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Abstract

In this note, we examine the effects of capital taxation on innovation and economic

growth. We find that capital taxation has drastically different effects in the short run

and in the long run. An increase in the capital income tax rate has both a consumption

effect and a tax-shifting effect on the equilibrium growth rates of technology and output.

In the long run, the tax-shifting effect dominates the consumption effect yielding an

overall positive effect of capital taxation on steady-state economic growth. However,

in the short run, the consumption effect becomes the dominant force causing an initial

negative effect of capital taxation on the equilibrium growth rates. These contrasting

effects of capital taxation at different time horizons may provide a plausible explanation

for the mixed evidence in the empirical literature on capital taxation and economic

growth.
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1 Introduction

In this note, we examine the effects of capital taxation on innovation and economic growth.

In the literature of endogenous growth, one of the major issues is whether capital taxation

stimulates or impedes growth. Earlier studies employing an AK-type endogenous growth

model show that the impact of raising the capital tax rate on long-run economic growth is

negative (Judd, 1985; Chamley, 1986; King and Rebelo, 1990; Rebelo, 1991; Jones et al.,

1993; Pecorino, 1993, 1994; Devereux and Love, 1994; Milesi-Ferretti and Roubini, 1998),

although the quantitative magnitude could be negligibly small (Lucas, 1990; Stokey and

Rebelo, 1995).1 The intuition of this negative growth effect of capital taxation is that a

higher capital tax rate discourages the accumulation of physical capital and is therefore

detrimental to economic growth.

On the empirical side, the results are rather inconclusive. A number of empirical studies

have found that capital taxation, such as corporate profit tax and capital gains tax, can be

harmful to economic growth (see e.g., Lee and Gordon, 2005; Hungerford, 2010; Arnold et al.,

2011; Dahlby and Ferede, 2012), whereas other empirical studies have found a neutral or even

positive effect of capital taxation on growth (see e.g., Mendoza et al., 1997; Angelopoulos et

al., 2007; ten Kate and Milionis, 2015). Therefore, although the abovementioned theoretical

prediction is consistent with some of the empirical studies, it seems to contrast other empirical

findings in the literature.

While capital accumulation is undoubtedly an important engine of economic growth,

technological progress driven by innovation and R&D also acts as an important driver for

growth; see Aghion and Howitt (2009, p.109) for a discussion on data from OECD countries.2

Recently, R&D-based growth models pioneered by Romer (1990) and Aghion and Howitt

(1992) have been used to explore the interrelation between capital taxation, innovation and

economic growth; see e.g., Lin and Russo (1999), Zeng and Zhang (2002), Haruyama and

Itaya (2006) and Aghion et al. (2013). This note contributes to the literature by providing

an analysis of both the short-run and long-run effects of capital taxation on innovation and

economic growth within the seminal innovation-driven growth model in Romer (1990), which

is a workhorse model in R&D-based growth theory. In our analysis, we consider different

tax-shifting schemes. Specifically, we examine the growth effects of capital taxation with tax

shifting from lump-sum tax and also labor income tax to capital income tax.

In the case of tax shifting from lump-sum tax to capital income tax, an increase in

1Other than focusing on the long-run growth effect, Frankel (1998) studies the dynamics of capital taxation
during the transition process.

2Aghion and Howitt (2009, p.108) report that “TFP growth accounts for about two-thirds of economic
growth in OECD countries, while capital deepening accounts for one third.”
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the capital tax rate leads to a decrease in the steady-state equilibrium growth rate via a

consumption effect of capital taxation. Intuitively, a higher capital tax rate causes households

to decrease their saving rate and increase their consumption rate, which in turn leads to an

increase in leisure and a decrease in labor supply. Given that labor is a factor input for

R&D, a smaller labor supply gives rise to a lower growth rate of technology, which in turn

determines the long-run growth rates of output and capital.

In the case of tax shifting from labor income tax to capital income tax, an increase in

the capital tax rate leads to an increase in the steady-state equilibrium growth rate via a

tax-shifting effect of capital taxation. Intuitively, an increase in the capital income tax rate

allows the labor income tax rate to decrease, which in turn leads to a decrease in leisure

and an increase in labor supply. The larger labor supply gives rise to higher growth rates of

technology, output and even capital despite the lower capital-investment rate caused by the

higher capital tax rate. Although the previously mentioned consumption effect of capital

taxation is also present, it is dominated by the tax-shifting effect in the long run. However,

we find that the relative magnitude of these two effects becomes very different in the short

run.

We calibrate the model to aggregate data in the US to provide a quantitative analysis

on the dynamic effects of capital taxation on economic growth. We consider the case of

tax shifting from labor income tax to capital income tax and find that an increase in the

capital tax rate leads to a short-run decrease in the equilibrium growth rates of technology

and output and a gradual convergence to the higher long-run growth rates of technology and

output. The reason for these contrasting short-run and long-run effects is that the consump-

tion effect of capital taxation is relatively strong in the short run. Intuitively, an increase

in the capital income tax rate leads to a decrease in the steady-state equilibrium capital-

technology ratio. Before the economy reaches this new steady-state capital-technology ratio,

households drastically cut down their saving rate below its new steady-state level, which in

turn increases their consumption rate substantially. This substantial increase in consumption

leads to a substantial increase in leisure and a substantial decrease in labor supply, which

in turn reduces temporarily the equilibrium growth rates of technology and output. In the

long run, the effect of a lower wage-income tax rate becomes the dominant force and instead

raises the supply of labor, which in turn increases the steady-state equilibrium growth rates

of technology and output.

