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the new spillover indices at various levels of (dis)aggregation. Moreover, we

demonstrate that they are informative of the value-at-risk violations of portfo-

lios composed of the considered asset classes.

Keywords: BEKK model, forecast error variance decomposition, multivariate

GARCH, spillover index, value-at-risk, variance spillovers,

JEL Classification: C32, C58, F3, G1

∗The authors gratefully acknowledge helpful comments from Jörg Breitung, Katja Gisler, Roman

Liesenfeld, Ostap Okhrin, Kamil Yılmaz, as well as from seminar participants at the Universität zu
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1 Introduction

In highly integrated markets, shocks spread at a fast pace and bedevil risk manage-

ment and optimal asset allocation because of disappearing diversification benefits

and cascade effects. Awareness of this fact has risen especially during the financial

crisis of 2008 and over the subsequent years of economic fragility. Consequently,

much effort has been devoted to developing quantitative measures of economic in-

terdependence. Examples include the systemic expected shortfall of Acharya et al.

(2010), the conditional value-at-risk of Adrian and Brunnermeier (2016), and the

spillover indices of Diebold and Yilmaz (2009, 2012, 2014).

Among these, the spillover indices of Diebold and Yilmaz (2009, 2012, 2014) have

garnered much attention, because in contrast to other measures, they allow one to

track the associations between individual variables and the system as a whole at

all levels, from pairwise to system-wide, in a mutually consistent way. The notion

of a spillover is that of a forecast error variance share derived from the forecast

error variance decomposition of an underlying vector autoregressive model (VAR).

For example, to study variance spillovers, one simply estimates a VAR on measures

of realized variance – see Yilmaz (2013), Fengler and Gisler (2015), Baruńık et al.

(2016).

Because the indices are based on the forecast error variance decomposition of

a single VAR, they produce static and average spillover information. While this is

undoubtedly valuable, it would be of greater use to have up-to-date spillover infor-

mation, especially when thinking of variance spillovers. There is ample evidence that

conditional variances are time-varying, and it is natural to expect that spillovers are

as well. Diebold and Yilmaz (2009, 2012) therefore suggest computing the indices

from VAR models that are estimated on rolling subsamples. In this way, one obtains

an impression of the time-varying patterns of spillovers. But as with all rolling win-

dow approaches, the estimates reflect only the average information of the respective
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estimation window. Because the subsamples must be of sufficient length to provide

reasonably accurate parameter estimates, the rolling window indices are probably

more useful for a retrospective analysis than for the timely monitoring of spillovers.

For this purpose, one would need a time-t conditional spillover index.

In this paper, we propose such an approach. We adopt the ideas of Diebold and

Yilmaz (2009, 2012) and construct variance spillover indices that are updated with

time-t information. To this end, we build on multivariate GARCH (MGARCH)

models of the BEKK-type (Baba et al., 1990; Engle and Kroner, 1995) and calculate

the indices from the forecast error variance decomposition that is derived from the

vector moving average (VMA) representation of the ‘squared’ and vectorized return

process. This process is driven by serially uncorrelated heteroskedastic innovations

and, as we show here, its conditional covariance matrix can be derived analytically.

This allows us to absorb the regime dependence into the parameters of the VMA

representation. The variance spillover indices that are based on this time-varying

VMA representation therefore take full advantage of the time-t conditional informa-

tion of the prevailing variance regime. In contrast to rolling window estimates, they

convey on-the-spot variance spillover information. In our empirical applications, we

show not only that the time-t conditional variance spillover indices allow a study

of the prompt impact of major economic or political events, but also that they are

informative of the likelihood of value-at-risk violations.

Aside from the value of well-timed spillover information, our approach differs

in methodological terms from the extant literature in that we derive the spillover

indices from a full-fledged model of variance and covariance dynamics. This has

advantages that are more than conceptual. First and most importantly, the vari-

ance spillover indices take full advantage of the informational content embedded in

covariances. It appears common sense to expect covariance dynamics to play a de-

cisive role in the mechanisms of variance spillovers. In Fengler and Gisler (2015), a

first step toward incorporating covariance information into variance spillover indices

is made, but the authors follow the traditional route of applying a VAR to vector-
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ized realized covariance matrices estimated from intra-day data. Thus, they cannot

ensure positive definiteness of the dynamic covariance matrices. While the realized

variance literature proposes such models, it does so at the expense of transforming

the covariance matrices in a nonlinear way – see, e.g., Bauer and Vorkink (2011)

and Golosnoy et al. (2012). This makes attributing the shocks to specific variables

difficult if not impossible. The most attractive property of the indices of Diebold

and Yilmaz (2009, 2012) would thereby be lost. With the MGARCH model, we

circumvent this difficulty, because the VMA representation of the vector collecting

the squared observations and the crossproducts of the observations remains linear

in a serially uncorrelated vector innovation process.

Our work is related to the broad strand of the contagion and transmission litera-

ture – see, among others, Engle, Ito and Lin (1990), Hamao et al. (1990), Forbes and

Rigobon (2002), and Bali and Hovakimian (2009). These studies investigate whether

transmission channels for shock spillovers between returns and variances of different

markets exist, and whether these channels emerge or disappear, for instance, in times

of crisis. For this purpose, one is often interested in strategies to test certain param-

eter restrictions, as thoroughly studied by Nakatani and Teräsvirta (2009), Billio

et al. (2012), and Woźniak (2015), or one examines variance impulse responses as

proposed by Hafner and Herwartz (2006). By contrast, here we focus on the mea-

surement of the time-varying magnitude of variance spillovers, conditional on the

diagnosed transmission channels. Our primary interest is a quantitative assessment

of the contemporaneous variance spillover activity. In this sense, the advances of

constructing spillover indices and the classical contagion and transmission literature

complement each other perfectly.

Section 2 provides a brief sketch of the BEKK model and its translation into a

vectorized representation of the ‘squared’ MGARCH process. This representation is

employed in Section 3 to define indices of variance spillover. An empirical analysis of

returns of four major US asset classes is provided in Section 4. Section 5 concludes.
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2 Multivariate GARCH

In this section, we first discuss the MGARCH model of the BEKK type. Second,

we make explicit the translation of the BEKK model into its half-vectorized (vech)

representation. Third, we discuss in detail the conditional covariance matrix of

the half-vectorized ‘squared’ MGARCH process, which is a key input parameter for

implementing the variance spillover indices developed in Section 3.

2.1 The BEKK model

We consider an N -dimensional vector of returns (first differences of log asset prices)

{rt} such that E[rt] = 0. Denote by Ft the filtration generated by {rt} up to and

including time t. The return process is assumed to follow

rt = εt = H
1/2
t ξt, ξt

iid∼ N(0, IN ), t = 1, 2, 3, . . . , T , (1)

where the conditional covariance Ht is measurable with respect to Ft−1. In (1),

H
1/2
t denotes the symmetric matrix square root of Ht.

1 The innovation vector {ξt}
is assumed to be independently and identically (iid) mean zero normally distributed

with a covariance matrix equal to the N -dimensional unit matrix, which is denoted

by IN . The assumption of conditional normality of ξt is commonly adopted to

implement (Quasi) Maximum Likelihood (QML) estimation, but it is not essential

for the subsequent discussions. We do not specify a conditional mean process for {rt}
because our interest is in measuring variance spillovers in daily asset price returns.

Moreover, one would typically specify the conditional mean as a function of past

values of rt, in which case it is immaterial to the following discussion.

