Cramer Rao lower

bound).

2.6 The Semiparametric Efficient Adaptive Estimator

Our approach follows DK (1997), who derive a semiparametric efficient adaptive estimator for the GARCH(1,1)

model while we derive a semiparametric efficient adaptive estimator for the (reparametrized) PTTGARCH(1,1)

model.

In semiparametric models there exist methods to upgrade
√
n-consistent estimators to efficient ones using the

Newton-Raphson technique as long as it is possible to accurately estimate the relevant score or influence functions.

In Schick (1986) such a method based on “sample splitting” and Le Cam’s “discretization” is described for i.i.d.

models [DK (1997)]. DKW (1997) adapted Schick (1986)’s method to the case of time-series models [see Theorem

3.1 of DKW (1997)]. Following DK (1997), we apply the discretization of θn and the sample splitting method in

our proofs.8 If a
√
n-consistent estimator is available, it is trivial to derive the discretized local parameters near

θ0 since for any subsequence of {θ̂n}, there are {θ̂nk
} satisfying the condition (2.15) [Sun and Stengos (2006)]. We

assume the existence of a preliminary,
√
n-consistent estimator.

Assumption 2.4. There exists a
√
n-consistent estimator θ̂n of θn (under θn and f).

For our (reparametrized) PTTGARCH(1,1) model a natural candidate for such an initial estimator is the QML

estimator; see Section 2.4 for the
√
n-consistency and asymptotic normality of the QML estimator in the case of

the PTTGARCH(1,1) model.

We focus on efficient and adaptive estimation of the parameters α+, α−, β.9 Theorem 3.1 of DKW (1997)

contains the assumptions that are needed to obtain adaptive estimation in time-series models. In Appendix C we

verify the conditions of Theorem 3.1 of DKW (1997), this yields the following theorem.

8The sample splitting method is introduced as a technical tool that simplifies the proofs.
9Alternatively, in view of eq. (2.24), note that the score ℓ̇nt satisfies the form discussed in Example 3.1 of DKW (1997).
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Theorem 2.6.1. Under Assumptions 2.1, 2.2, 2.3, 2.4 adaptive estimators of α+, α−, β do exist.

Proof. See Appendix C.

Let θ̂n =
(

α̂n+, α̂n−, β̂n, µ̂n, σ̂n

)′
be the

√
n-consistent estimator of θ and compute Wt(θ̂n) via (2.23) and (2.24).

Let η̂n1, ...., η̂nn be the residuals computed from h1, Y1, ...., Yn and θ̂n using (2.17). Based on the estimated residuals

η̂n1, ...., η̂nn, we estimate nonparametrically f(·) using the kernel density estimator with the standardized normal

kernel K (·) and bandwidth bn:10

f̂n(·) =
1

n

n
∑

t=1

1

bn
K

( · − η̂nt

bn

)

,

and subsequently we estimate ψ(·) by ψ̂n(·);11 here bn → 0 and nb4
n → ∞. Our semiparametric estimator can be

written as
(

α̂n+, α̂n−, β̂n

)′
+ (I3, 02×2)

(

1

n

n
∑

t=1

Wt(θ̂n)ψ̂n(η̂nt)ψ̂n(η̂nt)
′Wt(θ̂n)′

)−1

× ...

× 1

n

n
∑

t=1

{

Wt(θ̂n) − 1

n

n
∑

s=1

Ws(θ̂n)

}

ψ̂n(η̂nt), (2.30)

where θ̂n is the QML estimator. This is the semiparametric estimator used in the simulations of Section 4. We

need the following two technical modifications in order to prove that the semiparametric estimator is adaptive.

Discretization

θ̂n is discretized by changing its value in (0,∞)× (0,∞)× (0,∞)× R× (0,∞) into one of the nearest points in the

grid c√
n

(N× N× N× Z× N). This method gives the possibility to consider θ̂n to be non-random, and therefore

independent of η̂nt, Yt and h1 [DK (1997)].

Sample splitting

The set of residuals η̂n1, ..., η̂nn is split into two samples, which may be viewed as independent [DK (1997)]. For

η̂nt in the first sample, the second sample is used to estimate ψ(·) by ψ̂n2(·), and ψ̂n(η̂nt) in eq. (2.30) is replaced

by ψ̂n2(η̂nt); for η̂nt in the second sample, the first sample is used to estimate ψ(·) by ψ̂n1(·), and ψ̂n(η̂nt) in eq.

(2.30) is replaced by ψ̂n1(η̂nt).

10The kernel function K (·) used in our study is the standardized normal kernel: K
( ·−η̂nt

bn

)

= 1√
2π

exp
(

−0.5
( ·−η̂nt

bn

)2
)

.

11The kernel density derivative estimator can be written as [Wand and Jones (1995), page 49]: f̂ ′
n(·) = 1

n

∑n

t=1
1

b2
n
K′ ( ·−η̂nt

bn

)

,

where K′ (·) is the derivative of the standard normal density function. Finally, the location-scale score can be estimated using

ψ̂n(·) = −
[

f̂ ′
n(·)

f̂n(·)

1 + η̂t
f̂ ′

n(·)
f̂n(·) .

]

, where η̂t is the vector containing the estimated residuals (η̂n1, ...., η̂nn).
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3 The Theoretical Asymptotic Variance of the ML and the QML Estimators

3.1 The Theoretical Asymptotic Variance of the ML Estimator

In this section Wt(·), ht(·), Ht(·), ψt(·) are evaluated at the true parameters (θ0). In the Monte Carlo experiments

for the PTTGARCH(1,1) model, the parameter µ is set to zero and is not estimated [see Section 4], thus eq. (2.25)

becomes

ψt(θ0) = −
(

1 + ηt(θ0)
f ′(ηt(θ0))

f(ηt(θ0))

)

, (3.1)

and eq. (2.24) becomes

Wt(θ0) =







1
2h

−1
t (θ0)Ht(θ0)

σ−1
0






=





















1
2h

−1
t (θ0)∂ht(θ0)

∂α+

1
2h

−1
t (θ0)∂ht(θ0)

∂α−

1
2h

−1
t (θ0)∂ht(θ0)

∂β

σ−1
0





















, (3.2)

where the three-dimensional vector of derivatives Ht(θ0) -reported in eq. (2.23)- is evaluated at the true parameters

(θ0). The analytical solution for ψt(θ0) for each type of innovation is reported in Appendix A. The Fisher

information matrix can be written as

I(θ0) = Is(f)E(Wt(θ0)Wt(θ0)′), (3.3)

with Is(f) denoting the Fisher information for scale described by

Is(f) = E [ψt(θ0)ψt(θ0)] = E

[

1 + ηt(θ0)
f ′(ηt(θ0))

f(ηt(θ0))

]2

=

∫ [

1 + ηt(θ0)
f ′(ηt(θ0))

f(ηt(θ0))

]2

f(ηt(θ0))dηt.

The Fisher information for scale is computed by numerical integration for each type of innovation and is reported

in Table 4.

