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Abstract 

This study provides a new approach for implied volatility indices forecasting. 

We assess whether non-parametric techniques provide better predictions of implied 

volatility compared to standard forecasting models, such as AFRIMA and HAR. A 

combination of Singular Spectrum Analysis (SSA) and Holt-Winters (HW) model is 

applied on eight implied volatility indices for the period from February, 2001 to July, 

2013. The findings confirm that the SSA-HW provides statistically superior one 

trading day and ten trading days ahead implied volatility forecasts world widely. 

Model-averaged forecasts suggest that the forecasting accuracy is further enhanced, 

for the ten-days ahead, when the SSA-HW is combined with an ARI(1,1) model. 

Additionally, the trading game reveals that the SSA-HW and the ARI-SSA-HW are 

able to generate significant average positive net daily returns in the out-of-sample 

period. The results are important for option pricing, portfolio management, value-at-

risk and economic policy. 

 

Keywords: Implied Volatility, Volatility Forecasting, Singular Spectrum Analysis, 

ARFIMA, HAR, Holt-Winters, Model Confidence Set, Combined Forecasts. 
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1. Introduction and review of the literature 

Volatility refers to the dispersion of the returns around their average value 

over time. Thus, the notion of volatility refers to the amount of risk about the size of 

changes in a stock’s value. The extant literature has long established the importance 

of studying and forecasting volatility of financial markets (see, inter alia, Andersen et 

al., 2003,2005; Christodoulakis, 2007; Fuertes et al., 2009; Charles, 2010; Barunik et 

al., 2016). Its importance lies on the fact that volatility forecasting is important for 

investors, portfolio managers, asset valuation, hedging strategies, risk management 

purposes, as well as, policy makers. Investors and portfolio managers seek a 

prediction of their future uncertainty in order to estimate a specific upper limit of risk 

that are willing to accept, to reach optimal portfolio decisions and to form appropriate 

hedging strategies.  

Forecasting volatility is the single most important component for pricing 

derivative products, such as option contracts. Unless derivatives contracts are priced 

correctly, hedging strategies can be expensive and not yield the desired outcome. 

Nowadays, volatility can be the underlying asset of derivatives products, such as in 

the VIX futures contracts. Thus, forecasting the expected volatility of the underlying 

asset helps for the correct valuation of these contracts.   

The Basel accords have made volatility forecasting a key component for risk 

management purposes. According to Basel II, financial institutions are required to 

estimate their capital requirements and for such estimates the calculation of the Value-

at-Risk (VaR) is necessary. One of the most important inputs in the VaR estimations 

is the volatility forecast.  

Forecasting volatility is also important for policy makers. Stock market 

volatility informs monetary policy decisions of central banks, such as the Federal 

Reserve Bank and the Bank of England. Similarly, volatility forecast is able to 

measure the expectations of the financial markets regarding the (un)successful 

outcome of fiscal and/or monetary policy decisions. The aforementioned arguments 

deem the importance of forecasting volatility accurately.   

The finance literature has extensively examined the concept of stock market 

volatility forecasting. The vast majority of the volatility forecasting studies have 

concentrated their attention on the use of models which are variants of GARCH 

models (see, inter alia, Bollerslev et al., 1994; Degiannakis, 2004; Hansen and Lunde, 

2005), stochastic volatility models (see, among others, Deo, 2006; Yu, 2012) or 
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realized volatility models (Andersen et al., 2003, Andersen et al., 2005). These 

models forecast current looking volatility and they demand the use of past stock 

prices.  

Nevertheless, a strand in the literature maintains that implied volatility indices 

are better predictors of the future volatility and thus, forecasting implied volatility 

rather than conditional or realized volatility is more important. This superior 

predictive ability of implied volatility has been pointed out since the late 70s and early 

80s by the studies of Chiras and Manaster (1978) and Beckers (1981). In addition, 

studies by Fleming et al. (1995), Christensen and Prabhala (1998), Fleming (1998), 

Blair et al. (2001), Simon (2003) and Giot (2003) have provided evidence that implied 

volatility is more informative when we forecast stock market volatility. More 

recently, findings by Degiannakis (2008a) and Frijns et al. (2010) second the 

aforementioned claims. 

Methodologically, on one hand, the literature provides evidence that the 

fractionally integrated autoregressive moving average models outperform the 

volatility forecasts that are produced by the GARCH and stochastic volatility models 

(Koopman et al., 2005). Degiannakis (2008b) also maintains that due to the long 

memory property of volatility, the ARFIMA framework is suitable for estimating and 

forecasting the logarithmic transformation of volatility. On the other hand, some 

argue that heterogeneous autoregressive models (HAR) are more successful in 

forecasting volatility due to the fact that they are parsimonious and they are able to 

capture the long-memory that is observed in volatility (see, inter alia, Andersen et al., 

2007; Corsi, 2009; Busch et al., 2011; Fernandes et al., 2014, Sevi, 2014). 

Nevertheless, Angelidis and Degiannakis (2008) provide evidence that there is not a 

unique model that is offering better predictive ability than others in all instances. 

 The aim of this study is to assess whether a new approach, namely a non-

parametric framework such as the Singular Spectrum Analysis (SSA) type model, can 

provide better forecast of the implied volatility. More specifically, we use an SSA-

type model to forecast several implied volatility indices and we compare these 

forecasts against those made by HAR and ARFIMA models, as well as by four naïve 

models; i.e. I(1), ARI(1,1), FI(1) and ARFI(1,1) and model-averaging. 

SSA is regarded as a powerful non-parametric technique for time series 

analysis and forecasting. In short, SSA decomposes a time series into the sum of a 

small number of independent and interpretable components such as a slowly varying 
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trend, oscillatory components and noise (Hassani et al., 2009). The main advantage of 

SSA-type models is that they do not require any statistical assumptions in terms of the 

stationarity of the series or the distribution of the residuals. In fact, SSA uses 

bootstrapping to generate the confidence intervals that are required for the evaluation 

of the forecasts (Hassani and Zhigljavsky, 2009; Vautard et al., 1992).  

Overall, SSA has been applied widely is various disciplines, such as biology, 

medical studies, physics (see, for example, Sanei et al., 2011; Ghosi et al., 2009). 

Recently, this method has attracted a considerable attention in the economic literature, 

(see for example, Hassani et al., 2009; Beneki et al., 2012). The limited empirical 

applications of SSA on economic and financial series provide significant evidence of 

its superior predictive ability against the standard forecasting models, such as the 

ARIMA-type and GARCH-type models.  

Interestingly enough, no studies have utilised this method to forecast stock 

market volatility, despite the fact that since the early 2000 Thomakos et al. (2002) 

maintain that SSA is able to decompose volatility series more effectively, capturing 

both the market trend and a number of market periodicities, and thus an important 

extension to the existing literature would be to assess the forecasting ability of SSA in 

the context of volatility modeling.  

Therefore, the aim of this study is to assess the 1-day and 10-days ahead 

forecasting ability of an SSA-type model (SSA-HW) on a series of implied volatility 

indices, competing against two conventional model frameworks, namely, an 

ARFIMA-type and a HAR-type model and four naïve models. The 1-day and 10-days 

ahead predictions are chosen, given that these time horizons apply to certain investors 

and portfolio managers, as well as, the Basel II requirements for VaR forecasting.  

The contribution of the paper is described succinctly. First, we provide an 

alternative model to forecast implied volatility; second, we open new avenues for the 

use of SSA-type in finance and third, we contribute to the non-parametric literature of 

financial markets.  

The study provides empirically significant evidence that the SSA-HW model 

achieves more accurate forecasts for the 1-day and 10-days ahead, compared to the 

ARFIMA, HAR, SSA and HW models, as well as, four naïve models. Model-

averaged forecasts reveal that the forecasting accuracy of the SSA-HW is enhanced 

for the 10-days ahead if it is combined with the ARI(1,1) model. The predictive 

accuracy is assessed by the Mean Squared Error (MSE) and the Mean Absolute Error 
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(MAE) loss functions, the Model Confidence Set forecasting evaluation procedure, as 

well as, the Direction-of-Change criterion. Finally, we assess the forecasting ability of 

the models by means of a trading game. The results reveal that investors are able to 

generate significant positive average net profits using the SSA-HW and the ARI-SSA-

HW models. 

