Is financial sector development an engine of economic growth? evidence from India

Ziaurrahman, Muhammad and Masih, Mansur

INCEIF, Malaysia, INCEIF, Malaysia

18 June 2016

Online at https://mpra.ub.uni-muenchen.de/72121/
MPRA Paper No. 72121, posted 21 Jun 2016 07:43 UTC
Is financial sector development an engine of economic growth? evidence from India

Muhammad Ziaurrahman¹ and Mansur Masih*

Abstract
The question whether financial development leads to economic growth is the interest of many studies which have very crucial policy implications. However, there exist conflicting results as to which variable (financial development/economic growth) is causing whom. The purpose of this paper is to predict whether the financial sector development leads to economic growth. India has been taken as an investigation case because, to the best of our knowledge, India has never been the interest of this kind of study by applying time series techniques such as Autoregressive distributed lags (ARDL) and VECM methods for the period as recent as from 1960 up until 2013. This study found that there is a long run (co-integration) relationship between economic growth and financial sector development as experienced by India. The study observed causal relationship from financial sector development to economic boom i.e. financial market is found exogenous (leader) while economic growth is endogenous (follower). From the policy point of view, the study suggests that if government wants to enhance economic growth, it can do so by reformations in financial sector. Hence, India should consider financial sector as the policy variable (because of its exogenous nature) to bring reformations that will boost economic growth.

Keywords: economic growth, financial market, ARDL, India

JEL: C22, C58, E44

¹ Graduate student, INCEIF, Lorong Universiti A, 59100, Kuala Lumpur, Malaysia

*Professor of Finance and Econometrics, INCEIF, Lorong Universiti A, 59100, Kuala Lumpur, Malaysia, Email: mansurmasih@inceif.org
Section I

1.0 Introduction

The nature of the relationship between finance and economic growth has been one of the most debated topics in the recent past, yet with little consensus. The extensive literature on the relationship between finance and growth can be traced back to the early twentieth century. Among the initial influential contributions in this area is the work of Schumpeter et al in 1934. (Samargandi et al 2015)

1.1 Theoretical Approach:

According to the literature, the nature of relationship among finance and economic growth is both positive and negative.

Positive relationship between financial sector development and economic growth:

In relation to the positive relationship between financial development and economic growth, the economist suggest that theoretically, there exist three kinds of relationship between finance and economic growth namely, finance-led, growth driven finance and feedback. (Ankilo et al 2010)

Finance-led relationship means that there exist strong correlation between finance and economic growth which has been well documented in the economic development literature. Theoretically, the financial sector development, trade openness, and favourable regulatory environment lead to economic growth. Such developments result in inflow of funds, trade competitiveness, increased savings, enhanced investments, and a substantial increase in the consumption. Eventually, all these factors will ensure the overall growth of the economy of the nation. Empirical evidence supports this hypothesis by many researchers like Rajan et al (1998), Habibullah et al (2006).

Growth-driven finance relationship on the hand, suggest the opposite view to the above argument. According to this hypothesis, increased economic growth will lead to the development in financial sector. More specifically, Stem (1989) and other economists argue that high economic growth will create demand for some categories of financial instruments
and arrangements and then financial market will respond to this demand. This hypothesis is tested empirically, by Agbetsiafa (2003), and Odhiambo (2008).

Feedback relationship is suggested by Lewis (1955), (one of the pioneers of the development economics) according to which financial sector develops as a consequence of economic growth that eventually ensures the growth of the overall economy. Again, empirical evidence for this hypothesis is many for example, study by Patric (1966) and Hussein (1996).

Empirical evidences:
In line with positive relationship between finance and growth the empirical literature supports the positive relationship hypothesis. So, according to Schumpeter (1911) (cited in King & Levine, 1993) argued that the financial intermediaries play an important role in technological innovation and economic development. Many of the research work done on this subject says that financial development promotes growth. (McKinnon (1973); King and Levine (1993a, b); Neusser and Kugler (1998); Levine (1997); Beck (2000)

Negative relationship between financial development and economic growth:
The above discussion implies that financial development and economic growth are positively correlated and finance plays an important role in growth in the long run. However as mentioned earlier, many economists argue that theoretically, finance is a relatively unimportant factor in economic development. Financial sector openness and globalisation makes possible for the imports of inflation. It renders the policy initiatives adopted by the domestic monetary authorities to imperfect and cause the exchange rates to impede by the external factors. Small economies specially would have faced these problems relatively more than that of others. Another factor is the excessive credit granted by the external sources which eventually have negative impacts on the domestic economy. That is why the financial sector development will lead to economic downturns. (Samargandi et al 2015)

Empirical evidences:
Empirically, after Glodsmith’s ground breaking empirical research many empirical works have been carried out to investigate finance-growth relationship. King and Levine (1993)
studied 80 countries over the 1960-1989 period to investigate the relationship between financial development and economic development.

1.2 Identifying the gap and raising research questions:
We can state that in spite of various researches, the issue is still remains controversial both theoretically and empirically. While there is no doubt that a developed economy needs a sophisticated financial sector, however, at the current state of knowledge there is no empirical evidence to support the notion especially for India. To full fill this gap, a humble attempt has been made to look into this conflicting causality.

Our research questions are as follows:
What kind of positive or negative relationship exists between financial development and economic growth?
What is the causal relationship between them and which variable is exogenous against the endogenous variable?
If there exist any differences between short run or long run relationship among the variables of interest?

1.3 Major contribution of the study:
Our contribution to the existing literature will be as followings:
- We adopt the relatively advanced and robust time series technique, Autoregressive Distributed Lags (ARDL) for our research which is applicable regardless whether the variables are I (1) or I (0). The motivation behind using this technique is that it matches our objective of the study since we would like to see the causal relationship between financial development and economic growth.
- India is taken as case study which has never been the interest of this kind of study by employing yearly data over the period 1960 – 2013.