[Table 4]

The Fisher information matrix reported in eq. (3.3) can be written as

I(θ0) = Is(f) × ...
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×





















Eθ0





















1
4ht(θ0)2

∂ht(θ0)
∂α+

∂ht(θ0)
∂α+

1
4ht(θ0)2

∂ht(θ0)
∂α+

∂ht(θ0)
∂α−

1
4ht(θ0)2

∂ht(θ0)
∂α+

∂ht(θ0)
∂β

0.5
ht(θ0)

∂ht(θ0)
∂α+

1
4ht(θ0)2

∂ht(θ0)
∂α−

∂ht(θ0)
∂α+

1
4ht(θ0)2

∂ht(θ0)
∂α−

∂ht(θ0)
∂α−

1
4ht(θ0)2

∂ht(θ0)
∂α−

∂ht(θ0)
∂β

0.5
ht(θ0)

∂ht(θ0)
∂α−

1
4ht(θ0)2

∂ht(θ0)
∂β

∂ht(θ0)
∂α+

1
4ht(θ0)2

∂ht(θ0)
∂β

∂ht(θ0)
∂α−

1
4ht(θ0)2

∂ht(θ0)
∂β

∂ht(θ0)
∂β

0.5
ht(θ0)

∂ht(θ0)
∂β

0.5
ht(θ0)

∂ht(θ0)
∂α+

0.5
ht(θ0)

∂ht(θ0)
∂α−

0.5
ht(θ0)

∂ht(θ0)
∂β 1









































.

The (4x4)-dimensional matrix E(Wt(θ0)Wt(θ0)′) -reported in eq. (3.3)- is computed through simulation. The

theoretical asymptotic variance matrix of the MLE can be written as

V0 =
[I (θ0)]−1

N
, (3.4)

where N is the dimension of the sample (i.e. N=2000). In order to estimate the asymptotic variance of the

MLE, the number of time periods used is N=2000 and 5000 replications are used.12 The theoretical standard

deviations σ̂α+ , σ̂α− and σ̂β are obtained by taking the square root of (the diagonal elements of) V0 [see eq. (3.4)].

The theoretical asymptotic standard deviations σ̂α+ , σ̂α− and σ̂β are reported in Table 5 for each combination of

(α+, α−, β) [see Section 4].

3.2 The Theoretical Asymptotic Variance of the QML Estimator

All vectors and matrices used in this section are evaluated at the true parameters (θ0). In the Monte Carlo

experiments for the PTTGARCH(1,1) model, the parameter µ is set to zero and is not estimated, thus the score

becomes a (4×1) vector ℓ̇t(θ0) = Wt(θ0)ψt(θ0), with ψt(θ0) reported in eq. (3.1) and Wt(θ0) reported in eq. (3.2).13

The theoretical asymptotic variance of the QML estimator can be written as

V0 =
J(θ0)−1I (θ0) J(θ0)−1

N
,

where I (θ0) is the Fisher information matrix evaluated at θ0 and J (θ0) is the negative of the expectation of the

Hessian evaluated at θ0:

I (θ0) = Eθ0

(

∂lt(θ0)

∂θ

∂lt(θ0)

∂θ

)

,

J (θ0) = −Eθ0

(

∂2lt(θ0)

∂θ∂θ

)

.

12 Firstly, the asymptotic variance of the MLE was estimated with 2500 replications and with 5000 replications; the two estimations
gave slightly different results, thus the estimation of the asymptotic variance of the MLE with 5000 replications was adopted in order
to obtain more precise estimates. Second, we obtained approximately the same (estimated) asymptotic variance of the MLE using a
higher number of replications than 5000 replications, thus the choice of 5000 replications for the estimation of the asymptotic variance
of the MLE was retained.

13ℓ̇t(θ0) is equivalent to ∂lt(θ0)
∂θ

.
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The theoretical asymptotic variance matrix of the QMLE can be written as

V0 =
J(θ0)−1I (θ0) J(θ0)−1

N
=

1

N

(κη − 1)

2
× ...

×





















Eθ0





















1
2ht(θ0)2

∂ht(θ0)
∂α+

∂ht(θ0)
∂α+

1
2ht(θ0)2

∂ht(θ0)
∂α+

∂ht(θ0)
∂α−

1
2ht(θ0)2

∂ht(θ0)
∂α+

∂ht(θ0)
∂β

1
ht(θ0)

∂ht(θ0)
∂α+

1
2ht(θ0)2

∂ht(θ0)
∂α−

∂ht(θ0)
∂α+

1
2ht(θ0)2

∂ht(θ0)
∂α−

∂ht(θ0)
∂α−

1
2ht(θ0)2

∂ht(θ0)
∂α−

∂ht(θ0)
∂β

1
ht(θ0)

∂ht(θ0)
∂α−

1
2ht(θ0)2

∂ht(θ0)
∂β

∂ht(θ0)
∂α+

1
2ht(θ0)2

∂ht(θ0)
∂β

∂ht(θ0)
∂α−

1
2ht(θ0)2

∂ht(θ0)
∂β

∂ht(θ0)
∂β

1
ht(θ0)

∂ht(θ0)
∂β

1
ht(θ0)

∂ht(θ0)
∂α+

1
ht(θ0)

∂ht(θ0)
∂α−

1
ht(θ0)

∂ht(θ0)
∂β 2









































−1

, (3.5)

where N is the dimension of the sample (i.e., N = 2000) and where κη is the innovation’s kurtosis. The kurtosis

of each type of innovation is reported in Table 3. We compute the asymptotic variance of the QMLE through

simulation using 5000 replications.14 Taking the square root of (the diagonal elements of) V0 [see eq. (3.5)], the

theoretical standard deviations σ̂α+ , σ̂α− and σ̂β are obtained. The theoretical asymptotic standard deviations

σ̂α+ , σ̂α− and σ̂β are reported in Table 5 for each combination of (α+, α−, β) [see Section 4].

4 Monte Carlo Experiments

To enhance the interpretation and validity of the theoretical results of the previous sections we present Monte Carlo

experiments in this section. The main purpose of Monte Carlo experiments is to evaluate the moderate sample

properties of the QMLE, MLE and the semiparametric estimator. The sample size for Monte Carlo experiments

is N = 2000. This choice is made since in the case of the PTTGARCH(1,1) model, two parameters (i.e., α+, α−)

are estimated using approximately half of the sample size [see Section 2 for more details].15

The number of replications used in each Monte Carlo experiment is equal to 2500 as in DK (1997) and in recent

studies [e.g., Pakel et al. (2011)]. Diaz-Emparanza (2002) studies the effect of the number of replications on the

accuracy of Monte Carlo experiments; the author shows that 1000 (or less than 1000) replications yield a low level

of accuracy of Monte Carlo experiments as the empirical distribution of estimated parameters obtained through

Monte Carlo experiments is quite different from the theoretical distribution. Since we choose 2500 replications

for our Monte Carlo experiments, the problems outlined in Diaz-Emparanza (2002) are unlikely to apply in our

context.

14Firstly, the asymptotic variance of the QMLE was estimated with 2500 replications and with 5000 replications; the two estimations
gave slightly different results, thus the estimation of the asymptotic variance of the QMLE with 5000 replications was adopted in order
to obtain more precise estimates. Second, we obtained approximately the same (estimated) asymptotic variance of the QMLE using a
higher number of replications than 5000 replications, thus the choice of 5000 replications for the estimation of the asymptotic variance
of the QMLE was retained.