In the literature, a considerable number of alternative specifications of MGARCH

models have been proposed – see Bauwens et al. (2006) for a comprehensive review.

Here we adopt the so-called BEKK model for two main reasons. First, it has the

1The square root of a symmetric positive definite matrix Z is defined as Z1/2 = ΓΛ1/2Γ′, where

the columns of Γ contain the eigenvectors of Z, and Λ1/2 is diagonal with the positive square roots

of the eigenvalues on its diagonal.
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attractive feature that under mild restrictions applying to the initial conditions, the

process of conditional covariances Ht is positive definite by construction (Engle and

Kroner, 1995). Second, the BEKK model is among the most general MGARCH

specifications and also embeds the general vec MGARCH model of Bollerslev et al.

(1988), except for degenerate covariance processes – see Stelzer (2008) for more de-

tails. Therefore, while relying on BEKK is hardly costly in terms of model flexibility,

other MGARCH variants are special cases of the BEKK specification, for example,

the factor model of Engle, Ng and Rothschild (1990), the orthogonal GARCH model

of Alexander (2001, pp. 21–38), its generalization introduced by van der Weide

(2002) and the Cholesky GARCH of Dellaportas and Pourahmadi (2012).

In its most flexible form, the BEKK(p, q,K) model of the conditional covariance

Covt−1[εt] = Et−1[εtε
′
t] = Ht is given by

Ht = CC ′ +
K∑

k=1

q∑

i=1

F ′
kiεt−iε

′
t−iFki +

K∑

k=1

p∑

i=1

G′
kiHt−iGki , (2)

where C is a lower triangular matrix and Fki and Gki are N×N parameter matrices.

The BEKK model is well understood. Boussama et al. (2011, Theorem 2.4)

establish that under weak regularity conditions on the law of the iid process {ξt},
the MGARCH process {εt} is ergodic and both strictly and weakly stationary if

ρ

(
K∑

k=1

q∑

i=1

Fki ⊗ Fki +

K∑

k=1

p∑

i=1

Gki ⊗Gki

)
< 1 , (3)

where ρ(Z) denotes the spectral radius of a square matrix Z and ⊗ is the Kronecker

matrix product.

Regarding parameter estimation, Jeantheau (1998) provides regularity condi-

tions to establish consistency of QML estimators. Focussing on the BEKK speci-

fication, Comte and Lieberman (2003) show consistency and asymptotic normality

of the QML estimator under the particular assumptions of, respectively, finite sec-

ond and eighth-order moments of the MGARCH process. Hafner and Preminger

(2009) show consistency of QML estimation under the weaker condition of finite

second-order moments of MGARCH innovations {ξt}, thereby allowing for integrated
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MGARCH. Moreover, they establish asymptotic normality of QML estimators un-

der the weakened condition that the sixth-order moments of the MGARCH process

be finite.

The general BEKK(p, q,K) model requires the estimation of (p+q)KN2+N(N+

1)/2 parameters and therefore is computationally demanding. For this reason, it has

become standard in applied work to use the more parsimonious BEKK(1,1,1) model

Ht = CC ′ + F ′εt−1ε
′
t−1F +G′Ht−1G, (4)

where the subscripts of the BEKK parameter matrices are suppressed for notational

convenience. In that case, for N = 2, 3, 4, the estimation problem involves 11, 24,

and 42 parameters, respectively. We will follow this practice but emphasize that

the derivation of our variance spillover measures only requires the vech form of the

BEKK model, which exists for any order.

2.2 The BEKK model in vech and VMA form

Encompassing all linear covariance specifications, the vech representation provides

a general framework to compare the dynamic features implied by alternative co-

variance models, such as the underlying VMA representation. For the derivation of

the vech representation of the BEKK model, some elementary matrices turn out to

be useful, namely the elimination matrix LN , the duplication matrix DN , and its

generalized inverse D+
N .2 Let ηt = vech(εtε

′
t) and ht = vech(Ht). Then, the vech

representation of the BEKK model in (4) is given by

ht = υ +Aηt−1 +Bht−1, (5)

2 Denote by vec(Z), the operator that stacks the columns of a matrix Z into a vector. Similarly,

but for a square symmetric matrix, the vech-operator stacks the elements on and below the diagonal

into a vector. Let N∗ = N(N +1)/2. With reference to a symmetric square N ×N matrix Z, the

N∗
×N2 elimination matrix LN is defined by the property vech(Z) = LN vec(Z). Conversely, the

(N2
×N∗) dimensional duplication matrix DN is defined by vec(Z) = DN vech(Z). Because D′

NDN

is nonsingular, the Moore-Penrose inverse or generalized inverse of DN is D+
N = (D′

NDN )−1D′

N .

See Lütkepohl (1996).
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where υ = vech(CC ′), A = D+
N (F ⊗ F )′DN and B = D+

N (G⊗G)′DN .

Now consider the N∗ = N(N + 1)/2 dimensional vector of mean zero random

variables

ut = ηt − ht . (6)

It is not difficult to see that {ut} is a mean zero, serially uncorrelated, but condi-

tionally heteroskedastic process, i.e., Covt−1[ut] = Et−1[utu
′
t] = Σt. Moreover, if in

addition to the stationarity conditions of Boussama et al. (2011) one assumes finite

fourth-order moments of {εt}, {ut} is a white noise process (Hafner, 2008, Prop. 2).

For our subsequent discussions, we require condition (3) to hold, which for the

vech-form translates into ρ(A) < 1, where A = A + B. Moreover, let L denote the

lag operator such that Lηt = ηt−1. Using (6) to replace ht in (5), we obtain

ηt = υ +Aηt−1 +B(ηt−1 − ut−1) + ut (7)

⇔ (IN∗ −AL)ηt = υ + (IN∗ −BL)ut

⇔ ηt = (IN∗ −AL)−1υ + (IN∗ −AL)−1(IN∗ −BL)ut

= υ̃ +Φ(L)(IN∗ −BL)ut, (8)

= υ̃ +Θ(L)ut, (9)

with υ̃ = (IN∗ −A)−1υ and Φ(L) = (IN∗ −AL)−1, which exist if ρ(A) < 1. In (8),

the parameter matrices specifying the operator Φ(L) = (IN∗−AL)−1 = IN∗+Φ1L+

Φ2L
2 +Φ3L

3 + . . . are given by

Φ0 = IN∗ , Φk = AΦk−1, k = 1, 2, 3, 4, . . . .

Summarizing the autoregressive and moving average part of the vech representation,

the operator Θ(L) in (9) conforms with the parameterization

Θ0 = IN∗ , Θ1 = A−B = A, Θk = AΘk−1, k = 2, 3, . . . .

Because Covt−1[ut] = Σt is typically not diagonal, the elements of ut are simul-

taneously correlated. As an implication, the coefficient matrices Θk, k = 0, 1, 2, . . .

are not suitable for tracing how isolated shocks contribute to forecast uncertainties
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attached to particular variables in ηt. To cope with cross-equation correlation, it

has become conventional to derive forecast error variance decompositions from VMA

representations under the presumption of orthogonalized shocks. For this purpose,

(9) is rephrased as

ηt = υ̃ +Θ(L)Σ
1/2
t Σ

−1/2
t ut (10)

= υ̃ +Ψt(L)νt , (11)

where νt = Σ
−1/2
t ut, Ψt(L) = Θ(L)Σ

1/2
t . Unlike standard VMA representations

of homoskedastic VARs, however, the operator Ψt(L) depends on Σt, and hence is

time-varying. Specifically, we have

Ψt(L) = Ψt,0 +Ψt,1L+Ψt,2L
2 +Ψt,3L

3 + . . . (12)

where Ψt,0 = Σ
1/2
t , Ψt,k = ΘkΣ

1/2
t−k. As in the usual VMA representation of station-

ary VAR models, the coefficients in Ψt,k, k = 0, 1, 2, . . . describe how (unit) shocks

in the elements of νt impact the variables in ηt = vech(εtε
′
t) simultaneously (k = 0)

and over time (k = 1, 2, . . .).