1.4 Major findings and policy implications:
Financial development and economic growth is found to be co-integrated in the long run i.e. there is a long run relationship between these variables in India. Our findings are in line with
(McKinnon (1973); King and Levine (1993a, b); Neusser and Kugler (1998); Levine (1997); Beck (2000). For a developing country like India financial development leads growth rather than the other way around. This has major policy implications for government of India. If government wants to increase the economic growth, it can do so by bringing out the reformation in the banking sector and capital market sector. Hence, India should consider banking sector and capital market sector as the policy variables and authorities should take necessary steps to bring the reform in these sectors to enhance economic growth in the economy.

1.5 Structure of the paper
The paper is will be as following. Section II provides a general overview of Indian economy and it reviews the relevant theoretical and empirical literature. Section 3 presents the methodology of research and findings along with the robustness tests. The empirical results and discussions are presented in section 4. The last section ends with the concluding remarks and policy implications of the paper.
Section II

2.0 A brief summary on the Economy of India

The economy of India is the seventh-largest in the world by nominal GDP and the third-largest by purchasing (PPP). The country is classified as a newly industrialized country, one of the G-20 major economies, a member of BRICS and a developing economy with approximately 7% average growth rate for the last two decades. The long-term growth prospective of the Indian economy is moderately positive due to its young population, corresponding low dependency ratio, healthy savings and investment rates, and increasing integration into the global economy. The Indian economy has the potential to become the world's 3rd-largest economy by the next decade, and one of the largest economies by mid-century. And the outlook for short-term growth is also good as according to the IMF, the Indian economy is the "bright spot" in the global landscape. India also topped the World Bank’s growth outlook for 2015-16 for the first time with the economy having grown 7.3% in 2014-15 and expected to grow 7.5-8.3% in 2015-16.

India has the one of fastest growing service sectors in the world with annual growth rate of above 9% since 2001, which contributed to 57% of GDP in 2012-13. India has capitalized its economy based on its large educated English-speaking population to become a major exporter of IT services, BPO services, and software services with $167.0 billion worth of service exports in 2013-14. It is also the fastest-growing part of the economy. The IT industry continues to be the largest private sector employer in India. The agricultural sector is the largest employer in India's economy but contributes to a declining share of its GDP (17% in 2013-14). India ranks second worldwide in farm output. The Industry sector has held a constant share of its economic contribution (26% of GDP in 2013-14). The Indian auto mobile industry is one of the largest in the world with an annual production of 21.48 million vehicles (mostly two and three wheelers) in FY 2013-14. India has $600 billion worth of retail market in 2015 and one of world's fastest growing E-Commerce markets.

India's two major stock exchanges, Bombay Stock Exchange and National Stock Exchange of India, had a market capitalization of US$1.71 trillion and US$1.68 trillion respectively as of Feb 2015, which ranks 11th & 12 largest in the world respectively according to the World Federation of Exchanges.
2.1 Literature Review

The nature of the relationship between finance and economic growth has been one of the most debated in the recent past, yet with little consensus. The literature on the relationship can be traced back to the early twentieth century. Among the initial influential contributions in this area is the work of Schumpeter et al in 1934. (Samargandi et al 2015) According to the literature, the nature of relationship among finance and economic growth is both positive and negative.

2.1.1 Theoretical underpinnings:

Positive relationship between financial development and economic growth:

In relation to the positive relationship between financial development and economic growth, the economist suggest that theoretically, there exist three kinds of relationship between finance and growth namely, finance-led, growth driven finance and feedback. (Ankilo et al 2010)

Finance-led relationship means that there exist strong correlation between finance and economic growth which has been well documented in the economic development literature. Theoretically, the financial sector development, trade openness, and favourable regulatory environment lead to economic growth. Such developments result in inflow of funds, trade competitiveness, increased savings, enhanced investments, and a substantial increase in the consumption. Moreover, these developments guarantee more access to the information which results in funds chasing the huge returns, increasing the rationality of people to enhance their wealth by these economic activities. Eventually, all these factors will ensure the overall growth of the economy of the nation. This is true for many countries which dared to open up their economy with the objective to boost it and that’s the main idea behind the globalisation process and that was the main advantage of this process. Empirical evidence supports this hypothesis by many researchers like Rajan et al (1998), Habibullah et al (2006).

Growth-driven finance relationship on the hand, suggest the opposite view to the above argument. According to this hypothesis, increased economic growth will lead to the development in financial sector. More specifically, Stem (1989) and other economists argue that high economic growth will create demand for some categories of financial instruments
and arrangements and then financial market will respond to this demand i.e when enterprise leads finance follows. Empirically, this hypothesis is tested by Agbetseiafa (2003), and Odhiambo (2008).

Feedback relationship is suggested by Lewis (1955), one of the pioneers of the development economics according to which financial sector develops as a consequence of economic growth that eventually ensures the growth of the overall economy. Empirical evidence for this hypothesis is many for example, study by Patric (1966) and Hussein (1996). The above discussion implies that financial development and economic growth are positively correlated and finance plays an important role in growth in the long run.

Empirical literature on positive relationship:

According to Schumpeter (1911) (cited in King & Levine, 1993) argued that the financial intermediaries play an important role in technological innovation and economic development. Goldsmith (1969) argues that one of the most important problems in the field of finance, is the effect that financial structure and development have on economic growth (Goldsmith, 1969 cited in Demirguc-Kunt and Levine, 2004, 3). Many of the research work done on this subject says that financial development promotes growth. (McKinnon (1973); King and Levine (1993a, b); Neusser and Kugler (1998); Levine (1997); Beck (2000)

Theories on negative relationship:

The above discussion implies that financial development and economic growth are positively correlated and finance plays an important role in growth in the long run. However as mentioned earlier, many economists argue that theoretically, finance is a relatively unimportant factor in economic development. Financial sector openness and globalisation makes possible for the imports of inflation. It renders the policy initiatives adopted by the domestic monitory authorities to imperfect and cause the exchange rates to impede by the external factors. Small economies specially would have faced these problems relatively more than that of others. Another factor is the excessive credit granted by the external sources which eventually have negative impacts on the domestic economy. That is why the financial sector development will lead to economic downturns. (Samargandi et al 2015)

Moreover, many economists argue that finance is a relatively unimportant factor in economic development. Particularly, Robinson (1952) contends that financial development simply
follows economic growth. Similarly, a study conducted by Stephen Cecchetti and Enisse Kharroubi recently outlined the negative link between the finance sector and growth, after a certain point. They further argue that when an economy is immature and the financial sector is small, then growth of the sector is helpful (Cecchetti & Kharroubi, 2012).

