Forecast in Capital Markets

Dimitri O. Ledenyov and Viktor O. Ledenyov

James Cook University, Townsville, Queensland, Australia

29 June 2016

Online at https://mpra.ub.uni-muenchen.de/72286/
MPRA Paper No. 72286, posted 5 July 2016 07:22 UTC
Contents

Introduction ..5

Chapter 1. History of capital markets evolution with paper money, metal coins, electronic money and quantum money...6

Chapter 2. Formulation of problem on accurate characterization of foreign currencies exchange rates at foreign currencies trading in foreign currencies exchange markets...26

Chapter 3. Solution of problem on accurate characterization of foreign currencies exchange rates at ultra high frequencies electronic trading in foreign currencies exchange markets, using mathematical analysis methods, financial analysis methods, electronic analysis methods, quantum analysis methods..34

Chapter 4. Mathematical analysis methods, including probability and statistics formulas, to accurately characterize trends in foreign currencies exchange rates dynamics at electronic trading process in foreign currencies exchange markets in short and long time periods..42

Chapter 5. Financial analysis methods, including macroeconomics and microeconomics formulas, to closely predict foreign currencies exchange rates dynamics during electronic trading process in foreign currencies exchange markets in short and long time periods..47

Chapter 6. Electronic analysis methods, including Stratanovich-Kalman-Bucy filtering algorithm in Stratanovich – Kalman – Bucy filter and particle filter formulas, to finely estimate time series and predict trends in foreign currencies exchange rates dynamics during ultra high frequency electronic trading process in foreign currencies exchange markets in short and long time periods...53

Chapter 7. Quantum analysis methods, including wave function formula, to precisely forecast foreign currencies exchange rates dynamics during ultra high frequency electronic trading in foreign currencies exchange markets in short and long time periods...62

Chapter 8. Quantum winning virtuous trading strategies creation and execution during ultra high frequencies electronic trading in foreign currencies exchange markets in short and long time periods...67

Conclusion ...77
Acknowledgement ... 82

References ... 86

Economics science, finance science, economic history science, finance history science 86

Juglar economic cycle ... 90

Kondratiev economic cycle ... 90

Kitchin economic cycle ... 93

Kuznets economic cycle ... 93

Ledenyov economic cycle .. 95

Accurate characterization of properties of economic cycles ... 96

Disruptive innovation in technology, economics and finances ... 99

Metal Coins, Paper Money, Electronic Money, Network Money, Electronic Cash, Digital Cash, Bit Coin, Electronic Payments, Debit Cards, Credit Cards, Stored Value Cards, Smart Cards (Electronic Purses) ... 103

Central Banks, Federal Reserve Banks, Federal Reserve System 114

Ultra high frequency electronic trading science, foreign currencies exchange rates science, foreign currencies exchange markets science .. 115

Probability theory, statistics theory, Brownian movement theory, diffusion theory and chaos theory in econometrics and econophysics ... 189

Wiener filtering theory, Pugachev filtering theory, Stratonovich optimal nonlinear filtering theory, Stratonovich-Kalman-Bucy filtering algorithm, Stratonovich-Kalman-Bucy filter, Particle filter in econometrics, econophysics, electrical and computer engineering 197

Continuous time signal, analog signals, discrete time signal, digital signals, spectrum of signals in physics and engineering sciences .. 212
Quantum physics, quantum electronics, quantum computing, quantum mechanics214

Wave function in Schrödinger quantum mechanical wave equation in quantum mechanics220

Artificial intelligence science, computer science ..222

Deoxyribonucleic acid (DNA), digital DNA of economy of scale and scope224

Business administration science, management science, strategy science225

Selected research papers in macroeconomics, microeconomics and nanoeconomics sciences..233

List of Figures ..241

Subjects Index ...243

Authors Index ..246

About Authors ..260

Back Cover ..261
In the Schumpeterian technical disruption age, we firmly believe that a growing application of electronic computing technologies with the computations processing in the range of ultra high frequencies in the modern finances opens a big number of new unlimited opportunities toward a new era of the ultra high frequency electronic trading in the foreign currencies exchange markets in the conditions of the discrete information absorption processes in the diffusion - type financial systems with the induced nonlinearities. In this book, we would like to focus on the capital markets in the finances, discussing a number of scientific methods for an accurate forecast of the foreign currencies exchange rates during the ultra high frequency electronic trading in the foreign currencies exchange markets in the short and long time periods. Chapter 1 discusses the history of capital markets in the World, going from the academic literature. Chapter 2 reviews the existing approaches to the scientific analysis of the foreign currencies exchange markets. Chapter 3 explains an essence on the accurate characterization of the foreign currencies exchange rates at the ultra high frequencies electronic trading in the foreign currencies exchange markets. Chapter 4 focuses on the classic mathematical analysis methods, including the probability and the statistics, to accurately characterize all the trends in the foreign currencies exchange rates dynamics during the electronic trading process in the foreign currencies exchange markets in the short and long time periods. Chapter 5 considers the financial analysis methods, including the macroeconomic, the market microstructure and the order flow, to precisely forecast the foreign currencies exchange rates dynamics during an electronic trading process in the foreign currencies exchange markets in the short and long time periods. Chapter 6 uncovers the electronic analysis methods, including the Stratanovich-Kalman-Bucy filtering algorithm in the Stratanovich – Kalman – Bucy filter and the particle filter, to accurately estimate the time series and predict all the trends in the foreign currencies exchange rates dynamics during the electronic trading process in the foreign currencies exchange markets in the short and long time periods. Chapter 7 introduces the quantum analysis methods, including the wave function, to precisely forecast the foreign currencies exchange rates dynamics during the ultra high frequency electronic trading in the foreign currencies exchange markets in the short and long time periods, using the quantum system state prediction algorithm with both the wave function and the time dependent / time independent wave equation in the quantum finances theory. Chapter 8 proposes the quantum winning virtuous strategies creation algorithm with the quantum logic to earn an increasing return premium during the ultra high frequencies electronic trading in the foreign currencies exchange markets in the short and long time periods.
Chapter 1

History of capital markets evolution with paper money, metal coins, electronic money and quantum money

The first capital markets with the paper money and the noble precious metal coins made of the gold and silver in the early primitive financial systems have been used to perform the value payments exchange since around 7th C.B.C. in Del Mar (1894), Cook (1958), Carson (1962), Crawford (1970), Balmuth (1971), Thompson, Kraay, Morkholm (editors) (1973), Kagan (1982), Price (1983), Wallace (1987, 1989), Howgego (1990), Karwiese (1991), Thiveaud, Sylvain (1995), Davies (2002), Moroz V S, Moroz V S (September 2014). The historical findings show that a main purpose of the early primitive financial systems at a state level was to complete the basic financial transactions with the paper money and the paper notes, aiming to conduct the trade at the goods and services markets in the ancient time as in the cases of the Song dynasty and the Yuan dynasty in mainland China.