2.3 The conditional covariances of the VMA representation

The implementation of the VMA coefficient matrices in (12) requires an analytic

expression of the conditional covariance of Σt. Define the elimination matrix LN

and the duplication matrix DN as in footnote 2. We have the following:3

Proposition 1 Let ut defined in (6) be the innovation process of the half-vectorized

‘squared’ MGARCH process ηt = vech(εtε
′
t) and let Σt = Covt−1[ut]. Then

Σt = LNHtΩ̃HtL
′
N − hth

′
t , (13)

where Ht = H
1/2
t ⊗H

1/2
t and Ω̃ = E[(ξtξ

′
t)⊗ (ξtξ

′
t)
′].

3We thank an anonymous referee for helpful suggestions on how to simplify both a former

representation of our proposition and its proof.
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Proof: Using results in Lütkepohl (1996, Ch. 2.4 and 7.2), we notice that

ηt = vech(εtε
′
t) = LN vec(εtε

′
t) = LNHt vec(ξtξ

′
t) .

Then, because ht is Ft−1-measurable, we get

Σt = Covt−1[ut] = Covt−1[ηt]

= Et−1[ηtη
′
t]− Et−1[ηt]Et−1[η

′
t]

= Et−1[vech(εtε
′
t) vech(εtε

′
t)
′]− hth

′
t

= Et−1

[
LNHt vec(ξtξ

′
t) vec(ξtξ

′
t)
′HtL

′
N

]
− hth

′
t

= LNHtΩ̃HtL
′
N − hth

′
t .

The last line uses the notation

Ω̃ = E[vec(ξtξ
′
t) vec(ξtξ

′
t)
′] = E[(ξtξ

′
t)⊗ (ξtξ

′
t)
′] , (14)

which holds thanks to vec(ξtξ
′
t) = ξt ⊗ ξt and due to the fact that {ξt} is iid. �

The matrix Ω̃ in (14) collects the fourth-order moments of ξt and is of dimension

N2 ×N2 with N ×N dimensional blocks Ωij , i, j = 1, 2, . . . , N . Let ω
(ij)
kl denote a

typical element of block Ωij . Specifically, along the diagonal, the block matrices Ωii

have elements

ω
(ii)
ii = κi, ω

(ii)
jj = 1, j 6= i and ω

(ii)
ij = 0, i 6= j , (15)

where κi is the fourth-order moment of the i-th element in ξt. Under the Gaussian

assumption, we have κi = 3, ∀i. The off-diagonal blocks Ωij , i 6= j, are such that

ω
(ij)
ij = 1, and ω

(ij)
kl = 0 for (k, l) 6= (i, j).

As we discuss below, instead of assuming Gaussianity, one may alternatively use the

empirical fourth-order moments to parameterize Ω̃ and thereby Σt in (13).
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3 Measuring variance spillovers

3.1 A time-varying forecast error variance decomposition of the

half-vectorized ‘squared’ MGARCH process

The spillover measures to be presented in Section 3.2 build on the conditional fore-

cast error variance decomposition, which we obtain from the time-varying VMA

representation (11). Denote by η̂t+M |t = Et[ηt+M ] the time-t conditional M -step

ahead forecast of the half-vectorized ‘squared’ MGARCH process. Then the error

of predicting ηt+M reads as

ηt+M − η̂t+M |t = Ψt+M,0νt+M +Ψt+M,1νt+M−1 + . . .+Ψt+M,M−1νt+1 , (16)

where the parameter matrices are defined in (12). The elements in the i-th rows

of Ψt+M,0,Ψt+M,1, . . . ,Ψt+M,M−1 describe how the innovations in νt+M , . . . , νt+1

contribute to the forecast errors of variable i at horizon M . Because (16) has time-

varying parameter matrices, we study the conditional forecast error variance given

by

Et

[
(ηt+M − η̂t+M |t)(ηt+M − η̂t+M |t)

′
]

(17)

= Σ̂t+M |t +Θ1Σ̂t+M−1|tΘ
′
1 + . . .+ΘM−1Σ̂t+1|tΘ

′
M−1 (18)

= Ψ̂t+M,0|tΨ̂
′
t+M,0|t + Ψ̂t+M,1|tΨ̂

′
t+M,1|t + . . .+ Ψ̂t+M,M−1|tΨ̂

′
t+M,M−1|t , (19)

where we set

Ψ̂t+M,0|t = (Σ̂t+M |t)
1/2

Ψ̂t+M,1|t = Θ1(Σ̂t+M−1|t)
1/2 (20)

...

Ψ̂t+M,M−1|t = ΘM−1Σ
1/2
t+1 ,

with Σ̂t+m|t = Et[Σt+m], m = 2, . . . ,M . We emphasize that Ψ̂t+M,m|t, m =

0, 1, . . . ,M − 1, is introduced for notational reasons and is not meant to imply

that Ψ̂t+M,m|t = Et[Ψt+M,m], which is neither needed for the following nor does it

hold in general, except trivially for m =M − 1.
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Let ψ̂
(t+M,m)
ij denote a typical element of Ψ̂t+M,m|t, m = 0, 1, . . . ,M − 1. In

accordance with the VAR literature (Lütkepohl, 2007, p. 63-64), the proportion of

the M -step ahead forecast error variance of variable i, accounted for by innovations

in variable j, is given by

λ
(M)
t,ij =

∑M−1
m=0

(
ψ̂
(t+M,m)
ij

)2

∑M−1
m=0

∑N∗

j=1

(
ψ̂
(t+M,m)
ij

)2 , (21)

whereN∗ = N(N+1)/2, i.e., the dimension of the half-vectorized ‘squared’ MGARCH

process. In light of our applications in Section 4.3, this quantity has telling inter-

pretations. For example, λ
(M)
t,ij says, conditionally on time t, which proportion of

the forecast error variance of, for instance, squared equity returns can be ascribed

to shocks to squared bond returns, squared commodity returns, or cross-products of

bond and commodity returns. Thus, λ
(M)
t,ij , i 6= j, measures a cross (forecast error)

variance share, i.e., a spillover in the sense of Diebold and Yilmaz (2009, p. 159).

Because conditional predictions of the squared GARCH process or cross-products of

two GARCH processes are equivalent to predicting the conditional variance and co-

variance of the process, λ
(M)
t,ij serves as the basis for the definitions of the time-varying

variance spillover statistics of Section 3.2.