Empirical studies on negative relationship:

After Gledsmith’s ground breaking empirical research many empirical works have been carried out to investigate finance-growth relationship. King and Levine (1993) studied 80 countries over the 1960-1989 period to investigate the relationship between financial development and economic development. In their comprehensive research in this field, Demirguc-Kunt and Levine (2004) confirm that in the recent past, researchers have shown that financial development has positive impact on economic growth, not due only to simultaneity bias, at firm level (Demirguc-Kunt & Maksimovic, 1998), industry level (Rajan & Zingales, 1998; Wurgler, 2000) and pooled cross-country, time series studies (Beck, Levine, and Loayza, 2000; Beck et al., 2014).

2.2 Identifying the gap:

Therefore we can argue that theoretically and empirically there exist conflicting results when it comes to financial sector development and economic growth. Additionally, some studies even find the negative relationship among them with an emphasize on the degree of such development or optimal level of development that guarantee the growth. Hence, we tend to conclude that both theoretically and empirically the issue is not yet resolved and there are conflicting conclusions. Hence, there is a room for more research into this area with considerations to India as to the best of our knowledge, India is never been an interest of this sort of study. That’s why a humble attempt is made in this paper to investigate the issue with a focus on Indian economy.

Our research questions are as follows:

- What kind of positive or negative relationship exists between financial development and economic growth?
- What is the casual relationship between them and which variable is exogenous against the endogenous variable?
If there exist any differences between short run or long run relationship among the variables of interest?

Major contribution of the study:

Our contribution to the existing literature will be in following ways:

- We adopt relatively advanced and robust time series techniques, Autoregressive Distributed Lags (ARDL) for our research which is applicable regardless whether the variables are I (1) or I (0). The motivation behind using this technique is that it matches our objective of the study since we would like to see the casual relationship between financial development and economic growth.

- India is taken as case study which has never been the interest of this kind of study. The justification is that India is the 7th largest economy in the world and is expected to become 3rd largest and one of the most largest economies by 2020 and 2050 respectively.

- Our contribution also districts because we have employed the yearly data as much as from 1960 – until 2013.

Section III

3.0 Motivating the methodology utilised:

The ARDL cointegration approach is used first for testing the presence of a long term relationship with the lagged levels of the variables. It helps in identifying the dependent variables (endogenous) and the independent variables (exogenous) which are called the ‘forcing variables’.

Moreover, if there is a long term relationship among the variables, then the ARDL analysis generates the ECM equation for every variable, which provides information through the estimated coefficient of the error correction term about the speed at which the dependent variable returns back to equilibrium once shocked. This enables us to test whether finance leads growth or growth leads finance.

With regards to the time-series studies, the regression analysis that has been applied for many decades to estimate the long-run relationship among economic and social variables is now
considered to have either estimated a spurious relationship (if the original ‘level’ form of the
variables was non-stationary) or estimated a short-run relationship (if the variables were
‘differenced’ to make the original variables stationary). The damaging limitation of the
traditional regression analysis (i.e., either spurious or not testing theory) has been addressed
by the recent and ongoing cointegration time series techniques. The significant contributions
made by the time series cointegration techniques starting with the publication of the seminal
paper by Engle and Granger (1987) has been recognized through the recent award of the

Although the conventional cointegrating procedure has made an important advance on
regression analysis by focusing on the point that any regression analysis should start off, not
mechanically, but by testing the stationarity and cointegration properties of the time series
involved, the cointegrating estimates also are subject to a number of limitations (Masih et al.,
2008). The estimates derived from the cointegrating tests (such as the Johansen test) and the
unit root tests (such as, the augmented Dicky-Fuller and Phillips-Peron, etc. which precede
the cointegrating tests), are found to be biased. The tests lack power and are biased in favour
of accepting the null hypothesis. The cointegration tests require the variables to be I(1) but
the order of integration of a variable, whether I(1) or I(0), may depend on the number of lags
included or whether the intercept and/or the trend are included or excluded in the unit root
tests. Moreover, the Johansen cointegrating tests have small sample bias and simultaneity
bias among the regressors.

The Auto-Regressive Distributive Lag (ARDL) method (also known as the bounds testing
approach) proposed by Pesaran-Shin-Smith (2001) that we have employed is free from the
above limitations of the unit root and cointegration tests. The ARDL bounds testing approach
does not require the restriction imposed by cointegration technique that the variables are I(1)
or I(0). Moreover, the bounds testing procedure employed in this study is robust for small
sample size study (Pattichis, 1999; Mah, 2000; and Tang and Nair, 2002). Pattichis (1999)
applied ARDL bounds test with 20 observations, whereas studies of Mah (2000) and Tang
and Nair (2002) had observations of 18 and 28 respectively. Furthermore, the bounds testing
approach is possible even when the explanatory variables are endogenous (Alam and Quazi,
2003).

The ARDL technique involves two stages. At the first stage, the existence of a long-run
relationship among the variables is investigated. This is done by constructing an unrestricted
error correction model (VECM) with each variable in turn as a dependent variable and then testing whether or not the ‘lagged levels of the variables’ in each of the error correction equations are statistically significant (i.e., whether the null of ‘no long run relationship’ is accepted or rejected).

Basically, the ARDL method is the Wald test (F-statistic version of the bounds testing approach) for the lagged level variables in the right-hand side of VECM. That is, we test the null hypothesis of noncointegrating relation (Ho: b1= b2= b3=…= bn=0) by performing a joint significance test on the lagged level variables. The asymptotic distribution of the F-statistic is non-standard under the null hypothesis of no cointegrating relation between the examined variables, irrespective whether the explanatory variables are purely I(0) or I(1).