15Additionally, semiparametric estimators tend to yield strong efficiency improvements with respect to the QMLE in the case of
moderate or large samples [see Section 4 of Sun and Stengos (2006) for an example]. This is due to the fact that the small sample
properties of semiparametric estimators are worse than the large sample properties of semiparametric estimators due to inherent
problems of choosing the bandwidth [see page 207-208 of DK (1997)].
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Monte Carlo experiments are conducted using the data generating process described in Section 2.1. The con-

ditional mean parameter µ is set to zero and is not included in the set of estimated parameters since our main

interest is in the estimation of the conditional variance parameters (α+, α−, β). The choice of setting µ = 0 is not

uncommon in studies that construct semiparametric estimators for conditional heteroskedasticity models; for ex-

ample, DK (1997) set the conditional mean parameter equal to zero and Sun and Stengos (2006) set the conditional

mean parameter to a value that is very close to zero. Three combinations for the set of parameters (α+, α−, β, σ)

are used in Monte Carlo experiments: (α+, α−, β, σ) = (0.20, 0.40, 0.60, 1), (α+, α−, β, σ) = (0.075, 0.15, 0.80, 1),

(α+, α−, β, σ) = (0.08, 0.11, 0.87, 1); we choose these combinations of parameters (α+, α−, β, σ) to check the per-

formance of the semiparametric estimator as persistence of the PTTGARCH process increases.16

The sample means and sample standard deviations of the estimates obtained from Monte Carlo experiments

using the MLE, QMLE and the semiparametric estimator are reported in Table 5. The sample means and sample

standard deviations of the estimates using the MLE are reported in order to confront the efficiency of the semi-

parametric estimator with the MLE, even though the consistency and the asymptotic normality of the MLE was

not proved for the PTTGARCH(1,1) model. Additionally, the theoretical asymptotic standard deviations σ̂α+,

σ̂α−, σ̂β, obtained with the estimation of the theoretical asymptotic variance of the MLE and QMLE [see Section

3], are added to Table 5 in order to check whether the asymptotic results of the MLE and QMLE from Monte

Carlo experiments approximate well enough the theoretical asymptotic behavior of the MLE and QMLE. In the

semiparametric part we used the standardized normal kernel with a bandwidth of h = 0.40; reasonable changes of

the bandwidth, say 0.30 ≤ h ≤ 0.50 do not alter the conclusions below.

This section is organized in the following way: (1) in order to check whether the asymptotic results of the

Monte Carlo experiments approximate the theoretical asymptotic behavior of the MLE and QMLE, in Section

4.1 the theoretical asymptotic standard deviations σ̂α+, σ̂α−, σ̂β of the MLE and QMLE are compared with the

standard deviations of the MLE and QMLE obtained from Monte Carlo experiments. In order to have an easier

comparison between theoretical asymptotic results and Monte Carlo results, the asymptotic relative efficiencies

(AREs) of the MLE and QMLE are compared with the relative efficiencies (REs) of the MLE and QMLE in the

same section. (2) The main results of this section are reported in Section 4.2. In this section, the performance

of the MLE, QMLE and the semiparametric estimator is evaluated through the relative efficiencies (REs) of the

estimators. (3) Some considerations and remarks are reported in Section 4.3.

[Table 5]

16Furthermore, we choose these combinations of parameters (α+, α−, β, σ) to insure that the PTTGARCH process does not incor-
porate unstationary behavior.
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4.1 Comparison of the Standard Deviations from the Monte Carlo Experiments with the

Theoretical Asymptotic Standard Deviations

The standard deviations of the MLE σ̂α+ , σ̂α− and σ̂β obtained from Monte Carlo experiments are close to the

theoretical asymptotic standard deviations of the MLE [Table 5]. Also, the standard deviations of the QMLE σ̂α+ ,

σ̂α− and σ̂β obtained from Monte Carlo experiments are close to the theoretical asymptotic standard deviations

of the QMLE [see Table 5]. As a consequence, the asymptotic relative efficiencies (AREs) of the QMLE versus

the MLE are close to the relative efficiencies (REs) of the QMLE versus the MLE [compare Table 6 with Table 7].

To conclude, the asymptotic results of the MLE and QMLE from Monte Carlo experiments seem to approximate

well enough the theoretical asymptotic behavior of the MLE and QMLE.

[Table 6]

[Table 7]

4.2 The Relative Efficiencies of the Estimators

The performance of the three estimators used in Monte Carlo experiments is evaluated through the relative

efficiencies (REs) of the estimators which are reported in Table 7.

In the case of the N (0, 1) innovation, we only compare the semiparametric estimator with the MLE since the

QMLE is equivalent to the MLE in this case. The semiparametric estimator is almost as efficient as the MLE.

For the Laplace(0,1) innovation, the semiparametric estimator performs significantly better than the QMLE

[Table 7, row 6]; in addition, the performance gap between the semiparametric estimator and the MLE is small

[Table 7, row 7]. Therefore, the semiparametric estimator yields a relevant efficiency gain with respect to the

QMLE and is close to the maximum efficiency.

In the case of the Gaussian Mixture innovation, the performance of the semiparametric estimator is worse than

the MLE [Table 7, row 10] and is approximately the same as the QMLE [Table 7, row 9].

For the t5-student innovation, the performance of the semiparametric estimator is significantly higher than the

QMLE [Table 7, row 12], especially in the case that the PTTGARCH process is characterized by high persistence

(i.e., (α+, α−, β, σ) = (0.08, 0.11, 0.87, 1)). For the t7-student and t9-student innovations, the semiparametric

estimator has significantly higher efficiency than the QMLE [see Table 7, row 15 for the t7-student innovation

and see Table 7, row 18 for the t9-student innovation, respectively]. In the case of the t7-student and t9-student

innovations, the efficiency of the semiparametric estimator is very close to the maximum efficiency that an estimator

can attain (i.e., the efficiency of the MLE) [see Table 7, row 16 for the t7-student innovation and Table 7, row 19

for the t9-student innovation].
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For the χ2
6 innovation, the performance gap between the QMLE and the MLE is very large [Table 7, row 20] since

in the case of the QMLE we assume that the innovation is distributed as a normal distribution with zero mean and

unit variance while the real innovation is fat-tailed and skewed. The performance of the semiparametric estimator

is much higher than the performance of the QMLE [Table 7, row 21], that is, the semiparametric estimator regains

most of the (efficiency) loss caused by the inefficient QML estimator. Similar results are obtained in the case of

the χ2
12 innovation: the QMLE has much lower efficiency than the MLE [Table 7, row 23], and the semiparametric

estimator regains most of the efficiency loss caused by the QML estimator.

Finally, the semiparametric estimator recaptures most of the efficiency loss of the QMLE in the interesting

case of high persistence (i.e., (α+, α−, β, σ) = (0.08, 0.11, 0.87, 1)), and the performance of the semiparametric

estimator versus the QMLE (or MLE) seems not to be affected by the degree of persistence of the PTTGARCH

process [compare the REs (relative efficiencies) presented in Column (7)-(9) of Table 7 with the REs presented in

Column (1)-(3) of Table 7].

4.3 Concluding Remarks

In this section we have shown that Monte Carlo experiments approximate well enough the theoretical asymptotic

behavior of the MLE and QMLE, that is, Monte Carlo experiments are appropriately set up. The main result of

this section is that the use of the semiparametric estimator yields a large efficiency gain with respect to the QMLE

for all innovations, except in the case of the Gaussian Mixture innovation;17 in the case of the Gaussian Mixture

innovation, and depending on the combination of (σα+ , σα− , σβ), the semiparametric estimator has slightly inferior

performance or approximately the same performance than the QMLE. Anyhow, this anomaly is also obtained in

other studies on semiparametric estimators [e.g., DK (1997), Table 1]. In the case of the Laplace(0,1), t-student

and χ2 distributions, the semiparametric estimator recaptures most of the efficiency loss caused by the (inefficient)

QML estimator. In empirical datasets, one often observes non-normal distributions for the innovation [see Table 2

of DK (1997)],18 thus it seems worthwhile to apply semiparametric techniques in the case that the true innovation

is unknown. Finally, the performance of the semiparametric estimator seems not be affected by the persistence of

the PTTGARCH process.