We conclude this section with two comments on the actual implementation

of (21). First, note that while Σt+1 is time t-measurable, for M ≥ 2, the forecast

error variance decomposition depends on the time-t predictions of future covariances

Σt+2,Σt+3, . . . ,Σt+M . Although Σt = Σt(Ht) is an explicit function of Ht, using the

variance dynamics in (4) to evaluate these predictions is involved. We therefore sug-

gest employing approximations Σ̂t+m|t ≈ Σt+m(Ĥt+m|t), m = 1, . . . ,M , which can

be obtained readily from the recursive one-step ahead predictors of the conditional

covariance process:

Ĥt+1|t = Ht+1 = CC ′ + F ′εtε
′
tF +G′HtG

and Ĥt+m|t = CC ′ + F ′Ĥ ′
t+m−1|tF +G′Ĥt+m−1|tG, m = 2, 3, . . . (22)

Second, to evaluate Σt, the fourth-order moment matrix Ω̃ is needed. We will
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assume ω
(ii)
ii = E[ξ4i,t] = 3, i = 1, . . . , N , in (15). While this may seem a rather

strong assumption, from the definition of λ
(M)
t,ij as a ratio, one may imagine that

the approximation error implied by this normality assumption is minor despite the

actual excess kurtosis of return innovations.4

3.2 Variance spillover indices

Diebold and Yilmaz (2009) motivate the use of statistics of the form in (21) to

define spillover indices. It is, however, important to observe that λ
(M)
t,ij depends

on the construction of underlying shocks νt and the determination of Σ
1/2
t . Both

νt and Σ
1/2
t lack invariance under rotation, or, put differently, rival definitions are

observationally equivalent in ηt. Specifically, consider a counterpart of (10)

ηt = υ̃ +Θ(L)Σ
1/2
t QQ′Σ

−1/2
t ut, QQ

′ = IN∗ , Q 6= IN∗ , (23)

where Q is a rotation matrix. In the literature on structural VARs, the identifica-

tion of Σ
1/2
t Q has attracted great interest (Amisano and Giannini, 1997). Typically,

external information, for instance, derived from economic theory, is employed to

address model identification. Recently, sign restrictions have become a prominent

identification approach (Faust, 1998; Uhlig, 2005). Because economic theory con-

cerning the contemporaneous relations among daily financial data is scarce, the

decomposition set out in (10) can only be justified in light of its economic content

and the plausibility of the statistical functionals derived from the definitions in (10)

or (21). In discussing the empirical implications of our model, we will justify the

identifying content of the symmetric square root matrix Σ
1/2
t in light of the detected

patterns of aggregate total variance spillovers and disaggregate asset-specific net

variance spillovers.5

4Indeed, when we replace ω
(ii)
ii = 3 with the empirical fourth-order moments of the leptokurtic

innovations ξi,t, i = 1, . . . , N , the mean (standard deviation) of the absolute differences between

the respective indices of total variance spillovers shown in Section 4 is 0.007 (0.003).
5As an alternative to the symmetric matrix square root, Diebold and Yilmaz (2014) build on the

Cholesky factorization for identification. Because the Cholesky factorization is dependent on the
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For the construction of the spillover index, note that we have
∑N∗

j λ
(M)
t,ij = 1

and
∑N∗

i,j λ
(M)
t,ij = N∗. Let ηi,t, i = 1, . . . , N∗, denote an element of ηt. Then a

quantitative measure of total spillovers can be defined as

S(M)
t =

1

N∗

N∗∑

i,j=1,i 6=j

λ
(M)
t,ij . (24)

S(M)
t measures the total forecast error variance share of the variables ηi,t, i =

1, . . . , N∗, that is attributable to shocks in all other variables ηj,t, j = 1, . . . , N∗, j 6=
i. It thus is a normalized aggregate of all spillovers in the system, justifying the

term ‘spillover index.’ Since it is built from information conditional on time-t, it is

a spot measure of variance spillovers.

Besides the total index (24), many other spot variance indices are possible. Fol-

lowing Diebold and Yilmaz (2012), we can define directional spillovers between all

variables involved. They provide decompositions of the spillover index into spillovers

coming from (or to) a specific source. The directional spillovers received by variable i

from all other variables j are defined as

R(M)
t,i =

∑N∗

j=1,j 6=i λ
(M)
t,ij

N∗
, (25)

whereas the directional spillovers transmitted by variable i to all other variables j

are measured by

T (M)
t,i =

∑N∗

j=1,i 6=j λ
(M)
t,ji

N∗
. (26)

Furthermore, it is meaningful to compute their difference

N (M)
t,i = T (M)

t,i −R(M)
t,i , (27)

because it can be interpreted as the net contribution of variable i to the entire

transmission process.

ordering of the variables, they justify this choice by showing that they recover very similar spillover

patterns for other randomized orderings. In light of their Figure 5, it seems likely that the spillover

index obtained by averaging all indices of the randomized orderings will be close to the index based

on the symmetric matrix square root.
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Since the elements in ηt = vech(εtε
′
t) correspond to patterns of variation and

covariation, it is of interest to further distinguish between these two groups. Let

Jcov and Icov be the sets of all i, j = 1, . . . , N∗ that index a covariance, and define

Jvar and Ivar accordingly. As suggested in Fengler and Gisler (2015), we define

R(M,cov)
t,i =

∑N∗

j∈Jcov ,j 6=i λ
(M)
t,ij

N∗
, T (M,cov)

t,i =

∑N∗

j∈Jcov ,j 6=i λ
(M)
t,ji

N∗
, (28)

R(M,var)
t,i =

∑N∗

j∈Jvar,j 6=i λ
(M)
t,ij

N∗
, T (M,var)

t,i =

∑N∗

j∈Jvar,j 6=i λ
(M)
t,ji

N∗
, (29)

which can be interpreted as the directional spillovers received by variable i from all

covariances j (left-hand side of (28)) or transmitted by variable i to all covariances j

(right-hand side of (28)); and likewise for the variances in (29). As discussed above,

for each i, the differences among these indices, e.g., N (M,cov)
t,i = T (M,cov)

t,i −R(M,cov)
t,i ,

provide insights into the net spillovers between covariances and variances.

Based on this, we define the following total covariance and total variance spillover

indices. An index of total own (co)variance spillovers, which measures the spillovers

between covariances (between variances, right-hand side), is given by

S(M,ocov)
t =

∑

i∈Icov

∑N∗

j∈Jcov ,j 6=i λ
(M)
t,ij

N∗
, S(M,ovar)

t =
∑

i∈Ivar

∑N∗

j∈Jvar,j 6=i λ
(M)
t,ij

N∗
. (30)

Moreover, the total cross (co)variance spillovers, which are spillovers from covari-

ances to variances (variances to covariances, right-hand side), are defined by

S(M,ccov)
t =

∑

i∈Ivar

∑N∗

j∈Jcov ,j 6=i λ
(M)
t,ij

N∗
, S(M,cvar)

t =
∑

i∈Icov

∑N∗

j∈Jvar,j 6=i λ
(M)
t,ij

N∗
. (31)

It holds that S(M)
t = S(M,ocov)

t + S(M,ovar)
t + S(M,ccov)

t + S(M,cvar)
t . The indices (30)

and (31) therefore shed light on the relative contribution of variance and covariance

spillovers to the total index. It is also useful to study the net cross spillover in-

dex between variances and covariances, which decodes the total net exposure of all

covariances vis-à-vis variance spillovers. It is given by

N (M,cross)
t =

∑

i∈Icov

(T (M,var)
t,i −R(M,var)

t,i )

= −
∑

i∈Ivar

(T (M,cov)
t,i −R(M,cov)

t,i ) = S(M,ccov)
t − S(M,cvar)

t .
(32)
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4 Empirics

4.1 Data

For the application, we consider the same set of four key US asset classes as in

Diebold and Yilmaz (2012): equity, fixed income, foreign exchange and commodi-

ties. We study returns of the S&P 500 index, the 10-year treasury bond yields, the

New York Board of Trade US dollar index futures, and the Dow-Jones/UBS com-

modity index. The data are obtained from Thomson Reuters Datastream and the

sample period is from March 1, 1995, to December 31, 2014, with 5176 daily returns

altogether. See Figure 1 for an overview of the data.