The test consists of computing an F-statistic testing the joint significance of the ‘lagged levels of the variables’ in each of the above error-correction form of the equation. The computed F-statistic is then compared to two asymptotic critical values. If the test statistic is above an upper critical value, the null hypothesis of ‘no long-run relationship’ can be rejected regardless of whether the variables are I(0) or I(1). Alternatively, when the test statistic falls below a lower critical value, the null hypothesis of ‘no long-run relationship’ is accepted regardless of whether the variables are I(0) or (1). Finally, if the test statistic falls between these two bounds, the result is inconclusive. It is only in this case that the researcher may have to carry out unit root tests on the variables.

As regards the implications of the F-statistics, if all the F statistics in all equations happen to be insignificant, then that implies the acceptance of the null of ‘no long run relationship’ among the variables. However, if at least one of the F-statistics in the error correction equations is significant, then the null of ‘no long-run relationship’ among the variables is rejected. In that case there is a long run relationship among the variables. When the F-statistic is significant, the corresponding dependent variable is endogenous and when the F-statistic is insignificant, the corresponding dependent variable is exogenous or called ‘long-run forcing variable’.

Once the long run relationship has been demonstrated, the second stage of the analysis involves the estimation of the long run coefficients (after selecting the optimum order of the variables through AIC or SBC criteria) and then estimate the associated error correction
model in order to estimate the adjustment coefficients of the error-correction term. Since the data are yearly, we choose one for the maximum order of the lags in ARDL model. Since the observations are yearly, for the maximum order of the lags in the ARDL model we choose 1 and carry out the estimation over the period of 1961 to 2013.

The ARDL model specifications of the functional relationship between real GDP per capita (G), government expenditure as a share of GDP (E), trade as a share of GDP (T), domestic credit to private sector as a share of GDP (B), foreign direct investment (I) can be estimated below:

\[D_G_t = a_0 + \sum_{i=1}^{k} b_1 D_G_{t-i} + \sum_{i=0}^{k} b_2 D_E_{t-i} + \sum_{i=0}^{k} b_3 D_T_{t-i} + \sum_{i=0}^{k} b_4 D_B_{t-i} + b_5 L_G_{t-1} + b_6 L_E_{t-1} + b_7 L_T_{t-1} + b_8 L_B_{t-1} + b_9 L_I_{t-1} + b_{10} \mu_t \]

ARDL bounds testing procedure permit us to take into consideration I(0) and I(1) variables together. The null hypothesis of the non-existence of a long-run relationship is denoted by FLG(LG|LE, LT, LB, LI) is \(H_0 = b_6 = b_7 = b_8 = b_9 = b_{10} = 0 \). Similarly, we compute the F statistics when the other variables in Eq. (2) are used as dependent variables and denote them with FLE(LE|LG, LT, LB, LI), FLT(LT|LG, LE, LB, LI), FLB(LB|LG, LE, LT, LI), and FLI(LI|LG, LE, LT, LB) while the null hypothesis means there is no cointegration, against the alternative hypothesis of there is cointegration. \(H_0: b_6 \neq b_7 \neq b_8 \neq b_9 \neq b_{10} \neq 0 \). In equation, \(k \) is lag criteria.

The calculated F-statistics derived from Wald test are compared with Pesaran et al. (2001)’s critical values. If calculated F-statistics falls below the Pesaran et al. (2001)’s lower critical values, it is accepted that there is not relationship between time series. If calculated F-statistics is among Pesaran et al. (2001)’s lower and higher critical values, it is avoided to make certain commitment and referred to other cointegration tests. If calculated F-statistics is upper than bound critical values, it is accepted that there is relationship between time series. In other words the null hypothesis is rejected.
After estimating the existence of long run relationship between variables the second step is selecting optimal lag length by using of standard criteria such as Swartz Bayesian (SBC) or Akaike Information (AIC). After that long run and short run coefficients could be predicted. ARDL long run form is exhibited in equation below:

\[L_G_t = a_0 + \sum_{i=1}^{k} b_1 L_G_{t-i} + \sum_{i=0}^{k} b_2 L_E_{t-i} + \sum_{i=0}^{k} b_3 L_T_{t-i} + \sum_{i=0}^{k} b_4 L_B_{t-i} + \sum_{i=0}^{k} b_5 L_I_{t-i} + \mu_t \]

Error correction term is used in the ARDL short run model. The short run dynamics model can be presented as follows

\[D_G_t = a_0 + \sum_{i=1}^{k} b_1 D_G_{t-i} + \sum_{i=0}^{k} b_2 D_E_{t-i} + \sum_{i=0}^{k} b_3 D_T_{t-i} + \sum_{i=0}^{k} b_4 D_B_{t-i} + \sum_{i=0}^{k} b_5 D_I_{t-i} + b_6 ECT_{t-i} \]

Where ECT is lagged error correction term.

The hypothesis that we will be testing is the null of ‘non-existence of the long-run relationship’ defined by

\[H_0: b_1 = b_2 = b_3 = b_4 = b_5 = 0 \]

Against, existence of a long-run relationship.

\[H_1: b_1 \neq b_2 \neq b_3 \neq b_4 \neq b_5 \neq 0 \]

As discussed earlier, we use the following variables for our lead-lag analysis. All the variables are transformed into logarithms to achieve stationarity in variance. All the level forms of the variables were transformed into the logarithm scale. We begin our empirical testing by determining the stationarity of the variables used. In order to proceed with the
testing of cointegration later, ideally, our variables should be I(1), in that in their original
level form, they are non-stationary and in their first differenced form, they are stationary. The
differenced form for each variable used is created by taking the difference of their log forms.
For example, $DG = LG – LG_{t-1}$. We then conducted the Augmented Dickey-Fuller, Philip-
Perron and KPSS test. (ADF) test on each variable (in both level and differenced form). The
table below summarizes the results.

3.1 Data Description
The study is conducted on Indian economy for the period of 1960-2013 based on annual data
obtained from the World Development Indicators.

