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A Stochastic Model of the Provision of Guided Tours to

Tourists

Abstract

In this paper, we analyze a discrete-time Markov chain theoretic model of the provision of

guided tours to tourists by a private firm. Specifically, we first determine the equilibrium probability

distribution of the number of tourists in the guided tour providing firm’s waiting room just before

this firm begins to match tour guides with tourists. Second, we compute the long run expected

number of tourists in this firm’s waiting room. Finally, we ascertain the long run expected delay per

tourist in the firm’s waiting room. 
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1. Introduction

Researchers studying the economics of tourism now recognize that a salient decision

problem confronting a firm that is in the business of providing guided tours to tourists is a

scheduling problem. The scheduling problem we have in mind concerns the frequency with which

guided tours to a particular tourist attraction ought to be provided. Relative to the peak season, the

magnitude of the stochastic demand that faces a guided tour providing firm is typically much lower.

Even so, it is important to comprehend that this basic scheduling problem exists in both the off-peak

and in the peak tourist seasons.

Researchers have now begun to empirically study seasonality in the context of tourism and

the provision of guided tours to tourists. Focusing on Australia, Lim and McAleer (2000) have

studied deterministic and probabilistic seasonality and the extent to which these two kinds of

seasonality explain variations in the international tourist arrival time series. Koenig and Bischoff

(2003) have compared the seasonal nature of tourism in Wales and Scotland and have discussed

alternate ways of addressing this seasonality problem. Andriotis (2005) has studied the extent to

which the diversification of the product mix, a change of the customer mix, and assertive pricing can

reduce problems arising from the seasonality in the demand for tourism in Crete. Sung (2008) has

shown that the temporary plan for snowmobile riders and guided tour providers in Yellowstone

National Park has increased the producer surplus of these guided tour providers. Finally, Baez

Montenegro et al. (2009) have used a hypothetical guided walking tour construct to estimate the

value of historical sites in Valdivia, Chile. 

The studies discussed in the previous paragraph have certainly increased our understanding

of the many empirical features of both seasonal tourism and the provision of guided tours to tourists.
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Even so, with the exception of three recent papers that have analyzed the provision of guided tours

to tourists but specifically during the off-peak season, the existing literature has paid virtually no

attention to the many theoretical aspects of the provision of guided tours to tourists. Using an

exogenously given decision rule, Batabyal (2009) has derived certain long run metrics that are

germane in the context of the provision of transport to tourists. Batabyal and Yoo (2009) have

conducted a probabilistic analysis of the provision of guided tours to a single class of tourists.

Finally, Batabyal (2010) has extended this Batabyal and Yoo (2009) analysis by examining the

guided tour provision question when the firm providing the guided tours is faced with two distinct

classes of tourists. 

Our objective in this paper is to generalize the analysis in these three previous papers by

constructing and analyzing a discrete-time Markov chain theoretic model of the provision of guided

tours to tourists that is relevant in both the off-peak and in the peak seasons. In this regard, we first

determine the equilibrium or limiting probability distribution of the number of tourists in a guided

tour providing firm’s waiting room just before this firm begins to match tour guides with tourists.

Second, we compute the long run expected number of tourists in this firm’s waiting room. Finally,

we ascertain the long run expected delay per tourist in the firm’s waiting room. 

The rest of this paper is organized as follows. Section 2.1 describes a stochastic model that

captures, from the perspective of a private firm, the general features of off-peak and peak season

guided tours to city attractions and to scenic locations such as fiords and lakes. Section 2.2 derives

the limiting probability distribution mentioned in the previous paragraph. Section 2.3 calculates the

previous paragraph’s long run average number of tourists. Section 2.4 computes the long run mean

delay per tourist discussed in the preceding paragraph. Section 3 concludes and then discusses ways
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The Poisson process has been used previously in the literature—see Martin-Cejas (2006), Batabyal (2007), and Batabyal and Beladi

(2008)—to model and analyze problems in the economics of tourism. See Ross (2003, pp. 288-348) or Tijms (2003, pp. 1-32) for

textbook treatments of the Poisson process.
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The models employed by Batabyal and Yoo (2009) and Batabyal (2010) are special cases of the model in this paper in the sense that 

in these previous two papers.
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in which the research described in this paper might be extended.