Figure 1 about here

4.2 Estimation of the BEKK model

To estimate the four-dimensional variance specification for the vector of asset re-

turns, we use a modified version of the module ‘arch mg.src’ that is part of the

software JMulti (Lütkepohl and Krätzig, 2004, http://www.jmulti.de/). We verify

that the estimated parameters correspond to a maximum of the log-likelihood func-

tion by multiplying each parameter estimate by 0.995 and 1.005 and checking the

reductions of the log-likelihood. For inferential purposes, we use the estimates of

the analytical QML covariance matrices as provided in Hafner and Herwartz (2008).

Table 1 about here

Table 1 documents the coefficient estimates along with their QML t-statistics.

Parameterized by the off-diagonal elements of F̂ and Ĝ, some cross-equation dy-

namics are significant at conventional levels. We also consider a QML-based Wald

test on the joint insignificance of all 24 off-diagonal model parameters. Asymptot-

ically, the test statistic has a χ2(24) distribution under the null hypothesis of zero

off-diagonals. The statistic is 39.96, corresponding to a p-value of 2.16%. This sup-
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ports the presence of nonlinear and complex off-diagonal dynamics in the system of

(co)variance equations.

Figure 2 about here

Figure 2 displays the estimated conditional standard deviations of the four as-

set classes (upper panel), and the six BEKK implied pairwise correlations (lower

panel). The estimated conditional standard deviations reflect the typical features

of volatility clustering. Starting with the subprime crises at the end of 2007, con-

ditional standard deviations have accelerated over all asset classes (except foreign

exchange). While conditional second-order moments of equity and fixed income in-

dices are of similar magnitude until 2011, for the most recent part of the sample,

fixed income risk turns out to be more pronounced in comparison with stock mar-

ket volatility. Pairwise correlations in the lower panel of Figure 2 show that the

comovements of almost all asset classes exhibit strong time variation. With regard

to the two asset classes with the highest volatility on average, it turns out that the

correlation between equity and fixed income markets is markedly negative (positive)

in the beginning (at the end) of the sample period. The periods of turmoil starting

in 2008 are characterized by strongly negative correlations among foreign exchange

markets and the remaining asset classes.

4.3 Descriptive conditional spillover analysis

4.3.1 The time-varying total variance spillover index

We start the analysis by considering the time evolution of the total spillover in-

dex (24) displayed in Figure 3. The index (black line) is plotted along with a

number of major political and economic events – see Table 2 for a compilation. This

is as in Diebold and Yilmaz (2009, 2012), but because our modeling approach allows

us to compute the index at the daily frequency, we can exactly spot the events and

analyze their impact to a degree of detail that is not feasible in rolling window ap-

plications. At the same time, we can study the long-term cyclical trends of variance
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spillovers in the 20 years of our sample. For the forecast horizon, we consider about

one week, i.e., M = 5.

Table 2 and Figure 3 about here

According to Figure 3, the spillovers are very moderate between 1995 and 2001,

hovering at and often below 10%. Although events like (1) the Thai Bhat devalua-

tion, which is seen as the starting point of the Asian crisis, (2) the Russian crisis, (3)

the first market disruptures at the beginning of the dot-com crisis, such as the April

14, 2000 NASDAQ crash, and (4) the 09/11 twin-tower attacks make the spillover

index soar, they are rather short-lived.

A first major period of increased variance spillovers can be detected in the fore-

front of the geopolitical tensions surrounding the impending US-led war in Iraq (5).

At the outbreak of the war, the index spikes to unprecedented levels of 40%, after

which it returns to previous levels. The most important period of increased in-

terdependence and variance spillovers by far, however, is the crisis complex of the

subprime mortgage crunch, the banking crisis, and the US recession from December

2007 to June 2009, all of which are accompanied by extraordinary US central bank

measures and by the political controversies over the impending US debt limits in

2011 and 2013.6 Several incidents can be clearly distinguished: (6) Freddie Mac’s

announcement that it would no longer take the worst subprime risks; (7) the North-

ern Rock crisis; (8) the Carlyle Capital Corporation’s press release on failing to meet

margin calls on one of its mortgage bond funds; (9) the Lehman default. Between

2006 and the end of 2008, the index rises continuously from about 5% to about 25%

and remains at about these levels till the end of 2012. The overall climax of the index

is reached in November 2011 with about 60%. Over this crisis, we also document

the announcements of the major monetary policy measures of the Fed, later known

as ‘quantitative easing’: (10) the first program to purchase the direct obligations

6For these dates, we borrow from a timeline of events published on the website of the Federal

Reserve Bank of St. Louis at https://www.stlouisfed.org/financial-crisis/full-timeline and the press

releases linked to this site.
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of housing-related, government-sponsored enterprises announced in November 2008;

(11) the expansion of the program to buy long-term Treasury securities of November

2010; (13) the operation ‘twist’ to influence the term structure of interest rates; (14)

the open-ended bond purchasing program of agency mortgage-backed securities of

September 2012. It is remarkable that despite their exceptional nature, none of these

policy announcements has any visible, ameliorating impact on variance spillovers.

It is only at the end of 2012 that the spillover index levels start to retreat. Interest-

ingly, the political debates about the US fiscal cliffs in 2011 (12) and 2013 (15) are

also hardly detectable in the graph.

As we have argued above, using the symmetric eigenvalue decomposition of the

contemporaneous covariance Σt for identification deserves further economic under-

pinnings. As a first justification of our identification scheme, consider the lower

part of Figure 3, which displays a 20-day moving average of the daily US Economic

Policy Uncertainty Index (EPUI) of S. R. Baker, N. Bloom, and S. J. Davis (red

line). This index measures policy-related economic uncertainty according to news-

paper coverage.7 For the purpose of illustration, the index is scaled so as to have

the same standard deviation as the total spillover index, and it is reflected along the

horizontal axis.

The similarity between the graphs is striking. The total spillover index moves

almost in a one-to-one fashion with the moving average of the EPUI. While the

amplitudes may differ in detail, both indices exhibit the same long-term trends as

well as very similar reactions to the events singled out and discussed above. The

correlation among both indices is high: 57%. Hence, the symmetric eigenvalue

decomposition of Σt supports the detection of an economically well-founded index

of variance spillovers.

Despite the one week ahead forecasts, the graph of the spillover index in Figure 3

is ‘in-sample’ because the underlying parameter estimates are obtained from the full

sample. For real-time applications, it is natural to ask how much the spillover graph

7Data and methodological details can be found on http://www.policyuncertainty.com/index.html.
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would change if one worked in a framework that was entirely ex ante. To explore this

question, we employ rolling subsamples that comprise 1500 return observations each

to estimate the BEKK model as described in Section 4.2. To economize on compu-

tational time, the windows are shifted only every 250 observations after each estima-

tion. For given parameter estimates, the covariance paths Ht, t = 1501, 1502, . . . , T ,

are determined by updating the covariance dynamics with the observed time series

innovations εt.

Figure 4 about here

In Figure 4, we superimpose the previous graph of Figure 3 onto such a fully

ex ante spillover plot. Due to parameter variations, we find moderate deviations

between the two indices, in particular between 2006 and 2007 and in 2014. Overall,

however, there is strong agreement between the two indices.

4.3.2 Further decompositions of the total spillover index

What drives the total variance index? This and related questions can be answered

by studying the subindices of Section 3.2. In Figure 5, we decompose the total index

into own and cross (co)variance spillovers.