3.2 Model Specifications:
The study attempts to investigate the dynamic relationship between economic growth (GDP
per capita as a proxy), financial development (domestic credit to private sector as a share of
GDP as a proxy).

$$G = \int (B, T, E, I)$$

<table>
<thead>
<tr>
<th>No.</th>
<th>Abbre</th>
<th>Description</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G</td>
<td>Real GDP per capita</td>
<td>Proxy of growth</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>Domestic Credit to Private Sector</td>
<td>Proxy for financial development</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>Trade</td>
<td>Control variable</td>
</tr>
<tr>
<td>4</td>
<td>E</td>
<td>Government Expenditure</td>
<td>Control variable</td>
</tr>
<tr>
<td>5</td>
<td>I</td>
<td>Foreign Direct Investment – Net Inflows</td>
<td>Control variable</td>
</tr>
</tbody>
</table>

3.3 Discussion of the results and findings
A stationary series has a mean(to which it tends to return), a finite variance, shocks are
transitory, autocorrelation coefficients die out as the number of lags grows, whereas a non-
stationary series has an infinite variance(it grows over time), shocks are permanent(on the
series) and its autocorrelations tend to be unity. If the series is ‘stationary’, the demand-side
short run macroeconomic stabilisation policies and financial development are likely to be
effective and promote economic growth but if the series is ‘non stationary’, the supply-side policies are more likely to be effective.

3.4 Unit Root Test

Table 1: Results of Augmented Dickey Fuller (ADF) of Non-Stationarity

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept and Trend; Log Transformed Variables; Null: Non-Stationary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LG</td>
<td>ADF(4)</td>
<td>0.94542</td>
<td>-3.362</td>
<td>Non-Stationary</td>
<td>ADF(1)</td>
<td>-0.27751</td>
<td>-3.5868</td>
<td>Non-Stationary</td>
</tr>
<tr>
<td>LE</td>
<td>ADF(1)</td>
<td>-2.7295</td>
<td>-3.5868</td>
<td>Non-Stationary</td>
<td>ADF(1)</td>
<td>-2.7295</td>
<td>-3.5868</td>
<td>Non-Stationary</td>
</tr>
<tr>
<td>LT</td>
<td>ADF(1)</td>
<td>-2.0379</td>
<td>-3.5868</td>
<td>Non-Stationary</td>
<td>ADF(1)</td>
<td>-2.0379</td>
<td>-3.5868</td>
<td>Non-Stationary</td>
</tr>
<tr>
<td>LB</td>
<td>ADF(3)</td>
<td>-2.2935</td>
<td>-3.3156</td>
<td>Non-Stationary</td>
<td>ADF(1)</td>
<td>-1.4935</td>
<td>-3.5868</td>
<td>Non-Stationary</td>
</tr>
<tr>
<td>LI</td>
<td>ADF(3)</td>
<td>-2.1559</td>
<td>-3.3156</td>
<td>Non-Stationary</td>
<td>ADF(1)</td>
<td>-2.1198</td>
<td>-3.5868</td>
<td>Non-Stationary</td>
</tr>
<tr>
<td>Intercept and No Trend; First Difference of Log Transformed Variables; Null: Non-Stationary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DG</td>
<td>ADF(5)</td>
<td>-1.4098</td>
<td>-2.7486</td>
<td>Non-Stationary</td>
<td>ADF(1)</td>
<td>-4.2068</td>
<td>-2.8188</td>
<td>Stationary</td>
</tr>
<tr>
<td>DE</td>
<td>ADF(1)</td>
<td>-5.1287</td>
<td>-2.8188</td>
<td>Stationary</td>
<td>ADF(1)</td>
<td>-5.1287</td>
<td>-2.8188</td>
<td>Stationary</td>
</tr>
<tr>
<td>DT</td>
<td>ADF(1)</td>
<td>-3.9146</td>
<td>-2.8188</td>
<td>Stationary</td>
<td>ADF(1)</td>
<td>-3.9146</td>
<td>-2.8188</td>
<td>Stationary</td>
</tr>
<tr>
<td>DB</td>
<td>ADF(2)</td>
<td>-2.6156</td>
<td>-2.8374</td>
<td>Non-Stationary</td>
<td>ADF(1)</td>
<td>-3.8097</td>
<td>-2.8188</td>
<td>Stationary</td>
</tr>
<tr>
<td>DI</td>
<td>ADF(1)</td>
<td>-6.156</td>
<td>-2.8188</td>
<td>Stationary</td>
<td>ADF(1)</td>
<td>-6.156</td>
<td>-2.8188</td>
<td>Stationary</td>
</tr>
</tbody>
</table>
Table 2: Results of PP and KPSS Tests

<table>
<thead>
<tr>
<th></th>
<th>PP</th>
<th></th>
<th>KPSS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LG</td>
<td>0.97752</td>
<td>-3.5405</td>
<td>Non-Stationary</td>
<td>0.15119</td>
<td>0.15511</td>
</tr>
<tr>
<td>LE</td>
<td>-2.3414</td>
<td>-3.5405</td>
<td>Non-Stationary</td>
<td>0.14037</td>
<td>0.15511</td>
</tr>
<tr>
<td>LT</td>
<td>-2.5692</td>
<td>-3.5405</td>
<td>Non-Stationary</td>
<td>0.15718</td>
<td>0.15511</td>
</tr>
<tr>
<td>LB</td>
<td>-1.763</td>
<td>-3.5405</td>
<td>Non-Stationary</td>
<td>0.09194</td>
<td>0.15511</td>
</tr>
<tr>
<td>LI</td>
<td>-2.6236</td>
<td>-3.5405</td>
<td>Non-Stationary</td>
<td>0.12759</td>
<td>0.15511</td>
</tr>
<tr>
<td>DG</td>
<td>-7.0738</td>
<td>-2.8855</td>
<td>Stationary</td>
<td>0.43376</td>
<td>0.3957</td>
</tr>
<tr>
<td>DE</td>
<td>-5.4379</td>
<td>-2.8855</td>
<td>Stationary</td>
<td>0.17123</td>
<td>0.39572</td>
</tr>
<tr>
<td>DT</td>
<td>-6.2335</td>
<td>-2.8855</td>
<td>Stationary</td>
<td>0.36865</td>
<td>0.39572</td>
</tr>
<tr>
<td>DB</td>
<td>-6.6959</td>
<td>-2.8855</td>
<td>Stationary</td>
<td>0.10041</td>
<td>0.39572</td>
</tr>
<tr>
<td>DI</td>
<td>-9.9248</td>
<td>-2.8855</td>
<td>Stationary</td>
<td>0.11802</td>
<td>0.39572</td>
</tr>
</tbody>
</table>

On the above mentioned results of unit root test we can see that it varies from one test to another test. If we analyse the results of unit root tests of all variables in the differenced form, we observe that domestic credit to private sector and foreign direct investment are non-stationary. It is more than evident that the results are not consistent across various tests. Therefore, variables we are using for this analysis are I (0) or I (1).