17Also in the case of the N (0, 1) innovation we have found that the semiparametric estimator is not more efficient than the QML
estimator; this is not a surprising result since the QML estimator is the most efficient estimator in the case of the N (0, 1) innovation.

18DK (1997) obtain significantly lower standard deviations for conditional variance parameters σ̂α and σ̂β in the case of the semi-
parametric estimator than in the case of the QML estimator; from this evidence we can infer that the true innovation is not distributed
as a Normal(0,1) random variable.
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5 Conclusions

This paper derives a semiparametric efficient adaptive estimator of the PTTGARCH(1,1) model without imposing

any additional restrictions on the innovation distribution other than some regularity conditions. We provide a series

of Monte Carlo simulations to evaluate the moderate sample properties of the semiparametric estimator. Monte

Carlo simulations show that the semiparametric estimator regains most of the efficiency loss of the (inefficient)

QML estimator, especially in the case of fat-tailed (and skewed) distributions which are often observed in empirical

datasets.
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A Analytical Solution for the Location-Scale Score

In this section we report the analytical solution for ψt(θ0) = −
(

1 + ηt(θ0) f ′(ηt(θ0))
f(ηt(θ0))

)

for each zero mean and unit

variance innovation ηt.

Normal(0,1) Innovation:

ψt(θ0) = −
(

1 + ηt(θ0)
f ′(ηt(θ0))

f(ηt(θ0))

)

= −
(

1 − η2
t

)

.

Laplace(0,1) Innovation:

ψt(θ0) = −
(

1 + ηt(θ0)
f ′(ηt(θ0))

f(ηt(θ0))

)

= −
(

1 − 1√
0.5

√

η2
t

)

.

Gaussian Mixture Innovation:

ψt(θ0) = −
(

1 + ηt(θ0)
f ′(ηt(θ0))

f(ηt(θ0))

)

= −1 − ηt

√
5 × ...

...×







[

exp
(

−0.5
(√

5ηt − 2
)2
)

[

−
(√

5ηt − 2
)]

+ exp
(

−0.5
(√

5ηt + 2
)2
)

[

−
(√

5ηt + 2
)]

]

[

exp
(

−0.5
(√

5ηt − 2
)2
)

+ exp
(

−0.5
(√

5ηt + 2
)2
)]







.

t5-student Innovation:

ψt(θ0) = −
(

1 + ηt(θ0)
f ′(ηt(θ0))

f(ηt(θ0))

)

= −
(

1 − 6 η2
t

3 + η2
t

)

.

t7-student Innovation:

ψt(θ0) = −
(

1 + ηt(θ0)
f ′(ηt(θ0))

f(ηt(θ0))

)

= −
(

1 − 8 η2
t

5 + η2
t

)

.

t9-student Innovation:

ψt(θ0) = −
(

1 + ηt(θ0)
f ′(ηt(θ0))

f(ηt(θ0))

)

= −
(

1 − 10 η2
t

7 + η2
t

)

.

χ2
6 Innovation:

ψt(θ0) = −
(

1 + ηt(θ0)
f ′(ηt(θ0))

f(ηt(θ0))

)

= −
(

1 −
√

12ηt + 6η2
t√

12ηt + 6
1{√

12ηt+6≥0}

)

,

where 1{·} denotes the indicator function.

χ2
12 Innovation:

ψt(θ0) = −
(

1 + ηt(θ0)
f ′(ηt(θ0))

f(ηt(θ0))

)

= −
(

1 −
√

24ηt + 12η2
t√

24ηt + 12
1{√

24ηt+12≥0}

)

,

where 1{·} denotes the indicator function.

B Proof of the LAN Theorem 2.5.1

Proof of the LAN Theorem 2.5.1. The reparametrizated PTTGARCH(1.1) model in (2.3), (2.4) fits into the

general time-series framework of DKW (1997) since it is a general location-scale model in which the location-scale

parameters only depend on the past. Therefore, in order to prove Theorem 2.5.1, it suffices to verify the conditions

(2.3’), (A.1) and (2.4) of DKW (1997); we also prove (3.3’) of DKW (1997) since we need to verify that condition

in the proof of Theorem 2.6.1. Thus, with the notation introduced in Section 2.5 [see eq. (2.20), (2.24), (2.25)],

and denoting the expectation under θ of the product ψ(θ)ψ(θ)′ as Ils(f), we need to show, under θ0,

n−1

n
∑

t=1

Wt(θ0)Ils(f)Wt(θ0)′ P→ I(θ0) > 0, (B.1)
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n−1

n
∑

t=1

|Wt(θ0)|2 1{n−1/2|Wt(θ0)|>δ}
P→ 0, (B.2)

n−1

n
∑

t=1

Wt(θ0)
P→ W (θ0), (B.3)

n−1

n
∑

t=1

|Wt(θn) −Wt(θ0)|2 P→ 0, (B.4)

and, under θn,
n
∑

t=1

∣

∣n−1/2(Mnt, Snt)
′ −Wt(θn)′(θ̃n − θn)

∣

∣

2 P→ 0, (B.5)

for some positive definitive matrix I(θ0) and some random matrix W (θ0). If conditions B.2-B.5 are satisfied, and

using Lemma A.1 of DKW (1997), we can show that the PTTGARCH model satisfies the LAN property.

Although Wt(θ0) may not be strictly stationary and ergodic under θ0, the following proposition shows that

these variables can be approximated by a strictly stationary and ergodic sequence, and hence B.1, B.2, B.3 and

B.4 hold in general.

Proposition B.1. Let ht(θ), Ht(θ) and Wt(θ) be given by (2.18), (2.23), (2.24), respectively, and let hst(θ), Hst(θ)

and Wst(θ) be their corresponding stationary solutions under θ, i.e.

hst(θ) =

∞
∑

j=0

j
∏

k=1

{

β + α+(ξ+
t−k)2 + α−(ξ−

t−k)2
}

,

Hst(θ) =

∞
∑

i=0

βihs,t−1−i(θ)











(ξ+
t−1−i)

2

(ξ−
t−1−i)

2

1











,

Wst(θ) = σ−1





1
2
h−1

st (θ)Hst(θ)(µ, σ)

I2



 ,

Then, under θ0,

n−1

n
∑

t=1

|Wt(θ0) −Wst(θ0)|2 → 0 (a.s.), as n → ∞. (B.6)

Proof. If we iterate ht(θ), we can rewrite ht(θ) as

ht(θ) = 1 + βht−1(θ) + α+(Y +
t−1)2 + α−(Y −

t−1)2 = 1 + ht−1

{

β + α+(ξ+
t−1(θ))2 + α−(ξ−

t−1(θ))2
}

=

=

i−1
∑

j=0

j
∏

k=1

{

β + α+(ξ+
t−k(θ))2 + α−(ξ−

t−k(θ))2
}

+ ht−i(θ)

i
∏

k=1

{

β + α+(ξ+
t−k(θ))2 + α−(ξ−

t−k(θ))2
}

, 0 ≤ i ≤ t− 1, (B.7)

which in turn implies that

ht−i(θ)/ht(θ) ≤
i
∏

k=1

{

β + α+ (ξ+
t−k(θ))2 + α− (ξ−

t−k(θ))2
}−1

, 0 ≤ i ≤ t− 1. (B.8)

Under θ, the calculated variables ξt(θ) =
{

ξ+
t (θ), ξ−

t (θ)
}

are the true innovations ξt =
{

ξ+
t , ξ

−
t

}

in (B.7) and

(B.8),19 and ξt ∼ i.i.d.(µ, σ2) is a stationary and ergodic process by definition. Similarly, if we iterate hst(θ), we

19 As in Hwang and Kim (2004) we use the following notation: a+
t = max(at, 0), and a−

t = max(−at, 0), so that at = a+
t − a−

t .

