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A Uni�ed Model of Spatial Price Discrimination

Konstantinos Eleftheriou�;y and Nickolas J. Michelacakis�

Abstract

We present a general model of n �rms with di¤erentiated production costs competing in a linear
market within the framework of spatial price discrimination. We prove that the Nash equilibrium
locations of �rms are always socially optimal irrespective of the number of competitors, �rm hetero-
geneity regarding marginal production costs, the level of privatization, the form of the transportation
costs and the number and/or the varieties of the produced goods. An immediate implication of this
result is that this form of competition is preferable from a welfare point of view. We also argue
that (i) when �rms are homogeneous regarding their marginal production costs, there always exists a
unique Nash equilibrium, regardless of the form of the transportation cost function (ii) when �rms are
heterogeneous and transportation costs are linear, there is a unique Nash equilibrium which depends
only on the relative mutual di¤erences of the marginal production costs.

JEL classi�cation: L13; L32; L33; R32
Keywords: Mixed oligopoly; Social optimality; Spatial competition; Di¤erentiated goods

1 Introduction

Whenever we make online purchases from the web, we are witnessing a form of market segmentation due

to discriminatory pricing dependent on geographical location. This pricing practice is called spatial price

discrimination (Cabral, 2000). However, this is not the only market where this type of pricing is common.

Spatial price discrimination manifests itself in markets in which �rms are geographically di¤erentiated1

such as the markets of cement and steel or markets of customer-tailored goods. The wide application of this

pricing strategy together with the fact that it is forbidden by some countries when it cannot be justi�ed

on the grounds of transportation/delivery costs (e.g., Robinson-Patman Act, 1936 in the US),2 makes the

investigation of spatial price discrimination of great interest for both academics and policymakers.

The main goal of the current paper is to examine the welfare properties of the equilibrium in a market

where operating �rms exercise spatial price discrimination. To this purpose, we develop an integrated model

�Department of Economics, University of Piraeus, 80 Karaoli & Dimitriou Street, Piraeus 185 34, Greece. E-mail:
kostasel@otenet.gr (Eleftheriou); njm@unipi.gr (Michelacakis).

yCorresponding author. Tel: +30 210 4142282; Fax: +30 210 4142346
1Greenhut (1981) provides evidence that spatial price discrimination is apparent in cases where transportation cost

represents at least 5% of total costs.
2For a review about the history of the enforcement of competition law against spatial discriminatory pricing, see Scherer

and Ross (1980).

1



giving new insight into the structure of customer-speci�c pricing markets. The existing literature adopts at

least one of the following �ve assumptions: (i) the number of �rms in the market does not exceed two (ii)

all �rms are privately owned (iii) transportation costs are linear (iv) only one homogeneous good is traded

and (v) �rms have common marginal production costs. We relax all the above assumptions by assuming

a market with an arbitrary number of heterogeneous competitors, an arbitrary level of privatization for

each �rm, a general transportation cost function and an arbitrary number and/or varieties of traded goods.

Firm heterogeneity is re�ected by assuming di¤erent marginal costs of production. It should be emphasized

that this heterogeneity is �rm-speci�c and not product-speci�c (i.e., the marginal cost of production di¤ers

across �rms but remains the same for all goods/varieties produced by the same �rm).

The e¤ect of the above mentioned relaxation on the existence and the properties of the equilibrium

is not clear. For example, d�Aspremont et al. (1979) showed that in the traditional Hotelling�s model

(Hotelling, 1929), the nature of travel costs is important for the existence of an equilibrium. Surprisingly

enough, they showed that an equilibrium exists when transportation costs are proportional to the square

of distance while it doesn�t when the travel costs are linear. On the other hand, Cremer et al. (1991)

highlighted the importance of the number of competing �rms on the welfare properties of the equilibrium.

The present paper contributes to the existing literature in manifold ways. We show that in a model

of spatial price discrimination, where the produced goods have the same reservation price for the buyers,

the market outcome will be socially optimal, and this result is independent of the number of �rms in the

market, �rm heterogeneity regarding marginal production costs, the level of privatization of each �rm,

the form of the transportation cost function and the number and/or the varieties of the goods o¤ered

by each competitor. We further argue that (i) when �rms are homogeneous regarding their marginal

production costs, there always exists a unique Nash equilibrium, regardless of the form of the transportation

cost function extending a well-known similar result (e.g. Heywood and Ye, 2009a) restricted to linear

transportation costs and (ii) when �rms are heterogeneous and transportation costs are linear, there is a

unique Nash equilibrium which does not depend on the distribution of the marginal production costs.

The driving force behind our welfare result is the same as in Lederer and Hurter (1986); a �rm can

increase its pro�t by opting for a production location so that the market is serviced with minimal total

cost.3 However, in Lederer and Hurter (1986) the discussion is restricted to only two exclusively privately

owned �rms o¤ering the same good leaving untouched mixed markets with many competitors and multiple

goods and the ensuing welfare questions. Moreover, our proof is completely di¤erent to the one found in

Lederer and Hurter (1986) allowing for direct generalization.

3This implies the alignment of the social and private optima.
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Our �ndings about the characterization of the equilibrium are also in line with Vogel (2011). Vogel

(2011) proves the existence of a unique equilibrium for an arbitrary number of heterogeneous �rms lo-

cated in a circular market competing within the framework of spatial price discrimination bearing linear

transportation costs, regardless of the distribution of their marginal production costs. We investigate the

properties of the equilibrium, should it exist, when an arbitrary number of heterogeneous �rms with various

degrees of privatization o¤ering multiple goods compete in a linear market under spatial price discrimina-

tion. In line with Vogel (2011), we prove the existence of a unique equilibrium when transportation costs

are linear. We succeed, however, in establishing the social optimality of the Nash equilibrium in all cases.

Moreover, the fact that our model imposes no constraints on the level of privatization extends our

contribution to the theory of mixed oligopoly under spatial price discrimination. The studies which are

closest to ours are those of Heywood and Ye (2009a) and Heywood and Ye (2009b). Heywood and Ye

(2009a) assume a market with an arbitrary number of homogeneous �rms having binary ownership status

(private or public) and focus on the role of the public �rm in the Stackelberg equilibrium where the

leader is a private or a public �rm. They extend their model accounting for the existence of foreign

�rms in Heywood and Ye (2009b). The aforementioned papers impose too many restrictions in their

modeling structure. Speci�cally, the framework of Heywood and Ye (2009a) and Heywood and Ye (2009b)

imposes restrictions on the form of the transportation cost function, the degree of privatization and the

attributes/number of goods in the market. In addition, a fundamental restriction of the aforementioned

papers lies in the assumption of common marginal production costs.