The rest of the paper is structured as follows. In section 2, we describe the data 

of the study. Section 3 illustrates the forecasting models. Section 4 provides a detailed 

explanation of the implied volatility forecasts estimation procedure and section 5 

describes the adopted forecasting evaluation method. Section 6 analyses the empirical 

findings, whereas Section 7 concludes the study. 

 

2. Data description 

 We use daily data from 1st of February, 2001 up to 9th of July, 2013 (i.e. 3132 

trading days) from eight implied volatility indices. The implied volatilities are the 

following: VIX (S&P500 Volatility Index – US), VXN (Nasdaq-100 Volatility Index 

– US), VXD (Dow Jones Volatility Index – US), VSTOXX (Euro Stoxx 50 Volatility 

Index – Europe), VFTSE (FTSE 100 Volatility Index – UK), VDAX (DAX 30 

Volatility Index – Germany), VCAC (CAC 40 Volatility Index – France) and VXJ 

(Japanese Volatility Index - Japan). The stock markets under consideration represent 

six out of the ten most important stock markets of the world, in terms of 

capitalisation. In addition, these markets are among the most liquid markets of the 

world. Thus, we maintain that their implied volatility indices are representative of the 

world’s stock market uncertainty. The data have been extracted from Datastream
®. 

As we aim for a common sample of the aforementioned implied volatility indices, the 

starting data of the sample period was dictated by the availability of the data of the 

VXN index. 

  Figure 1 and Table 1 exhibit the series under consideration and list their 

descriptive statistics, respectively.  

[FIGURE 1 HERE] 
[TABLE 1 HERE] 

From Figure 1 we observe that all implied volatility indices display very 

similar patterns. For example, it is evident that during the Great Recession of 2007-

2009 all indices reached their highest level over the sample period. In addition, the 

magnitude of these peaks is comparable across indices. Furthermore, we observe two 
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more peaks in 2003 and 2011. The volatility spikes in 2003 can be attributed to the 

second war in Iraq, whereas a plausible explanation of the 2011 peak in stock market 

volatilities can be found in the European debt crisis which initiated in Greece but 

spread to other countries such as Ireland, Spain and Portugal, as well. The US debt-

ceiling crisis of the same year could have aggravated higher uncertainty in world 

stock markets.  

From Table 1 we notice that average volatility is of similar size across indices, 

with the exception being the VXN and VXD indices, which exhibit the highest and 

lowest average volatility, respectively. Furthermore, the VXN index also exhibits the 

highest level of standard deviation, suggesting that it is the most volatile index. All 

series under examination are stationary and heteroscedastic, as suggested by the ADF 

and ARCH LM tests, respectively. 

 

3. Methodology and Models 

3.1. IV-ARFIMA Model 

The long memory property of implied volatility indices makes the 

Autoregressive Fractionally Integrated Moving Average, or ARFIMA, model an 

appropriate framework for multiple-step-ahead implied volatility index, 
t

IV , 

predictions. The IV-ARFIMA(k,d,l) model for the discrete time t  real-valued process 

 
t

IVlog  is utilized in the form1: 

         
ttt

d
LDIVLLC   1log11

1
xβ , 

 2
,0~  N

t
, 

(1) 

where    1111
1

tttt
ydyx  is the vector of explanatory variables, β  is a vector 

of unknown parameters, and   



k

i

i

i
LcLC

1

,   



l

i

i

i
LdLD

1

 are polynomials with the 

parameters 
lk

ddcc ,...,,,...,
11

 for estimation. The 
t

y  denotes the log-returns of the 

underlying stock index and the 
t

d  is a binary dummy variable, i.e.  1
t

d , if 

0
t

y and zero otherwise2. 

 

                                                           
1  The ARFIMA model was initially developed by Granger and Joyeux (1980). 
2  The dummy variable models the asymmetric relationship between volatility and lagged log-return; 
i.e. Degiannakis (2008b). 
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3.2. IV-HAR Model 

The Heterogeneous Autoregressive, or HAR, model relates the current trading 

day’s implied volatility with the daily, weekly and monthly implied volatilities. The 

autoregressive structure of the volatility over different interval sizes attempts to 

replicate the different perspectives that market participants may have on their 

investment horizon, which is the basic idea of the heterogenous market hypothesis in 

economic theory; see Müller et al. (1997). 

The IV-HAR, model for the discrete time real-valued process  
t

IVlog  is 

defined as3: 

 

      ,log22log5log

log

22

1

1

3

5

1

1

2110 t

j

jt

j

jtt

t

IVwIVwIVww

IV






































 

 2
,0~  N

t
, 

(2) 

where the 3210
,,, wwww  are the unknown parameters to be estimated4. 

 

3.3. IV-SSA-HW Model 

The idea underlying the combination forecast of SSA-HW is the exploitation 

of SSA’s sound decomposition capabilities which can then be combined with HWs’ 

non-parametric forecasting capability. Whilst it is possible to build a combination 

forecast using any other time series analysis and forecasting technique, here we opted 

for SSA in combination with HW for three main reasons. Firstly, based on past 

experience in forecasting time series with increased volatility, HW has always been a 

close contender to SSA as it is able to model the fluctuations in past data and then 

provide sound predictions (see i.e. Hassani et al., 2013). The second reason is the fact 

that HW, like SSA, is a non-parametric technique. Accordingly, by combining 

together two non-parametric techniques we are able to clear out the need for 

assumptions that must be considered when adopting parametric techniques. Thirdly, 

the analysis of implied volatility time series shows its nonlinear in nature and as such, 

we had no reservations in selecting HW.  

                                                           
3  The HAR model initially developed by Corsi (2009). 
4
 The HAR model could be extended to accommodate heteroscedasticity in the error term, as in Corsi et 

al. (2005). However, the modeling of volatility of realized volatility is out of the scope of the paper. 
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In this paper we decompose the implied volatility series using SSA and then 

we forecast each of the decomposed series using the HW model5. A description of the 

decomposition stage is presented below and Section 4.3 presents the HW forecasting 

algorithm. In the decomposition stage, the first step is referred to the embedding 

process and the construction of the trajectory matrix. Consider the implied volatility 

index time series 
t

IV  of length T


. Embedding process maps the one dimensional 

time series 
t

IV  into a multidimensional time series K
XX ,...,

1  with vectors 

 '

121
,...,,, 

Liiiii
IVIVIVIVX , where L  is an integer such that 12  T


L . The 

selection of the optimal window length L for decomposing the time series is based on 

the RMSE criterion6. The trajectory matrix, X , is constructed such that 

1 LTK


; X  is a Hankel matrix, i.e. elements along the diagonal i+j are equal: 

   




























T

K

K

K

jijiKr

IVIVIVIV

IVIVIVIV

IVIVIVIV

xXXX









21

1432

321

,

1,,1
,...,,...,

LLL

L
X . (3) 

The second step of the decomposition stage is known as singular value 

decomposition (SVD). In order to obtain the SVD of the trajectory matrix X , we 

calculate 
'

XX for which L
λ,...,λ

1  denote the eigenvalues in decreasing order, and 

L
UU ,...,

1  represent the corresponding eigenvectors. The SVD step then provides the 

singular values r (the second parameter of SSA), such that r
XX  ...

1
X . 

Thereafter, we use diagonal averaging to transform the components of the matrix X 

into a Hankel matrix which can then be converted into time series 1,t
IV …. rt

IV
, , 

where rt
IV

,  refers to the decomposed time series from the original implied volatility 

index. Having decomposed the implied volatility series, we apply the HW algorithm 

(Hyndman et al., 2013) to forecast the decomposed series from 1,t
IV …. rt

IV
, . 

 

                                                           
5 The SSA-HW model is estimated in R software. 
6 The implied volatility series is divided into training and test sets. Decomposition of the training set is 
evaluated for different window lengths and eigenvalues. The results from the best decomposition as 
determined via the training approach is then used to decompose the test set of each index and then 
forecasted individually with HW prior to combining these decomposed forecasts for which the out-of-
sample forecasting errors are reported. 
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4. Forecasting IV indices 

4.1. IV-ARFIMA model 

 We define the orders of k and l of the IV-ARFIMA(k,d,l) model based on the 

Schwarz (1978) information criterion (for the total sample)7, which is reported in 

Table 2.  