Over the years, the design of the currencies has been improved in Thiveaud, Sylvain (1995), coinciding with the multiple inventions of the writing, mathematics, physics, calendar, astronomy and philosophy during the historical evolution in Landes (1998).

In the process of historical evolution, the organized financial systems with the central banks, including the Bank of Amsterdam (1609) in The Netherlands, Sveriges Riksbank (1664) in Sweden, Bank of England (1694) in England, have been established in the classic economies of the scale and scope in a number of European states in XVI century in Joseph Penso de la Vega (1668, 1996), Mortimer (1765), Bagehot (1873, 1897), Roseveare (1991), Capie, Fischer, Goodhart, Schnadt (1994), Quinn, Roberts (2006).

Among all the European financial systems in XVIII-XIX centuries, the Austrian financial system became known as one of the most sophisticated financial systems due to a presence of a considerable progress in the financial and economic thinking in Menger (1871), von Böhm-
Bawerk (1884, 1889, 1921), von Mises (1912, 1949). The foundational principles by the Austrian school of the financial and economic thinking in Menger (1871), von Böhm-Bawerk (1884, 1889, 1921), von Mises (1912, 1949), Hayek (1931, 1935, 1948, 1980, 2008), Hazlitt (1946), Rothbard (1962, 2004) had a considerable influence on the Monetarism theories by the American scientists of the Austrian origin at the Chicago school of the economic and financial thinking in XX – XXI centuries. At present time, the Chicago school of economic thinking has a reputation of a world renowned expert in the modern finances, influencing the US policymakers, governmental officials, congressmen, senators, who have been involved in the work on both the US Federal Reserve System governance policies introduction and execution as well as the US budget in Fama (1970), in Fox, Alvarez, Braunstein, Emerson, Johnson, Johnson, Malphrus, Reinhart, Roseman, Spillenkothen, Stockton (2005).

The central bank in the modern organized financial system in the classic economies of the scale and scope regulates a wide range of the possible means of value payments, including the metal coins, paper currencies, paper checks, payment orders, electronic money, network money, bit coins, etc in Goodhart (1989, 2000). In general, it is possible to distinguish the three sorts of the money in modern organized financial systems within the economies of the scales and scopes in Selgin, White (1994):

1. The natural money based on a single commodity;
2. The multiple commodity money;
3. The “no base money.”

The central bank of the United States, the US Federal Reserve System, was founded in the US Federal Reserve Act, passed by the US Congress in 1913 in Willis (1923), Meltzer (2003, 2009a, b), Bernanke (2013). The main purpose of the US Federal Reserve System was to provide the regulation to avoid the periodic panics in the money market in the American in Owen (1919), Bernanke (2013).

Analyzing the historical developments, Dr. Ben Shalom Bernanke, former Chairman of the US Federal Reserve System distinguishes the following historical periods in the US Federal Reserve System operation in Bernanke (2013):

1. The Great Experiment of the US Federal Reserve System founding in 1913;
2. The Great Depression in 1922–1933;
5. The Great Recession in 2008–until now.
As the principal monetary authority of a nation, the US Federal Reserve System (central bank) performs the key functions towards the introduction and implementation of in Fox, Alvarez, Braunstein, Emerson, Johnson, Johnson, Malphrus, Reinhart, Roseman, Spillenkothen, Stockton (2005):

1. Monetary stability policy, aiming to stabilize the prices and increase the confidence in the currency by setting and reaching the inflation target through the realization of transparent effective programs on the interest rates and asset purchases in the money markets;

2. Financial stability policy, aiming to detect and reduce the systemic risks to the national financial system by identifying and monitoring the possible systemic threats to the financial stability and by taking an action to reduce those threats by improving the financial infrastructure, by setting the banking capital requirements, by acting as the lender of last resort.

The US Federal Reserve System’s main duties may also include in Fox, Alvarez, Braunstein, Emerson, Johnson, Johnson, Malphrus, Reinhart, Roseman, Spillenkothen, Stockton (2005):

1. Conducting the nation’s monetary policy by influencing the monetary and credit conditions in the economy in pursuit of maximum employment, stable prices, and moderate long-term interest rates;

2. Supervising and regulating the banking institutions to ensure the safety and soundness of the nation’s banking and financial system and to protect the credit rights of consumers;

3. Maintaining the stability of the financial system and containing systemic risk that may arise in financial markets;

4. Providing the financial services to depository institutions, the US Government, and foreign official institutions, including playing a major role in operating the nation’s payments system.

It worth to say that the central bank formulates and implements both the monetary policy and the financial policy, going from a financial analysis of the macroeconomic, microeconomic and nanoeconomic situations in the selected country in Ledenyov D O, Ledenyov V O (December 11 - 12 2015). Therefore, the fundamental economics science, including the macro-, micro- and nano- economics sciences, has been a subject of great research interest by the US Federal Reserve System and by other central banks.

The fundamental economics science has been studied, using both the social sciences methodologies in Joseph Penso de la Vega (1668, 1996), Mortimer (1765), Smith (1776, 2008), Menger (1871), Bagehot (1873, 1897), von Böhm-Bawerk (1884, 1889, 1921), Hirsch (1896),

More specifically, the evolutionary development of both the empirical methods in the social sciences and the technical methods in the natural sciences, helped to achieve a better understanding of the fundamental economics science principles and to make a groundbreaking discovery of the Ledenyov discrete-time digital waves of GIP(t)/GDP(t)/GNP(t)/PPP(t) (the discrete-time digital business cycles) with the different amplitudes, frequencies, wave-forms and powers in the modern digital creative economy of the scale and scope in the time, scale, frequency domains as explained in Ledenyov D O, Ledenyov V O (2015e, f).
Fig. 1 shows the continuous-time wave in the analogue signal processing theory.

Fig. 1. Continuous-time wave.

Fig. 2 pictures the discrete-time wave in the digital signal processing theory.