Our paper is part of a wide literature on the welfare implications of spatial price discrimination; see,

e.g., Greenhut and Ohta (1972), Holahan (1975), Thisse and Vives (1988), Hamilton et al. (1989), Hamilton

et al. (1991), MacLeod et al. (1992), and Braid (2008). Building on this literature, we make inroads into

the theory of mixed oligopoly when �rms have di¤erentiated marginal production costs.

The implications of our results can be summarized as follows: (i) A spatial price discriminatory market

can serve as a typical example of how a �laissez-faire� economy can lead to social optimality, (ii) the social

optimality of the equilibrium is independent of �rm heterogeneity and (iii) the dependence of the equilib-

rium locations on the relative di¤erence of the marginal production costs has important policy implications

for government intervention. In the example of subsection 3.2 the government can (pre)determine the lo-

cations of �rms through intervention on the marginal production costs (e.g., tax incentives and subsidies

for �rms located in low-populated areas etc.) without a¤ecting social optimality.

The rest of the paper is structured as follows. The next section presents the benchmark model where

an arbitrary number of �rms characterized by a di¤erent degree of privatization o¤er a homogeneous
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good. Two cases are examined: (a) �rms have common marginal production costs and (b) �rms are

heterogeneous. The market is represented by a unit interval with the consumers uniformly distributed

along it. A three-stage game of complete information is played by �rms and consumers. More speci�cally,

in the �rst stage �rms simultaneously choose their locations. In the second stage, after observing their

competitors� locations, �rms engage in Bertrand competition à la Hoover (1937) and Lerner and Singer

(1937). In other words, �rms set their prices simultaneously and are allowed to price discriminate by

charging a di¤erent price for di¤erent locations. Finally, in stage three, consumers make their purchasing

choices to clear the market. After presenting our theoretical construct, we solve the game and characterize

the Nash equilibrium. Section 3 generalizes the �ndings of section 2 for the case of multiple goods (or

di¤erent varieties of the same good), section 4 concludes.

2 The benchmark model

We consider a market consisted of n private �rms and a continuum of consumers uniformly distributed

over the unit interval [0; 1] representing a linear country.4 Let xi, i = 1; :::; n, denote the location of �rm

i in the interval [0; 1] with 0 � x1 < x2 < ::: < xn � 1. All �rms produce and sell the same homogeneous

good. Each consumer buys one unit of the good from the lowest price �rm, providing that this price is

lower or equal to her reservation price (i.e., the maximum price that the consumers are willing to pay for

the good), m > 0. The marginal production cost of �rm i is ci � 0. Spatial price discrimination à la

Hoover (1937) and Lerner and Singer (1937) is assumed. Speci�cally, the price charged for the good by

the �rm the consumer chooses to buy from, is equal to (or in�nitesimally less than) the delivered cost of

the remaining �rms. Delivered costs are equal to the sum of transportation and production costs. Let

f(d(x0; x1)) := jF (x1)� F (x0)j evaluate the transportation cost between points x0 and x1, where d denotes

the shipped distance and F be any function with F 0 positive and continuous on [0; 1]. Firms are located

such that f(d(xi+j; xi)) > jci+j � cij (non-negative pro�t condition)
5 for any j > 0 with i; i+ j 2 f1; :::; ng

and ci+j, ci the corresponding marginal costs of �rms i+ j and i located at points xi+j and xi respectively.

Let si;i+j denote the locations of the indi¤erent consumer with respect to �rms i and i+ j.

Lemma 1. (i) xi < si;i+j < xi+j and F (si;i+j) =
F (xi+j)+F (xi)

2
+

ci+j�ci
2

and (ii) if j1 < j2 then (a)

si;i+j1 < si;i+j2 and (b) provided j1 < j2 < j, si+j1;i+j < si+j2;i+j.

4By uniformly distributed, we mean that the proportion of consumers buying the good remains the same, regardless of
the subinterval of [0; 1].

5In the opposite case if, f(d(xi+j ; xi)) � jci+j � cij, the total sales of either �rm i or �rm i+ j drop to zero.
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Proof. By de�nition of si;i+j,

jF (si;i+j)� F (xi)j+ ci = jF (xi+j)� F (si;i+j)j+ ci+j

By assumption F is an increasing function, so if si;i+j 2 [0; xi] [ [xi+j; 1] then

f(d(xi+j; xi)) = F (xi+j)� F (xi) = jci+j � cij

a contradiction, thus, xi < si;i+j < xi+j and F (si;i+j)� F (xi) + ci = F (xi+j)� F (si;i+j) + ci+j i.e.,

F (si;i+j) =
F (xi+j) + F (xi)

2
+
ci+j � ci

2

which proves (i).

To prove (ii) (a) we argue by contradiction. Assume si;i+j1 � si;i+j2 , then

F (xi+j1) + F (xi)

2
+
ci+j1 � ci

2
�

F (xi+j2) + F (xi)

2
+
ci+j2 � ci

2
,

F (xi+j2)� F (xi+j1) � ci+j1 � ci+j2

equivalently

f(d(xi+j2 ; xi+j1)) � jci+j1 � ci+j2j

a contradiction. The proof of (ii) (b) follows similar lines.

Consumers and �rms engage in a three-stage game of complete information. In stage one, �rms simul-

taneously decide their location. Having observed the location of their competitors, �rms simultaneously

choose delivered price schedules in the second stage. In the �nal stage, consumers take their purchasing

decisions.

The rest of the section is structured as follows. Subsection 2.1 examines the properties of the equilibrium

in the case of privately owned �rms with common marginal costs. The case of mixed ownership with

homogeneous �rms is analyzed in subsection 2.2. The corresponding analyses for heterogeneous �rms are

presented in subsections 2.3 and 2.4, respectively.
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2.1 Homogeneous �rms

In this subsection, we examine the case where all �rms have the same marginal cost of production, i.e.

c1 = c2 = ::: = cn. The existence and social optimality of a symmetric equilibrium (see Proposition 2 below)

provided that transportation costs are linear is known to exist and can be found in various references in the

literature (e.g. Heywood and Ye, 2009a). We provide a di¤erent proof as an intermediate result, relaxing

the assumption of linear transportation costs. In the case of linear transportation costs uniqueness follows

from Proposition 3.

To simplify our analysis and without loss of generality, we set ci = 0. The aggregate shipping cost
6 for

all locations z of consumers who buy from any of the n �rms is equal to

TH(x1; :::; xn) =

nX

i=1

THi (x1; :::; xn) (1)

where

THi (x1; :::; xn) =

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

0

@
R x1
0
[F (x1)� F (z)]dz

+
R x1+x2

2

x1
[F (z)� F (x1)]dz

1

A for i = 1

0

@
R xi
xi�1+xi

2

[F (xi)� F (z)]dz

+
R xi+xi+1

2

xi
[F (z)� F (xi)]dz

1

A for 1 < i < n

0

@
R xn
xn�1+xn

2

[F (xn)� F (z)]dz

+
R 1
xn
[F (z)� F (xn)]dz

1

A for i = n

(2)

is the total transportation cost for those consumers buying from �rm i. As de�ned in Lederer and Hurter

(1986) the social cost is the total supply cost when �rms behave in a cooperative, cost minimizing manner.