[TABLE 2 HERE] 
The IV-ARFIMA(2,d,1) model is estimated for all the IV indices, except for 

the VCAC, VXN and VXJ, for which the IV-ARFIMA(2,d,2) has been selected.  

 For the ARFIMA(2,d,1) model the one-step-ahead logarithmic implied 

volatility,  
tt

IV
|1

log  , is estimated as: 

       
tt

j

j

jtt

j

j

jtttt
dLALALcLcIVLccIV

|1

0

|

1

12

2121|1
ˆˆˆˆ1logˆˆlog  










  xβ  (4) 

where 
 

   1ˆ

ˆ






jd

dj
A

j
, and 

tt |
  denotes the residual term at time t estimated based 

on the information set at time t, or      
121|

logˆˆlog 
tttt

IVLccIV  

 
tt

j

j

jtt

j

j

jt
dLALALcLc

|11

0

|

0

1

2

21
ˆˆˆˆ1 








   xβ .8 The infinite expansion of the 

fractional differencing operator is approximated as (see Xekalaki and Degiannakis, 

2010, Baillie, 1996): 
 

   
  ...1

!2

1

!1

1
1

1

2

0


















LdddLL
jd

dj

j

j
. The 

parameters of the models  
lk

ddccd ,...,,,...,,,
11

β  are re-estimated at each trading day. 

 For  2
,0~  N

t
, the  

t
exp  is log-normally distributed. Thus, the 

(unbiased) estimator of 
tt

IV
|  equals to   2

|
ˆ

2
1logexp 

tt
IV . Consequently, the one-

trading-day-ahead implied volatility is predicted as: 

  2

|1|1
ˆ

2
1logexp   tttt

IVIV . (5)  

                                                           
7 The models were estimated in the ARFIMA package of Ox; see Doornik and Ooms (2006). The 
Schwarz information criterion (SBC) is computed from the Akaike information criterion (AIC) 

provided by ARFIMA package:   2log
1  

TqTAICSBC


, for T


 and q  denoting the number of 

observations and parameters of the models (including the residuals' variance), respectively. 
8 Accordingly, the 

tt |1 denotes the residual term at time t-1 estimated based on the information set at 

time t. 
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The 10-step-ahead logarithmic implied volatility is estimated as9: 

     
tt

j

j

jtt

j

j

jtttt
dLALAIVLccIV

|1

9

9

|

10

10

|921|10
ˆlogˆˆlog  











  . (6)  

 

4.2. IV-HAR model 

Correspondingly, the IV-HAR model forecast is computed as: 

     




















































2
22

1

1

1

3

5

1

1

1

210

|1

ˆ
2

1log22ˆlog5ˆlogˆˆexp 
j

jt

j

jtt

tt

IVwIVwIVww

IV

 (7) 

The 10-days-ahead logarithmic implied volatility, based on IV-HAR model, is 

computed as: 

     

    .loglog22ˆ

log5ˆlogˆˆlog

22

10

10

9

1

|10

1

3

5

1

|10

1

2|910|10

























































j

jt

j

tjt

j

tjttttt

IVIVw

IVwIVwwIV

 (8) 

 

4.3. IV-SSA-HW model 

We aggregate the Holt-Winters forecasts obtained for time series 

1,t
IV …. rt

IV
,  to arrive at the SSA-HW forecasts. We propose the combination of the 

forecasts attained via HW for each decomposed component via aggregation. The 

underlying idea behind this approach is to decompose first a given series, so to 

enables us to identify the various fluctuations, which were previously hidden under 

the overall series. Secondly, the approach is concerned with forecasting each of these 

decompositions with HW so that the model is able to capture all fluctuations, which 

were hidden previously, and then combine all these forecasts via aggregation to come 

up with the SSA-HW forecast. Depending on the characteristics of the time series, the 

Hyndman et al. (2013) algorithm automatically selects either the multiplicative or the 

additive HW method. The additive HW framework for forecasting implied volatility 

is presented as:  

    
11

ˆˆˆ1ˆˆˆ
 

ttmttt
blsIVl   (9)  

                                                           

9 The s-step-ahead forecast, for s>2, is      
tt

sj

sj

jtt

sj

sj

jtsttst
dLALAIVLccIV

|1

1

1

||121|

ˆlogˆˆlog  










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   
11

ˆˆ1ˆˆˆˆ
 

tttt
bllb   

   
mttttt

sblIVs   ˆˆ1ˆˆˆˆ
1

 , 

where 
t

l̂  is the smoothing equation for the level, 
t

b  is for the trend,  is the seasonal 

equation and m is used to denote the period of seasonality. The alternative, which is 

the multiplicative HW method has the form:  

    
11

ˆˆˆ1ˆˆˆ
 

ttmttt
blsIVl   

   
11

ˆˆ1ˆˆˆˆ
 

tttt
bllb   

    
mttttt

sblIVs   ˆˆ1ˆˆˆˆ
1

 . 

(10)  

The additive HW one-step-ahead,
tt

IV
|1 , and 10-days-ahead, 

tt
IV

|10 , implied volatility 

forecasts are computed as: 

mttttt
sblIV  

1|1
ˆˆˆ  (11)  

mttttt
sblIV  

10|10
ˆˆ10ˆ , (12)  

respectively. By contrast, the multiplicative HW one-step-ahead, 
tt

IV
|1 , and 10-days-

ahead, 
tt

IV
|10 , implied volatility forecasts are computed as: 

mttttt
sblIV  

1|1
ˆ*)ˆˆ(  (13)  

mttttt
sblIV  

10|10
ˆ*)ˆ10ˆ( , (14)  

respectively. 

 

4.4. Naïve models & Model-averaged Forecasts 

As mentioned in section 1, apart from the three models presented in this 

section we further employ four naïve models, namely, the I(1), ARI(1,1), FI(1) and 

ARFI(1,1), which serve as benchmarks, as well as, the HW and SSA models, 

separately. For brevity, we do not develop these models here.  

Furthermore, the intention of this study is not to develop a horse-race 

forecasting exercise, thus we employ model-averaged forecasts combining only the 

best naïve model with the HAR, ARFIMA and SSA-HW. In addition, since the aim of 

the study is to assess whether the non-parametric models of SSA and HW, as well as 

their combination, can outperform the parametric models we also proceed with the 

model-averaged forecast of the HAR-ARFIMA model. Forecasting literature states 

(i.e. Favero and Aiolfi, 2005, Samuels and Sekkel, 2013, Timmermann, 2006) that 
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model-averaged forecasts improve upon forecasts based on a single model i) with 

equal weight averaging working particularly well and ii) fewer models included in the 

combination provides more accurate forecasts.  

 

5. Forecasting Evaluation 

5.1. Model Confidence Set 

The training period of the models is T
~

=1000 days, i.e. from 02/02/2001 until 

28/01/2005. The remaining T =2132 days are used for the evaluation period of the 

out-of-sample forecasts. In order to proceed to the first out-of-sample forecast (i.e. 

1t  forecast or day 1001) we train the models using the initial 1000 days. The use of 

a restricted sample size of 1000 trading days incorporates changes in trading 

behaviour more efficiently. For example Angelidis et al. (2004), Degiannakis et al. 