Our paper is most closely related to recent studies on taxation and economic growth in

the R&D-based growth model. Zeng and Zhang (2002) show that the long-run growth rate

is independent of labor income tax and consumption tax but decreasing in capital income

tax. In contrast, Lin and Russo (1999) analyze how the taxation of different sources of
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capital income affects long-run growth and find that a higher capital income tax rate for

innovative firms could be growth-enhancing if the tax system permits tax credits for R&D

spending. Moreover, by focusing on the stability analysis of equilibria, Haruyama and Itaya

(2006) also show that the growth effect of taxing capital income is positive when the economy

exhibits indeterminacy. Although these two papers find that capital taxation and economic

growth may exhibit a positive relationship, our paper departs from them in highlighting the

contrasting dynamic effects of capital taxation on economic growth. More recently, Aghion et

al. (2013) and Hong (2014) adopt a quality-ladder R&D-based growth model to investigate

optimal capital taxation. Their primary focus, however, is on the normative analysis with

respect to the Chamley-Judd (Chamley 1986; Judd 1985) result (i.e., the optimal capital

tax is zero), while the present paper focuses on the positive analysis regarding the growth

effect of capital taxation. Furthermore, their analysis does not deal with the case in which

innovation is driven by R&D labor (e.g., scientists and engineers). When R&D uses labor

as the factor input, we find that the effects of capital taxation are drastically different at

different time horizons. This finding may provide a plausible explanation for the mixed

evidence in the empirical literature on capital taxation and economic growth.

The remainder of this note is organized as follows. In Section 2, we describe the basic

model structure. In Section 3, we investigate the growth effects of capital taxation. In

Section 4, we calibrate the model to provide a quantitative analysis of capital taxation.

Finally, some concluding remarks are discussed in Section 5.

2 The model

The model that we consider is an extension of the seminal workhorse R&D-based growth

model from Romer (1990).3 In the Romer model, R&D investment creates new varieties

of intermediate goods. We extend the model by introducing endogenous labor supply and

distortionary income taxes. In what follows, we describe the model structure in turn.

2.1 Household

The economy is inhabited by a representative household. Population is stationary and nor-

malized to unity. The household has one unit of time that can be allocated between leisure

3In the case of extending the model into a scale-invariant semi-endogenous growth model as in Jones
(1995), the long-run growth effect of capital taxation simply becomes a level effect. In other words, instead
of increasing (decreasing) the growth rate of technology, capital taxation increases (decreases) the level of
technology in the long run.
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and production. The representative household’s lifetime utility is given as:4

U =

∫
∞

0

e−ρt[lnC + θ(1− L)] dt, (1)

where the parameter ρ > 0 is the household’s subjective discount rate and the parameter

θ > 0 determines the disutility of labor supply. The utility is increasing in consumption C

and decreasing in labor supply L ∈ (0, 1).

Two points regarding the utility function in equation (1) should be noted. First, to make

our analysis tractable, the household is specified to have a quasi-linear utility function. In

the quantitative analysis in Section 4, we will consider a more general utility function in

order to examine the robustness of our results. Second, as pointed out by Hansen (1985)

and Rogerson (1988), the linearity in work hours in the utility function can be justified as

capturing indivisible labor.

The representative household maximizes its lifetime utility subject to the budget con-

straint:

K̇ + ȧ = ra+ (1− τK)rKK + (1− τL)wL− C − Z. (2)

The variable K denotes the stock of physical capital. The variable a (= V A) denotes the

value of equity shares of monopolistic firms, in which A is the number of monopolistic firms

and V is the value of each firm. w is the wage rate. r is the real interest rate, whereas

rK is the capital rental rate.5 The rates of return on the two assets, physical capital and

equity shares, must follow a no-arbitrage condition r = (1 − τK)rK in equilibrium. The

policy instrument Z is a lump-sum tax.6 The other policy instruments {τL, τK} < 1 are

respectively the labor and capital income tax rates.7

By solving the household’s optimization problem, we can easily derive the typical Keynes-

Ramsey rules:
Ċ

C
= (1− τK)rK − ρ, (3)

and also the optimality condition for labor supply, which is in the form of a horizontal labor

supply curve given the quasi-linear utility function in (1):

w = θC/(1− τL). (4)

4For notational simplicity, we drop the time subscript.
5For simplicity, we assume zero capital depreciation rate.
6We allow for the presence of a lump tax simply to explore the implications of different tax-shifting

schemes. Our main results focus on the more realistic case of Z = 0.
7In our analysis, we focus on the case in which τK > 0; see for example Zeng and Zhang (2007) and Chu

et al. (2016), who examine the effects of subsidy policies in the R&D-based growth model.
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2.2 Final goods

There is a single final good Y , which is produced by combining labor and a continuum of

intermediate goods, according to the following aggregator:

Y = L1−αY

∫ A

0

xαi di, (5)

where LY is the labor input in final goods production, xi for i ∈ [0, A] is the intermediate good

of type i, and A is the number of varieties of intermediate goods. The final good is treated

as the numeraire, and hence in what follows its price is normalized to unity. We assume that

the final goods sector is perfectly competitive. Profit maximization of the final goods firms

yields the following conditional demand functions for labor input and intermediate goods:

LY = (1− α)Y/w, (6)

xi = LY (α/pi)
1

1−α , (7)

where pi is the price of xi relative to final goods.