The fact that delivered costs coincide with transportation costs implies that the aggregate transportation

cost represents the social cost. Hence, the socially optimal locations can be derived by minimizing the

social cost with respect to each location xi.
7

Firm i is selling its product at a price matching (or which is in�nitesimally less than) the delivery cost

of its direct competitor which is the �rm nearest to its location. The indi¤erent consumer between �rms i

6The terms �delivered cost� and �shipping cost� are used interchangeably hereafter.
7In other words, social welfare is de�ned as the total consumer�s willingness to pay less the aggregate transportation and

production costs.
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and i+ 1, according to Lemma 1, is located at si;i+1 =
xi+xi+1

2
. Thus, the pro�t function of �rm i is

�Hi (x1; ::; xn) =

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

0

@
R x1
0
[F (x2)� F (z)� F (x1) + F (z)] dz

+
R x1+x2

2

x1
[F (x2)� F (z)� F (z) + F (x1)] dz

1

A if i = 1

0

BBBB
@

R xi
xi�1+xi

2

[F (z)� F (xi�1)� F (xi) + F (z)] dz

+
R xi�1+xi+1

2

xi
[F (z)� F (xi�1)� F (z) + F (xi)] dz

+
R xi+xi+1

2
xi�1+xi+1

2

[F (xi+1)� F (z)� F (z) + F (xi)] dz

1

CCCC
A

if 1 < i < n and xi �
xi�1+xi+1

2

0

BBBB
@

R xi�1+xi+1
2

xi�1+xi
2

[F (z)� F (xi�1)� F (xi) + F (z)] dz

+
R xi
xi�1+xi+1

2

[F (xi+1)� F (z)� F (xi) + F (z)] dz

+
R xi+xi+1

2

xi
[F (xi+1)� F (z)� F (z) + F (xi)] dz

1

CCCC
A

if 1 < i < n and xi�1+xi+1
2

� xi

0

@
R xn
xn�1+xn

2

[F (z)� F (xn�1)� F (xn) + F (z)] dz

+
R 1
xn
[F (z)� F (xn�1)� F (z) + F (xn)] dz

1

A if i = n

(3)

.

Lemma 2. When �rms are homogeneous, the marginal aggregate transportation cost with respect to the

location of �rm i, i = 1; :::; n, is

@TH=@xi =

8
>>><

>>>:

F (x1)� F (
x2�x1
2
) for i = 1

F (xi�xi�1
2

)� F (xi+1�xi
2

) for 1 < i < n

F (xn�xn�1
2

)� F (1� xn) for i = n

:

Proof. LetG(y) :=
R
F (y)dy, then for all i, 1 < i < n, THi (x1; :::; xn) = [�G(xi � z)]

xi
xi�1+xi

2

+[G(z � xi)]
xi+xi+1

2

xi
=

�2G(0) +G(xi�xi�1
2

) +G(xi+1�xi
2

). xi appears in the expression of the aggregate transportation cost only
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in THi�1; T
H
i and THi+1

TH(x1; :::; xn) = T
H
1 (x1; :::; xn) + :::+

 Z xi�1

xi�2+xi�1
2

[F (xi�1)� F (z)]dz +

Z xi�1+xi
2

xi�1

[F (z)� F (xi�1)]dz

!

| {z }
THi�1

+THi (x1; :::; xn) +

 Z xi+1

xi+xi+1
2

[F (xi+1)� F (z)]dz +

Z xi+1+xi+2
2

xi+1

[F (z)� F (xi+1)]dz

!

| {z }
THi+1

+ :::+ THn (x1; :::; xn)

Hence, we get

@TH

@xi
=

@THi�1
@xi

+
@THi
@xi

+
@THi+1
@xi

= 1
2
F (xi�xi�1

2
) +

�
1
2
F (xi�xi�1

2
)� 1

2
F (xi+1�xi

2
)
�
� 1

2
F (xi+1�xi

2
) =

F (xi�xi�1
2

)� F (xi+1�xi
2

)

for 1 < i < n. The cases i = 1 and i = n are treated similarly to yield @TH=@x1 = F (x1)� F (
x2�x1
2
) and

@TH=@xn = F (
xn�xn�1

2
)� F (1� xn) completing the proof of the Lemma.

Proposition 1. When �rms are homogeneous, the marginal aggregate transportation cost with respect to

the location of �rm i, i = 1; :::; n, is opposite to the marginal pro�t of �rm i, i.e.

@TH=@xi = �@�
H
i =@xi:

Proof. Letting G(y) :=
R
F (y)dy, for 1 < i < n, (3) becomes

�Hi (x1; :::; xn) = 2G(
xi+1 � xi�1

2
)� 2G(

xi � xi�1
2

)� 2G(
xi+1 � xi

2
) + 2G(0)

Di¤erentiating the above expression, we get

@�Hi
@xi

= �F (
xi � xi�1

2
) + F (

xi+1 � xi
2

)

For i = 1 and i = n, we get respectively @�H1 =@x1 = �F (x1) + F (
x2�x1
2
) and @�Hn =@xn = �F (

xn�xn�1
2

) +

F (1� xn). Lemma 2 completes the proof of the proposition.

Following our discussion above, the socially optimal locations are derived by minimizing (1) with respect

to each �rm�s location. Hence, the socially optimal locations satisfy the system:
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@TH=@xi = 0; i = 1; :::; n: (4)

Proposition 1 shows that this is equivalent to:

@�Hi =@xi = 0; i = 1; :::; n: (5)

which proves

Proposition 2. In models of spatial price discrimination, where �rms are homogeneous, o¤er the same

good and the market is represented by a uni-dimensional interval, the Nash equilibrium locations of �rms

are socially optimal.

The next step is to check the existence and uniqueness of the Nash equilibrium.

Proposition 3. In models of n homogeneous �rms selling a good to consumers uniformly distributed along

a linear country at prices conditional to consumer location, there always exist a unique Nash equilibrium

which is socially optimal and does not depend on the form of the transportation cost function.

Proof. According to Proposition 2, it su¢ces to exhibit either a socially optimum or a Nash equilibrium.