(2008) and Engle et al. (1993) provide empirical evidence that the use of restricted 

samples captures better the changes in market activity10,11. The total number of 

observations is TTT 
~

. The forecasting accuracy of the models is gauged using 

two established loss functions, the MSE and the MAE, as presented in Table 3.12 

[TABLE 3 HERE] 
 In addition, we employ the Model Confidence Set (MCS) procedure of 

Hansen et al. (2011). The MCS test determines the set of models that consists of the 

best models where best is defined in terms of a predefined loss function. In our case 

two loss functions are employed, namely the MSE and the MAE. The MCS compares 

the predictive accuracy of an initial set of 
0

M  models and investigates, at a 

predefined level of significance, which models survive the elimination algorithm. For 

ti
L

,  denoting the loss function of model i  at day t , and tjtitji
LLd

,,,,
  is the 

evaluation differential for 
0

, Mji   the hypotheses that are being tested are:  

  0:
,,,0


tjiM

dEH  (15)  

                                                           
10 We have used various window lengths for the rolling window approach and the results remain 
qualitatively unchanged.  
11 We have also used a recursive approach, where for each subsequent forecast after the  1t  forecast 

we added to the training period an additional day. For example for the 2t  forecast we used 1
~
T  

daily observations. The results are qualitatively similar and they are available upon request.  
12 An alternative forecasting evaluation method is the Mincer and Zarnowitz (1969) regression, where 
the future VIX is regressed against the three different forecasts. The coefficients of the regressions are 
interpreted as the amount of information embedded in the different forecasts. The results are 
qualitatively similar.  
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for Mji  , , 
0

MM   against the alternative   0:
,,,1


tjiM

dEH  for some 

Mji , . The elimination algorithm based on an equivalence test and an elimination 

rule, employs the equivalence test for investigating the 
M

H
,0

 for  
0

MM   and the 

elimination rule to identify the model i  to be removed from M in the case that  
M

H
,0

 

is rejected.13 

 

5.2. Direction-of-Change 

Furthermore, we consider the Direction-of-Change (DoC) forecasting 

evaluation technique. The DoC is particularly important for trading strategies as it 

provides an evaluation of the market timing ability of the forecasting models. The 

DoC criterion reports the proportion of trading days that a model correctly predicts 

the direction (up or down) of the volatility movement for the 1-day and 10-days 

ahead.  

 

5.3. Portfolio performance 

Finally, we compare the performance of each forecasting method based on a 

simple day-trading game. For the 1-day ahead forecasts, the trader takes a long 

position when the 1t  forecasted volatility of model i  is higher compared to the 

actual volatility at time t . By contrast, if the 1t  forecasted volatility of model i  is 

lower compared to the actual volatility at time t , then the trader takes a short position. 

Similarly, we construct the trading game for the 10-days ahead forecasts. Portfolio 

returns are computed as the average net daily returns over the investment horizon, 

which coincides with our out-of-sample forecasting period of T =2132 days. The 

transaction costs per unit for each trade are estimated to be between 0.6%-1.2% (see 

Jung, 2015). 

6. Empirical findings 

We consider the models’ forecasting performance at two different horizons, 

namely 1-day and 10-days ahead. The MSE and MAE loss functions are presented in 

Tables 4 and 5, whereas Tables 6 and 7 display the MCS p-values. 

                                                           
13 The Superior Predictive Ability (SPA) test of Hansen (2005) was also used to evaluate the 
forecasting accuracy of the competing models. Initially, the benchmark model for the SPA test was the 
ARI(1,1), which is the best naïve model. Subsequently, we used the IV-HAR and the IV-ARFIMA as 
benchmark models against the SSA-HW. The results confirm the MCS findings and they are available 
upon request.  
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[TABLE 4 HERE] 
[TABLE 5 HERE] 
[TABLE 6 HERE] 
[TABLE 7 HERE] 

Tables 4 and 5 provide evidence that the forecasts of the SSA-HW model 

outperform these produced by all naïve, SSA, HW, ARFIMA and HAR models. We 

observe that this holds true for both time horizons, i.e. 1-day and 10-days ahead, and 

all indices. The only exception for the 1-day ahead forecasts is the VFTSE, which 

according to the MAE the best forecast is achieved by the SSA. In addition, for the 

10-days ahead forecast, the MAE (MSE) suggests that for the VCAC index the best 

forecast is obtained by the IV-ARFIMA (HW), whereas according to the MSE the 

best forecasts for the VTFSE and VXD are generated by the HW. 

Despite the exceptions, it is clear that the use of the SSA-HW model, as 

opposed to the naïve, SSA, HW, ARFIMA or HAR models, provides a considerable 

improvement in the forecasting accuracy for all indices.  

 Next we compare the forecasting accuracy of the models using the MCS 

procedure. The results for the 1-day ahead forecasts (Table 6) suggest that in both the 

cases of the MAE and the MSE loss functions, the model that belongs to the confident 

set of the best performing models is only the SSA-HW. The only exception is the 

forecasts for VFTSE, where in the case of the MAE the best performing model is only 

the SSA, whereas in the case of MSE it is also the SSA that belongs to the set of the 

best performing models. For the 10-days ahead forecasts (Table 7), the SSA-HW is 

the only best one for VXJ and VXN, according to the MSE, whereas for all the other 

cases, SSA-HW belongs to the set of best models. Based on the MAE, the SSA-HW is 

the only best model for all the cases except the VCAC. For VCAC, the SSA-HW is 

among the ones that belong to the set of the best models. 

Overall, evidence suggests that the use of the SSA-HW model gains a 

substantial improvement in forecasting accuracy, compared to the naïve, SSA, HW, 

ARFIMA and HAR models. 

 

6.1. Model-averaged Forecasts 

Next, we proceed with model-averaged forecasts in order to assess whether the 

inclusion of a naïve model could improve the performance of the competing models. 

According to Tables 4 and 5 the best naïve model is the ARI(1,1) model. Thus, we 

consider the following model-averaged forecasts, ARI-IV-ARFIMA, ARI-IV-HAR 
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and ARI-SSA-HW. In addition, we also use the combined forecast of the ARFIMA-

HAR models. Table 8 summarizes the results for the 1-day and 10-days ahead 

forecasts for both the MSE and the MAE. 

[TABLE 8 HERE] 
 For the 1-day ahead forecasts, we observe that apart from the VFTSE forecast 

based on the MAE criterion, in all other cases none of the model-averaged forecasts is 

able to outperform the best performing single model, which is the SSA-HW. 

However, for the 10-days ahead forecasts, we notice that the inclusion of the ARI(1,1) 

model in the SSA-HW is able to produce superior predictions.  

 The MCS test including the model-averaged forecasts also verifies the 

findings of Table 8. More specifically, Table 9 suggests that for the 1-day ahead 

forecasts it is only the SSA-HW model that belongs to the set of the best performing 

models. Thus, none of the model-averaged forecasts improves the forecasting 

accuracy of the SSA-HW model. The only exception is the case of VFTSE where 

according to the MSE the ARI-SSA-HW also belongs among the best performing 

models and based on the MAE the ARI-SSA-HW is the only model that belongs to 

the best performing models. 

 Table 10, which reports the MCS results for the 10-days ahead forecasts, 

reveals that it is the ARI-SSA-HW model that is always among the best performing 

models, yet the SSA-HW also belongs to the set of the best models in four cases 

(VDAX, VFTSE, VIX and VSTOXX), whereas HW is also among the best models 

for the case of VFTSE. Our study presents empirical evidence that in the case of 

multi-days-ahead volatility forecasts the predictive accuracy of the model-averaged 

method is statistically significant improving. 

[TABLE 9 HERE] 

[TABLE 10 HERE] 

 Scatter plots in Figure 2 provide a visual representation of the relationship 

between actual and predicted implied volatility indices, indicatively, for the VIX 

index only. Panel A corresponds to the 1-day ahead forecasts, whereas Panel B 

exhibits the 10-days ahead forecasts. It is clear from these figures that for the 1-day 

ahead forecast it is the SSA-HW that produces rather slimmer plots (middle column), 

whereas for the 10-days ahead forecast it is the ARI(1,1)-SSA-HW (right column). 

The worse forecasts are produced by the FI(1,1) for both forecasting horizons. In 

addition, the SSA-HW for the 1-day ahead and the ARI(1,1)-SSA-HW model for the 
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10-days ahead forecasts are observed to have fewer outliers. In addition, it is worth 

noting that at the higher levels of volatility the SSA-HW (for the 1-day ahead) and the 

ARI(1,1)-SSA-HW (for the 10-days ahead) models are showing to produce less 

scattered points. 

[FIGURE 2 HERE] 

Overall, the SSA-HW model is superior to its competitors, especially for the 

1-day ahead forecast, whereas the combination of SSA-HW with the ARI(1,1) is the 

best model for the 10-days ahead. We also assess the forecasting performance of our 

models in three sub-periods (pre-crisis period: January 2005 – November 2007, crisis 

period: December 2007 – June 2009, post-crisis period: July 2009 – July 2013) and 

the results are qualitatively similar. Due to brevity, these results are available upon 

request. 

The ability of the SSA-HW to generate superior forecasts stems from the fact 

that it is able to utilise the advantages of each of the model’s components. The SSA 

has the ability to decompose volatility indices into interpretable components. By 

decomposing the series using SSA, the interpretable components capture the 

dynamics of volatility indices, which can then be forecasted individually using HW. 