Fig. 2. Discrete-time wave.
Fig. 3 displays the discrete-time wave with the tilted wave fronts in the digital signal processing theory.

Fig. 3. Discrete-time wave with tilted wave fronts.

Fig. 4 shows the discrete-time wave, modulated by the disruptive innovations in the economics.

Fig. 4. Discrete-time wave, modulated by disruptive innovations in economics.
Presently, we know that the Ledenyov discrete-time digital waves can be generated by and propagated in the modern digital creative economy of the scale and scope in the time, scale, frequency domains in Ledenyov D O, Ledenyov V O (2015e, f). Let us remind the main research ideas behind our theoretical conception of the discrete-time wave in the economics. Fig. 1 shows the continuous-time wave, which can be associated with the fluctuations of GDP(t)/GNP(t)/PPP(t). For example: the Juglar economic cycle, Kondratiev economic cycle, Kitchin economic cycle, Kuznets economic cycle are described by the continuous-time waves in the literature in Juglar (1862), Kondratieff (1922, 1925, 1926, 1928, 1935, 1984, 2002), Kitchin (1923), Kuznets (1973a, b). However, we know that an introduction of the disruptive technological or social innovation(s) in the economy of the scale and scope may change the values of GDP(t)/GNP(t)/PPP(t) abruptly in Olson (1965, 1982), Landes (1969, 1998), Christensen, Raynor, McDonald (December 2015), Ledenyov D O, Ledenyov V O (2015f). Therefore, it is logical to assume that the discrete-time wave (see Fig. 2) can much better approximate the fluctuations of the macroeconomic variables. However, in the real life, the time is necessary for the introduction of the disruptive technological innovation in real economy of the scale and scope, hence the discrete-time wave front may be tilted and have some ripples (see Fig. 3). We can provide an analogy with the discrete-time digital signal propagation in the digital board, when the signal is slightly distorted on the display of the oscilloscope. In addition, in the real life, the multiple disruptive innovation technologies can modulate the macroeconomic variables (see the Fig. 4). In general case, we can make an analogy with the discrete-time digital wave propagation in the communication channel, when the signal is modulated with the high order modulation techniques and distorted by various factors such as the signals interference and fading at the same time as can be seen on the display of the signal/network analyzer.

The implementation of the monetary policy and the financial policy by the US Federal Reserve System is considered to be a challenging task, aiming to support the financial and monetary stabilities, by doing the following things in Fox, Alvarez, Braunstein, Emerson, Johnson, Johnson, Malphrus, Reinhart, Roseman, Spillenkothen, Stockton (2005):

1. conducting the open market operations;
2. imposing the reserve requirements;
3. permitting depository institutions to hold contractual clearing balances;
4. extending the credit through its discount window facility;
5. controlling the demand for and supply of the money;
6. setting up the monetary fund’s loan rates.
Summarizing the above discussion, it is possible to say that the US Federal Reserve System’s main purpose is to provide the nation with a safer, more flexible, and more stable monetary and financial systems in Fox, Alvarez, Braunstein, Emerson, Johnson, Johnson, Malphrus, Reinhart, Roseman, Spillenkothen, Stockton (2005).

In XIX – XXI centuries, the foreign currencies exchange markets have been created, aiming to facilitate the international trade and the financial cooperation in Ellis, Metzler (editors) (1949), Machlup (1949), Robinson (1949), because of the following necessities (see Ellis, Metzler (editors) (1949), Machlup (1949), Robinson (1949))

1. a constant need to exchange the foreign currencies,
2. a strong necessity to rate the foreign currencies, and
3. an appeared requirement to establish the foreign currencies exchange markets.

The US Federal Reserve System and other central banks played the significant roles in the process of the foreign currencies exchange markets development on a global scale, namely they hold the foreign currencies exchange reserves in the form of the foreign currencies deposits, the foreign governments bonds, and the noble metals reserves, influencing the process of setting of the foreign currencies exchange rates at the certain levels, which can be classified as the foreign currencies exchange rates at

1. the free float,
2. the managed float,
3. the dirty float.

In recent decades, the electronic money is introduced in the modern financial systems within the economies of the scales and scopes. The electronic money is defined as the electronic store of monetary value on a technical device to make payments without necessarily involving bank accounts in the transaction, but acting as a prepaid bearer instrument in European Central Bank (August 1998).

There are various sorts of the e-money as explained in Turnbull (2010):

1. the privately issued money with a usage fee, whose value is based on official money;
2. the government issued money with a usage fee; and
3. the privately issued money with a usage fee redeemable into a specified commodity.

In other words, the electronic money is based on a complex system of the electronic payments instruments and technical/financial processes with the digital cash, digital purse, stored-value/debit/credit cards, multilayered information communication protocols, information communication virtual/physical networks and information processing/computing facilities in Wallace (1986), Bauer (1995), US Treasury September (1996), Hitachi Research Institute

We can see that an intensive development of the electronic money (the e-money) has been a key factor in a rapid development of the electronic trading in the foreign currencies exchange markets in recent decades. Presently, in our global multi-polar World, the main centers of the electronic trading in the foreign currencies exchange markets are located in New York, USA; London, UK; Tokyo, Japan; Hong Kong, P.R. China; Taipei, Taiwan; Singapore, Singapore; and some other places.

At present time, the new groundbreaking discoveries in the physics and electronics sciences make it possible to conceptualize, create and introduce the quantum money (q-money), which will surpass the electronic money (e-money) and transform into the universal global currency in the nearest future in Ledenyov D O, Ledenyov V O (2015m).

The quantum money (q-money) as a newest value storing/not storing unit, mean of payment and exchange medium was proposed in the formidable voluminous research for the first time in Ledenyov D O, Ledenyov V O (2015m).

The quantum money (q-money) is a more convenient, financially innovative, technologically attractive and user/issuer friendly value storing/not storing unit, mean of value payment, and exchange medium in the advanced financial systems within the quantum economies of the scales and scopes in Ledenyov D O, Ledenyov V O (2015m).