We test �t of the unique Nash equilibrium when transportation costs are linear, i.e. x�i =
2i�1
2n

i = 1; :::; n.8

By Lemma 2, the above solution must satisfy the system OTH(x1; :::; xn) = 0. Indeed, for every 1 < i < n,

we must have F (xi�xi�1
2

) � F (xi+1�xi
2

) = 0. But this is equivalent to F (
1

n

2
) � F (

1

n

2
) = 0 which is true

regardless of the transportation cost function f . The border cases are similarly veri�able. The uniqueness

of the equilibrium can be proved as follows. The equilibrium satis�es (by Lemma 2)

F (x1) �F (x2�x1
2
) = 0

F (x2�x1
2
) �F (x3�x2

2
) = 0

...
...

F (xn�xn�1
2

) �F (1� xn) = 0

8For the derivation of the Nash equilibrium locations under linear transportation costs, see Heywood and Ye (2009a).
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which implies F (x1) = ::: = F (1� xn) = r. Since F is 1� 1, there is a unique D = F
�1(r) with

F (x1) = q , x1 = D

F (x2�x1
2
) = q () x2�x1

2
= D , x2 = 3D

F (x3�x2
2
) = q () x3�x2

2
= D , x3 = 5D

...

F (xn�xn�1
2

) = q , xn�xn�1
2

= D , xn = (2n� 1)D

F (1� xn) = q , 1� xn = D , xn = 1�D

The last two equations give 1�D = 2nD �D () D = 1
2n
completing the proof.

2.2 Mixed oligopoly with homogeneous �rms

In our analysis so far, all �rms are privately owned. Let us now assume that single �rm l, l = f1; :::; ng is

partly privately owned and partly publicly owned in proportions al and 1 � al (in other words al can be

considered as the degree of privatization), respectively with al 2 [0; 1]. In such a case, �rm l will decide

about its optimal location by maximizing the weighted average of its own pro�ts and social welfare with

weights al and 1� al, respectively. Social welfare is equal to the sum of the aggregate pro�ts (the pro�t of

all �rms) and consumers� surplus. The consumers� surplus is given by

CSH(x1; :::; xn) =
nX

i=1

CSHi (x1; :::; xn) (6)

where CSHi (x1; :::; xn) is the consumer surplus generated for the consumers buying from �rm i, therefore,

10



CSHi (x1; :::; xn) =

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

R x1
0
[m� F (x2) + F (z)]dz +

R x1+x2
2

x1
[m� F (x2) + F (z)]dz for i = 1

R xi
xi�1+xi

2

[m� F (z) + F (xi�1)]dz +
R xi�1+xi+1

2

xi
[m� F (z) + F (xi�1)]dz

+
R xi+xi+1

2
xi�1+xi+1

2

[m� F (xi+1) + F (z)]dz

for xi �
xi�1+xi+1

2
and 1 < i < n

R xi�1+xi+1
2

xi�1+xi
2

[m� F (z) + F (xi�1)]dz +
R xi
xi�1+xi+1

2

[m� F (xi+1) + F (z)]dz

+
R xi+xi+1

2

xi
[m� F (xi+1) + F (z)]dz

for xi�1+xi+1
2

� xi and 1 < i < n

R xn
xn�1+xn

2

[m� f(z � xn�1)]dz +
R 1
xn
[m� f(z � xn�1)]dz for i = n

(7)

Direct calculation proves

Lemma 3. �Hi (x1; :::; xn)+ CS
H
i (x1; :::; xn) =

8
>>>>>>>>>><

>>>>>>>>>>:

R x1+x2
2

0
mdz � TH1 (x1; :::; xn) for i = 1

R xi+xi+1
2

xi�1+xi
2

mdz � THi (x1; :::; xn) for 1 < i < n

R 1
xn�1+xn

2

mdz � THn (x1; :::; xn) for i = n

Summing up over all �rms one gets the following Proposition which could be viewed as the second main

result of this subsection.

Proposition 4.
nX

i=1

�Hi (x1; :::; xn) + CS
H(x1; :::; xn) = m� T

H(x1; :::; xn)

Proof. Straightforward calculations.

The pro�t function of the partly publicly owned �rm l will be

��Hl (x1; :::; xn) = �
H
l (x1; :::; xn) + (1� al)

"
X

i6=l

�Hi (x1; :::; xn) + CS
H(x1; :::; xn)

#

(8)

where �Hl would be the pro�t function of �rm l if it was fully privately owned.
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Proposition 5. When �rms are homogeneous, Nash equilibria remain socially optimal regardless of the

degree of privatization of the individual �rms l; 1 � l � n.

Proof. Fix a random l; 1 � l � n. Using Proposition 4 and (8), we get

��Hl (x1; :::; xn) = �
H
l (x1; :::; xn) + (1� al)

�
m� TH(x1; :::; xn)� �

H
l (x1; :::; xn)

�

From Proposition 1

@TH=@xl = �@�
H
l =@xl () �@TH=@xl � @�

H
l =@xl = 0

which implies that @ ��Hl =@xl = @�
H
l =@xl. Induction on i completes the proof.

2.3 Heterogeneous �rms

In this subsection, we study the case of n �rms producing with di¤erent marginal production costs.

In consistency with our notation above, let si;i+j denote the locations of the indi¤erent consumer. Then

the pro�t of �rm i, �Ni (x1; :::; xn), is given by

�N1 (x1; :::; xn) =

Z s1;2

0

[f(d(x2; z)) + c2 � f(d(x1; z))� c1]dz

�Ni (x1; :::; xn) =

Z si�1;i+1

si�1;i

[f(d(z; xi�1)) + ci�1 � f(d(z; xi))� ci]dz

+

Z si;i+1

si�1;i+1

[f(d(xi+1; z)) + ci+1 � f(d(z; xi))� ci]dz

�Nn (x1; :::; xn) =

Z 1

sn�1;n

[f(d(z; xn�1)) + cn�1 � f(d(z; xn))� cn]dz

The next Lemma relates the pro�t of �rm i in this case, �Ni (x1; :::; xn), to the corresponding pro�t of

the same �rm, �Hi (x1; :::; xn), if all marginal costs were equal.

Lemma 4.

�N1 (x1; :::; xn) = �
H
1 (x1; :::; xn) + (c2 � c1)

x1+x2
2

+
R s1;2
x1+x2

2

[F (x1) + F (x2)� 2F (z) + c2 � c1]dz

12



�Ni (x1; :::; xn) = �
H
i (x1; :::; xn)

�
R si�1;i
xi�1+xi

2

[F (z)� F (xi�1) + ci�1 � F (xi) + F (z)� ci]dz

+
R si;i+1
xi+xi+1

2

[F (xi+1)� F (z) + ci+1 � F (z) + F (xi)� ci]dz

�
R si�1;i+1
xi�1+xi+1

2

[F (xi+1)� F (z) + ci+1 � F (z) + F (xi�1)� ci�1]dz

+(ci�1 � ci)
xi+1�xi

2
+ (ci+1 � ci)

xi�xi�1
2

�Nn (x1; :::; xn) = �
H
n (x1; :::; xn)

�
R sn�1;n
xn�1+xn

2

[2F (z)� F (xn�1)� F (xn) + cn�1 � cn] dz

+(cn�1 � cn)
xn�xn�1

2

+(cn�1 � cn)(1� xn)

Proof.