In turn, HW has the ability to provide accurate forecasts of trend and signal via 

exponentially weighted moving averages (Holt, 2004). Thus, HW’s modelling 

capability is enhanced by the SSA filtering, which reduces the noise of the series. 

Therefore, instead of forecasting the index itself, we forecast each decomposed series 

prior to combining these forecasts. 

In more simple terms, the superior performance reported by SSA-HW can be 

attributed to the fact that in the absence of filtering with SSA the trend and other 

signals within the index would be distorted owing to the noise. When one decomposes 

the series we are able to separate all such components into individual time series 

which will have its own and varying structure which was earlier hidden underneath 

the overall series. Thereby forecasting these individual series which have its own and 

varying individual structure with HW enables the model to capture the underlying 

fluctuations which would have been more difficult to capture in the absence filtering 

via SSA. This is further evident in the fact that neither SSA nor HW by itself is able 

to outperform the forecasts from SSA-HW at both horizons with the exception of 

once in each horizon. 
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Furthermore, SSA is more popular as a filtering technique as opposed to a 

forecasting technique. This can be one reason underlying its poor performance by 

itself as the SSA forecasting algorithm appears to encounter problems with modelling 

implied volatility even after filtering for noise. Note that when SSA filters for noise it 

forecasts the signal alone and this signal is not decomposed further like we do in the 

SSA-HW approach. At the same time, HW’s poor performance is attributable to the 

fact that there is no filtering involved and as a result it encounters problems in picking 

up the true underlying signal which is distorted by the noisy implied volatility indices. 

  

6.2. Direction of change 

The DoC results are shown in Tables 11 and 12 for the 1-day and 10-days 

ahead, respectively. Table 11 shows that all forecasting models exhibit a good 

prediction of the DoC, since all scores are above the 50% level (with the only 

exception being the I(1) model), nevertheless the forecasting model with the highest 

prediction ability is the SSA-HW, followed by the ARI-SSA-HW and the SSA. More 

specifically, the SSA-HW and ARI-SSA-HW are capable of predicting accurately the 

DoC in 65-80% of the cases, depending on the volatility index. Similar findings are 

reported for the 10-days ahead forecasts (as shown in Table 12), where the SSA-HW 

and ARI-SSA-HW exhibit a very high predictive ability of the DoC, although the 

highest precision is attributed to the SSA-HW. In particular, the models are able to 

predict 65-88% of the directional changes on the implied volatilities. These results 

confirm the findings of the MCS, which provided evidence that the best model is the 

SSA-HW, followed by the ARI-SSA-HW.  

[TABLES 11 and 12 HERE] 

 

6.3. Portfolio performance 

The results of the trading game are reported in Tables 13 and 14 for the 1-day 

and 10-days ahead, respectively. 

[TABLES 13 and 14 HERE] 

For the 1-day ahead (see Table 13), it is evident that the SSA, SSA-HW and 

the ARI-SSA-HW provide positive net returns, which are significantly higher than 

zero. The largest figures are observed for the SSA-HW, followed by the ARI-SSA-

HW and then the SSA. Turning our attention to the 10-days ahead (see Table 14), we 

can make similar inference, as the only forecasting models that yield positive net 
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returns are those of the HW, SSA-HW and ARI-SSA-HW. Nevertheless, we observe 

that statistically significant net returns are only feasible for the VIX and VSTOXX 

indices. Hence, these findings confirm the superior predictive ability of the SSA-HW. 

  

7. Conclusions 

The aim of this paper is to assess whether better forecasts for implied volatility 

indices can be obtained using an SSA-type model. More specifically, we generate 1-

day and 10-days ahead forecasts based on the SSA-HW, ARFIMA and HAR models, 

as well as, four naïve models and compare their forecasting accuracy using the MSE 

and MAE evaluation criteria, the MCS procedure and the Direction-of-Change. In 

addition, we assess the forecasting ability of the models using a trading game. The 

data consisted of eight implied volatility indices for the period February, 2001 until 

July, 2013. 

The results show that SSA-HW is a powerful tool for predicting implied 

volatility indices as it is able to exploit the advantages of two non-parametric 

methods. The forecasting accuracy tests reveal that the forecasts generated by the 

SSA-HW model outperform these by naïve, ARFIMA and HAR models. These 

findings hold for both the 1-day and 10-days ahead forecasts and for all implied 

volatility indices. When we proceed to model-averaged forecasts we reveal that the 

SSA-HW is still the best performing model for the 1-day ahead forecasts, whereas the 

inclusion of an ARI(1,1) model to the SSA-HW improves further its forecasting 

accuracy. The results of the trading game reveals that the SSA-HW and the ARI-SSA-

HW could provide significant positive net returns over the out-of-sample period, 

although this primarily holds for the 1-day ahead and for the VIX and VSTOXX for 

the 10-days ahead. Overall, we maintain that this superior forecasting ability of the 

SSA-HW model is important to investors (e.g. for portfolio allocation decisions), 

portfolio managers (e.g. for Global Tactical Asset Allocation strategies), derivatives 

pricing, risk management purposes (e.g. for VaR calculations), as well as, policy 

makers (e.g. monetary policy decisions). 

The use of SSA-HW enables users to overcome the parametric assumptions 

which restrict the applicability of many parametric models when applied to real world 

scenarios. As such we believe this proposed combination forecast which combines a 

renowned forecasting technique with an equally renowned filtering technique will 

enable users to achieve better outcomes in general when considered as a solution for 
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other real world forecasting problems which go beyond implied volatility forecasts. In 

a world where the emergence of Big Data and the related noise continues to distort the 

signal in time series, the SSA-HW approach proposed and proven through this paper 

can be a useful tool in attaining reliable and accurate forecasts in the future. An 

interesting avenue for further study is to assess SSA forecasting ability using intra-day 

data.  
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FIGURES 

 

Figure 1: Implied Volatility Indices. The sample period runs from January, 2001 to July, 
2013. 
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Figure 2: One-day and 10-days ahead forecasts scatter plots of the models for the VIX 
index. The sample period runs from January, 2005 to July, 2013. 

1-day ahead forecasts 
 

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90

VIX level

F
or

ec
as

te
d 

V
IX

 b
as

ed
 o

n 
F

I(
1,

1)

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90

VIX level

F
or

ec
as

te
d 

V
IX

 b
as

ed
 o

n 
S

S
A

-H
W

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90

VIX level

F
or

ec
as

te
d 

V
IX

 b
as

ed
 o

n 
A

R
I(

1,
1)

-S
S

A
-H

W

 

10-days ahead forecasts 
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Note: Columns from left to right present the scatter plots for FI(1,1), SSA-HW and ARI(1,1)-SSA-HW, 
respectively. The y-axes (x-axes) show the actual (predicted) values. 
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TABLES 

 

Table 1: Descriptive Statistics of Implied Volatility Indices (January, 2001 to July, 2013). 

    Mean Min Max Std.Dev Jarque-Bera ADF-statistic ARCH LM Test 

VIX 21.52 9.89 80.86 9.48 6174.43 *** -3.23 ** 5288.04 *** 

VSTOXX 25.99 11.60 87.51 10.78 1655.11 *** -3.63 *** 5759.33 *** 

VFTSE 21.19 9.10 78.69 9.45 3829.52 *** -3.89 *** 5535.42 *** 

VDAX 23.32 10.98 74.00 9.54 1578.59 *** -3.16 ** 8317.23 *** 

VCAC 24.31 9.24 78.05 9.76 2250.23 *** -3.69 *** 4588.81 *** 

VXN 27.92 12.03 80.64 13.01 929.13 *** -2.98 ** 12370.04 *** 

VXD 19.98 9.28 74.60 8.80 5205.14 *** -3.17 ** 6263.71 *** 

VXJ 26.66 11.53 91.45 9.70 12706.03 *** -4.10 *** 5620.22 *** 

***,**,* indicate significance at 1%, 5% and 10% level, respectively. 

 
 
 
 
Table 2: The SBC criterion for various orders of the IV-ARFIMA(k,d,l) model. 

 
k=0 

l=0 

k=0  

l=1 

k=1  

l=0 

k=1  

l=1 

k=2  

l=1 

k=1 
 l=2 

k=2 

l=2 

k=3 

l=2 

k=2 

l=3 

VIX -2.338 -2.528 -2.607 -2.650 -2.664 -2.656 -2.661 -2.659 -2.659 
VSTOXX -2.415 -2.683 -2.817 -2.844 -2.863 -2.853 -2.861 -2.858 -2.858 
VFTSE -2.292 -2.549 -2.690 -2.724 -2.739 -2.730 -2.735 -2.733 -2.735 
VDAX -2.609 -2.906 -3.077 -3.108 -3.130 -3.114 -3.127 -3.125 -3.125 
VCAC -2.400 -2.609 -2.714 -2.759 -2.763 -2.760 -2.766 -2.758 -2.764 
VXN -2.606 -2.848 -2.966 -3.006 -3.018 -3.011 -3.019 -3.013 -3.016 
VXD -2.372 -2.564 -2.650 -2.698 -2.712 -2.702 -2.709 -2.706 -2.706 
VXJ -2.353 -2.483 -2.547 -2.618 -2.622 -2.620 -2.622 -2.619 -2.620 
Bold face fonts present the best order of the IV-ARFIMA(k,d,l) model. 