2.3 Intermediate goods

Each intermediate good is produced by a monopolist who owns a perpetually protected

patent for that good. Following Romer (1990), capital is the factor input for producing

intermediate goods, and the technology is simply a linear one-to-one function. That is, the

production function is expressed as xi = ki, where ki is the capital input used by intermediate

firm i. Accordingly, the profit of intermediate goods firm i is:

πi = pixi − rKki. (8)

Profit maximization subject to the conditional demand function for intermediate goods firm

i yields the following markup-pricing rule:

pi =
rK
α
> rK . (9)

Equation (9) implies that the level of price is the same across intermediate goods firms. Based

on equation (7) and the production function xi = ki, we have a symmetric equilibrium among

intermediate firms; i.e., xi = x and ki = k. Then, we can obtain the following profit function
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of intermediate goods firms:

πi = π =
(1− α)αY

A
. (10)

2.4 R&D

In the R&D sector, the familiar no-arbitrage condition for the value of a variety V is:

rV = π + V̇ . (11)

Equation (11) states that, for each variety, the rate of return on an invention must be equal

to the sum of the monopolistic profit and capital gain (or loss) . As in Romer (1990), labor

is the factor input of R&D. The innovation function of new varieties is given by:

Ȧ = φALA, (12)

where φ > 0 is the R&D productivity parameter and LA denotes R&D labor. Given free

entry into the R&D sector, the zero-profit condition of R&D is

ȦV = wLA ⇔ φAV = w. (13)

2.5 Government

The government collects taxes, including capital income tax, labor income tax, and lump-

sum tax, to finance its public spending. At any instant of time, the government budget

constraint can be expressed as:

τKrKK + τLwL+ Z = G. (14)

The variable G denotes government spending, which is assumed to be a fixed proportion

β ∈ (0, 1) of final output such that

G = βY . (15)

2.6 Aggregation

Since the intermediate firms are symmetric, the total amount of capital is K = Aki = Ak.

Given xi = ki, xi = x, ki = k, and K = Ak, the final output production function in equation

(5) can then be expressed as:

Y = A1−αKαL1−αY . (16)
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After some calculations using equations (2), (6), (7), (11)-(14), and (16), we can derive the

resource constraint in this economy:

K̇ = Y − C −G. (17)

2.7 Decentralized equilibrium and the balanced-growth path

The decentralized equilibrium is a sequence of allocations {C,K ,A,Y ,L,LY ,LA, x ,G}
∞

t=0,

prices {w, r, rK , pi, V }
∞

t=0, and policies {τK , τL,Z}, such that at any instant of time:

a households maximize lifetime utility (1) taking prices and policies as given;

b competitive final goods firms choose {x, LY } to maximize profit taking prices as given;

c monopolistic intermediate firms i ∈ [0, A] choose {ki, pi} to maximize profit taking rK

as given;

d R&D firms choose LA to maximize profit taking {V,w} as given;

e the market for final goods clears, i.e., K̇ = Y − C −G;

f the labor market clears, i.e., L = LA + LY ;

g the government budget constraint is balanced, i.e., τKrKK + τLwL+ Z = G.

The balanced growth path is characterized by a set of constant growth rates of all eco-

nomic variables. Let γ denote the growth rate of technology and a “~” over the variable

denote its steady-state value. Along the balanced growth path, we have

K̇

K
=
Ẏ

Y
=
Ċ

C
=
ẇ

w
=
Ȧ

A
= γ̃, L̇ = L̇Y = L̇A = 0.

3 Long-run growth effects of capital taxation

In this section we examine the growth effects of the capital tax rate. To maintain a con-

stant proportion of government spending, raising the capital tax must be accompanied by a

reduction in another tax. As revealed in equation (14), this can be either a reduction in the

lump-sum tax (if it is available) or a reduction in the labor income tax (if the lump-sum tax

is not available). In the analysis that follows, we deal with each of the two scenarios in turn.
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3.1 Tax shifting from lump-sum tax to capital income tax

Equipped with the definition of the decentralized equilibrium in Section 2.7 and defining

ω = w/A, c = C/A and z = Z/A, we can express the steady-state equilibrium conditions as

follows:

γ̃ = (1− τK)r̃K − ρ, (18a)

ω̃ = θc̃/(1− τL), (18b)

L̃Y = (1− α)x̃αL̃1−αY /ω̃, (18c)

x̃ = L̃Y (α
2/r̃K)