23



can rewrite hst(θ) as

hst(θ) =

i−1
∑

j=0

j
∏

k=1

{

β + α+(ξ+
t−k)2 + α−(ξ−

t−k)2
}

+ hs,t−i(θ)

i
∏

k=1

{

β + α+(ξ+
t−k)2 + α−(ξ−

t−k)2
}

, 0 ≤ i,

hs,t−i(θ)/hst(θ) ≤
i
∏

k=1

{

β + α+(ξ+
t−k)2 + α−(ξ−

t−k)2
}−1

, 0 ≤ i,

thus, under θ, we obtain

|hst(θ)ht−i(θ) − ht(θ)hs,t−i(θ)| = |hs,t−i(θ) − ht−i(θ)|
i−1
∑

j=0

j
∏

k=1

{

β + α+(ξ+
t−k)2 + α−(ξ−

t−k)2
}

≤ ht(θ) |hs1(θ) − h1(θ)|
t−1−i
∏

k=1

{

β + α+(ξ+
t−i−k)2 + α−(ξ−

t−i−k)2
}

= ht(θ) |hs1(θ) − h1(θ)|
i
∏

k=1

{

β + α+(ξ+
t−k)2 + α−(ξ−

t−k)2
}−1

t−1
∏

k=1

{

β + α+(ξ+
k )2 + α−(ξ−

k )2
}

, 0 ≤ i ≤ t− 1.

Denoting a generic constant which only depends on θ as C, we obtain, under θ,

|Wt(θ) −Wst(θ)| ≤ C |Ht(θ)/ht(θ) −Hst(θ)/hst(θ)| ≤ ...

≤ C

t−2
∑

i=0

βi

∣

∣

∣

∣

ht−1−i(θ)

ht(θ)
− hs,t−1−i(θ)

hst(θ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣











(ξ+
t−1−i)

2

(ξ−
t−1−i)

2

1











∣

∣

∣

∣

∣

∣

∣

∣

∣

+ C

∞
∑

i=t−1

βi hs,t−1−i(θ)

hst(θ)

∣

∣

∣

∣

∣

∣

∣

∣

∣











(ξ+
t−1−i)

2

(ξ−
t−1−i)

2

1











∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ ...

≤ C |hs1(θ) − h1(θ)|
t−1
∏

k=1

{

β + α+(ξ+
k )2 + α−(ξ−

k )2
}

t−2
∑

i=0

i
∏

k=1

β

β + α+(ξ+
t−k)2 + α−(ξ−

t−k)2
+C

∞
∑

i=t−1

i
∏

k=1

β

β + α+(ξ+
t−k)2 + α−(ξ−

t−k)2
≤ ...

≤ C |hs1(θ) − h1(θ)| (t− 1)

t−1
∏

k=1

{

β + α+(ξ+
k )2 + α−(ξ−

k )2
}

+ C

t−1
∏

k=1

β

β + α+(ξ+
k )2 + α−(ξ−

k )2

∞
∑

i=−1

i
∏

k=0

β

β + α+(ξ+
−k)2 + α−(ξ−

−k)2
.

Using Assumption 2.1 [see eq. (2.5)], the right-hand side tends to zero (a.s.), as t → ∞. Cesaro’s Means Theorem

[Hardy (1991), page 96] completes the proof of the proposition.

In the following proposition -which is parallel to Proposition A.2 in DK (1997)- we show that slight perturba-

tions of the parameters yield solutions of (2.11) and (2.12) that are close.

Proposition B.2. Let ht(θ) and Ht(θ) be given by (2.18) and (2.23), respectively, and define

Qt(θ) = Ht(θ)/ht(θ) =

t−2
∑

i=0

βi











(Y +
t−1−i)

2

(Y −
t−1−i)

2

ht−1−i(θ)











/ht(θ) =

t−2
∑

i=0

βi ht−1−i(θ)

ht(θ)











(ξ+
t−1−i(θ))

2

(ξ−
t−1−i(θ))

2

1











,

Rt(θ, θ̃) = ht(θ̃)/ht(θ) − 1 −
(

α̃+ − α, α̃− − α, β̃ − β
)

Qt(θ).

Let θn and θ̃n satisfy the conditions just above (2.15). Put Qnt = Qt(θn) and Rnt = Rt(θn, θ̃n). Then, under θn,

n−1

n
∑

t=1

|Qnt|2 = Op(1), n−1

n
∑

t=1

|Qnt|2 1{n−1/2|Qnt|>δ} → 0, (a.s.) as n → ∞, (B.9)
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n
∑

t=1

R2
nt → 0, (a.s.) as n → ∞. (B.10)

Proof. Using (B.8) we obtain

Qt(θ) ≤ β−1

t−2
∑

i=0

i+1
∏

k=1

β

β + α+(ξ+
t−k(θ))2 + α−(ξ−

t−k(θ))2











(ξ+
t−1−i(θ))

2

(ξ−
t−1−i(θ))

2

1











.

The above inequality shows that, for n sufficiently large and under θn, |Qnt| can be bounded by the product of a

constant depending on θ0 only and the stationary sequence

St =

∞
∑

i=0

i
∏

k=1

β0

β0 + 1
2
α0+ (ξ+

t−k)2 + 1
2
α0− (ξ−

t−k)2
.

In view of the latter result, relations regarding Qnt in (B.9) can be easily obtained.

To prove (B.10), note that an explicit relationship for the difference of ht(θ̃) and ht(θ) is given by

ht(θ̃) − ht(θ) =

t−2
∑

i=0

β̃iht−1−i(θ)
(

α̃+ − α+, α̃− − α−, β̃ − β
)











(ξ+
t−1−i(θ))

2

(ξ−
t−1−i(θ))

2

1











.

Thus, the remainder term Rt(θ, θ̃) can be written as

Rt(θ, θ̃) =

t−2
∑

i=0

(β̃i − βi)
ht−1−i(θ)

ht(θ)

(

α̃+ − α+, α̃− − α−, β̃ − β
)











(ξ+
t−1−i(θ))

2

(ξ−
t−1−i(θ))

2

1











.

Choose a constant C > 1 such that E

(

Cβ0

β0+ 1
2

α0+ (ξ+
1 )2+ 1

2
α0− (ξ−

1 )2

)

< 1 is satisfied. By the mean value theorem,

there exists a β̃ni, which lies between β̃n and βn such that, for n sufficiently large,

∣

∣β̃i
n − βi

n

∣

∣ =
∣

∣β̃n − βn

∣

∣ iβ̃i−1
ni ≤

∣

∣β̃n − βn

∣

∣ ici−1βi−1
n , i ≥ 0.