 

 

 

 

Table 3: Loss functions for the evaluation of forecasting accuracy. 
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Table 4: Forecast accuracy tests: One-day ahead forecasts (January, 2005 to July, 2013). 

  

Implied Volatility Indices 

Model 
Loss 

Function VCAC VDAX VFTSE VIX VSTOXX VXD VXJ VXN 

IV-HAR 
MSE 4.18 2.21 2.92 3.81 3.76 2.91 4.67 3.12 

MAE 1.21 0.90 1.06 1.15 1.17 1.03 1.24 1.10 

IV-ARFIMA 
MSE 4.20 2.19 2.90 3.84 3.77 2.96 4.67 3.18 

MAE 1.22 0.90 1.06 1.16 1.17 1.04 1.25 1.10 

HW 
MSE 4.65 2.76 3.54 4.42 4.90 3.36 5.46 4.18 

MAE 1.37 1.11 1.28 1.34 1.49 1.19 1.45 1.44 

SSA 
MSE 2.55 1.67 2.39 2.92 2.87 2.09 2.71 2.41 

MAE 0.99 0.81 0.98 1.04 1.05 0.91 0.97 0.99 

SSA-HW 
MSE 1.46 1.29 2.28 2.18 2.20 1.49 1.46 1.86 

MAE 0.79 0.73 1.02 0.91 0.94 0.79 0.75 0.89 

I(1) 
MSE 4.28 2.21 2.94 3.96 3.81 3.00 4.64 3.16 

MAE 1.22 0.90 1.06 1.16 1.18 1.04 1.24 1.10 

ARI(1,1) 
MSE 4.26 2.22 2.93 3.86 3.81 2.94 4.70 3.15 

MAE 1.22 0.90 1.06 1.16 1.18 1.03 1.25 1.10 

FI(1) 
MSE 6.11 3.98 5.23 6.07 6.29 4.75 8.22 5.20 

MAE 1.45 1.17 1.32 1.39 1.45 1.26 1.54 1.35 

ARFI(1,1) 
MSE 4.37 2.33 3.10 4.28 3.96 3.27 5.14 3.42 

MAE 1.24 0.92 1.07 1.19 1.18 1.06 1.30 1.13 
Bold face fonts present the best performing model. 
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Table 5: Forecast accuracy tests: Ten-days ahead forecasts (January, 2005 to July, 2013). 

  

Implied Volatility Indices 

Model 
Loss 

Function VCAC VDAX VFTSE VIX VSTOXX VXD VXJ VXN 

IV-HAR 
MSE 21.22 13.86 19.85 18.94 22.17 15.60 29.57 18.88 
MAE 2.92 2.39 2.77 2.72 2.96 2.50 3.20 2.74 

IV-ARFIMA 
MSE 21.27 13.47 19.41 19.32 21.89 15.56 29.18 19.61 
MAE 2.90 2.34 2.73 2.69 2.93 2.44 3.19 2.76 

HW 
MSE 17.77 13.36 14.04 13.98 19.03 13.51 21.90 18.66 
MAE 2.91 2.27 2.38 2.38 2.73 2.49 2.74 3.04 

SSA 
MSE 45.80 19.78 33.12 26.24 36.10 24.52 54.05 34.66 
MAE 4.26 2.72 3.46 3.20 3.58 3.22 4.32 3.69 

SSA-HW 
MSE 20.41 12.12 14.99 13.13 15.49 14.40 19.00 12.70 

MAE 3.10 1.89 2.29 1.79 1.66 2.21 2.39 2.22 

I(1) 
MSE 22.22 13.77 20.15 18.56 22.56 14.93 30.19 18.37 
MAE 3.05 2.42 2.83 2.74 3.08 2.50 3.26 2.77 

ARI(1,1) 
MSE 21.98 13.75 20.11 18.35 22.49 14.81 30.11 18.29 
MAE 3.03 2.42 2.83 2.74 3.08 2.50 3.25 2.77 

FI(1) 
MSE 28.12 21.69 27.82 31.20 32.24 25.22 42.89 27.89 
MAE 3.21 2.82 3.10 3.23 3.38 2.93 3.78 3.22 

ARFI(1,1) 
MSE 26.55 19.69 25.65 29.43 29.84 23.72 41.37 26.03 
MAE 3.11 2.67 2.97 3.13 3.25 2.84 3.69 3.09 

Bold face fonts present the best performing model. 
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Table 6: MCS p-values: One-day ahead forecasts (January, 2005 to July, 2013). 

  

Implied Volatility Indices 

Model 
Loss 

Function VCAC VDAX VFTSE VIX VSTOXX VXD VXJ VXN 

IV-HAR 
MSE 0.0000 0.0000 0.0002 0.0000 0.0002 0.0000 0.0001 0.0000 
MAE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

IV-ARFIMA 
MSE 0.0001 0.0000 0.0001 0.0000 0.0002 0.0000 0.0001 0.0000 
MAE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HW 
MSE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
MAE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

SSA 
MSE 0.0001 0.0000 0.1245* 0.0000 0.0002 0.0000 0.0001 0.0000 
MAE 0.0000 0.0000 1.0000* 0.0000 0.0000 0.0000 0.0000 0.0000 

SSA-HW 
MSE 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 
MAE 1.0000* 1.0000* 0.0005 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 

I(1) 
MSE 0.0000 0.0000 0.0002 0.0000 0.0002 0.0000 0.0000 0.0000 
MAE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

ARI(1,1) 
MSE 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 
MAE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

FI(1) 
MSE 0.0001 0.0000 0.0004 0.0000 0.0002 0.0000 0.0001 0.0000 
MAE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

ARFI(1,1) 
MSE 0.0001 0.0005 0.0030 0.0000 0.0005 0.0000 0.0000 0.0000 
MAE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

* denotes that the model belongs to the confidence set of the best performing models. The interpretation of the MCS p-value is 

analogous to that of a classical p-value; a  a1  confidence interval that contains the ‘true’ parameter with a probability no less 

than  a1 . 
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Table 7: MCS p-values: Ten-days ahead forecasts (January, 2005 to July, 2013). 