1/(1−α), (18d)

r̃ = φαL̃Y , (18e)

r̃ = (1− τK)r̃K , (18f)

γ̃ = φL̃A, (18g)

L̃ = L̃Y + L̃A, (18h)

γ̃ = (1− β)x̃α−1L̃1−αY − c̃/x̃, (18i)

τK r̃K x̃+ τLω̃L̃+ z̃ = βx̃αL̃1−αY , (18j)

in which ten equations are used to solve ten unknowns γ̃, r̃K , L̃Y , L̃A, L̃, ω̃, c̃, x̃, r̃ and z̃. We

briefly discuss how we obtain equations (18). (18a) is derived from the usual Keynes-Ramsey

rule (3). (18b) is derived from the optimality condition for labor supply (4). (18c) and (18d)

are respectively the demand functions for final-goods labor and intermediate goods, (6) and

(7). (18e) is derived from inserting V̇ = 0 into the no-arbitrage condition in the R&D sector

(11), and by using (6), (10) and (13). (18f) is the no-arbitrage condition of asset. (18g) is

derived from the innovation function of varieties (12). (18h) is the labor-market clearing

condition. (18i) is derived from dividing both sides of the resource constraint (17) by A and

using the condition Ax = K. (18j) is derived from dividing both sides of the government

constraint (14) by A and using the condition G = βY .

We first use (18a), (18e), (18f)-(18h) to eliminate {r̃, γ̃, r̃K} and express {L̃Y , L̃A} as

functions of L̃ given by

L̃Y =
L̃+ ρ/φ

1 + α
,

L̃A =
αL̃− ρ/φ

1 + α
.

These two equations indicate a positive relationship between {L̃A, L̃Y } and L̃. Moreover,

from the previous condition for L̃A, we can derive the condition γ̃ = (αφL̃ − ρ)/(1 + α),
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which shows that the steady-state equilibrium growth rate of technology is increasing in L̃.

Thus, we have

sgn

(
∂γ̃

∂τK

)
= sgn

(
∂L̃A
∂τK

)
= sgn

(
∂L̃

∂τK

)
. (19)

Accordingly, to investigate the growth effect of the capital tax rate, it is convenient to draw

an inference from examining the effect of the capital tax rate on labor L̃.

We now derive an equilibrium expression of labor L̃. By using (8) and (9), we have

π = ( 1
α
− 1)r̃KK/A. This expression together with (10) implies that rKK = α2Y . Then,

dividing both sides of (17) by Y yields

γ̃
K

Y
= 1− β −

C

Y
.

By inserting C/Y = (1−τL)(1−α)/(θL̃Y ), which is derived from (4) and (6), and rKK = α2Y

into the above equation and using (18e), (18f) and (18g) along with the conditions for L̃Y

and L̃A, we can obtain the following equation with one unknown L̃:

[
1−

ρ(1 + α)

αφ(L̃+ ρ/φ)

]
α2(1− τK) = 1− β −

(1− τL)(1− α)(1 + α)

θ(L̃+ ρ/φ)
.

Simplifying this equation yields

L̃ =
1

1− Φ(τK)

[
1− τL
θ

−
α(1− τK)

(1− α)

ρ

φ

]
−
ρ

φ
, (20)

where Φ(τK) ≡ (β−α
2τK)/(1−α

2) is a composite parameter and τL is an exogenous policy

parameter. Then, from equation (20), we can obtain the following relationship:

∂L̃

∂τK
= −

α2

(1− α2)[1− Φ(τK)]2

[
1− τL
θ

−
α(1− τK)

(1− α)

ρ

φ
− [1− Φ(τK)]

1 + α

α

ρ

φ

]
,

which can be further simplified to8

∂L̃

∂τK
= −

α[(1 + α)L̃A + 2αρ/φ]

(1− α2)[1− Φ(τK)]
< 0. (21)

From (19) and (21), we have established the following proposition:

8The following reasoning ensures that 1−Φ(τK) = [1− β − α
2(1− τK)]/(1− α

2) > 0. The steady-state
consumption-output ratio is C/Y = 1− β − α2(1− τK) + α

2(1− τK)ρ/(γ̃ + ρ). Therefore, limρ→0 C/Y =
1− β − α2(1− τK). In other words, one can restrict 1− Φ(τK) > 0 by appealing to the fact that C/Y > 0
for all values of ρ.
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Proposition 1 In the case of tax shifting from lump-sum tax to capital income tax, raising

the capital income tax rate reduces the steady-state equilibrium growth rate.

Equation (19) is the key to understanding Proposition 1. It essentially says that the

effect of the capital tax rate on long-run growth hinges on its effect on labor L̃. When the

capital tax rate is higher, households tend to reduce their investment rate and increase their

consumption rate. The increase in consumption raises leisure and reduces labor supply (by

shifting up the horizontal labor supply curve). Therefore, a higher capital tax rate reduces

the equilibrium levels of labor input, R&D labor and economic growth.