Thus, we can bound Rnt by the product of a constant times n−1 and the stationary sequence

S∗
t =

∞
∑

i=0

i

i
∏

k=1

cβ0

β0 + 1
2
α0+ (ξ+

t−k)2 + 1
2
α0− (ξ−

t−k)2
.

The proof of (B.10) can be easily completed.

Below, we prove that (B.2)-(B.5) hold. We first show that (B.2) and (B.3) hold; then, we show that (B.5) and

(B.4) hold, respectively.

Define I(θ0) = Eθ0Ws1(θ0)Ils(f)Ws1(θ0)′ and W (θ0) = Eθ0Ws1(θ0); the existence of I(θ0) and W (θ0) can be

obtained as in the proof of Proposition B.2 since |Wst(θ0)| can be bounded by the product of St and a constant

depending only on θ0. The relations (B.2) and (B.3) hold if Wt(θ0) is replaced by the stationary and ergodic

sequence Wst(θ0). Finally, Proposition B.1 implies that the previous relations are valid also in the case of Wt(θ0).
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We will use Proposition B.2 to prove (B.5). Writing λn = (λ′
1n, λ

′
2n) with λ1n (λ2n) the first (latter) two

components of λn, and defining

χ(x) = {−1 + 2
(√

1 + x− 1
)

/x}1{x≥−1},

we obtain
n
∑

t=1

∣

∣

∣
n−1/2(Mnt, Snt)

′ −Wt(θn)′(θ̃n − θn)
∣

∣

∣

2

= ...

= σ−2
n n−1

n
∑

t=1

|(µ̃n, σ̃n)
′
{

1

2

(

λ′
1nQnt +

√
nRnt

)

χ
(

n−1/2λ′
1nQnt +Rnt

)

+
1

2

√
nRnt

}

+ n−1/2λ2n
1

2
λ′

1nQnt|2.

Using the above equation, Proposition B.2 and Lemma 2.1 of DKW (1997) (with Ynt = λ′
1nQnt, Xnt = λ′

1nQnt +

√
nRnt, and the function φ = χ2 as above) we obtain that (B.5) holds.

To prove that (B.4) holds, note that

|Wt(θn) −Wt(θ0)|2 ≤ C |Qt(θn) −Qt(θ0)|2 + C |Qt(θ0)|2 |θn − θ0|2 ,

and obtain contiguity of Pθn and Pθ0 from (B.2) and (B.5), and Theorem 2.1 of DKW (1997). The required result

is obtained from

Qt(θ̃) −Qt(θ) =
t−2
∑

i=0

(β̃i − βi)
ht−1−i(θ̃)

ht(θ̃)















(ξ+
t−1−i(θ̃))

2

(ξ−
t−1−i(θ̃))

2

1















+Qt(θ)
{

(θ1 − θ̃1)′Qt(θ̃) +Rt(θ̃, θ)
}

− ...

−















0

0

∑t−2
i=0 β̃

i ht−1−i(θ̃)

ht(θ̃)

{

(θ1 − θ̃1)′Qt−1−i(θ̃) +Rt−1−i(θ̃, θ)
}















in the same way as in the proofs of the propositions above. This completes the proofs of the theorems in Section

2.5.

C Proof of Theorem 2.6.1

Proof of Theorem 2.6.1. It is sufficient to verify the conditions of DKW (1997). The conditions of DKW (1997)

are composed by (B.2)-(B.5), which are verified in Appendix B, and by the existence of an estimator ψ̂n(·), based

on η1, ..., ηn, of ψ(·) = −(ℓ′(·), 1 + ·ℓ′(·))′ [see equation (2.25)] which satisfies the consistency condition

∫

∣

∣

∣ψ̂n(x) − ψ(x)
∣

∣

∣

2
f(x)dx

P→ 0, under f.
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Such an estimator ψ̂n(·) exists in view of Proposition 7.8.1 of BKRW (1993) with k=0 or k=1. The estimator ψ̂n(·)

used in Section 2.6 satisfies Proposition 7.8.1 of BKRW (1993). This completes the proof of Theorem 2.6.1.
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TABLES

Table 1: Probability density functions of the zero mean, unit variance innovation ηt

Probability density functions

N (0, 1) f(ηt) = 1√
2π

exp
(

−1
2η

2
t

)

Laplace(0, 1) f(ηt) = 1
2
√

0.5
exp

(

− |ηt|√
0.5

)

Gaussian Mixture f (ηt) =
√

5

[

0.5

{

1√
2π

exp

(

−0.5
(√

5ηt − 2
)2
)}]

+ ...

...+
√

5

[

+0.5

{

1√
2π

exp

(

−0.5
(√

5ηt + 2
)2
)}]

t5 − student f(ηt) =
√

5/3

[

Γ(3)

Γ(2.5)
√

5π

(

1 +
η2

t
3

)−3
]

t7 − student f(ηt) =
√

7/5

[

Γ(4)

Γ(3.5)
√

7π

(

1 +
η2

t
5

)−4
]

t9 − student f(ηt) =
√

9/7

[

Γ(5)

Γ(4.5)
√

9π

(

1 +
η2

t
7

)−5
]

χ2
6 f(ηt) =

√
12

[

(

1
23Γ(3)

) (√
12ηt + 6

)2
exp

(

−0.5
(√

12ηt + 6
))

]

1{
√

12ηt+6≥0}

χ2
12 f(ηt) =

√
24

[

(

1
26Γ(6)

) (√
24ηt + 12

)5
exp

(

−0.5
(√

24ηt + 12
))

]

1{√
24ηt+12≥0}

Notes: 1{·} denotes the indicator function.
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Table 2: Conditional log-likelihood function for each (zero mean and unit variance) innovation ηt

Conditional log-likelihood functions

N (0, 1) lnL(θ|Y) =
∑T

t=2 ln

(

1
σ

√
ht

[

1√
2π

exp

(

− 1
2

(

Yt−µ
√

ht

σ
√

ht

)2
)])

L(0, 1) lnL(θ|Y) =
∑T

t=2 ln





1
σ

√
ht





1
2

√
0.5

exp



−

∣

∣

∣

Yt−µ
√

ht

σ
√

ht

∣

∣

∣

√
0.5













GM lnL(θ|Y) =
∑T

t=2 ln

(

1
σ

√
ht

[

0.5

(

1√
2π

exp

(

− 1
2

(

Yt−µ
√

ht

σ
√

ht
− 2
)2
))

+ 0.5

(

1√
2π

exp

(

− 1
2

(

Yt−µ
√

ht

σ
√

ht
+ 2
)2
))])

t5 lnL(θ|Y) =
∑T

t=2 ln







√
1.6̄

σ
√

ht







Γ(3)

Γ(2.5)
√

5π



1 +

(

Yt−µ
√

ht

σ
√

ht

)2

3





−3












t7 lnL(θ|Y) =
∑T

t=2 ln







√
1.4

σ
√

ht







Γ(4)

Γ(3.5)
√

7π



1 +

(

Yt−µ
√

ht

σ
√

ht

)2

5





−4












t9 lnL(θ|Y) =
∑T

t=2 ln







√
9/7

σ
√

ht







Γ(5)