As the results of unit root test are not consistent we decided to use ARDL technique to test the long run relationship among the variables. Before proceeding with the test of cointegration, we try to determine the order of the vector auto regression (VAR), that is, the number of lags to be used.

3.5 VAR Order Selection
Before moving on to test the cointegration among the variables, we first have to determine the optimal order of VAR. To choose the optimal order of VAR, we look at the highest AIC and SBC values. Then, we also look at the adjusted LR test. According to our findings, the highest AIC and SBC suggest one lag order.
3.6 Testing for Co-integration

An evidence of cointegration implies that the relationship among the variables is not spurious, i.e. there is a theoretical relationship among the variables and that they are in equilibrium in the long run.

Table 3: Engle–Granger (E-G) Test

<table>
<thead>
<tr>
<th>Test Statistic</th>
<th>LL</th>
<th>AIC</th>
<th>SBC</th>
<th>HQC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF</td>
<td>-3.8050</td>
<td>55.3597</td>
<td>54.3597</td>
<td>53.3938</td>
</tr>
<tr>
<td>ADF(1)</td>
<td>-2.9993</td>
<td>55.3683</td>
<td>53.3683</td>
<td>51.4365</td>
</tr>
<tr>
<td>ADF(2)</td>
<td>-2.3033</td>
<td>55.7981</td>
<td>52.7981</td>
<td>49.9003</td>
</tr>
</tbody>
</table>

95% critical value for the Dickey-Fuller statistic = -4.6941

As depicted in the above table the critical value is higher than the t-statistics. So, we cannot reject the null that the residuals are non-stationary. Statistically, the above results indicate that the variables we have chosen, in some combination, result in not a stationary error term. As it is non-stationary that indicates that there is no cointegration. These initial results are not intuitively appealing, to our mind. On the other hand that if the variables are not found to be cointegrated, they may be fractionally cointegrated. So, we have decided to go for Johansen cointegration test in the following step.

Table 4: Johansen Cointegration Test

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Number of cointegrating vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR Lag Order</td>
<td>Two</td>
</tr>
<tr>
<td>Maximal Eigenvalue</td>
<td>No cointegration</td>
</tr>
<tr>
<td>Trace</td>
<td>No cointegration</td>
</tr>
<tr>
<td>AIC</td>
<td>Four</td>
</tr>
<tr>
<td>SBC</td>
<td>No cointegration</td>
</tr>
<tr>
<td>HQC</td>
<td>Two</td>
</tr>
</tbody>
</table>
The above results conflict with each other, it also conflicts with Engle – Granger. As these approaches have many limitations that are taken care off by ARDL. For that reason, we decided to go for ARDL approach for testing cointegration among variables.

Table 5: F-Statistics for Testing the Existence of Long-Run Relationship (Variable Addition Test)

<table>
<thead>
<tr>
<th>Variables</th>
<th>F statistics</th>
<th>Critical Value Lower</th>
<th>Critical Value Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>DG</td>
<td>4.3889*</td>
<td>2.649</td>
<td>3.805</td>
</tr>
<tr>
<td>DE</td>
<td>1.6858</td>
<td>2.649</td>
<td>3.805</td>
</tr>
<tr>
<td>DB</td>
<td>1.5506</td>
<td>2.649</td>
<td>3.805</td>
</tr>
<tr>
<td>DI</td>
<td>2.9492</td>
<td>2.649</td>
<td>3.805</td>
</tr>
<tr>
<td>DT</td>
<td>3.7939</td>
<td>2.649</td>
<td>3.805</td>
</tr>
</tbody>
</table>

The critical values are taken from Pesaran et al. (2001), unrestricted intercept and no trend with four regressors. * denote rejecting the null at 5 percent level.

Table above shows the calculated F-statistics for dependent variable DG (Growth) is 4.3889, which is higher than the upper bound critical value 3.805 at the 5% significance level. This implies that the null hypothesis of no cointegrating long-run relationship can be rejected. These results reveal that a long-run relationship exists between financial development and, growth in India. This could be considered as a finding in view of the fact that the long run relationship between the variables is demonstrated here avoiding the pre-test biases involved in the unit root tests and cointegration tests required in the standard cointegration procedure. The evidence of long run relationship rules out the possibility of any spurious relationship existing between the variables. In other words, there is a theoretical relationship existing between the variables.

At this stage we run the ARDL test to confirm the short-term and long-term relationship, study long-run coefficients and error-correction model to identify which variables are endogenous and which are exogenous.

As stated earlier, cointegration tells us that there is a long run relationship between the variables. However, there could be a short-run deviation from the long-run equilibrium. Cointegration does not unfold the process of short-run adjustment to bring about the long-run equilibrium. For understanding that adjustment process we need to go to the error-
correction model. The t-ratio or the p-value of the error-correction coefficient indicates whether the deviation from equilibrium (represented by the error-correction term) has a significant feedback effect or not on the dependent variable. In other words, if the dependent variable is endogenous or exogenous.