3.2 Tax shifting from labor income tax to capital income tax

A lump-sum tax is not a realistic description in most economies. In this subsection, we

therefore set aside the possibility of a lump-sum tax and deal with the more realistic case

in which a rise in the capital tax rate is coupled with a reduction in another distortionary

tax. This kind of tax shifting has been extensively investigated in the literature on factor

taxation; see e.g., Judd (1985), Chamley (1986), Niepelt (2004), Aghion et al. (2013) and

Chen and Lu (2013). Under such a situation we drop z̃ from the model in this subsection.

Thus, equation (18j) is rewritten as:

τK r̃K x̃+ τ̃Lω̃L̃ = βx̃
αL̃1−αY . (22)

It is useful to note that in (22) the labor income tax rate τ̃L becomes an endogenous variable

because it needs to adjust in response to a change in the capital tax rate.

The macroeconomy is now described by (18a)-(18i) and (22) from which we solve for ten

unknowns γ̃, r̃K , L̃Y , L̃A, L̃, ω̃, c̃, x̃, r̃ and τ̃L. By arranging (22) with (6), (16), (18c) and

the condition rKK = α2Y , we can obtain

τ̃L =
(β − α2τK)

1− α

L̃Y

L̃
=

(
1 +

ρ

φL̃

)
Φ(τK),

where the second equality uses L̃Y = (L̃+ρ/φ)/(1+α). Using the above condition and (20),

we can solve the two unknowns {L̃, τ̃L} and obtain the following quadratic equation:

φ

ρ
L̃2 −

[
φ

ρθ
− 1−

α(1− τK)

(1− α)[1− Φ(τK)]

]
L̃+

Φ(τK)

[1− Φ(τK)]θ
= 0.

This quadratic equation has two solutions, denoted as L̃1 and L̃2, which are given by:

10



L̃1 =
B(τK) +

√
B(τK)2 − 4Φ(τK)φ/{[1− Φ(τK)]ρθ}

2φ/ρ
, (23a)

L̃2 =
B(τK)−

√
B(τK)2 − 4Φ(τK)φ/{[1− Φ(τK)]ρθ}

2φ/ρ
, (23b)

where B(τK) ≡ φ/(ρθ)− 1− α(1− τK)/{(1− α)[1− Φ(τK)]} is a composite parameter.
9

To ensure that L̃ is positive, we assume that the set of parameters jointly satisfies the

condition B >
√
4Φφ/[(1− Φ)ρθ]. Moreover, we restrict our analysis to the case where an

increase in the capital tax rate is coupled with a decrease in the labor tax rate. By doing

so, we can show that L̃1 is the only possible solution to this system.
10 From (23a), we can

derive the relationship:

∂L̃1
∂τK

=
ρ

2φ

{
∂B

∂τK
+
B∂B/∂τK + 2φα

2/[(1− α2)(1− Φ)2ρθ]√
B2 − 4Φφ/[(1− Φ)ρθ]

}
> 0 (24)

where ∂B/∂τK = α [1− Φ + α2(1− τK)/(1− α
2)] /{(1 − α)(1 − Φ)2} > 0. The result in

equation (24) leads us to establish the following proposition:

Proposition 2 In the case of tax shifting from labor income tax to capital income tax,

raising the capital income tax rate increases the steady-state equilibrium growth rate.

It would not be difficult to understand the intuition underlying the positive growth effect

given that we have already shown the importance of equilibrium labor input on economic

growth from previous discussion. In the present case, there are two conflicting effects on

labor supply. The first is the consumption effect that we discussed in Proposition 1; i.e.,

raising the capital tax rate induces the households to lower the investment rate and increase

the consumption rate, which in turn reduces labor supply. The second effect emerges from

the channel of shifting taxes from labor income to capital income. A rise in the capital

income tax rate leads to a reduction in the labor income tax rate, which tends to boost labor

supply. In particular, this latter tax-shifting effect has a more powerful direct impact on the

labor market so that it dominates the former one. As a result, the net effect is positive such

that a higher capital income tax rate stimulates economic growth in the long run.

9For notational simplicity, we suppress the argument of Φ(τK) and B(τK) in the following equations.
10Based on the definition of tax shifting, an increase in one tax rate should be coupled with a fall in

another tax rate. In Appendix A, we will show that when L = L̃2, to hold a constant proportion of the
government spending, the labor tax rate actually increases in response to an increase in the capital tax rate.
In this paper, we rule out this unrealistic case and only focus on the solution L = L̃1.
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4 Quantitative analysis

To examine the robustness of our results, we generalize the utility function as follows:

U =

∫
∞

0

[
lnC + θ

(1− L)1−η

1− η

]
e−ρtdt, (25)

where η ≥ 0 determines the Frisch elasticity of labor supply. Equation (25) nests equation

(1) as a special case when η = 0. The model features 7 parameters: {ρ, α, η, β, θ, φ, τK}.

We consider the following standard parameter values or empirical moments in the literature.