�N1 (x1; :::; xn) =
R s1;2
0

[f(d(x2; z)) + c2 � f(d(x1; z))� c1] dz

=
R x1
0
[F (x2)� F (z) + c2 � (F (x1)� F (z) + c1)] dz

+
R x1+x2

2

x1
[F (x2)� F (z) + c2 � (F (z)� F (x1) + c1)] dz

+
R s1;2
x1+x2

2

[F (x2)� F (z) + c2 � (F (z)� F (x1) + c1)] dz

=
R x1
0
[F (x2)� F (z)� F (x1) + F (z)]dz

+(c2 � c1)x1

+
R x1+x2

2

x1
[F (x2)� F (z)� F (z) + F (x1)]dz

+(c2 � c1)
x2�x1
2

+
R s1;2
x1+x2

2

[F (x1) + F (x2)� 2F (z) + c2 � c1]dz

= �H1 (x1; :::; xn)

+(c2 � c1)
x2+x1
2

+
R s1;2
x1+x2

2

[F (x1) + F (x2)� 2F (z) + c2 � c1]dz

which settles the proof for �N1 (x1; :::; xn). To prove the Lemma for the �
N
i (x1; :::; xn), without any real loss

of generality, we consider the case xi < si�1;i <
xi�1+xi

2
< xi <

xi�1+xi+1
2

< xi+xi+1
2

< si�1;i+1 < si;i+1 < xi+1.

13



Then,

�Ni (x1; :::; xn) =
R xi
si�1;i

[f(d(xi�1; z)) + ci�1 � f(d(xi; z))� ci]dz

+
R si�1;i+1
xi

[f(d(xi�1; z)) + ci�1 � f(d(xi; z))� ci]dz

+
R si;i+1
si�1;i+1

[f(d(xi+1; z)) + ci+1 � f(d(xi; z))� ci]dz

=
R xi�1+xi

2

si�1;i
[F (z)� F (xi�1) + ci�1 � (F (xi)� F (z) + ci)]dz

+
R xi
xi�1+xi

2

[F (z)� F (xi�1) + ci�1 � (F (xi)� F (z) + ci)]dz

+
R xi�1+xi+1

2

xi
[F (z)� F (xi�1) + ci�1 � (F (z)� F (xi) + ci)]dz

+
R si�1;i+1
xi�1+xi+1

2

[F (z)� F (xi�1) + ci�1 � (F (z)� F (xi) + ci)]dz

+
R xi+xi+1

2
xi�1+xi+1

2

[F (xi+1)� F (z) + ci+1 � (F (z)� F (xi) + ci)]dz

+
R si;i+1
xi+xi+1

2

[F (xi+1)� F (z) + ci+1 � (F (z)� F (xi) + ci)]dz

�
R si�1;i+1
xi�1+xi+1

2

[F (xi+1)� F (z) + ci+1 � (F (z)� F (xi) + ci)]dz

= �Hi (x1; :::; xn)�
R si�1;i
xi�1+xi

2

[2F (z)� F (xi�1)� F (xi) + ci�1 � ci]dz

+
R si;i+1
xi+xi+1

2

[F (xi+1) + F (xi)� 2F (z) + ci+1 � ci]dz

�
R si�1;i+1
xi�1+xi+1

2

[F (xi+1) + F (xi�1)� 2F (z) + ci+1 � ci�1]dz

+(ci�1 � ci)
xi+1�xi

2
+ (ci+1 � ci)

xi�xi�1
2

:

Finally, to prove the Lemma for i = n consider

�Nn (x1; :::; xn) =
R 1
sn�1;n

[f(d(z; xn�1)) + cn�1 � f(d(z; xn))� cn]dz

=
R xn
sn�1;n

[F (z)� F (xn�1) + cn�1 � (F (xn)� F (z) + cn)]dz

+
R 1
xn
[F (z)� F (xn�1) + cn�1 � (F (z)� F (xn) + cn)]dz

= �
R sn�1;n
xn�1+xn

2

[2F (z)� F (xn�1)� F (xn) + cn�1 � cn]dz

+
R xn
xn�1+xn

2

[F (z)� F (xn�1)� F (xn) + F (z)]dz + (cn�1 � cn)
xn�xn�1

2

+
R 1
xn
[F (z)� F (xn�1)� F (z) + F (xn)]dz + (cn�1 � cn)(1� xn)

= �Hn (x1; :::; xn)�
R sn�1;n
xn�1+xn

2

[2F (z)� F (xn�1)� F (xn) + cn�1 � cn]dz

+(cn�1 � cn)
xn�xn�1

2
+ (cn�1 � cn)(1� xn)

which completes the proof of the Lemma.

We now calculate the total shipping cost function TN(x1; :::; xn).

TN(x1; :::; xn) =
R s1;2
0
[f(d(z; x1)) + c1]dz + :::+

R si;i+1
si�1;i

[f(d(z; xi)) + ci]dz

+:::+
R 1
sn�1;n

[f(d(z; xn)) + cn]dz

14



The following Lemma holds true.

Lemma 5.

TN(x1; :::; xn) = T
H(x1; :::; xn) + c1x1

+c1
x2�x1
2

+ :::+ ci
xi�xi�1

2
+ ci

xi+1�xi
2

+ :::+ cn
xn�xn�1

2
+ cn(1� xn)

+
Pn�1

i=1

R si;i+1
xi+xi+1

2

[2F (z)� F (xi)� F (xi+1) + ci � ci+1]dz

Proof.