Table 6: ARDL Bounds Test for existence of Level relationship

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>F Statistics</th>
<th>Lower Bound (Critical Value)</th>
<th>Upper Bound (Critical Value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LG</td>
<td>7.3459*</td>
<td>3.1097</td>
<td>4.4233</td>
</tr>
<tr>
<td>LE</td>
<td>3.5169</td>
<td>3.1097</td>
<td>4.4233</td>
</tr>
<tr>
<td>LT</td>
<td>5.0029*</td>
<td>3.1097</td>
<td>4.4233</td>
</tr>
<tr>
<td>LB</td>
<td>1.3157</td>
<td>3.1097</td>
<td>4.4233</td>
</tr>
<tr>
<td>LI</td>
<td>2.4242</td>
<td>3.1097</td>
<td>4.4233</td>
</tr>
</tbody>
</table>

The critical values are taken from Pesaran et al. (2001), unrestricted intercept and no trend with four regressors. * denote rejecting the null at 5 percent level.

From the table above, we can see that when real GDP per capita is the dependent variable, the calculated F-statistic (LG|LE, LT, LB, LI) = 7.3459 is greater than the upper bound of the critical value obtained from Pesaran et al. (2001), indicating there is compelling evidence for cointegration between growth and its determinant in India for the study period.

These results reveal that a long-run level relationship exists between finance and growth, they are co-integrated. This by itself is a significant finding in view of the fact that the long run relationship between the variables is demonstrated here avoiding the pre-test biases involved in the unit root tests and cointegration tests required in the standard cointegration procedure. The evidence of long run relationship rules out the possibility of any spurious relationship existing between the variables. In other words, there is a theoretical relationship existing between the variables. The process has been repeated for the other variables and result shows that for trade (LT) is highly cointegrated with their determinants.
At this stage we can argue that finance is leading growth in India. It is a unidirectional relationship. Our finding is in line with (McKinnon (1973); King and Levine (1993a, b); Neusser and Kugler (1998); Levine (1997); Beck (2000).

The policy implications are government has to give domestic credits to private companies for economic growth of the country. The government has to spend on financial infrastructure like building efficient markets, stock markets etc. for economic growth.

Table 7: Results of Estimated Long-Run Coefficients using the ARDL Approach

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>LG</th>
</tr>
</thead>
<tbody>
<tr>
<td>LE</td>
<td>3.9194 (3.1937)</td>
</tr>
<tr>
<td>LT</td>
<td>0.21044 (0.25085)</td>
</tr>
<tr>
<td>LB</td>
<td>0.12271 (0.15371)</td>
</tr>
<tr>
<td>LI</td>
<td>1.236* (0.41723)</td>
</tr>
<tr>
<td>INPT</td>
<td>-11.4947 (14.7094)</td>
</tr>
</tbody>
</table>

Chi-Square Serial Correlation: 1.4589 [.227]
Chi-Square Functional Form: 1.6703 [.196]
Chi-Square Normality: .38933 [.823]
Chi-Square Heteroscedasticity: 3.7124 [.054]

Note: * denotes significant at 5 percent level, figures in the parenthesis () denotes standard error, and figures in the brackets denotes p values.

The table above provides the estimates of the ARDL long-run coefficient for our models based on our research objective. The estimated long run coefficients of the long run relationship above show that only foreign investment inflows have significant effect on the real GDP per capita in India. It implies that 1% increase in foreign investment inflows will increase the real GDP per capita by 1.236%. The results somehow look misleading as 1% change in foreign investment may not change real GDP per capita by 1.236%, but when we look at the diagnostics test the model looks well specified. The reasons for this large amount of change can be; India is a developing country, so whenever there are net inflows into the
country they are well utilized in factors of production and this may ignite the growth engine of the country. This will automatically increase employment in the country and may lead to economic growth.

In the following table, the ECM’s representation for the ARDL model is selected with AIC criterion.

3.7 Vector Error Correction Model:

Table 8: Error correction model of ARDL

<table>
<thead>
<tr>
<th>Variables</th>
<th>Coefficients</th>
<th>Standard Error</th>
<th>T Value [P-Value]</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>ecm(-1) dLG</td>
<td>-0.1171</td>
<td>0.055325</td>
<td>-2.1166 [.040]</td>
<td>Endogenous</td>
</tr>
<tr>
<td>ecm(-1) dLE</td>
<td>-0.29391</td>
<td>0.16851</td>
<td>-1.7441 [.090]</td>
<td>Exogenous</td>
</tr>
<tr>
<td>ecm(-1) dLT</td>
<td>-0.20309</td>
<td>0.082814</td>
<td>-2.4524 [.018]</td>
<td>Endogenous</td>
</tr>
<tr>
<td>ecm(-1) dLB</td>
<td>-0.060162</td>
<td>0.036453</td>
<td>-1.6504 [.106]</td>
<td>Exogenous</td>
</tr>
<tr>
<td>ecm(-1) dLI</td>
<td>-0.73379</td>
<td>0.17375</td>
<td>-4.2233 [.000]</td>
<td>Endogenous</td>
</tr>
</tbody>
</table>

As discussed earlier, cointegration tells us that there is a long run relationship between the variables. However, there could be a short-run deviation from the long-run equilibrium. Cointegration does not unfold the process of short-run adjustment to bring about the long-run equilibrium. For understanding that adjustment process we need to go to the error-correction model. The T-ratio or the p value of the error-correction coefficient indicates whether the deviation from equilibrium (represented by the error-correction term, ‘ecm’) has a significant feedback effect or not on the dependent variable (e.g. real GDP per capita). In other word, whether the variable is endogenous or exogenous. The error correction coefficient being significant confirms our earlier findings of a significant long-run cointegrating relationship between the variables. Moreover, the size of the coefficient of the error-correction term indicates the speed of medium to long run adjustment of the dependent variable to bring
about the long run equilibrium. The size of the coefficient of the error-correction term is also indicative of the intensity of the arbitrage activity to bring about the long-run equilibrium.

We can say that government expenditure and domestic credit to private sector are leading variables. It implies that these variables initially receives exogenous shocks resulting in deviations from equilibrium and transmits the shocks to other variables. Growth, trade and foreign direct investment inflows are dependent variables and these bears the burnt of short run adjustment to bring about the longterm equilibrium among the cointegrating variables. All these results have important policy implications in fuelling the economic growth of the country.