The main strategic idea behind the quantum money (q-money) is to establish a value storing/not storing q-money, which is most innovative, technologically advanced, financially efficient, economically sustainable, socially equitable, politically democratic in the financial systems within the economies of scales and scopes, aiming to achieve the millennium
development goals. Therefore, an introduction of the quantum money aims in Ledenyov D O, Ledenyov V O (2015m):

1. To create a value storing/not storing q-money, which is universal, convenient and stable in the time/space domains;

2. To create a value storing/not storing q-money, which is aimed to serve as a mean of payment and exchange medium in the financial systems in the various economies of the scales and scopes globally

3. To establish a value storing/not storing q-money, which is most innovative, advanced and attractive from the financial, social, technological points of view;

4. To provide a value storing/not storing q-money, which is user/issuer friendly from the financial, social, technological points of view;

5. To design a value storing/not storing q-money, which is classified as the base/no base money;

6. To originate a value storing/not storing q-money, which is appropriate for the consideration as a global currency and capable to facilitate the sustainable development of the economies of the scales and scopes globally;

7. To adopt a value storing/not storing q-money, which is able to reduce the inequality, promote the economic development, and enrich democracy in the societies globally;

8. To introduce a value storing/not storing q-money, which is able to stimulate and expand the global trade among the countries;

9. To make a value storing/not storing q-money, which is produced to facilitate a rapid achievement of the millennium development goals.

10. To generate a value storing/not storing q-money, which is easily introduced global currency in the financial systems in the various economies of the scales and scopes.

Going from the existing knowledge in the probability science in De Laplace (1812), Bunyakovsky (1846), Chebyshev (1846, 1867, 1891), Markov (1890, 1899, 1900, 1906, 1907, 1908, 1910, 1911, 1912, 1913), Kolmogorov (1938, 1985, 1986), Wiener (1949), Brush (1968, 1977), Shiryaev (1995), the we predicted that the probability of the use and expansion of the quantum money will increase exponentially with the quantum finance system introduction in Ledenyov D O, Ledenyov V O (2015m).

In our opinion, the quantum finance system must be regulated by the central bank and have the following structural elements in Ledenyov D O, Ledenyov V O (2015m):

1. Quantum money (q-money): the mean of payments and exchange medium with the quantum characteristics;
2. Quantum network (q-network): the extensive quantum money network and the quantum cryptography network with the quantum properties;

3. Quantum monetary policies: the monetary policies to regulate the quantum money (q-money) and the quantum network (q-network).

4. Quantum financial policies: the financial policies to regulate the quantum money (q-money) and the quantum network (q-network).

Despite of existing research opinion on a negligible role by the central bank in the case of the e-money, we think that the treasure and the central bank will have the following strategic purposes, technical functions and policy responsibilities in the case of the q-money in Ledenyov D O, Ledenyov V O (2015m):

1. The treasure must supply the liquid government securities and the central bank must make the emission of the quantum money (q-money);

2. The central bank must supply the liquidity in the form of the quantum money (q-money);

3. The central bank must regulate and adjust the nominal/real quantum money supply;

4. The central bank must create and execute the quantum monetary policy;

5. The central bank must create and execute the quantum financial policy;

6. The central bank must settle all the imbalances between the financial institutions.

We would like to emphasis that the proposed quantum money scheme has some principal distinctions from the electronic money scheme, because of the following facts in Ledenyov D O, Ledenyov V O (2015m):

1. The quantum money is classified as the quantum object;

2. The quantum money is accurately characterized by the quantum econophysics science;

3. The quantum money network is considered to be the quantum network, operating on the quantum cryptography principles;

4. The quantum money network is accurately characterized by the quantum econophysics science;

5. The quantum money is more convenient mean of payment in application to the existing financial and economic systems, which can be better characterized by the quantum macroeconomic theory in Ledenyov D O, Ledenyov V O (2015h) and the quantum microeconomics theory in Ledenyov D O, Ledenyov V O (2015j) instead of the well known classic macroeconomics and microeconomics theories in the finances.
Thus, we think that an introduction of the quantum money (the q-money) will be a key factor in a fast development of the quantum trading in the foreign currencies exchange markets in the decades ahead in Ledenyov D O, Ledenyov V O (2015m).

The main centers of the quantum trading in the foreign currencies exchange markets would be situated in the cities, which could be characterized as the modern hi-tech financial hubs in the increasingly globalized World in Ledenyov D O, Ledenyov V O (2015m).

Fig. 5 provides some information on the money design evolution over the centuries.

Fig. 5. Money design evolution in time.

Before going to the consideration of various outlined research topics in the following chapters, we would like to list the research works by the brilliant scientists, who contributed to
(1986), Grammatikos, Saunders, Swary (1986), Harris (1986, 1990), Hart, Kreps (1986), Lyons
Shleifer, Summers (1990), Sweeney (1986), DeLong, Shleifer, Summers, Waldmann (1990),
Miller, Eichengreen, Portes (editors) (1989), Van Hagen (1989), Allen, Taylor (1990), Allen,
Karjalainen (1999), Courakis, Taylor (1990), Diebold, Nason (1990), Flood, Hodrick (1990),
Foster, Viswanathan (1993), Holthausen, Leftwich, Mayers (1990), De Long, Shleifer, Summers,
Waldmann (1990), Domowitz (1990, 1993), Domowitz, Steil (1999), Johansen, Juselius (1990),
(1990, 1995), Mishkin (1990), Müller, Dacorogna, Olsen, Pictet, Schwarz, Morgenegg (1990),
Müller, Dacorogna, Dave, Pictet, Olsen, Ward (1993), Müller, Dacorogna, Dave, Olsen, Pictet,
Chapter 2

Formulation of problem on accurate characterization of foreign currencies exchange rates at foreign currencies trading in foreign currencies exchange markets

The first financial transactions completion in the financial systems in the capital markets opened a new age of financial development in the finances in Joseph Penso de la Vega (1668, 1996), Mortimer (1765), Bagehot (1873, 1897). Exploring the financial opportunities, it was understood that the capital markets are full of idiosyncrasies, because of their volatile nature in Joseph Penso de la Vega (1668, 1996), Mortimer (1765), Bagehot (1873, 1897).

Therefore, the financiers have been thinking about the optimal solutions finding for a number of challenging financial problems in capital markets for many centuries, including such challenges as in Joseph Penso de la Vega (1668, 1996), Mortimer (1765), Bagehot (1873, 1897):

1. the investment opportunities search;
2. the financial risks assessment of the available investment opportunities;
3. the complex investments decision making on the investment opportunities.