TN(x1; :::; xn) =
R x1
0
[F (x1)� F (z) + c1]dz

+
R x1+x2

2

x1
[F (z)� F (x1) + c1]dz

+
R s1;2
x1+x2

2

[F (z)� F (x1) + c1]dz + :::

�
R si�1;i
xi�1+xi

2

[F (xi)� F (z) + ci]dz

+
R xi
xi�1+xi

2

[F (xi)� F (z) + ci]dz +
R xi+xi+1

2

xi
[F (z)� F (xi) + ci]dz

+
R si;i+1
xi+xi+1

2

[F (z)� F (xi) + ci]dz �
R si;i+1
xi+xi+1

2

[F (xi+1)� F (z) + ci+1]dz

+
R xi+1
xi+xi+1

2

[F (xi+1)� F (z) + ci+1]dz +
R xi+1+xi+2

2

xi+1
[F (z)� F (xi+1) + ci+1]dz

+
R si+1;i+2
xi+1+xi+2

2

[F (z)� F (xi+1) + ci+1]dz + :::

�
R sn�1;n
xn�1+xn

2

[F (xn)� F (z) + cn]dz

+
R xn
xn�1+xn

2

[F (xn)� F (z) + cn]dz +
R 1
xn
[F (z)� F (xn) + cn]dz

=
R x1
0
[F (x1)� F (z)]dz + c1x1 +

R x1+x2
2

x1
[F (z)� F (x1)]dz + c1

x2�x1
2

+
R s1;2
x1+x2

2

[2F (z)� F (x1)� F (x2) + c1 � c2]dz + :::+
R xi
xi�1+xi

2

[F (xi)� F (z)]dz

+ci
xi�xi�1

2
+
R xi+xi+1

2

xi
[F (z)� F (xi)]dz + ci

xi+1�xi
2

+
R si;i+1
xi+xi+1

2

[2F (z)� F (xi)� F (xi+1) + ci � ci+1]dz + :::

+
R sn�1;n
xn�1+xn

2

[2F (z)� F (xn�1)� F (xn) + cn�1 � cn]dz

+
R xn
xn�1+xn

2

[F (xn)� F (z)]dz + cn
xn�xn�1

2
+
R 1
xn
[F (z)� F (xn)]dz + cn(1� xn)

completing the proof of the Lemma.

Proposition 6. The marginal aggregate shipping cost with respect to the location of �rm i, i = 1; :::; n, is

opposite to the marginal pro�t of �rm i, i.e.

@TN(x1; :::; xn)=@xi = �@�
N
i (x1; :::; xn)=@xi

Proof. We prove the Proposition for i, 1 < i < n; the border cases, for i = 1 and i = n, being very similar.
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According to Lemma 4

@�Ni (x1;:::;xn)

@xi
=

@�Hi (x1;:::;xn)

@xi
� 1

2
(ci�1 � ci) +

1
2
(ci+1 � ci)

+ @
@xi

�R si�1;i
xi�1+xi

2

[F (xi�1) + F (xi)� 2F (z) + ci � ci�1]dz

�

+ @
@xi

�R si;i+1
xi+xi+1

2

[F (xi+1) + F (xi)� 2F (z) + ci+1 � ci]dz

�

+ @
@xi

�R si�1;i+1
xi�1+xi+1

2

[2F (z)� F (xi+1)� F (xi�1) + ci�1 � ci+1]dz

�

(9a)

On the other hand, from Lemma 5, we get

@TN (x1;:::;xn)
@xi

= @TH(x1;:::;xn)
@xi

+ ci�1
2
+ ci

2
� ci

2
� ci+1

2

+ @
@xi

�
Pn�1

j=1

R sj;j+1
xj+xj+1

2

[2F (z)� F (xj)� F (xj+1) + cj � cj+1]dz

�
(9b)

For all j 6= i� 1; i

@

@xi

"Z sj;j+1

xj+xj+1

2

[2F (z)� F (xj)� F (xj+1) + cj � cj+1]dz

#

= 0

turning (9a) into
@�Ni (x1;:::;xn)

@xi
=

@�Hi (x1;:::;xn)

@xi
� ci�1

2
+ ci+1

2

+ @
@xi

�R si�1;i
xi�1+xi

2

[F (xi�1) + F (xi)� 2F (z) + ci � ci�1]dz

�

+ @
@xi

�R si;i+1
xi+xi+1

2

[F (xi+1) + F (xi)� 2F (z) + ci+1 � ci]dz

�
(10a)

and (9b) into
@TN (x1;:::;xn)

@xi
= @TH(x1;:::;xn)

@xi
+ ci�1

2
� ci+1

2

+ @
@xi

�R si�1;i
xi�1+xi

2

[2F (z)� F (xi�1)� F (xi) + ci�1 � ci]dz

�

+ @
@xi

�R si;i+1
xi+xi+1

2

[2F (z)� F (xi)� F (xi+1) + ci � ci+1]dz

�
(10b)

Proposition 1 of the homogeneous case ensures that @T
H(x1;:::;xn)
@xi

= �
@�Hi (x1;:::;xn)

@xi
, therefore the right-hand

sides of (10a) and (10b) are equal proving the Proposition.

From the analysis so far, we get that socially optimal locations satisfy the system

@TN(x1; :::; xn)=@xi = 0, i = 1; :::; n: (11)

whereas Nash equilibrium locations satisfy
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@�Ni (x1; :::; xn)=@xi = 0, i = 1; :::; n: (12)

Proposition 7. In models of spatial price discrimination, where �rms, o¤er the same good and the market

is represented by a closed interval, the Nash equilibrium locations of �rms are socially optimal.

Proof. By a linear transformation any closed interval can be mapped in a one-to-one way onto [0; 1]. The

rest of the proof follows by Proposition 6 which ensures that the system of (11) and (12) are equivalent

and therefore have the same solution.

2.4 Mixed oligopoly with heterogeneous �rms

The consumer surplus generated for the consumers buying from �rm i is

CSNi (x1; :::; xn) =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

R s1;2
0
[m� f(d(x2; z))� c2]dz for i = 1

R si�1;i+1
si�1;i

[m� f(d(z; xi�1))� ci�1]dz

+
R si;i+1
si�1;i+1

[m� f(d(xi+1; z))� ci+1]dz
for 1 < i < n

R 1
sn�1;n

[m� f(d(z; xn�1))� cn�1]dz for i = n

Following a similar analytical reasoning with section 2.2, we get the following proposition

Proposition 8.
nX

i=1

�Ni (x1; :::; xn) + CS
N(x1; :::; xn) = m� T

N(x1; :::; xn)

where CSN(x1; :::; xn) =
nP

i=1

CSNi (x1; :::; xn) is the total consumers� surplus when �rms are heterogeneous.

Proof. Straightforward calculations.

Similar to section 2.2, the pro�t function of the partly publicly owned �rm l when marginal costs of

production are di¤erent will be

��Nl (x1; :::; xn) = �
N
l (x1; :::; xn) + (1� al)

"
X

i6=l

�Ni (x1; :::; xn) + CS
N(x1; :::; xn)

#

(13)

where �Nl would be the pro�t function of �rm l if it was fully privately owned.
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Proposition 9. When �rms are heterogeneous, Nash equilibria remain socially optimal regardless of the

degree of privatization of the individual �rms l; 1 � l � n.

Proof. Fix a random l; 1 � l � n. Using Proposition 8 and (13), we get

��Nl (x1; :::; xn) = �
N
l (x1; :::; xn) + (1� al)

�
m� TN(x1; :::; xn)� �

N
l (x1; :::; xn)

�

From Proposition 6

@TN=@xl = �@�
N
l =@xl () �@TN=@xl � @�

N
l =@xl = 0

which implies that @ ��Nl =@xl = @�
N
l =@xl. Induction on i completes the proof.