First, we set the discount rate to ρ = 0.04 and the capital share to α = 0.30. Second, we

set η = 1.67, which implies a Frisch elasticity of 1.2; see Chetty et al. (2011). Third, in

line with Belo et al. (2013), the government spending ratio is set to β = 0.20. Fourth,

to obtain a leisure time of two-thirds (i.e., L = 1/3), we set θ= 1.17. Fifth, to generate a

steady-state output growth rate of 1.92%, which is the per capita long-run growth rate of

the US economy, we set φ= 0.65. Finally, the benchmark value of the capital tax rate is set

to τK = 0.36; see for example Lucas (1990). The parameter values are summarized below.

Table 1: Calibrated parameter values

ρ θ η α φ β τK

0.04 1.17 1.67 0.30 0.65 0.20 0.36

Figure 1 presents the growth effects of varying the capital income tax rate from 0 to 0.6.

We can clearly see that, as the capital tax rate increases, the steady-state equilibrium growth

rate increases. From this illustrative numerical exercise, we find that if the government raises

the capital tax rate from the benchmark value of 36% to a hypothetical value of 50%, the

steady-state equilibrium growth rate increases from 1.92% to 2.02%. The intuition can be

explained as follows. Although an increase in the capital tax rate exerts a negative effect on

economic growth by depressing capital accumulation, it also causes a fall in the labor income

tax rate, which boosts labor supply and thus is beneficial to R&D and economic growth. In

the long run, the latter effect dominates. Consequently, the steady-state equilibrium growth

rate increases in response to a rise in the capital income tax rate.

In the rest of this section, we simulate the transition dynamics of an increase in the

capital income tax rate. The dynamic system is presented in Appendix B. We consider the

case of an increase in the capital income tax rate by one percentage point (i.e., from 36% to

37%).11 First of all, the higher rate of capital taxation leads to a decrease in the investment

11In the case of a larger increase in the capital income tax rate, the qualitative pattern of the transitional
paths of variables remains the same. Results are available upon request.
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Figure 1: Long-run growth effect of capital taxation

rate and an increase in the consumption rate as shown in Figures 2 and 3, where investment

I = K̇.

Figure 2: Transition path of the investment rate
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Figure 3: Transition path of the consumption rate

The lower capital-investment rate gives rise to an initial fall in the capital growth rate as

shown in Figure 4, which contributes to an initial fall in the output growth rate as we will

show later. The rise in the consumption rate increases leisure and decreases labor supply

as shown in Figure 5. This decrease in labor supply reduces the amount of factor input

available for R&D. As a result, the growth rate of technology also decreases initially as

shown in Figure 6.

Figure 4: Transition path of the capital growth rate
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Figure 5: Transition path of labor supply

Figure 6: Transition path of the technology growth rate

Although tax shifting resulting from a higher capital income tax rate gives rise to a

lower labor income tax rate, this effect is weak in the short run. However, it becomes a

stronger force in the long run as shown in Figure 7. As a result, labor supply eventually

rises above the original level, which in turn leads to a higher steady-state equilibrium growth

rate of technology. Therefore, the initial drop in the growth rates of output and capital is

followed by a subsequent increase. In the long run, the steady-state equilibrium growth rate

of output is higher than the initial steady-state equilibrium growth rate as shown in Figure 8.

To sum up, the reason for the contrasting short-run and long-run effects of capital taxation

15



on economic growth is that the consumption effect is stronger (weaker) than the tax-shifting

effect in the short (long) run.

Figure 7: Transition path of the labor tax rate

Figure 8: Transition path of the output growth rate
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5 Conclusion

In this note, we have explored the short-run and long-run effects of capital taxation on inno-

vation and economic growth. Our results can be summarized as follows. An increase in the

capital income tax rate has both a positive tax-shifting effect and a negative consumption

effect on innovation and economic growth. In the long run, increasing the capital tax rate has

an unambiguously positive effect on the steady-state equilibrium growth rate because the pos-

itive tax-shifting effect strictly dominates the negative consumption effect. However, along

the transitional path, increasing the capital tax rate first decreases the equilibrium growth

rates of technology and output before these growth rates converge to a higher steady-state

equilibrium level. These contrasting implications of capital taxation on economic growth

suggest that a complete empirical analysis of capital taxation and economic growth needs

to take into consideration the possibility that the effects of capital taxation change sign at

different time horizons.
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Appendix A

The system has ten equations, (18a)-(18i), and (22). After some calculations, we can derive

the following expressions for L̃ and τ̃L:

φ

ρ
L̃2 −

[
φ

ρθ
− 1−

α(1− τK)

(1− α)(1− Φ)

]
L̃+

Φ

(1− Φ)θ
= 0, (A1)

τ̃L = [1 + ρ/(φL̃)]Φ, (A2)

where Φ ≡ (β − α2τK)/(1− α
2). Equation (A1) gives the two solutions for L̃:

L̃1 =
ρ
(
B +

√
B2 − 4Φφ/[(1− Φ)ρθ]

)

2φ
, (A3)

L̃2 =
ρ
(
B −

√
B2 − 4Φφ/[(1− Φ)ρθ]

)

2φ
, (A4)

where B ≡ φ/(ρθ)− 1− α(1− τK)/[(1− α)(1− Φ)].

As mentioned in the main text, our analysis focuses on the case where the notion of tax

shifting is sustained. That is, we impose the condition ∂τ̃L/∂τK < 0. We can then show

that the condition ∂τ̃L/∂τK < 0 does not hold if L = L̃2.