On that time, the problem on the financial analysis of the foreign currencies exchange rates in the foreign currencies exchange markets was formulated in Joseph Penso de la Vega (1668, 1996), Mortimer (1765), Bagehot (1873, 1897). The financiers realized that it can be solved with an application of the financial mathematics in the theory of value and prices by Fisher (1892), which led to more accurate assessment of various financial variables in the process of evolution of the money markets in Joseph Penso de la Vega (1668, 1996), Mortimer (1765), Bagehot (1873, 1897).

In the course of the financial mathematics development in the beginning of XX century, the intensive development of the calculus theory, the differential equations theory and the probability theory in the mathematics in De Laplace (1812), Bunyakovsky (1846), Chebyshev (1846, 1867, 1891), Markov (1890, 1899, 1900, 1906, 1907, 1908, 1910, 1911, 1912, 1913) encouraged an adaptation of more sophisticated financial mathematical techniques in Bachelier (1900, 1914, 1937, 19 May 1941), Courtault, Kabanov, Bru, Crépel, Lebon, Le Marchand (2000), Bachelier, Samuelson, Davis, Etheridge (2006).

The main aims of the financial mathematics were in Bachelier (1900, 1914, 1937, 19 May 1941), Courtault, Kabanov, Bru, Crépel, Lebon, Le Marchand (2000), Bachelier, Samuelson, Davis, Etheridge (2006):
1. to access the financial risks in the capital markets;
2. to predict the returns-on-investments in the capital markets;
3. to set and compute the foreign currencies exchange rates in the foreign currencies exchange markets.

More clearly, Bachelier (1900) proposed his original idea to estimate the valuable financial papers prices evolution with the help of the probability theory in the mathematics in De Laplace (1812), Bunyakovsky (1846), Chebyshev (1846, 1867, 1891), Markov (1890, 1899, 1900, 1906, 1907, 1908, 1910, 1911, 1912, 1913). The ingenious research ideas on an application of the probability theory in the finances in Bachelier (1900, 1914, 1937) have been further complemented by the research findings in Slutsky (1922a, b, 1925a, b, 1927a, 1937a, b).

The idea on the probability theory application in the finances in Bachelier (1900) is illustrated in Fig. 6, showing:

a) Illustration of the Gauss normal distribution of the probability of events;

b) Illustration of the valuable financial papers prices evolution estimation with the probability theory in the mathematics in Bachelier (1900, 1914, 1937, 19 May 1941). The three Gauss normal distributions of the probabilities of the valuable financial papers prices at various time periods of 1, 5, 10 years are depicted.

![Fig. 6. a) Gauss normal distribution of probability of occurring events; b) Valuable financial papers prices evolution estimation in probability theory in mathematics in Bachelier (1900, 1914, 1937, 19 May 1941). Three Gauss normal distributions of probabilities of valuable financial papers prices at various time periods of 1, 5, 10 years are depicted.](image-url)
Further, in the process of development of the financial speculations theory in Bachelier (1900, 1914, 1937, 19 May 1941), a general perception was that the characterization of the complex financial systems within the capital markets can be done much more accurately, considering the existing theoretical models in the physics. For example: the model on the Brownian motion of molecules at the heat transfer process in the solids in Bunyakovsky (1825) as well as the Brownian movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heat in Einstein (1905, 1956), Einstein, Smolukhovsky (1936). Sometime later, an important role of the Brownian motion in the random processes has been summarized in Brush (1968, 1977).

The deeply penetrating financial analysis by the authors of this book led to an important conclusion that the financial time series can be accurately characterized by:

1. the continuous-time signals, and
2. the discrete-time signals.

In the case of the continuous-time signals, it makes sense to explain that Bachelier (1900, 1914, 1937, 19 May 1941) is also recognized for his first systematic comprehensive study on the stochastic processes in the continuous-time domain in Kolmogorov (1931), Shiryaev, Grossinho, Oliveira, Esquível (editors) (2006).

In the case of the discrete-time signals, the process the evolutionary scientific thinking led to the following findings in Gleick (1987):

1. the Joseph effect that the event can be persistent due to various factors in the nature on one side;
2. the Noah effect that the event can change almost instantly;

hence the authors of this book came to an analytic conclusion that it is perfectly possible that the prices can stay at certain level for some time, and then, the prices can change quickly in the form of the instantaneous jumps to the different levels at certain time moments.

Therefore, we can come to a general research understanding that the original research propositions on the characterization of the stochastic processes in the continuous-time domain in the financial mathematics in Bachelier (1900, 1914, 1937, 19 May 1941) have to be complemented by the new research propositions on the characterization of the stochastic processes in the discrete-time domain in the financial mathematics.

In the case of the discrete time signals, the two additional research directions toward the accurate characterization of the stochastic processes in the discrete-time domain in the financial mathematics were:

Fig. 7 demonstrates an illustration of the function of discrete-time signal filter.

Fig. 7. Discrete-time signal filter.

Fig. 8 shows an illustration of the fractal in form of Cantor set.

Fig. 8. Fractal in form of Cantor set.
Researching the forecast in the capital markets, we are particularly interested in the problem on the financial analysis of the foreign currencies exchange rates in the foreign currencies exchange markets. As we know the formulation of both the foreign currencies exchange theory in Machlup (1949), Robinson (1949) and the theory of value in Debreu (1959) in the frames of the classical finances theory in Bagehot (1873, 1897), von Böhm-Bawerk (1884, 1889, 1921), von Mises (1912) represented a significant step forward in the modern knowledge based society in Hayek (1945).

It makes sense to explain that, in the global monetary economics in Claassen (1996), the electronic trading in the foreign currencies exchange markets increases rapidly up to US$4 trillion in 2010 in King, Rime (2010), King, Osler, Rime (2011), and it continues to evolve toward the introduction of the high frequency electronic trading in the foreign currencies exchange market in Goodhart (1992), Goodhart, Hall, Henry, Pesaran (1993), Goodhart, O'Hara (1995), Goodhart, O'Hara (1997).

The rapid development of the electronic trading in the foreign currencies exchange markets is facilitated by the international trade, the international banking, the elite wealth management needs among other factors. Indeed, the high frequency finance in Dacorogna, Gencay, Mueller, Olsen, Pictet (2001) has reached a state, when the global foreign exchange markets are trading at 5.3 trillion US dollars per day and the global monetary base is 6.6 trillion US dollars in 2014 in Sheng (2014).

Let us write the general formula for the calculation of the frequency of the electronic trading in the foreign currencies exchange markets

\[f = \frac{\text{Number of ticks}}{\text{Time period}}. \]

where \(f \) is the frequency.