Figure 5 about here

Two observations are evident. First, the major features of the total spillover in-

dex are traced out by the own covariance (S(M,ocov)
t ), the cross covariance (S(M,ccov)

t )

and the cross variance spillover graphs (S(M,cvar)
t ). All three are approximately of

equal size, their fluctuations are highly correlated and their paths are very much akin

to the total index. Therefore, each of them reflects very similar information as the

EPUI. Second, the own variance spillover index (S(M,ovar)
t ) is markedly different from

the other three series. This is remarkable because the own variance spillover index

corresponds to what the standard variance spillover literature, which ignores covari-

ances when computing the total index, would report as the total variance spillover
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index.8 While similar observations are also made in Fengler and Gisler (2015), in our

BEKK model with fully specified covariance dynamics, this discrepancy is even more

eye-catching. It suggests that most of the systemic interdependence is propagated

through the joint variance-covariance dynamics rather than the variance dynam-

ics alone. This interpretation is also confirmed by comparing the reactions of the

various indices to the selected events discussed in the previous section. Moreover,

Figure 5 reveals that the net exposure of all covariances vis-à-vis the variances (re-

call that N (M,cross)
t = S(M,ccov)

t −S(M,cvar)
t ) is negative on average; thus, overall, the

covariances receive more spillovers from the variances than they transmit back.

Figure 6 about here

As a more disaggregated decomposition, we present in Figure 6 the asset-specific

net exposures of variances N (M,var)
t,i and covariances N (M,cov)

t,i . The top left panel

reveals that, generally, stock markets as well as bonds are transmitters of variance

spillovers. Whereas they are of about equal size in the first half of the sample,

the bond net variance spillovers dominate since 2003. They are particularly strong

from 2010 to 2012, in which period the stock markets even become net receivers

of variance spillovers. This period coincides with the times when the Fed adopted

extraordinary policy measures to influence the bond markets – see Table 2. It

therefore appears natural that bond markets are positive net transmitters of variance

spillovers. Referring to our discussions in Section 3.2, we read these characteristics as

supportive evidence for the identification scheme based on the symmetric eigenvalue

decomposition.

In contrast to stocks and bonds, over the entire sample, the commodity market is

a net transmitter and the foreign exchange market a net receiver of variance spillovers

(top right element in Figure 6). Moreover, both net variance spillovers exhibit

pronounced trends from 1995 to about 2010/2012, which reflects their increasing

8Note, however, that the absolute scales are different, because in a spillover analysis with N

assets without covariances, one has N∗ = N instead of N∗ = N(N + 1)/2 as the scaling constant.
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importance for investors as asset classes. The net receiver position of the foreign

exchange market becomes particularly pronounced from 2008 onward.

Finally, the lower panel of Figure 6 shows the net covariance spillovers N (M,cov)
t,i .

Overall, they fluctuate around zero, but with deviations of about two percent around

zero, they are of smaller size than the variance net spillovers N (M,var)
t,i . This implies,

interestingly, that covariance spillovers – in contrast to the variance spillovers – are

generally less asymmetric among the different asset classes.

4.4 Informational content of time-t conditional variance spillovers:

the case of value-at-risk predictions

We now investigate whether our proposed variance indices have any value beyond

descriptive analysis. For this purpose, we study whether they can help assess the

informational efficiency of a portfolio value-at-risk.

4.4.1 Value-at-risk

In risk management, GARCH models have become a standard econometric tool to

evaluate risk measures such as the value-at-risk (VaR) – see Andersen et al. (2013)

for a discussion of GARCH-based approaches to quantify the VaR. For a portfolio

with shares wt and conditional on time t − 1, the VaR at level α is the (negative)

return quantile

VaR
(α)
t = −qǫ(α)st , (33)

where st is the conditional standard deviation, st =
√
w′
tHtwt, and qǫ(α) is the

empirical α-quantile of standardized portfolio returns {ǫt = w′
trt/st}Tt=1. We con-

sider three portfolios with time-invariant composition wt = w, namely (i) a portfolio

assigning equal weight to all asset classes (denoted by ewp); (ii) a portfolio con-

sisting only of equity (eqp); and (iii) a portfolio assigning equal weight to all asset

classes except equity (noeq). In addition, (iv) we consider the minimum variance

portfolio (mvp) with portfolio weights wt = H−1
t 1/c, where c = 1′H−1

t 1 and 1 is a

four-dimensional vector of ones (Campbell et al., 1997, Chap. 5).
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4.4.2 Value-at-risk diagnosis

Backtesting the VaR relies on a series of binary auxiliary variables, the VaR hits,

ỹt,α = ✶(w′
trt ≤ −VaR

(α)
t ) , (34)

where ✶(B) denotes the indicator function of the set B. An unconditionally valid

risk assessment requires the mean of ỹt,α to be equal to α. For an informationally

efficient risk assessment, one demands that conditional on time-(t− 1) information,

the deviations of ỹt,α from its unconditional expectation be first-order unpredictable.

To test our risk model, we apply the dynamic quantile (DQ) test introduced in

Engle and Manganelli (2004), because informational efficiency can be tested within

this framework in a straightforward manner. Under the null hypothesis of the DQ

test, the VaR model is (conditionally and unconditionally) well specified. Specif-

ically, it is tested whether the centered hits, yt,α = ỹt,α − α, follow a martingale

difference sequence conditional on information that is available in time t − 1. Es-

tablished indicators of informational inefficiency comprise the history of the VaR

hit process. In the present framework, it is natural to regard (lagged) indices of

variance transmission as further indicators of informational inefficiency of the VaR.

In summary, we consider the DQ regression model

yt,α = β0 +
5∑

k=1

βkyt−k,α + x′t−1δ + et , (35)

where the vector xt−1 comprises predetermined measures of risk transmission as in-

troduced in Section 3 with the corresponding regression parameters collected in δ.9

The null hypothesis of correct conditional and unconditional coverage of the model

9While DQ regressions have turned out to dominate rival VaR diagnostics in terms of power

against misspecified VaRs (Berkowitz et al., 2011), their implementation relies on the binary hit

processes ỹt,α. As is visible from (34), their determination comes along with a substantial loss of

information. Against this background, the VaR diagnostic introduced by Gaglianone et al. (2011)

promises further power improvements in comparison with the DQ-test, since it directly addresses

the conditional validity of the quantile VaR
(α)
t . Our empirical results, however, suggest that the

DQ test based on the spillover indices is sufficiently powerful as a diagnostic check of the VaR.
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reads as H0 : βk = 0, ∀ k = 0, 1, . . . , 5, and δ = 0. Because the regression is speci-

fied for centered binary variables, the significance of β̂0 indicates in a separate test

that the VaR model violates the unconditional coverage criterion. We assess the

martingale property for the hit processes derived from two levels of VaR coverage,

namely α = 0.01 and α = 0.05.

Table 3 documents some diagnostic results for the standardized portfolio returns

(innovations) ǫt = w′
trt/

√
w′
tHtwt. In case of a valid specification of the dynamic

covariance process, these innovations should have mean zero and unit variance and

should not indicate any kind of non-modeled or remaining conditional heteroskedas-

ticity. The documented moments of {ǫt} show that for almost all portfolios, the

standard error of portfolio innovations is close to unity. As the only exception,

the second-order moments of the equity portfolio have a standard error of 0.95.

Higher-order moments reveal some negative skewness of portfolio innovations, and

the fourth-order moments are between four and five for all considered portfolios.