By plugging L̃2 into (A2) and differentiating it with respect to τK yields:

∂τ̃L
∂τK

∣∣∣∣
L=L̃2

=

[
α(1− α + α(1− ρθ/φ))

1− α2
+
∂Λ

∂τK

]
/2. (A5)

where Λ ≡
√
B2 − 4Φφ/[(1− Φ)ρθ] and

∂Λ

∂τK
=
1

Λ

(
B
∂B

∂τK
+

2α2φ

(1− α2)(1− Φ)2ρθ

)
> 0, (A6)

where ∂B/∂τK > 0. It is clear from equation (A5) that ∂τ̃L/∂τK |L=L̃2 is positive, which

contradicts the assumption of tax shifting. Therefore, we should rule out the possibility

L̃ = L̃2.
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Appendix B (not for publication)

This appendix solves the dynamic system of the model under tax shifting from labor income

taxes to capital income taxes (Z = 0 ). The set of equations under the model is expressed

by:

1/C = λ (B1)

θ(1− L)−η = λ(1− τL)w (B2)

r = (1− τK)rK (B3)

Ċ/C = (1− τK)rK − ρ (B4)

wLY = (1− α)Y (B5)

x = LY (α
2/rK)

1/(1−α) (B6)

rKK = α2Y (B7)

Aπ = α(1− α)Y (B8)

r =
π

V
+
V̇

V
(B9)

G = βY (B10)

βY = τKrKK + τLwL (B11)

Y = Kα(ALY )
1−α (B12)

K̇ = Y − C −G (B13)

Ȧ = φALA (B14)

V =
w

φA
(B15)

L = LY + LA (B16)

in which 16 equations are used to solve 16 unknowns endogenous variables {C, L, A, K, LY ,

x, rK , π, r, G, τL, Y, λ, LA, V, w}, where λ denotes the Hamiltonian multiplier. Based on

K = Ax, (B1), (B2), (B5) and (B12) and let f = C/K be the ratio between consumption

and capital, we can obtain:

L = 1− [(1/(θf))(1− τL)(1− α)(1/LY )(LY /x)
1−α]−1/η. (B17)

Based on (B5), (B7) and (B11), we have:

τL =
β − α2τK
1− α

(
LY
L
). (B18)
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We now turn to deal with the transitional dynamics of the model. By using x = K/A,

(B16), (B17) and (B18), we can infer the following expression:

L = L(x, f, LY ; τK), (B19)

where

∂L

∂x
=

(1− α)

x(− η
1−L

+ τL
(1−τL)L

)
, (B20a)

∂L

∂f
=

1

f(− η
1−L

+ τL
(1−τL)L

)
, (B20b)

∂L

∂LY
=

(β−α
2τK

1−α
LY
L
)/(1− τL) + α

LY (−
η

1−L
+ τL

(1−τL)L
)

, (B20c)

∂L

∂τK
=

(α2LY
L
)/((1− α)(1− τL))

(− η
1−L

+ τL
(1−τL)L

)
. (B20d)

Based on (B14) and (B15), we have:

V̇

V
=
ẇ

w
−
Ȧ

A
. (B20e)

From K = Ax, (B5) and (B12), we can further obtain:

ẇ/w = Ȧ/A− αL̇Y /LY + αẋ/x. (B20f)

Additionally, substituting (B20f) into (B20e) yields:

V̇

V
= α(ẋ/x− L̇Y /LY ). (B20g)

Combining (B3), (B5), (B7), (B8), (B9), (B12) and (B15), we can obtain:

(1− τK)α
2(
LY
x
)1−α = αφLY +

V̇

V
. (B21a)

Substituting (20g) into (B21a), (B21a) can be rearranged as:

L̇Y /LY = φLY + ẋ/x− (1− τK)α(
LY
x
)1−α. (B21b)

Based on x = K/A, we have the result:

ẋ/x = K̇/K − Ȧ/A. (B21c)
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Substituting f = C/K, (B10), (B13), (B14) and (B16) into (B21c), we have:

ẋ/x = (1− β)(
LY
x
)1−α − f − φ(L− LY ). (B21d)

From (B21b) and (B21d), we can obtain:

L̇Y /LY = (1− β − α(1− τK))(
LY
x
)1−α − f − φ(L− 2LY ). (B21e)

Moreover, from (B3), (B4), (B5), (B7) and (B12) we can obtain:

Ċ/C = (1− τK)α
2(
LY
x
)1−α − ρ. (22a)

Based on f = C/K, we have the following expression:

ḟ/f = Ċ/C − K̇/K. (B22b)

Substituting (B10), (B12) (B13) and (B22a) into (B22b), we can derive:

ḟ/f = ((1− τK)α
2 − (1− β))(

LY
x
)1−α − ρ+ f. (B22c)

Based on (B19), (B21d), (B21e), and (B22c), the dynamic system can be expressed as:

ẋ/x = (1− β)(
LY
x
)1−α − f − φ(L(x, f, LY ; τK)− LY ), (B23a)