The brilliant research idea that the frequency of the electronic trading will shift to the high frequencies range was proposed for the first time in Goodhart, Hall, Henry, Pesaran (1993), Goodhart, O'Hara (1995), Goodhart, O’Hara (1997).

A possibility of realization of the ultra high frequency electronic trading in the foreign currencies exchange markets in a range of GHz frequencies has been proposed for the first time in Ledenyov D O, Ledenyov V O (2014c). We think that the ultra high frequency electronic trading in the foreign currencies exchange markets in a range of GHz frequencies can be realized due to the multiple discoveries of the innovative technological advancements in both the information communication technologies in Shannon (1948) as well as the high-performance computing in Ledenyov D O, Ledenyov V O (2012e).
Fig. 9 shows a range of possible frequencies at the electronic trading in the foreign currencies exchange markets.

Fig. 9. Range of possible frequencies at electronic trading in foreign currencies exchange markets.

Fig. 10 illustrates the changes of the foreign currencies exchange rates during the electronic trading in the foreign currencies exchange markets at the different time moments.

Fig. 10. Matrix block diagram to illustrate change of foreign currencies exchange rate during electronic trading in foreign currencies exchange markets at various time moments.
The foreign currencies exchange rate change in the time domain, hence it is accepted to measure the high, low and average levels of the foreign currencies exchange rate oscillations.

Chapter 3

Solution of problem on accurate characterization of foreign currencies exchange rates at ultra high frequencies electronic trading in foreign currencies exchange markets, using mathematical analysis methods, financial analysis methods, electronic analysis methods, quantum analysis methods

Going from the wealth management point of view, the investment of the money, professional efforts and working time in the ultra high frequency electronic trading in the foreign currencies exchange markets is a best way to increase and accumulate an enormous private/institutional wealth by the experienced investors on a global scale at the present time of disruptive changes in the economies of the scales and scopes.

Indeed, an increasing application of the electronic computing technologies in the finances opens a big number of unbounded lucrative business opportunities towards the high profitable trading deals completion in an era of the ultra high frequency electronic trading in the foreign currencies exchange markets at the time of globalization.

Thus, let us consider the following topics in the subject of our research interest, outlining:

1. The financial system as an integral part of the economy of scale and scope;
2. The essence of the electronic trading in the foreign currencies exchange markets;
3. The modern technological trends toward the ultra high frequency electronic trading in the foreign currencies exchange markets;
4. The accurate characterization of the foreign currencies exchange rates at the ultra high frequencies electronic trading in the foreign currencies exchange markets, using:
 a) the classic mathematical analysis methods,
 b) the financial analysis methods,
 c) the electronic analysis methods, and
 d) the quantum analysis methods.

Let us begin our discussion by stating that the financial system as an integral part of the economy of scale and scope. The Digital DNA of the modern digital creative economy of the scale and scope represents a chain of the accumulated knowledge, which stores all the information in the form of the “genetic instructions” on how it is possible to develop, function and reproduce the modern digital creative economy of the scale and scope in the time, scale, frequency domains in Ledenyov D O, Ledenyov V O (2016p). A chain of the accumulated
knowledge may include all the spectrum of information, which has been created, exchanged, transmitted and stored by the humans in the natural sciences databases, the social sciences databases, the numerous encyclopedia databases, the intellectual properties databases, the technological standards databases at the governments, universities, institutions, colleges, schools, firms, governmental organizations, non-governmental organizations, cultural organizations, religious organizations within the particular modern digital creative economy of the scale and scope in the time, scale, frequency domains in Ledenyov D O, Ledenyov V O (2016p).

More specifically, in the frames of our general fundamental theory on the Digital DNA of the modern digital creative economy of the scale and scope, we can make the following theoretical assumptions in Ledenyov D O, Ledenyov V O (2016p):

1. Digital DNA exists in the modern digital creative economy of the scale and scope;
2. Digital DNA consists of a chain of knowledge with all the information on the modern digital creative economy of the scale and scope;
3. Digital DNA uniquely identifies and accurately characterizes the modern digital creative economy of the scale and scope in the time, scale, frequency domains;
4. Digital DNA represents a genetic key, which may help us to better understand the generation of the discrete-time digital business cycles with the different amplitudes, frequencies, shapes and powers in the modern digital creative economy of the scale and scope in the time, scale, frequency domains.

Let us note that the Digital DNA’s complex knowledge base structure can be severely damaged by the bad governance practices at the governments, universities, institutions, colleges, schools, firms, governmental organizations, non-governmental organizations, cultural organizations, religious organizations at the state/province/city/district/organization levels, resulting in a possible disappearance of the certain knowledge in various sectors of the modern digital creative economies of the scales and scopes in the time, scale, frequency domains in Ledenyov D O, Ledenyov V O (2016p).

Let us mention that the Digital DNA’s complex knowledge base structure can be partly/completely repaired by the good governance practices at the governments, universities, institutions, colleges, schools, firms, governmental organizations, non-governmental organizations, cultural organizations, religious organizations at the state/province/city/district/organization levels, resulting in a possible appearance of the certain knowledge in various sectors of the modern digital creative economies of the scales and scopes in the time, scale, frequency domains in Ledenyov D O, Ledenyov V O (2016p).
During an evolutionary development process, the Digital DNA in the form of a chain of the accumulated knowledge allowed the academicians, financiers and engineers to create the ultra high frequencies electronic trading in the foreign currencies exchange markets, which belongs to a speculative sector rather than to real sector of the economy of scale and scope in Ledenyov D O, Ledenyov V O (2016p).

Let us continue our research discussion on essence of the electronic trading in the foreign currencies exchange markets, focusing on the research contributions by various researchers to the field of the electronic trading in the foreign currencies exchange markets. It makes sense to explain that the basic idea on the electronic trading is derived from the proposition on the fully automated stock exchange in Black (1971, part II), Stoll (2006). Then, the suggestion on the electronic trading in the foreign exchange markets was made, highlighting a number of possible technical advantages in Stoll (2006)

1. Automatic electronic trading;
2. Anonymous electronic trading;
3. Low cost electronic trading;
4. Fast electronic trading;
5. Complex orders processing electronic trading.