2. The Theoretical Framework

2.1. Preliminaries

Consider a private firm that provides guided tours to tourists interested in visiting a particular

location during either the off-peak season or the peak season. For concreteness, we shall think of this

location as the Taj Mahal in Agra, India, but, without loss of generality, our analysis holds for other

locations as well. 

Tourists arrive at this private firm’s facility in accordance with a stationary Poisson process

with rate 4 Arriving tourists are initially seated in a waiting room before they are matched with

tour guides. This waiting room is inspected every  time periods and only at these specific

inspection epochs are waiting tourists matched with available tour guides. Our guided tour providing

firm has  tour guides on its payroll.5 

This firm seeks to provide its customers (the tourists) with a personalized and high quality

guided tour experience. To this end, the firm under study ensures that each tour guide is matched

with a single tourist. The times taken to complete the individualized guided tours are assumed to be

independent random variables. However, because the location—such as the Taj Mahal—for which

the guided tours are sought is the same for all the arriving tourists, we suppose that these

independent random variables have a common exponential distribution function with mean 
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For the stationary Poisson process, the times between successive arrivals is exponentially distributed and the exponential distribution

has the memoryless property. What this means is the following. Let Y be an exponentially distributed random variable that represents

the lifetime of a certain item. Then, if the residual life of this item has the same exponential distribution as the original lifetime,

regardless of how long this item has already been in use then Y has the memoryless property. See Ross (2003, pp. 272-279) or Tijms

(2003, pp. 2-5) for textbook treatments of the exponential distribution’s memoryless property.
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With this description of the basic setup in place, we are now in a position to use discrete-time

Markov chain analysis to determine the equilibrium probability distribution of the number of tourists

in our guided tour providing firm’s waiting room just before this firm begins to match tour guides

with tourists. 

2.2. The equilibrium probability distribution

We begin by letting  denote the number of tourists in our guided tour providing firm’s

facility at the  inspection epoch. Because the Poisson process and the exponential distribution

possess the memoryless property,6 it follows that  is a discrete-time Markov chain with infinite

state space  Let 

(1)

denote the probability that  guided tours have been completed during a given time slot that begins

with  tourists present in our firm’s facility. Here,  With this specification in place,

we deduce that the one-step transition probabilities of the discrete time Markov chain  under

study are given by

(2)
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Denote the equilibrium or limiting probabilities of interest by  Then, we want to show that

the infinite system of linear equations for the limiting probabilities, i.e., the  can be reduced to

a finite system of linear equations using the geometric tail method described in Tijms (2003, pp.

111-116). To see this clearly, let us write the pertinent equilibrium linear equations as

(3)

Let  be a real-valued variable with  Then, multiplying both sides of equation (3) with  and

summing over  we find, after interchanging the order of summation, that

(4)

where  

Now, if we use the form—see equation (2) above—for the  for  then tedious but

straightforward algebraic computations show that

(5)

where

(6)
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See Rudin (1976, p. 201) for more on this theorem.
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To proceed further, it will be necessary to use Newton’s generalized binomial theorem7 or

what is sometimes also known as Newton’s binomium. Using this theorem, the left-hand-side (LHS)

of equation (5) can be written as

(7)

Using the generating function of the equilibrium probabilities, i.e., the  equation (7) can also be

written as

(8)

where  is as described in the text immediately after equation (4). 

Let  be the smallest root of the denominator of the  function on the interval 

Then, because the conditions necessary for theorem C.1 in Tijms (2003, p. 453) to hold are satisfied,

we can apply this theorem to our equilibrium probability determination problem and conclude that

the equilibrium probability distribution of the number of tourists in our firm’s waiting room just

before this firm begins to match tour guides with tourists exists and that these equilibrium

probabilities exhibit the so called geometric tail behavior. Mathematically, this means that these

equilibrium probabilities have the form 

(9)
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for some constant  In this context, the reader should note that for two functions of the variable 

and   as  means that  

What we have just shown is that the relevant state probabilities of the discrete-time Markov

chain  that we are studying exhibit “geometric tail behavior.” Therefore, we do not have to

work with an infinite system of linear equations—recall that the state space of  is infinite—but,

instead, we can focus on a finite set of linear equilibrium equations. It should be clear to the reader

that the equilibrium or limiting probabilities described in (9) can be used by our guided tour

providing firm for planning purposes. In particular, these probabilities can be used to determine

whether the inspection time variable  ought to be altered and also to ascertain whether our firm

ought to change the number of tour guides it has on its payroll. We now proceed to the second task

of this paper and that is to compute the long run expected number of tourists in our guided tour

providing firm’s waiting room. 