ḟ/f = ((1− τK)α
2 − (1− β))(

LY
x
)1−α − ρ+ f, (B23b)

L̇Y /LY = (1− β − α(1− τK))(
LY
x
)1−α − f − φ(L(x, f, LY ; τK)− 2LY ). (B23c)

Linearizing (B23a), (B23b) and (B23c) around the steady-state equilibrium yields:




ẋ

ḟ

L̇Y


 =



b11 b12 b13

b21 b22 b23

b31 b32 b33







x− x̃

f − f̃

LY − L̃Y


+



b14

b24

b34


 dτK , (B24)

where

b11 = −(1− α)(1− β)(
LY
x
)1−α − φx∂L(x,f,LY ;τK)

∂x
,

b12 = x(−1− φ(
∂L(x,f,LY ;τK)

∂f
)),

b13 = (1− α)(1− β)(
LY
x
)−α − φx(∂L(x,f,LY ;τK)

∂LY
− 1),

b14 = −φ(
∂L(x,f,LY ;τK)

∂τK
),

b21 = −(1− α)((1− τK)α
2 − (1− β))(LY

x
)1−α(f

x
),
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b22 = f,

b23 = (1− α)((1− τK)α
2 − (1− β))(LY

x
)−α(f

x
),

b24 = −α
2(LY

x
)1−αf,

b31 = −(1− α)(1− β − α(1− τK))(
LY
x
)2−α − φ∂L(x,f,LY ;τK)

∂x
LY ,

b32 = −LY − φ
∂L(x,f,LY ;τK)

∂f
LY ,

b33 = (1− α)(1− β − α(1− τK))(
LY
x
)1−α − φ(∂L(x,f,LY ;τK)

∂LY
LY − 2LY ),

b34 = αLY (
LY
x
)1−α − φ(∂L(x,f,LY ;τK)

∂τK
LY ).

Let `1, `2 and `3 be the three characteristic roots of the dynamic system. We do not

analytically prove the saddle-path stability of the dynamic system; instead, we show that

the dynamic system features two positive and one negative characteristic roots numerically.

For expository convenience, in what follows let `1 be the negative root and `2, and `3 be the

positive roots. From (B24), the general solutions for xt, ft and LY,t, can be described by:

xt = x̃+D1e
`1t +D2e

`2t +D3e
`3t, (B25a)

ft = f̃ + h1D1e
`1t + h2D2e

`2t + h3D3e
`3t, (B25b)

LY,t = L̃Y +
`1 − b11 − b12h1

b13
D1e

`1t +
`2 − b11 − b12h2

b13
D2e

`2t +
`3 − b11 − b12h3

b13
D3e

`3t.

(B25c)

where h1 = [(`1 − b33)(`1 − b11)− b31b13]/[b32b13 + b12(`1 − b33)], h2 = [(`2 − b33)(`2 − b11)−

b31b13]/[b32b13 + b12(`2 − b33)], h3 = [(`3 − b33)(`3 − b11)− b31b13]/[b32b13 + b12(`3 − b33)], and

D1, D2 and D3 are undetermined coefficients.

The government changes the capital tax rate τK from τK0 to τK1 at t=0, based on

(B25a)-(B25c), we employ the following equations to capture the dynamic adjustment of xt,

ft, and LY,t:

xt =

{
x̃(τK0);

x̃(τK1) +D1e
`1t +D2e

`2t +D3e
`3t;

t = 0−

t ≥ 0+
(B26a)

ft =

{
f̃(τK0);

f̃(τK1) + h1D1e
`1t + h2D2e

`2t + h3D3e
`3t;

t = 0−

t ≥ 0+
(B26b)

LY,t =

{
L̃Y (τK0);

L̃Y (τK1) +
`1−b11−b12h1

b13
D1e

`1t + `2−b11−b12h2
b13

D2e
`2t + `3−b11−b12h3

b13
D3e

`3t;

t = 0−

t ≥ 0+

(B26c)

where 0− and 0+ denote the instant before and after the policy implementation, respectively.
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The values for D1, D2, and D3 are determined by:

x0− = x0+ , (B27a)

D2 = D3 = 0. (B27b)

Equation (B27a) indicates that the level of intermediate goods remains unchanged at

the instant of the policy implementation. Equation (B27b) is the stability condition which

ensures that all xt, ft, and LY,t converge to their new steady-state equilibrium. By using

(B27a) and (B27b), we can obtain:

D1 = x̃(τK0)− x̃(τK1). (B28)

Inserting (B27b) and (B28) into (B26a)-(B26c) yields:

xt =

{
x̃(τK0);

x̃(τK1) + (x̃(τK0)− x̃(τK1))e
`1t;

t = 0−

t ≥ 0+
(B29a)

ft =

{
f̃(τK0);

f̃(τK1) + h1(x̃(τK0)− x̃(τK1))e
`1t;

t = 0−

t ≥ 0+
(B29b)

LY,t =

{
L̃Y (τK0);

L̃Y (τK1) +
`1−b11−b12h1

b13
(x̃(τK0)− x̃(τK1))e

`1t;

t = 0−

t ≥ 0+
(B29c)
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