The historical evolution of the electronic trading technologies includes the following stages in Gallardo, Heath (2009), Heath, Whitelaw (June 2011), King, Osler, Rime (2012)

1. The Reuters Matching electronic broking service by the Reuters, specializing in major Commonwealth currencies for the interbank market in 1989 and evolving to Thomson Reuters Matching in 1990s;
2. The Electronic Broking Systems (EBS) by a consortium of banks, trading in the US dollar, Euro, Yen and Swiss Franc for the interbank market in 1993;
3. The single-bank and multi-bank trading platforms by various banks were introduced since 2000.

Presently, the informed and uninformed traders perform the electronic trading in a number of financial centers in the decentralized foreign currencies exchange markets around the World in the different time zones in Gençay, Gradojevic (2009). In the US$5.3tn-a-day foreign currencies exchange market, there are the following trading systems in King, Osler, Rime (2011):

1. The proprietary single bank foreign exchange currencies trading systems: Autobahn, FX Trader, BARX, Velocity, MorganDirect, REDI, SmartPrime, HSBCnet, FXHub, Prime Trade FX, Passport;

The main functions of the electronic trading system in the foreign currencies exchange markets are in Yamaguchi (2001):

1. The electronic order routing (the delivery of orders from users to the system);
2. The automated trade execution (the transformation of orders into trades);
3. The electronic dissemination of pre-trade (bid/offer quotes and depth);
4. The post-trade information (transaction price and volume data).

The bid-ask spreads for many major currency pairs in the interbank spot foreign exchange markets are considered as the main technical parameters to be processed by the electronic trading systems in Gallardo, Heath (2009), Gençay, Gradojevic (2009).

The researchers work to improve the existing electronic trading processes and systems for an application in the foreign currencies exchange markets in DeGrauwe (editor) (2005). The advanced complex electronic broking and trading systems have been developed Gallardo, Heath (2009). Since early 1990s, there is a process of research-driven innovation to improve the advanced complex electronic broking and trading systems in Heath, Whitelaw (June 2011). The advantages of electronic trading include in Galati and Heath (2007), Terada, Higashio and Iwasaki (2008), D’Arcy and Zurawski (2009), Nightingale et al (2010); King and Rime (2010), Heath, Whitelaw (June 2011):

1. The transparent spot exchange rate;
2. The efficient price discovery process;
3. The electronic trade concentration;
4. The electronic trade volume increase;

Let us think on the changes occurring in the global foreign currencies exchange market. such as the following things in Heath, Whitelaw (June 2011)

1. The foreign exchange activities concentration;
2. The banks relationships change;
3. The volume and share increases.
Fig. 11 shows schematically the electronic trading system in the foreign currencies exchange market, using the research findings in Yamaguchi (2001), King, Osler, Rime (2011).

Fig. 11. Schematic diagram of electronic trading system in foreign currencies exchange market.

Fig. 12 depicts the bid-ask spread for a ratio of the currency 1 / currency 2 over the time.

Fig. 12. Bid-ask spread for ratio currency 1 / currency 2 over time.
Presently, the Reuters Matching and EBS accounted for around 32% of all spot market transactions, and the single- and multibank electronic trading platforms represent 17% and 8%, respectively in Gallardo, Heath (2009).

The researchers continue to work to improve the existing electronic trading processes and systems for an application in the foreign currencies exchange markets in DeGrauwe (editor) (2005), Gallardo, Heath (2009), Heath, Whitelaw (June 2011).

For example, the algorithmic electronic trading represents a new type of the electronic trading, which generates the trading strategies decisions, using the mathematical algorithms in the software programs in Chaboud, Chiquoine, Hjalmarsson and Vega (2009), King and Rime (2010), King, Osler, Rime (2011), King, Osler, Rime (2012), Maurer, Schäfer (2010)

1. Automated trading opportunities search;
2. Orders placement optimization in respect to time and volume;
3. Smart order routing.

Let us discuss the modern technological trends toward the ultra high frequency electronic trading in the foreign currencies exchange markets. The ultra high frequency electronic trading has been introduced in Ledenyov D O, Ledenyov V O (2014c), having a meaning that the electronic trading process takes place in foreign currencies exchange markets at the ultra high frequencies, which are much higher in comparison with the high frequency electronic trading in Goodhart, Hall, Henry, Pesaran (1993), Goodhart, O’Hara (1995), Goodhart, O’Hara (1997).

Going to the discussion on the evolution of the high frequency electronic trading in the foreign currencies exchange market, let us make a definition of the ultra high frequency electronic trading, explaining that it is a trading process between the participating traders to trade the foreign currencies in the foreign currencies exchange markets at the time period of 10^{-9} sec.

The ultra high frequency electronic trading takes an advantage of the fact that the foreign currencies exchange rates change at the ultra high frequencies due to the high performance computing application, resulting in the new opportunities for the traders to increase the return premium and to make the profitable trade deals at the foreign currencies exchange markets in Ledenyov D O, Ledenyov V O (2014c). Here, we can point to both an increasing frequency of the processors operation (the hardware) as well as the an increasing frequency of the computing program with the fast algorithms and the operation system operations (the software).

Discussing the technical realization aspects of the ultra high frequency electronic trading process, it makes sense to explain that the ultra high frequency electronic trading is usually implemented with the use of the complex computing algorithms, which are implemented in the object oriented and sequential software, compiled by the compilers into the executable file, and
executed by the operating system at the high performance computing hardware in Ledenyov D O, Ledenyov V O (2014c).

Let us outline the directions for an accurate characterization of the foreign currencies exchange rates at the ultra high frequencies electronic trading in the foreign currencies exchange markets. We must understand that there are many various economic/financial/technical factors, which may have certain impacts on the change dynamics of the foreign currencies exchange rates at the ultra high frequency electronic trading in the foreign currencies exchange markets. For instance, it is a well known fact that the foreign currencies exchange rates in the foreign currencies exchange markets fluctuate at the ultra high frequencies in the frequency domain, depending on in Ledenyov D O, Ledenyov V O (2014c):

1. The foreign currencies supply and demand in the process of the foreign currencies trading at the in the foreign currencies exchange markets at the given time moment.