Γ(4.5)
√

7π



1 +

(

Yt−µ
√

ht

σ
√

ht

)2

7





−5












χ2
6 lnL(θ|Y) =

∑T
t=2 ln





√
12

σ
√

ht

[

(

1
23Γ(3)

)(√
12 Yt−µ

√
ht

σ
√

ht
+ 6
)2

exp
(

−0.5
(√

12 Yt−µ
√

ht

σ
√

ht
+ 6
))

]

1{√
12

Yt−µ
√

ht

σ
√

ht
+6≥0

}





χ2
12 lnL(θ|Y) =

∑T
t=2 ln





√
24

σ
√

ht

[

(

1
26Γ(6)

)(√
24 Yt−µ

√
ht

σ
√

ht
+ 12

)5

exp
(

−0.5
(√

24 Yt−µ
√

ht

σ
√

ht
+ 12

))

]

1{√
24

Yt−µ
√

ht

σ
√

ht
+12≥0

}





Notes: 1{·} denotes the indicator function.
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Table 3: The kurtosis of each innovation ηt

N (0, 1) Laplace(0,1) Gaussian mixture t5 t7 t9 χ2
6 χ2

12

Eη4
t 3 6 1.72 9 5 4.2 5 4
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Table 4: Fisher information for scale for each type of innovation

N (0, 1) Laplace(0,1) Gaussian mixture t5 t7 t9 χ2
6 χ2

12

Is(f) 2 1 5.9134 1.25 1.40 1.50 6 3
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Table 5: Sample Means and Sample Standard Deviations of Monte Carlo Estimates

α+ α− β α+ α− β α+ α− β

α̂+ α̂− β̂ σ̂α+
σ̂α−

σ̂β α̂+ α̂− β̂ σ̂α+
σ̂α−

σ̂β α̂+ α̂− β̂ σ̂α+
σ̂α−

σ̂β

N (0, 1) ML=QML 0.200 0.400 0.598 0.042 0.069 0.038 0.075 0.152 0.799 0.026 0.038 0.041 0.086 0.119 0.872 0.031 0.039 0.026

1 step 0.198 0.398 0.597 0.042 0.068 0.038 0.075 0.151 0.799 0.028 0.040 0.043 0.084 0.117 0.872 0.033 0.040 0.026

As.Std.Dev.ML 0.041 0.066 0.036 0.024 0.036 0.035 0.025 0.030 0.020

L(0, 1) ML 0.198 0.400 0.596 0.052 0.084 0.046 0.075 0.151 0.794 0.028 0.041 0.042 0.079 0.108 0.866 0.028 0.034 0.026

QML 0.198 0.402 0.595 0.059 0.096 0.051 0.075 0.152 0.793 0.031 0.047 0.050 0.082 0.112 0.867 0.032 0.039 0.033

1 step 0.196 0.397 0.597 0.054 0.086 0.048 0.073 0.148 0.797 0.029 0.042 0.044 0.077 0.106 0.868 0.029 0.036 0.029

As.Std.Dev.ML 0.052 0.082 0.045 0.028 0.041 0.040 0.027 0.033 0.023

As.Std.Dev.QML 0.058 0.092 0.051 0.031 0.046 0.045 0.030 0.037 0.026

GM ML 0.199 0.399 0.600 0.030 0.046 0.026 0.073 0.148 0.796 0.020 0.028 0.030 0.077 0.107 0.869 0.020 0.025 0.018

QML 0.199 0.399 0.599 0.032 0.053 0.029 0.086 0.174 0.822 0.023 0.031 0.031 0.077 0.107 0.868 0.021 0.026 0.018

1 step 0.199 0.399 0.599 0.032 0.053 0.028 0.076 0.155 0.810 0.024 0.033 0.031 0.077 0.107 0.869 0.023 0.027 0.020

As.Std.Dev.ML 0.032 0.052 0.027 0.020 0.029 0.028 0.020 0.025 0.017

As.Std.Dev.QML 0.033 0.054 0.028 0.020 0.030 0.029 0.021 0.026 0.017

t5 ML 0.200 0.401 0.597 0.050 0.080 0.045 0.075 0.150 0.795 0.028 0.039 0.041 0.078 0.108 0.867 0.025 0.030 0.024

QML 0.204 0.407 0.594 0.073 0.111 0.061 0.076 0.153 0.790 0.038 0.055 0.060 0.083 0.113 0.866 0.040 0.043 0.035

1 step 0.199 0.398 0.596 0.064 0.098 0.057 0.073 0.148 0.794 0.033 0.048 0.054 0.073 0.101 0.870 0.038 0.040 0.026

As.Std.Dev.ML 0.049 0.077 0.043 0.026 0.038 0.038 0.025 0.031 0.022

As.Std.Dev.QML 0.077 0.122 0.068 0.041 0.061 0.059 0.040 0.049 0.035

t7 ML 0.200 0.398 0.597 0.047 0.075 0.043 0.073 0.149 0.794 0.026 0.038 0.041 0.078 0.108 0.869 0.030 0.032 0.024

QML 0.201 0.399 0.596 0.057 0.086 0.049 0.074 0.151 0.794 0.031 0.046 0.051 0.082 0.111 0.871 0.034 0.038 0.029

1 step 0.198 0.394 0.598 0.049 0.078 0.044 0.072 0.146 0.797 0.028 0.040 0.043 0.074 0.104 0.870 0.034 0.034 0.024

As.Std.Dev.ML 0.047 0.074 0.041 0.026 0.038 0.037 0.026 0.032 0.022

As.Std.Dev.QML 0.055 0.088 0.049 0.031 0.045 0.044 0.030 0.037 0.026

t9 ML 0.199 0.401 0.598 0.046 0.076 0.041 0.074 0.150 0.796 0.027 0.039 0.040 0.077 0.108 0.868 0.025 0.032 0.024

QML 0.201 0.404 0.598 0.052 0.086 0.045 0.076 0.154 0.798 0.029 0.043 0.046 0.083 0.116 0.873 0.029 0.039 0.027

1 step 0.198 0.398 0.598 0.047 0.077 0.043 0.073 0.148 0.797 0.027 0.040 0.041 0.075 0.104 0.870 0.026 0.035 0.024

As.Std.Dev.ML 0.046 0.073 0.040 0.026 0.038 0.037 0.026 0.032 0.022

As.Std.Dev.QML 0.050 0.080 0.044 0.028 0.041 0.041 0.028 0.035 0.024

χ2
6

ML 0.195 0.394 0.598 0.030 0.052 0.029 0.072 0.148 0.797 0.019 0.035 0.024 0.077 0.108 0.866 0.017 0.027 0.017

QML 0.203 0.410 0.597 0.054 0.118 0.060 0.077 0.161 0.793 0.028 0.074 0.070 0.082 0.117 0.867 0.030 0.065 0.036

1 step 0.192 0.379 0.603 0.036 0.077 0.039 0.068 0.130 0.804 0.020 0.055 0.042 0.070 0.088 0.873 0.023 0.056 0.021

As.Std.Dev.ML 0.022 0.046 0.024 0.012 0.028 0.024 0.012 0.022 0.013

As.Std.Dev.QML 0.054 0.113 0.060 0.029 0.069 0.058 0.028 0.053 0.031

χ2
12

ML 0.199 0.398 0.599 0.030 0.055 0.031 0.074 0.148 0.798 0.015 0.031 0.024 0.079 0.108 0.870 0.015 0.025 0.015

QML 0.200 0.404 0.597 0.048 0.096 0.051 0.077 0.159 0.798 0.026 0.057 0.058 0.085 0.123 0.871 0.028 0.063 0.030

1 step 0.195 0.390 0.599 0.037 0.069 0.039 0.070 0.139 0.799 0.020 0.042 0.040 0.072 0.094 0.869 0.025 0.042 0.021