3 The case of multiple goods with heterogeneous �rms

3.1 Private �rms

We now assume the existence of L di¤erent goods or di¤erent varieties of the same good or both. Let kj

denote the number of �rms producing good j, j = 1; :::; L with 1 � kj � n. Let T
N;j denote the aggregate

transportation cost related to the provision of good j and �N;ji the corresponding pro�t per consumer of

�rm i from selling good j with �N;ji := 0 if good j is not produced by �rm i. The fraction of consumers

buying product j is now denoted by hj 2 (0; 1] uniformly spread over [0; 1] with
LP

j=1

hj = 1; hence, there will

be buyers for all available products. In the case where good j is produced by only one �rm, then this �rm

enjoys monopoly privileges and charges a price equal to, or in�nitesimally smaller than, the reservation

price mj, i.e. the maximum price the consumer is willing to pay for good j. A fundamental assumption in

this multi-good setting is that m1 = ::: = mL = m (i.e. the reservation price of all goods is identical).9 Let

~TN denote the aggregate shipping cost for all products and ~�Ni the total pro�t of �rm i for all products it

produces.

Proposition 10. The marginal aggregate shipping cost with respect to the location of �rm i is opposite to

the marginal pro�t of �rm i, namely @ ~TN=@xi = � @ ~�Ni =@xi.

Proof. By de�nition ~TN =
LP

j=1

hjT
N;j and ~�Ni =

LP

j=1

hj�
N;j
i . Applying Proposition 6 for every single traded

product j we get

@ ~TN=@xi =

LX

j=1

hj@T
N;j=@xi = �

LX

j=1

hj@�
N;j
i =@xi = �@ ~�

N
i =@xi

9It should be noted that this assumption is more realistic in the case of the di¤erent varieties of the same good and less
in the case of di¤erent goods.
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Theorem 1. In models of spatial price discrimination, where �rms have di¤erent marginal production

costs, produce di¤erent combination of goods, consumers are distributed uniformly along a linear city of

unit length and have the same reservation price for all goods, the Nash equilibrium locations of �rms are

socially optimal.

Proof. To derive the socially optimal locations we have to minimize ~TN with respect to each �rm�s location.

Hence, the socially optimal locations satisfy the following system of equations:

@ ~TN=@xi = 0; i = 1; :::; n: (14)

On the other hand, the Nash equilibrium locations are given by the solution of the following system:

@ ~�Ni =@xi = 0; i = 1; :::; n: (15)

Because of Proposition 10, systems (14) and (15) are equivalent and hence they have the same set of

solutions.

3.2 Mixed oligopoly

Let�s now turn to the case where some �rm, say �rm l is partly privately owned and partly publicly owned.

Keeping the notation the same as in subsections 2.4 and 3.1, ��Nl =
LP

j=1

hj ��
N;j
l where hj ��

N;j
l is the pro�t of

the partially privatized �rm l from selling good j. It is understood that ��N;jl = 0 if good j is not produced

by �rm l.

Theorem 2. The degree of privatization does not a¤ect the socially optimal Nash equilibrium locations.

Proof. From the proof of Proposition 9, we have that for every single product j

@ ��N;jl =@xl = @�
N;j
l =@xl :

Therefore,

@ ��Nl =@xl =

LX

j=1

hj(@ ��
N;j
l =@xl) =

LX

j=1

hj@ ��
N;j
l =@xl =

LX

j=1

@�N;jl =@xl = @ ~�
N
i =@xi
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Theorem 3. In a mixed oligopoly of n �rms, with n � 3, producing di¤erent combinations of goods

with di¤erentiated marginal production costs and linear transportation costs, there exists a unique socially

optimal Nash equilibrium of locations for any (c1; :::; cn) in the non bounded subset C, of the positive orthant

R
n
+, de�ned by the inequalities

(n� 2)ci + (n� 2)ci+1 � 2

nX
cj

j=1;j 6=i;i+1

< 1 (16)

2(n� 1)c1 � 2

nX

j=2

cj < 1 (17)

and

� 2

n�1X

j=1

cj + 2(n� 1)cn < 1 (18)

for i = 1; :::; n. Further any two marginal cost vectors (c1; :::; cn) and (c
0

1; :::; c
0

n) in the subset C, such that

c0i = ci + u lead to the same equilibrium locations.

Proof. We prove Theorem 3 in the simplest possible setting that of private �rms producing only one

common good assuming the per distance transportation cost, t, equal to one. The general case for the

mixed oligopoly with multiple goods and t 6= 1 can then be proved along similar to the analysis above

lines.

According to Proposition 7, the optimal locations must satisfy the system

3x1 �x2 = �c1 +c2

�x1 +2x2 �x3 = �c1 +c3

�x2 +2x3 �x4 = �c2 +c4
...

...

�xn�1 +3xn = �cn�1+cn+2
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It is straightforward to check that the above system is row equivalent to

3x1 �x2 = �c1+c2

5
3
x2 �x3 = �4

3
c1+

1
3
c2+c3

7
5
x3 �x4 = �4

5
c1�

4
5
c2+

3
5
c3+c4

...
...

4n
2n�1

xn = � 4
2n�1

c1�
4

2n�1
c2�:::�

4
2n�1

cn�1+
4(n�1)
2n�1

cn+2

where the i-line 1 < i < n is given by

2i+ 1

2i� 1
xi � xi+1 = �

4

2i� 1
c1 �

4

2i� 1
c2 � :::�

4

2i� 1
ci�1 +

2i� 3

2i� 1
ci + ci+1 :

Solving for xi we get

xi =
2i� 1

2i+ 1
[xi+1 +

4

2i� 1
(ci � c1) + :::+

4

2i� 1
(ci � c�)

+
�

2i� 1
(ci � c�+1) +

4� �

2i� 1
(ci+1 � c�+1)

+
4

2i� 1
(ci+1 � c�+2) + :::+

4

2i� 1
(ci+1 � ci�1)]

where 2i� 3 = 4�+ �, 0 < � < 4.