Table 3 about here

For some portfolios, we diagnose patterns of remaining heteroskedasticity in

return innovations. In particular, the portfolios including equity show significant

ARCH-LM diagnostics at order five, while low-order diagnostics do not indicate

departures from an iid distribution. This may reflect the presence of outliers or the

fact that the BEKK model is symmetric, i.e., positive and negative shocks impact

symmetrically on the conditional second-order moments. In summary, both in-

sample and ex ante portfolio innovations indicate that the employed four-dimensional

BEKK model is well suited for extracting second-order characteristics of portfolio

returns.

Table 4 and Table 5 about here

DQ diagnostics are shown in Tables 4 and 5 for nominal VaR levels of α = 0.01

and α = 0.05, respectively. Subjecting the model-implied VaR estimates to purely
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autoregressive DQ regressions of order five shows for most portfolios that the pro-

cess of VaR hits does not exhibit significant serial correlation patterns. Moreover,

the mean hit frequencies are in line with the nominal VaR levels.10 The purely au-

toregressive DQ test regression indicates with 5% significance some misspecification

of the risk model applied to in-sample portfolios that include equity components.

However, since the full sample covers a period of almost 20 years, the significance of

the DQ statistics might be due to violations of model stability.

In contrast, the indices of (co)variance spillovers carry predictive content for

the dynamic patterns of centered VaR hits. For the smallest coverage level α =

0.01, spillover measures contribute significantly to the explanation of the occurrence

of overly negative returns. By means of these indicators, misspecifications of the

risk model can be diagnosed with 5% significance for all portfolios in-sample, and

ex ante for all portfolios, except mvp (Table 4, upper left and upper right panel,

respectively). For the VaR coverage of α = 0.05 (Table 5), measures of (co)variance

spillovers are less indicative of risk misspecification. In particular, however, for

monitoring the risk of the equal weight portfolios ex ante, augmenting DQ regressions

with indices of (co)variance spillovers is significantly more informative than using

purely autoregressive diagnostic models.

The DQ diagnostics show that the VaR estimates may suffer from violations of

informational efficiency, but the evidence is only mildly specific on the particular

indices of variance transmission that are most informative for the process of VaR

hits. In this context, it is worthwhile to recall that the DQ tests indicate joint

significance (or insignificance) of both the autoregressive patterns and the spillover

statistics. To shed light on the marginal explanatory content of the autoregressive

parameters on the one hand, and the indices of variance transmission on the other

hand, the lower panels of Tables 4 and 5 document statistics that are derived from the

marginal degrees of explanation in the DQ regressions. Specifically, we provide
√
R2

10All t-statistics of DQ intercept estimates β̂0 lack significance at conventional levels. Detailed

results on testing for unconditional coverage are available upon request.
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statistics for regressions such that VaR hits are either explained by autoregressive

patterns or by the lagged (co)variance spillover indices. The largest statistics are

printed in bold. For 15 out of 20 diagnostic regressions, the highest marginal degrees

of explanation are documented for some index of (co)variance spillovers.11

Distinguishing the particular indices with highest explanatory content, we find

that generally covariance spillovers (in comparison with variance spillovers) have

some lead in explaining the VaR hit processes. From an overall perspective, the

measure of net covariance transmission (N (M,cov)
t ) appears to have the highest ex-

planatory content. In 9 out of 20 diagnostic regressions, this set of indicators obtains

the highest marginal degree of explanation in the DQ regressions.

As is visible for the case of the minimum variance portfolios, the horizon M to

which the spillover statistics refer has only negligible impact on the DQ diagnosis.

For the alternative choices M = 1 and M = 5, the inferential outcomes and the

degrees of explanation documented in Tables 4 and 5 are very similar.

5 Concluding remarks

We have proposed (co)variance spillover indices which are derived from the fore-

cast error variance decomposition of the ‘squared’ returns process of a multivariate

GARCH model of the BEKK class. On this basis, the proposed indices are time-t

conditional and take full advantage of time-varying covariance information.

Empirically, we study a system of four major US asset classes. In contrast

to extant (co)variance spillover indices, our approach allows one to simultaneously

study the impact of specific events at the daily frequency along with the implications

of lingering times of political and economic uncertainty over weeks and months. This

is because the new indices are highly responsive to the news innovation process while

at the same time featuring long-term secular trends of market interdependence. In

11Relating the TR2 with the critical values from χ2 distributions of either four or six degrees of

freedom, we find that about one-third out of the 7×5×2×2 = 140 diagnostic results are significant

at the 5% level.
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an application to risk management, we demonstrate that the indices are informative

of the likelihood of value-at-risk violations. Hence, they are of interest not only in

a descriptive-analytic sense, but also for predictive purposes in a standard problem

of empirical finance.

Analytically, our approach is attractive because we rely on the very general vech

representation of the multivariate GARCH model. It is therefore not limited to the

BEKK class: any multivariate GARCH model having a vech representation could be

treated in this way. As a potential shortcoming, the curse of dimensionality could

be cited as a problem known to afflict such models. Using covariance targeting

strategies and suitable parameter restrictions, one might push the limits further

than we do. We leave this for future research.
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Table 1: QML parameter estimates of the unrestricted BEKK model. Entries in parentheses are the QML t-ratios deter-

mined by means of the analytical derivatives as provided by Hafner and Herwartz (2008). See also the module ‘arch mg.src’

implemented in JMulTi (Lütkepohl and Krätzig, 2004).
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Event Date Description

(1) Jul 02, 1997 Thai Bhat devaluation, start of the 1997 Asian crisis

(2) Aug 17, 1998 Russia defaults on domestic debt, start of Russian crisis

(3) Apr 14, 2000 NASDAQ crash, dot-com crisis till March 2003

(4) Sep 11, 2001 09/11 attacks

(5) Mar 20, 2003 US-led war in Iraq

(6) Feb 27, 2007 Freddie Mac refuses to take worst subprime risks

(7) Sep 14, 2007 Northern Rock crisis

(8) Mar 05, 2008 Carlyle Capital Corp. fails to meet margin calls on a mortgage

bond fund

(9) Sep 15, 2008 Lehman Brothers default

(10) Nov 25, 2008 Quantitative easing 1: Fed buys mortgage-backed securities

(11) Nov 03, 2010 Quantitative easing 2: Fed buys long-term Treasury bonds

(12) Aug 01, 2011 Fiscal cliff 2011: House passes 2011 debt ceiling bill

(13) Sep 21, 2011 Fed announces operation Twist

(14) Sep 13, 2012 Quantitative easing 3: open-ended bond purchasing program of

agency mortgage-backed securities

(15) Jul 22, 2013 Fiscal cliff 2013: House passes 2013 Continuing Appropriations Act

Table 2: Calendar of political and economic events highlighted in Figs. 3, 4, and 5.
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In-sample BEKK estimates Ex ante BEKK estimates

ewp eq noeq mvp ewp eq noeq mvp

M 1 1 1 1 1 1 1 1

std(ǫ) 0.996 0.993 0.993 1.011 0.994 0.950 1.009 0.989

ǫ3 -0.214 -0.457 -0.018 -0.202 -0.185 -0.403 0.004 -0.114

ǫ4 4.217 4.692 4.045 4.294 4.273 4.112 4.613 4.005

LM(1) 0.213 0.112 0.283 0.015 0.276 0.245 0.255 0.040

LM(5) 0.001 0.002 0.274 0.089 0.007 0.012 0.289 0.129

Table 3: Descriptive statistics of the standardized portfolio returns ǫ (standard

deviation, third and fourth-order moment, ARCH-LM tests of order 1 and 5). Four

portfolio compositions are considered: equal weight (ewp), only equity (eqp), equal

weight without equity (noeq), minimum variance portfolio (mvp). Second-order

characteristics of portfolio returns are evaluated by means of full sample information