As.Std.Dev.ML 0.032 0.062 0.033 0.018 0.036 0.033 0.018 0.029 0.018

As.Std.Dev.QML 0.048 0.093 0.049 0.026 0.054 0.049 0.026 0.043 0.027

Comparison of the MLE, QMLE, and the semiparametric estimator for the PTTGARCH(1,1) model with eight standardized

innovation distributions. Number of observations N= 2000, true parameters (α+, α−, β, σ) = (0.2, 0.4, 0.6, 1), (0.075, 0.15, 0.8, 1),

(0.08, 0.11, 0.87, 1), respectively. The sample means of 2500 independent replications and their sample standard deviations are

reported in the table. The theoretical asymptotic standard deviations of the MLE and QMLE for the parameters α+, α− and β is

reported for each distribution of the innovation using 5000 replications [see “As.Std.Dev.ML” and “As.Std.Dev.QML”, respectively].
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Table 6: Asymptotic Relative Efficiencies (AREs) of the ML and QML Estimators

j = α+ j = α− j = β j = α+ j = α− j = β j = α+ j = α− j = β

0.20 0.40 0.60 0.075 0.15 0.80 0.08 0.11 0.87

L(0, 1) AREj =
σ̂QML

j

σ̂ML
j

1.115 1.122 1.133 1.107 1.122 1.125 1.111 1.121 1.130

GM AREj =
σ̂QML

j

σ̂ML
j

1.031 1.038 1.037 1.000 1.034 1.036 1.050 1.040 1.000

t5 AREj =
σ̂QML

j

σ̂ML
j

1.571 1.584 1.581 1.577 1.605 1.553 1.600 1.581 1.591

t7 AREj =
σ̂QML

j

σ̂ML
j

1.170 1.189 1.195 1.192 1.184 1.189 1.182 1.156 1.182

t9 AREj =
σ̂QML

j

σ̂ML
j

1.087 1.096 1.100 1.077 1.079 1.108 1.077 1.094 1.091

χ2
6 AREj =

σ̂QML
j

σ̂ML
j

2.455 2.457 2.5 2.417 2.464 2.417 2.333 2.410 2.385

χ2
12 AREj =

σ̂QML
j

σ̂ML
j

1.500 1.500 1.485 1.444 1.500 1.485 1.444 1.483 1.500

Notes: the asymptotic relative efficiencies (AREs) of the ML and QML estimators are obtained by dividing the QMLE theoretical

asymptotic standard deviation of parameter j by the MLE theoretical asymptotic standard deviation of parameter j. The QMLE

theoretical asymptotic standard deviation of parameter j and the MLE theoretical asymptotic standard deviation of parameter j are

reported in Table 5 [see “As.Std.Dev.QML” and “As.Std.Dev.ML” in Table 5].

36



Table 7: Relative Efficiencies (REs) of the MLE, QMLE and the Semiparametric Estimator

(1) (2) (3) (4) (5) (6) (7) (8) (9)

j = α+ j = α− j = β j = α+ j = α− j = β j = α+ j = α− j = β

0.20 0.40 0.60 0.075 0.15 0.80 0.08 0.11 0.87

N (0, 1) RE
AE/ML
j =

σ̂AE
j

σ̂ML
j

1.000 1.015 1.000 1.077 1.053 1.049 1.065 1.026 1.000

L(0, 1) RE
QML/ML
j =

σ̂QML
j

σ̂ML
j

1.135 1.143 1.109 1.107 1.146 1.190 1.143 1.147 1.269

RE
QML/AE
j =

σ̂QML
j

σ̂AE
j

1.093 1.116 1.063 1.069 1.119 1.136 1.103 1.083 1.138

REML−AE
j =

σ̂AE
j

σ̂ML
j

1.038 1.023 1.043 1.036 1.024 1.048 1.036 1.059 1.115

GM RE
QML/ML
j =

σ̂QML
j

σ̂ML
j

1.067 1.152 1.115 1.150 1.107 1.033 1.050 1.040 1.000

RE
QML/AE
j =

σ̂QML
j

σ̂AE
j

1.000 1.000 1.036 0.958 0.939 1.000 0.913 0.963 0.900

RE
AE/ML
j =

σ̂AE
j

σ̂ML
j

1.067 1.152 1.077 1.200 1.179 1.033 1.150 1.080 1.111

t5 RE
QML/ML
j =

σ̂QML
j

σ̂ML
j

1.460 1.388 1.356 1.357 1.410 1.463 1.600 1.433 1.458

RE
QML/AE
j =

σ̂QML
j

σ̂AE
j

1.141 1.133 1.070 1.152 1.146 1.111 1.053 1.075 1.346

RE
AE/ML
j =

σ̂AE
j

σ̂ML
j

1.280 1.225 1.266 1.179 1.231 1.317 1.520 1.333 1.083

t7 RE
QML/ML
j =

σ̂QML
j

σ̂ML
j

1.212 1.147 1.139 1.192 1.211 1.243 1.133 1.188 1.210

RE
QML/AE
j =

σ̂QML
j

σ̂AE
j

1.163 1.103 1.114 1.107 1.150 1.186 1.000 1.118 1.208

RE
AE/ML
j =

σ̂AE
j

σ̂ML
j

1.043 1.040 1.023 1.077 1.053 1.049 1.133 1.063 1.000

t9 RE
QML/ML
j =

σ̂QML
j

σ̂ML
j

1.130 1.131 1.049 1.074 1.025 1.025 1.160 1.219 1.125

RE
QML/AE
j =

σ̂QML
j

σ̂AE
j

1.106 1.117 1.047 1.074 1.075 1.122 1.115 1.114 1.125

RE
AE/ML
j =

σ̂AE
j

σ̂ML
j

1.021 1.013 1.049 1.000 1.026 1.025 1.040 1.094 1.000

χ2
6 RE

QML/ML
j =

σ̂QML
j

σ̂ML
j

1.800 2.269 2.069 1.474 2.114 2.917 1.765 2.407 2.118

RE
QML/AE
j =

σ̂QML
j

σ̂AE
j

1.500 1.532 1.538 1.400 1.345 1.667 1.304 1.161 1.714

RE
AE/ML
j =

σ̂AE
j

σ̂ML
j

1.200 1.481 1.345 1.053 1.571 1.750 1.353 2.074 1.235

χ2
12 RE

QML/ML
j =

σ̂QML
j

σ̂ML
j

1.600 1.745 1.645 1.733 1.839 2.417 1.867 2.520 2.000

RE
QML/AE
j =

σ̂QML
j

σ̂AE
j

1.297 1.391 1.308 1.300 1.357 1.450 1.120 1.500 1.429

RE
AE/ML
j =

σ̂AE
j

σ̂ML
j

1.233 1.254 1.258 1.333 1.355 1.667 1.667 1.680 1.400

Notes: the relative efficiencies (REs) of the MLE, QMLE and the semiparametric estimator are obtained by dividing

standard deviations of parameter j obtained with different estimators. The standard deviations for each parameter (using

the MLE, QMLE and the semiparametric estimator) are in Table 5.
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