  

Implied Volatility Indices 

Model 
Loss 

Function VCAC VDAX VFTSE VIX VSTOXX VXD VXJ VXN 

IV-HAR 
MSE 0.1796* 0.2192* 0.0052 0.0161 0.0810 0.3407* 0.0013 0.0199 
MAE 0.7881* 0.0000 0.0000 0.0000 0.0000 0.0038 0.0000 0.0000 

IV-ARFIMA 
MSE 0.1796* 0.5671* 0.0105 0.0162 0.0810 0.4632* 0.0013 0.0199 
MAE 1.0000* 0.0000 0.0000 0.0000 0.0000 0.0104 0.0000 0.0000 

HW 
MSE 1.0000* 0.1245* 1.0000* 0.6193* 0.2634* 1.0000* 0.0528 0.0001 
MAE 0.9280* 0.0000 0.0855 0.0000 0.0000 0.0007 0.0000 0.0000 

SSA 
MSE 0.0001 0.0206 0.0001 0.0000 0.0076 0.0000 0.0000 0.0000 
MAE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

SSA-HW 
MSE 0.1597* 1.0000* 0.2748* 1.0000* 1.0000* 0.5806* 1.0000* 1.0000* 
MAE 0.1324* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 

I(1) 
MSE 0.0274 0.5671* 0.0017 0.0128 0.0810 0.3237* 0.0002 0.0199 
MAE 0.0028 0.0000 0.0000 0.0000 0.0000 0.0037 0.0000 0.0000 

ARI(1,1) 
MSE 0.0917 0.5671* 0.0017 0.0157 0.0810 0.4632* 0.0002 0.0199 
MAE 0.0061 0.0000 0.0000 0.0000 0.0000 0.0037 0.0000 0.0000 

FI(1) 
MSE 0.0001 0.0000 0.0002 0.0000 0.0000 0.0000 0.0001 0.0000 
MAE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

ARFI(1,1) 
MSE 0.0068 0.0001 0.0017 0.0006 0.0014 0.0007 0.0001 0.0015 
MAE 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

* denotes that the model belongs to the confidence set of the best performing models. The interpretation of the MCS p-value is 

analogous to that of a classical p-value; a  a1  confidence interval that contains the ‘true’ parameter with a probability no less 

than  a1 . 
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Table 8: Forecast accuracy tests: Model-averaged forecasts (January, 2005 to July, 2013). 

  

Implied Volatility Indices 

Model 
Loss 

Function VCAC VDAX VFTSE VIX VSTOXX VXD VXJ VXN 

 
One-day ahead 

ARI-IV-HAR 
MSE 4.21 2.21 2.92 3.82 3.78 2.91 4.64 3.12 
MAE 1.21 0.90 1.06 1.15 1.18 1.03 1.24 1.10 

ARI-IV-ARFIMA 
MSE 4.19 2.19 2.89 3.82 3.77 2.92 4.64 3.14 
MAE 1.21 0.90 1.06 1.15 1.17 1.03 1.24 1.10 

HAR-ARFIMA 
MSE 4.17 2.19 2.89 3.82 3.76 2.92 4.66 3.14 
MAE 1.21 0.90 1.06 1.15 1.17 1.03 1.24 1.10 

ARI-SSA-HW 
MSE 2.43 1.60 2.32 2.82 2.76 2.02 2.66 2.31 
MAE 0.94 0.78 0.97 1.00 1.02 0.88 0.96 0.95 

 
Ten-days ahead 

ARI-IV-HAR 
MSE 21.15 13.56 19.67 18.34 21.90 14.92 29.23 18.30 
MAE 2.94 2.38 2.76 2.70 2.99 2.47 3.18 2.72 

ARI-IV-ARFIMA 
MSE 20.64 13.26 19.26 18.32 21.55 14.56 28.85 18.19 
MAE 2.91 2.35 2.73 2.67 2.96 2.42 3.17 2.70 

HAR-ARFIMA 
MSE 20.94 13.59 19.54 18.99 21.93 15.35 29.29 18.96 
MAE 2.90 2.36 2.74 2.70 2.94 2.46 3.19 2.73 

ARI-SSA-HW 
MSE 13.48 9.83 14.45 8.39 8.14 10.69 16.86 10.41 

MAE 2.48 1.95 2.32 1.80 1.83 2.09 2.24 2.10 
Bold face fonts present the model that outperforms the best performing models of Table 4 and 5 for the 1-day and 10-days 
ahead, respectively. 
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Table 9: MCS p-values: Model-averaged forecasts, one-day ahead (January, 2005 to July, 2013). 

  

Implied Volatility Indices 

Model 
Loss 

Function VCAC VDAX VFTSE VIX VSTOXX VXD VXJ VXN 

IV-HAR 
MSE 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0001 0.0000 
MAE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

IV-ARFIMA 
MSE 0.0001 0.0000 0.0000 0.0000 0.0002 0.0000 0.0001 0.0000 
MAE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HW 
MSE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
MAE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

SSA 
MSE 0.0001 0.0000 0.0008 0.0000 0.0002 0.0000 0.0001 0.0000 
MAE 0.0000 0.0000 0.0018 0.0000 0.0000 0.0000 0.0000 0.0000 

SSA-HW 
MSE 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 
MAE 1.0000* 1.0000* 0.0000 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 

I(1) 
MSE 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 
MAE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

ARI(1,1) 
MSE 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 
MAE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

FI(1) 
MSE 0.0001 0.0000 0.0004 0.0000 0.0002 0.0000 0.0001 0.0000 
MAE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

ARFI(1,1) 
MSE 0.0001 0.0005 0.0010 0.0000 0.0005 0.0000 0.0000 0.0000 
MAE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

ARI-IV-HAR 
MSE 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0001 0.0000 
MAE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

ARI-IV-
ARFIMA 

MSE 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0001 0.0000 
MAE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR-ARFIMA 
MSE 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0001 0.0000 
MAE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

ARI-SSA-HW 
MSE 0.0001 0.0003 0.6171* 0.0000 0.0002 0.0000 0.0001 0.0000 
MAE 0.0000 0.0000 1.0000* 0.0000 0.0000 0.0000 0.0000 0.0000 

* denotes that the model belongs to the confidence set of the best performing models. The interpretation of the MCS p-value is 

analogous to that of a classical p-value; a  a1  confidence interval that contains the ‘true’ parameter with a probability no less than 

 a1 . 
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Table 10: MCS p-values: Model-averaged forecasts, Ten-days ahead (January, 2005 to July, 2013). 

  

Implied Volatility Indices 

Model 
Loss 

Function VCAC VDAX VFTSE VIX VSTOXX VXD VXJ VXN 

IV-HAR 
MSE 0.0004 0.0009 0.0014 0.0000 0.0002 0.0013 0.0000 0.0000 
MAE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

IV-ARFIMA 
MSE 0.0006 0.0024 0.0063 0.0000 0.0002 0.0032 0.0000 0.0000 
MAE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HW 
MSE 0.0002 0.0033 1.0000* 0.0000 0.0002 0.0032 0.0000 0.0000 
MAE 0.0000 0.0000 0.1955* 0.0000 0.0000 0.0000 0.0000 0.0000 

SSA 
MSE 0.0000 0.0010 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 
MAE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

SSA-HW 
MSE 0.0000 0.0247 0.5147* 0.0003 0.0190 0.0052 0.0631 0.0168 
MAE 0.0000 1.0000* 1.0000* 1.0000* 1.0000* 0.0284 0.0199 0.0161 

I(1) 
MSE 0.0001 0.0000 0.0002 0.0000 0.0000 0.0009 0.0000 0.0000 
MAE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

ARI(1,1) 
MSE 0.0001 0.0000 0.0002 0.0000 0.0000 0.0010 0.0000 0.0000 
MAE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

FI(1) 
MSE 0.0001 0.0000 0.0002 0.0000 0.0002 0.0000 0.0000 0.0000 
MAE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

ARFI(1,1) 
MSE 0.0004 0.0001 0.0012 0.0000 0.0002 0.0005 0.0000 0.0000 
MAE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

ARI-IV-HAR 
MSE 0.0003 0.0001 0.0008 0.0000 0.0001 0.0017 0.0000 0.0000 
MAE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

ARI-IV-
ARFIMA 

MSE 0.0004 0.0010 0.0019 0.0000 0.0001 0.0032 0.0000 0.0000 
MAE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR-ARFIMA 
MSE 0.0006 0.0013 0.0033 0.0000 0.0002 0.0032 0.0000 0.0000 
MAE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

ARI-SSA-HW 
MSE 1.0000* 1.0000* 0.5296* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 
MAE 1.0000* 0.2480* 0.5695* 0.9885* 0.0171 1.0000* 1.0000* 1.0000* 

* denotes that the model belongs to the confidence set of the best performing models. The interpretation of the MCS p-value is 

analogous to that of a classical p-value; a  a1  confidence interval that contains the ‘true’ parameter with a probability no less than 

 a1 . 
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Table 11: Direction-of-Change - One-day ahead (January, 2005 to July, 2013). 