2.3. Long run expected number of tourists

Let us denote the long run expectation we seek by  Now, suppose that a cost at rate  is

incurred by our private firm when there are  tourists in the waiting room for  Then, the

important point to note is that the expectation  is given by the long run average cost per unit time

that is incurred by this firm. Recall that the tourist arrivals in the model of this paper occur in

accordance with a stationary Poisson process with rate  Therefore, to compute the above

mentioned long run average cost, we can make use theorem 1.1.3 in Tijms (2003, p. 6). Applying

this theorem to our problem, we reason that the average cost incurred in a time slot given that 

tourists are waiting at the beginning of this time slot is equal to
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(10)

Now, to compute the long run average cost per time slot, we shall use theorem 3.3.3 in Tijms

(2003, p. 103). The application of this ergodic theorem to our problem tells us that the average cost

we seek is given by

(11)

Dividing the right-hand-side (RHS) of equation (11) by  gives us an expression for the long run

average cost per unit time and, as discussed in the first paragraph of this section, this expression is

also equal to the long run expected number of tourists in our guided tour providing firm’s waiting

room or  Performing the division, we get

(12)

Inspecting equation (12), it is clear that the long run expected number of tourists in our firm’s

waiting room is an increasing function of the Poisson tourist arrival rate  and the inspection

time variable  It is unlikely that the private firm under study will be able to control the rate 

at which tourists arrive at its facility. This tells us that if our guided tour providing firm would like

to reduce crowding in its waiting room then it will want to reduce  or, equivalently, increase the

frequency with which it inspects the waiting room before matching tour guides with tourists. We

now proceed to the last task of this paper and this involves ascertaining the long run expected delay
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See Ross (2003, pp. 476-478) or Tijms (2003, pp. 50-52) for textbook treatments of Little’s formula.
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per tourist in our private firm’s waiting room.

2.4. Long run expected delay per tourist

Let  denote the long run expectation we seek. To obtain this expectation, we shall make

use of a well known result in queuing theory known as Little’s formula.8 Applied to our problem,

this formula tells us that  is given by the long run expected number of tourists in our guided tour

providing firm’s waiting room or  divided by the Poisson tourist arrival rate  Therefore,

dividing the RHS of equation (12) by  tells us that the long run expected delay per tourist in our

private firm’s waiting room is equal to

(13)

Looking over equation (13), we see that unlike the expectation for  given in equation (12),

the long run expected delay per tourist in our firm’s waiting room is a decreasing function of the

Poisson tourist arrival rate  In contrast and like the expectation for  in equation (12),  is

an increasing function of the inspection time variable  Therefore, as in the case of the analysis

presented in section 2.3, if the guided tour providing firm would like to reduce the sightseeing delay

encountered by the waiting tourists then it ought to lessen  or raise the frequency with which it

inspects the waiting room before matching tour guides with tourists. 

3. Conclusions

In this paper, we analyzed a discrete-time Markov chain theoretic model of the provision of

guided tours to tourists by a private firm. Specifically, we first determined the equilibrium
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probability distribution of the number of tourists in a guided tour providing firm’s waiting room just

before this firm began the task of matching tour guides with tourists. Then, we computed the long

run expected number of tourists in the waiting room of the private firm under study. Finally, we

ascertained the long run expected delay per tourist in this same firm’s waiting room. 

The analysis in this paper can be extended in a number of different directions. We now make

two suggestions for extending the research described here. First, it would be useful to determine the

extent to which one can obtain analytic results for a discrete-time Markov chain theoretic model of

the provision of guided tours to tourists who arrive at the pertinent firm’s facility in accordance with

a non-stationary Poisson process with a time dependent intensity function, say,  Second,

following the discussion towards the end of sections 2.3 and 2.4, it would be informative to

formulate and solve an optimization problem for a guided tour providing firm in which the decision

variable  is chosen to optimize a criterion function of which the RHSs of equations (12) or (13)

are a part. Studies of the provision of guided tours to tourists that incorporate these aspects of the

problem into the analysis will provide further insights into questions in the economics of tourism

that have both theoretical and practical ramifications. 
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