The error correction coefficient estimated for variable real GDP per capita is -0.1171. It implies a slow speed of adjustment to equilibrium after a shock. The same is with trade variable, but when we look at error correction coefficient of foreign direct investment variable is -0.73379. It implies a fast speed of adjustment to equilibrium after a shock.

Although the error correction model tends to indicate the endogeneity/exogeneity of a variable, we had to apply the variance decomposition technique to discern the relative degree of endogeneity or exogeneity of the variables.

3.8 Variance Decompositions (VDC)
Although the error correction model tends to indicate the endogeneity/exogeneity of a variable, we had to apply the variance decomposition technique to discern the relative degree of endogeneity or exogeneity of the variables. The relative exogeneity or endogeneity of a variable can be determined by the proportion of the variance explained by its own past. The variable that is explained mostly by its own shocks (and not by others) is deemed to be the most exogenous of all. Out of orthogonalized and generalized VDCs, there are two important limitations of orthogonalized VDCs. Firstly it depends on the particular ordering of the variables in the VAR, Secondly it assumes that when a particular variable is shocked, all other variables in the system are switched off. Generalized VDCs do not have these limitations so we decided to rely on it. We applied Generalized VDCs and obtained the following results.
<table>
<thead>
<tr>
<th>Horizon (Year)</th>
<th>Variables</th>
<th>LG</th>
<th>LE</th>
<th>LT</th>
<th>LB</th>
<th>LI</th>
<th>Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LG</td>
<td>0.96758</td>
<td>0.006329</td>
<td>0.023821</td>
<td>0.027582</td>
<td>0.12997</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>LE</td>
<td>0.002031</td>
<td>0.97436</td>
<td>0.1449</td>
<td>0.00417</td>
<td>0.10793</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>LT</td>
<td>3.45E-02</td>
<td>0.063622</td>
<td>0.96414</td>
<td>0.045004</td>
<td>0.020361</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>LB</td>
<td>0.02942</td>
<td>0.006687</td>
<td>0.039168</td>
<td>0.99735</td>
<td>0.018334</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>LI</td>
<td>0.11203</td>
<td>0.13609</td>
<td>0.021216</td>
<td>0.022154</td>
<td>0.86862</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>LG</td>
<td>0.76058</td>
<td>0.010137</td>
<td>0.068687</td>
<td>0.011227</td>
<td>0.18252</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>LE</td>
<td>0.01243</td>
<td>0.87254</td>
<td>0.25285</td>
<td>0.012825</td>
<td>0.078346</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>LT</td>
<td>0.032396</td>
<td>0.10403</td>
<td>0.71999</td>
<td>0.051823</td>
<td>0.023648</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>LB</td>
<td>0.01824</td>
<td>0.029349</td>
<td>0.037506</td>
<td>0.96458</td>
<td>0.00869</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>LI</td>
<td>0.21117</td>
<td>0.2542</td>
<td>0.014061</td>
<td>0.014707</td>
<td>0.52156</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>LG</td>
<td>0.58045</td>
<td>0.068437</td>
<td>0.079429</td>
<td>0.006383</td>
<td>0.1676</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>LE</td>
<td>0.013827</td>
<td>0.82537</td>
<td>0.28638</td>
<td>0.025582</td>
<td>0.073766</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>LT</td>
<td>0.1053</td>
<td>0.17731</td>
<td>0.49017</td>
<td>0.040822</td>
<td>0.046318</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>LB</td>
<td>0.015192</td>
<td>0.06894</td>
<td>0.030515</td>
<td>0.89356</td>
<td>0.007031</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>LI</td>
<td>0.29646</td>
<td>0.25686</td>
<td>0.010174</td>
<td>0.012606</td>
<td>0.40174</td>
<td>5</td>
</tr>
</tbody>
</table>

From the table we can see that in the year 1 horizon, domestic credit to private is the most exogenous and foreign direct investment is the most endogenous followed by government expenditure. In the year 5 horizon and year 10 horizon the results are same. There is no change in the ranking. When we compare VDC results with ECM results there is no inconsistency in the results.
3.9 Impulse Response Function:

Figure 1: Impulse Response

From the analysis of VDC and impulse response (IR), which necessarily shows the same result in different form, by shocking our target variables, mostly finance and growth variables, we can argue that the result in IR seems to support the findings from VDC, however, some of them are supported by theory while some of them are counter intuitive.
Section IV

4.0 Conclusion and Policy Recommendations

In this study a humble attempt has been made to address the issue of financial sector and its relation with economic growth. ARDL approach has been applied to find out the long run relationship between financial sector and economic growth. To answer the research questions we raised in the introduction we will say that the study has found the answer for all three questions. With regard to the first question on what kind of positive or negative relationship exists among the variables, we found that there exist a positive relationship among them namely, financial sector development has positive impact on economic growth. The second question was about the causality trend among the variables and we found that financial sector development is the engine of economic growth or finance is the exogenous variable and considered to be independent variable and growth is endogenous and considered to be the dependent variable. Such relationship is also justified by Patrick (1966) that financial sector is the main leading player in economic growth particularly in developing economy. The third and last question was about the long run or short run relationship among the variables and the study suggest that there exist long-run relationship between the variables.

From policy recommendations prospective, if the government of India wants to boost economic growth, it should bring reformative changes in financial sectors in order to keep the economy in the development road. The main policy variable for the economy of India from the prospective of economic growth is financial sector and therefore authorities should take necessary steps to bring the reform in these sectors to enhance economic growth in the economy.

The limitations of the study are innumerable, firstly due to time constraint more detailed research could not be taken out. Secondly, due to lack of consistent availability of data, more variables were not taken such as market capitalization/GDP, number of firms listed on the stock exchange etc. We personally feel variables such as market capitalization/GDP and financial deepening variable such as number of firms listed on the stock exchange might have given the different set of results. These limitations broaden the scope for further research and it would be interesting as well as helpful for the policy maker, when larger sample is taken and more variables are taken into consideration.
References