Inherent to the discussion leading to Proposition 7 was the assumption that x1 < x2 < ::: < xn. It is a

straightforward, albeit tedious, calculation to show that

xi < xi+1 () (n� 2)ci + (n� 2)ci+1 � 2

nX
cj

j=1;j 6=i;i+1

< 1 :

Further, we get

0 < x1 () 2(n� 1)c1 � 2

nX

j=2

cj < 1

and

xn < 1() �2
n�1X

j=1

cj + 2(n� 1)cn < 1 :

To prove that the domain, C, de�ned by the above set of inequalities is not bounded it su¢ces to consider

all n-tuples (c1; :::; cn) with c1 = ::: = cn (homogeneous case) on the positive part of the main diagonal of

R
n
+.
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Remark 1. The case n = 2 is treated thoroughly in subsection 3.2.1

3.2.1 A duopolistic model of heterogeneous �rms - Policy implications

To highlight the policy implications of our �ndings in subsection 3.2, we present an application for a

duopoly with linear transportation costs. Let Ci denote the marginal production cost of �rm i. There are

three varieties of a di¤erentiated product o¤ered to consumers, U and W from �rm 1 and V and W from

�rm 2. Let also the fraction of consumers buying only good U equal the fraction of consumers buying good

V , with both set equal to c. Product W is bought by a fraction b of consumers. Transportation costs are

linear and equal to td, where t is a positive scalar and d is the distance shipped. The locations of �rm 1

and 2 over the interval [0; 1] are x1 and x2, respectively (without loss of generality x1 < x2). Keeping the

structure of the game and the rest of the notation as above, the pro�t functions of �rms 1 and 2 when

both are privately owned are:

~�1 =
�
c(m� C1)�

ct
2
[x21 + (1� x1)

2]
�

+

0

@
R x1
0
b[t(x2 � x1) + C2 � C1]dz

+
R (x1+x22

+
C2�C1

2t )
x1

b[t(x1 + x2 � 2z) + C2 � C1]dz

1

A
(19)

~�2 =
�
c(m� C2)�

ct
2
[x22 + (1� x2)

2]
�

+

0

@
R x2
(x1+x22

+
C2�C1

2t ) b[t(2z � x1 � x2) + C1 � C2]dz

+
R 1
x2
b[t(x2 � x1) + C1 � C2]dz

1

A
(20)

with C2�C1
2t

� x2�x1
2
.10 The location s of the indi¤erent consumer for goodW is determined by equating

the two delivered costs in regard to the common goodW : t(x2�s)+C2 = t(s�x1)+C1 ) s = x1+x2
2
+C2�C1

2t
.

Having evaluated the integrals, (19) and (20) become

~�1 = c(m� C1)�
ct
2
[x21 + (1� x1)

2]

+bx1[t(x2 � x1) + C2 � C1]

+ b
4t
[t(x2 � x1) + C2 � C1]

2

(19b)

~�2 = c(m� C2)�
ct
2
[x22 + (1� x2)

2]

+b(1� x2)[t(x2 � x1) + C1 � C2]

+ b
4t
[t(x2 � x1) + C1 � C2]

2

(20b)

10If C2�C1
2t

> x2�x1
2
, both �rms are reduced to spatial-price discriminating monopolists where the common good W is now

provided only by �rm 1. We consider this case trivial and focus only on the case where C2�C1
2t

� x2�x1
2
.
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Firm 1 chooses x1 to maximize (19b), and �rm 2 chooses x2 to maximize (20b), leading to the following

Nash equilibrium locations

(x1; x2) =

�
1

2
� A+ !;

1

2
+ A+ !

�
(21)

where ! = b(C2�C1)
2t(b+2c)

and A = b
4(b+c)

.

The total shipping cost will be equal to

~T = ct
2
[x21 + (1� x1)

2] + ct
2
[x22 + (1� x2)

2] + cC1 + cC2

+
�R x1

0
b[t(x1 � z) + C1]dz +

R (x1+x22
+
C2�C1

2t )
x1

b[t(z � x1) + C1]dz
�

+

0

@
R x2
(x1+x22

+
C2�C1

2t ) b[t(x2 � z) + C2]dz

+
R 1
x2
b[t(z � x2) + C2]dz

1

A

(22)

Maximizing (22) with respect to x1 and x2 gives the socially optimal locations

�
1

2
� A+ !;

1

2
+ A+ !

�
(23)

We now turn to the case where �rm 2 is partly privately owned and partly publicly owned in proportions

a2 and 1� a2, respectively with a2 2 [0; 1]. In this case, the pro�ts of �rm 2 will be

��2 = c(m� C2)�
ct
2
[x22 + (1� x2)

2]

+b(1� x2)[t(x2 � x1) + C1 � C2]

+ b
4t
[t(x2 � x1) + C1 � C2]

2 + (1� a2)g(x1; x2)

(24)

where

g(x1; x2) =
�
c(m� C1)�

ct
2
[x21 + (1� x1)

2]
�

+

0

@
R x1
0
b[t(x2 � x1) + C2 � C1]dz

+
R (x1+x22

+
C2�C1

2t )
x1

b[t(x1 + x2 � 2z) + C2 � C1]dz

1

A

+
R (x1+x22

+
C2�C1

2t )
0 b[m� t(x2 � z)� C2]dz

+
R 1
(x1+x22

+
C2�C1

2t ) b[m� t(z � x1)� C1]dz

= (b+c)
2
[2tx1(1� x1) + 2m� t� 2C1]

(25)

It is straightforward to show that @g(x1; x2)=@x2 = 0 showing that the equilibrium remains intact

irrespective of the degree, a2, of privatization.

Furthermore, the distance between the optimal locations, x1 and x2, is independent of marginal pro-

duction costs and t and equals 2A. It follows that anybody who wishes to in�uence the location x1 of
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either �rm 1, with x1 2 (0; 1=2),
11 or the location of �rm 2, x2, with x2 2 (1=2; 1), can do so by intervening

on the marginal cost relative di¤erence, C2 � C1. For example, given an a priori X 2 (0; 1=2), it su¢ces

to choose C1 < C2 in such a way that C2 � C1 =
2t(b+2c)

b
(X � 1

2
+ A) for �rm 1 to locate optimaly on the

given X.

4 Conclusion

We have proved that when �rms exercise spatial price discrimination, the equilibrium outcome is socially

optimal and independent of the underlying assumptions on the number of �rms, �rm heterogeneity, the

nature of transportation costs, the number or the varieties of the provided goods and the degree of pri-

vatization. Even though we expect our �ndings to hold when consumers are non-uniformly distributed,

we have intentionally opted for the less technically demanding setting of consumer uniform distribution to

showcase the essence of our ideas. The technical requirements in relation to the non-uniformly distributed

case are thoroughly presented in Lederer and Hurter (1986). To the best of our knowledge, our analysis

is the �rst attempt to present an �holistic� view of models of spatial price discrimination. Moreover, our

�ndings verify the robustness of the �laissez-faire� doctrine and can be easily applied to the case of verti-

cally related markets (see Eleftheriou and Michelacakis, 2016). It is also not hard to deduce the validity

of our �ndings for �discontinued� markets where speci�c locations are ruled out. Possible extensions could

investigate strategic delegation e¤ects and spatial two dimensional markets.
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