(left-hand side), or using the ex ante BEKK parameters determined by means of

rolling sample windows.
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In-sample BEKK estimates Ex ante BEKK estimates

ewp eq noeq mvp ewp eq noeq mvp

M 1 1 1 1 5 1 1 1 1 5

Dynamic Quantile (DQ) diagnostics (p-values times 100)

AR 0.018 0.614 37.38 7.812 10.43 5.857 15.95 49.32

R(M,var)
t 0.122 2.461 32.25 3.253 3.272 28.50 10.40 12.17 47.70 45.70

R(M,cov)
t 0.007 0.199 9.082 9.593 9.855 14.90 1.869 11.75 48.39 47.29

T (M,var)
t 0.013 1.233 4.958 7.746 8.091 8.704 21.93 8.489 41.33 50.91

T (M,cov)
t 0.006 0.361 1.296 6.647 6.451 2.738 5.658 2.614 50.26 57.79

N (M,var)
t 0.034 0.828 15.21 3.570 3.986 6.588 14.76 7.640 39.00 47.12

N (M,cov)
t 0.029 1.075 1.691 2.484 3.374 18.75 2.893 10.89 36.97 35.51

S(M)
t 0.040 0.806 42.10 12.39 12.40 16.06 8.564 18.87 60.28 60.99

Marginal
√
R2 (times 100)

AR 7.276 5.996 3.578 4.781 5.507 5.927 5.002 3.900

R(M,var)
t 2.298 1.980 3.243 4.565 4.560 2.503 3.104 4.170 3.718 3.827

R(M,cov)
t 5.267 5.067 4.991 4.222 4.190 4.409 5.978 4.971 4.450 4.518

T (M,var)
t 4.159 2.969 4.868 3.725 3.682 4.193 2.068 4.289 4.011 3.583

T (M,cov)
t 5.383 4.718 6.148 4.580 4.601 6.004 5.033 6.137 4.384 4.058

N (M,var)
t 3.619 3.275 4.017 4.463 4.371 4.682 2.713 4.510 4.113 3.767

N (M,cov)
t 4.705 3.989 6.015 5.381 5.152 4.334 5.642 4.910 4.962 5.050

S(M)
t 0.107 1.224 1.224 0.032 0.019 0.387 1.538 1.130 0.439 0.123

Table 4: Inferential (p-values) and descriptive (marginal R2) statistics from DQ regressions

for VaR estimates with nominal coverage α =1%. All DQ regressions include autoregressive

dynamics up to order 5. Additional joint misspecification indicators included in enhanced

DQ regressions are listed rowwise. The degrees of freedom for testing the null hypothesis

of a conditionally valid VaR model are 6 for the purely autoregressive design (‘AR’ ), and

10 and 12, respectively, for enhanced DQ regressions comprising either (four) variance or

(six) covariance spillovers. The lower panel documents the degrees of explanation for the

autoregressive DQ model and the marginal degrees of explanation for the group of spillover

indices achieved within enhanced DQ regressions. Entries in bold face indicate the group of

DQ misspecification indicators with highest marginal explanatory content. M is the forecast

horizon of variance spillovers. DQ regressions for in-sample and ex ante analysis comprise

5176 and 3676 observations, respectively. For further annotations, see Table 3.
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In-sample BEKK estimates Ex ante BEKK estimates

ewp eq noeq mvp ewp eq noeq mvp

M 1 1 1 1 5 1 1 1 1 5

Dynamic Quantile diagnostics (p-values times 100)

AR 0.026 0.006 90.28 31.17 19.24 15.19 63.07 70.23

R(M,var)
t 0.048 0.037 80.29 13.75 13.90 0.467 8.438 11.30 22.76 12.26

R(M,cov)
t 0.000 0.058 55.38 6.678 7.310 0.031 16.23 56.03 63.28 48.50

T (M,var)
t 0.004 0.011 14.86 24.27 25.64 10.32 40.70 13.33 29.00 33.94

T (M,cov)
t 0.001 0.075 8.177 7.936 6.249 1.336 19.16 25.70 47.30 26.63

N (M,var)
t 0.003 0.045 34.14 21.00 21.89 2.443 23.21 8.391 37.76 58.45

N (M,cov)
t 0.001 0.222 30.75 3.732 5.611 0.005 19.57 12.83 35.79 37.04

S(M)
t 0.049 0.015 93.31 41.40 41.33 10.46 19.40 62.10 75.37 76.68

Marginal
√
R2 (times 100)

AR 7.056 7.493 2.053 3.714 4.801 5.041 3.373 3.209

R(M,var)
t 3.576 2.483 2.888 4.205 4.194 6.697 4.692 5.494 5.207 5.775

R(M,cov)
t 6.776 3.267 4.162 5.304 5.240 8.459 4.633 4.102 4.226 4.770

T (M,var)
t 4.996 3.502 4.969 3.524 3.460 4.179 2.048 5.539 4.871 4.697

T (M,cov)
t 6.186 2.948 5.850 5.166 5.337 6.339 4.221 5.528 4.767 5.585

N (M,var)
t 5.269 2.302 4.287 3.731 3.682 5.569 3.470 5.933 4.563 3.734

N (M,cov)
t 6.556 1.967 4.886 5.704 5.438 9.280 4.486 6.092 5.264 5.201

S(M)
t 0.607 0.074 0.780 0.322 0.348 2.474 1.568 1.832 1.124 0.964

Table 5: Inferential (p-values) and descriptive (marginal R2) of the dynamic quantile

regressions for the hit processes of VaR estimates with nominal coverage α =5.0%.

For further annotations, see Table 4.
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Figure 1: Price levels and log returns of the S&P 500 index (top left panel), the 10-year treasury bond yields (top right panel),

the New York Board of Trade US dollar index futures (lower left panel) and the Dow-Jones/UBS commodity index (lower

right panel). Sample from March 1, 1995, to December 31, 2014.
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Figure 2: Estimated BEKK implicit correlations of the four asset classes: equity

(eq), bonds (bd), foreign exchange (fx), and commodities (cd). Sample from March

1, 1995, to December 31, 2014.
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Figure 3: Total variance spillover index S(5)
t and the 20-days moving average of the daily US Economic Policy Uncertainty

Index (EPUI) of S. R. Baker, N. Bloom, and S. J. Davis. The EPUI is scaled (has the same standard deviation as the total

variance spillover index) and reflected along the horizontal axis. See Table 2 for a listing of the events tagged in the plot.

38



1995 1997 2000 2002 2005 2007 2010 2012 2015
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Total variance spillover index

 

 

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

in−sample

ex ante

Figure 4: Total variance spillover index S(5)
t of Figure 3 (light grey) and a fully ex ante total variance spillover index based

on rolling window estimates (black line). See Table 2 for a listing of the events tagged in the plot.
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Figure 5: Own and cross variance and covariance spillovers. See Table 2 for a listing of the events tagged in the plot.
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Figure 6: Net variance N (5,var)
t,i (top panel) and net covariance N (5,cov)

t,i (lower panel)

spillovers aggregated per asset class: equity (eq), bonds (bd), foreign exchange (fx),

and commodities (cd). Sample from March 1, 1995, to December 31, 2014.
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