  

Implied Volatility Indices 

Model VCAC VDAX VFTSE VIX VSTOXX VXD VXJ VXN 

IV-HAR 0.5397 0.5270 0.5211 0.5336 0.5276 0.5315 0.5220 0.5202 
IV-ARFIMA 0.5244 0.5347 0.5216 0.5364 0.5318 0.5315 0.5258 0.5164 
HW 0.5077 0.4868 0.5053 0.5002 0.4995 0.5081 0.5158 0.5088 
SSA 0.6789 0.6437 0.6207 0.6397 0.6336 0.6492 0.7204 0.6456 
SSA-HW 0.7373 0.6992 0.6547 0.7044 0.6887 0.7169 0.7973 0.6922 
I(1) 0.5785 0.4840 0.4646 0.4584 0.4577 0.4628 0.4618 0.4637 
ARI(1,1) 0.5780 0.4926 0.4799 0.5296 0.4748 0.5243 0.4914 0.4907 
FI(1) 0.5900 0.5318 0.5259 0.5450 0.5347 0.5372 0.5325 0.5287 
ARFI(1,1) 0.5780 0.5122 0.5292 0.5093 0.5247 0.5148 0.5191 0.5059 
ARI-IV-HAR 0.5431 0.5088 0.5005 0.5250 0.5157 0.5291 0.5105 0.5221 
ARI-IV-ARFIMA 0.5258 0.5265 0.5115 0.5250 0.5166 0.5338 0.5096 0.5164 
HAR-ARFIMA 0.5411 0.5328 0.5220 0.5393 0.5276 0.5372 0.5249 0.5164 

ARI-SSA-HW 0.7340 0.6872 0.6379 0.6844 0.6811 0.6930 0.7677 0.6770 
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Table 12: Direction-of-Change - Ten-days ahead (January, 2005 to July, 2013). 

  

Implied Volatility Indices 

Model VCAC VDAX VFTSE VIX VSTOXX VXD VXJ VXN 

IV-HAR 0.5630 0.5441 0.5598 0.5564 0.5779 0.5764 0.5488 0.5638 
IV-ARFIMA 0.5749 0.5488 0.5655 0.5645 0.5703 0.5517 0.5360 0.5642 
HW 0.6559 0.6498 0.6902 0.6545 0.6678 0.6300 0.6635 0.6406 
SSA 0.4829 0.5005 0.5161 0.5308 0.5418 0.4720 0.4967 0.4917 
SSA-HW 0.7180 0.7223 0.6917 0.8308 0.8783 0.6689 0.7739 0.7411 
I(1) 0.4867 0.4512 0.4715 0.4564 0.4743 0.4568 0.4408 0.4661 
ARI(1,1) 0.4905 0.4521 0.4682 0.4739 0.4796 0.4782 0.4673 0.4827 
FI(1) 0.5820 0.5602 0.5740 0.5654 0.5827 0.5583 0.5445 0.5533 
ARFI(1,1) 0.5815 0.5531 0.5802 0.5635 0.5822 0.5574 0.5427 0.5505 
ARI-IV-HAR 0.5687 0.5275 0.5460 0.5488 0.5703 0.5697 0.5365 0.5614 
ARI-IV-ARFIMA 0.5754 0.5531 0.5645 0.5602 0.5775 0.5398 0.5299 0.5505 
HAR-ARFIMA 0.5763 0.5531 0.5669 0.5592 0.5798 0.5659 0.5398 0.5657 

ARI-SSA-HW 0.7166 0.7133 0.6874 0.8265 0.8788 0.6618 0.7716 0.7378 
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Table 13: Trading game results - One-day ahead (January, 2005 to July, 2013). 

 

Implied Volatility Indices 

Model VCAC   VDAX   VFTSE   VIX   VSTOXX   VXD   VXJ   VXN   

IV-HAR -0.0021 
 

-0.0045 
 

-0.0035 
 

0.0000 
 

-0.0039 
 

-0.0012 
 

-0.0033 
 

-0.0030 
 IV-ARFIMA -0.0026 

 
-0.0041 

 
-0.0034 

 
0.0001 

 
-0.0029 

 
-0.0009 

 
-0.0037 

 
-0.0032 

 HW -0.0065 
 

-0.0079 
 

-0.0068 
 

-0.0059 
 

-0.0076 
 

-0.0059 
 

-0.0060 
 

-0.0053 
 SSA 0.0213 *** 0.0112 *** 0.0113 *** 0.0179 *** 0.0128 *** 0.0183 *** 0.0225 *** 0.0139 *** 

SSA-HW 0.0273 *** 0.0167 *** 0.0148 *** 0.0249 *** 0.0190 *** 0.0255 *** 0.0280 *** 0.0193 *** 
I(1) 0.0016 

 
-0.0067 

 
-0.0056 

 
-0.0053 

 
-0.0066 

 
-0.0054 

 
-0.0055 

 
-0.0076 

 ARI(1,1) 0.0014 
 

-0.0065 
 

-0.0068 
 

-0.0003 
 

-0.0074 
 

-0.0021 
 

-0.0063 
 

-0.0067 
 FI(1) 0.0023 

 
-0.0037 

 
-0.0030 

 
-0.0005 

 
-0.0024 

 
-0.0006 

 
-0.0032 

 
-0.0019 

 ARFI(1,1) 0.0013 
 

-0.0060 
 

-0.0032 
 

-0.0047 
 

-0.0040 
 

-0.0042 
 

-0.0033 
 

-0.0040 
 ARI-IV-HAR -0.0018 

 
-0.0062 

 
-0.0049 

 
-0.0010 

 
-0.0034 

 
-0.0007 

 
-0.0050 

 
-0.0031 

 ARI-IV-ARFIMA -0.0027 
 

-0.0046 
 

-0.0029 
 

-0.0009 
 

-0.0037 
 

-0.0006 
 

-0.0053 
 

-0.0033 
 HAR-ARFIMA -0.0013 

 
-0.0045 

 
-0.0032 

 
0.0007 

 
-0.0039 

 
0.0000 

 
-0.0029 

 
-0.0038 

 ARI-SSA-HW 0.0271 *** 0.0155 *** 0.0132 *** 0.0225 *** 0.0178 *** 0.0227 *** 0.0256 *** 0.0179 *** 

Note: The numbers denote net average daily profits having deducted the transaction costs. *** denotes significance at 1% level. 
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Table 14: Trading game results - Ten-days ahead (January, 2005 to July, 2013). 

  

Implied Volatility Indices 

Model VCAC VDAX VFTSE VIX   VSTOXX   VXD VXJ VXN 

IV-HAR -0.0005 -0.0014 -0.0009 -0.0012 
 

-0.0011 
 

-0.0007 -0.0012 -0.0014 
IV-ARFIMA -0.0005 -0.0012 -0.0008 -0.0009 

 
-0.0014 

 
-0.0012 -0.0016 -0.0013 

HW 0.0019 0.0016 0.0028 0.0023 
 

0.0024 
 

0.0010 0.0021 0.0008 
SSA -0.0050 -0.0041 -0.0042 -0.0020 

 
-0.0018 

 
-0.0046 -0.0056 -0.0038 

SSA-HW 0.0041 0.0027 0.0034 0.0070 *** 0.0074 *** 0.0024 0.0046 0.0039 
I(1) -0.0035 -0.0044 -0.0044 -0.0035 

 
-0.0039 

 
-0.0037 -0.0043 -0.0039 

ARI(1,1) -0.0035 -0.0043 -0.0047 -0.0033 
 

-0.0037 
 

-0.0036 -0.0037 -0.0037 
FI(1) -0.0002 -0.0011 -0.0004 -0.0009 

 
-0.0006 

 
-0.0009 -0.0015 -0.0012 

ARFI(1,1) -0.0003 -0.0011 -0.0001 -0.0010 
 

-0.0006 
 

-0.0010 -0.0013 -0.0012 
ARI-IV-HAR -0.0005 -0.0016 -0.0014 -0.0012 

 
-0.0012 

 
-0.0008 -0.0015 -0.0015 

ARI-IV-ARFIMA -0.0005 -0.0010 -0.0007 -0.0011 
 

-0.0010 
 

-0.0014 -0.0016 -0.0016 
HAR-ARFIMA -0.0004 -0.0012 -0.0007 -0.0011 

 
-0.0010 

 
-0.0009 -0.0014 -0.0013 

ARI-SSA-HW 0.0041 0.0026 0.0033 0.0069 *** 0.0074 *** 0.0024 0.0046 0.0039 
Note: The numbers denote net average daily profits having deducted the transaction costs. *** denotes significance at 1% level. 

 