2. The propagation properties of the discrete-time digital waves (the business cycles) in the economies of the scales and scopes in the time domain at the Schumpeterian creative disruption age;

3. The technical parameters of the computing algorithms, used by the traders in the process of the foreign currencies trading at the in the foreign currencies exchange markets;

4. The technical specifications of the computers, used by the traders in the process of the foreign currencies trading at the in the foreign currencies exchange markets;

5. The volumes of the foreign currencies, traded at the ultra high frequency electronic trading in the foreign currencies exchange markets;

6. The frequencies of the trade deals completion at the ultra high frequency electronic trading in the foreign currencies exchange markets;

7. The characteristics of the traders’ discrete-time information absorption processes in the diffusion - type financial systems with the induced nonlinearities;

8. Some other parameters.

In Fig. 13, we can see that an accurate characterization of the foreign currencies exchange rates at the ultra high frequencies electronic trading in the foreign currencies exchange markets can be done, using an array of the advanced analysis methods in Ledenyov D O, Ledenyov V O (2014c):

1. the mathematical analysis methods;
2. the financial analysis methods;
3. the electronic analysis methods;
4. the quantum analysis methods.
All the listed above analysis methods may have their advantages and the drawbacks, depending on various technical factors such as the validity of the selected scientific model, the right application of the scientific theories, the complete understanding of the mathematics behind the calculations and the realistic evaluation of the computing accuracies, etc from a general point of view.

We would like to comment that, in the financial analysis of the foreign currencies exchange rates at the electronic trading process at the foreign currencies exchange markets at an influence by the discrete information absorption processes in the diffusion – type financial systems with the induced nonlinearities, the differential equations theory in Gikhman, Skorohod (1968), Sharkovsky, Maistrenko, Romanenko (1986), Protter (2005) can normally be used with the purpose to accurately characterize the time-dependent random processes with the independent increments in Skorohod (1967), Ledenyov V O, Ledenyov O P, Ledenyov D O (2002).

Researching the ultra high frequency electronic trading in the foreign currencies exchange markets in the forthcoming chapters, we will discuss comprehensively the mathematical, financial, electronic analysis methods to accurately characterize the trends in the foreign currencies exchange rates dynamics during the electronic trading process in the foreign currencies exchange markets in the short and long time periods.
Chapter 4

Mathematical analysis methods, including probability and statistics formulas, to accurately characterize trends in foreign currencies exchange rates dynamics at electronic trading process in foreign currencies exchange markets in short and long time periods

The frontier of the mathematic as a science has been moved forward by the talented scientists at universities in various countries over the centuries in Wilson (2016).

In the beginning of the XX century, the financial mathematical techniques to estimate the valuable financial papers prices evolutions in the finances in Bachelier (1900, 1914, 1937, 19 May 1941) had been created, using the important research results in the probability theory and the statistics theory in the classic mathematics in De Laplace (1812), Bunyakovsky (1846), Chebyshev (1846, 1867, 1891), Markov (1890, 1899, 1900, 1906, 1907, 1908, 1910, 1911, 1912, 1913).

More specifically, in the XX century, the classic mathematical techniques in De Laplace (1812), Bunyakovsky (1846), Chebyshev (1846, 1867, 1891), Markov (1890, 1899, 1900, 1906, 1907, 1908, 1910, 1911, 1912, 1913), and then in the classic financial mathematics techniques in Bachelier (1900, 1914, 1937, 19 May 1941), have been greatly improved at later date in Kolmogorov (1938, 1985, 1986), Wiener (1949), Brush (1968, 1977), Shiryaev (1995).

Presently, as we know, the probability theory and the statistics theory play a significant role in the classic financial mathematics science and the econometrics science. An accurate characterization of the foreign currencies exchange rates dynamics in the foreign currencies exchange markets over a certain time period can be done with an application of both the probability theory and the statistics theory in the classic financial mathematics science.

A main idea behind the classic financial mathematics techniques is to analyse the future trends the foreign currencies exchange rates in the foreign currencies exchange markets in the finances, using the collected data over the certain observation time periods in the past. Indeed, there is a big number of theoretical econometrical models with an application of the probability theory, the statistics theory and the differential equations theory in the classic financial mathematics, which try to predict the foreign currencies exchange rates evolutions in the foreign currencies exchange markets in the finances in Morgenegg (1990), Müller, Dacorogna, Olsen, Pictet, Schwarz, Morgenegg (1990), Dacorogna, Müller, Nagrel, Olsen, Pictet (1993), Peters
Fig. 14 demonstrates the main foundational blocks of the classic financial mathematics, which are used to predict the foreign currencies exchange rates evolutions in the foreign currencies exchange markets in the finances.

Let us consider the classic financial mathematics application in the modern finances and write the following mathematical formula, which describes the spot exchange rate S_{t}^{m} of the Currency1 in relation to the Currency2 in FX market in Morgenegg (1990), Müller, Dacorogna, Olsen, Pictet, Schwarz, Morgenegg (1990), Dacorogna, Müller, Nagrel, Olsen, Pictet (1993), Peters (1994), Ghysels, Jasiak (1995), Schnidrig, Würtz (1995), Mantegna, Stanley (1995), Guillaume, Dacorogna, Dave, Muller, Olsen, Pictet (1997), Shiryaev (1995, 1998a, 1999):

$$S_{t}^{m} = \left[\frac{\text{Currency}1^{m}}{\text{Currency}2^{m}} \right]_{t}, \quad t \geq t_0, \quad m > 0,$$

where S_{t}^{m} is the spot exchange rate,

Currency1 is the currency no 1,
\textit{Currency2} is the currency no 2, \\
\textit{m} - the month, \\
\textit{t} - the time.

\[
\Delta S_t = S_t - S_{t-1} = \left[\frac{\text{Currency1}}{\text{Currency2}} \right]_t - \left[\frac{\text{Currency1}}{\text{Currency2}} \right]_{t-1},
\]

where \(\Delta S_t \) is the change of spot exchange rate over time,

\textit{Currency1} is the currency no 1,

\textit{Currency2} is the currency no 2,

\textit{t} - the time.

\[
S_t = \sqrt{S^a_t \cdot S^b_t},
\]

\[
S_t = S_0 + \sum_{k \geq 1} \xi_k I(\tau_k \leq t),
\]

\[
\tilde{S}_t = S_{\tau_{k+1}} \frac{\tau_{k+1} - t}{\tau_{k+1} - \tau_k} + S_{\tau_{k-1}} \frac{t - \tau_k}{\tau_{k+1} - \tau_k}, \quad \tau_k < t \leq \tau_{k+1}.
\]

where \(S^a_t = S_0 e^{\mu^a t} \) is the ask price,

\(S^b_t = S_0 e^{\mu^b t} \) is the bid price,
\(S^a_t - S^b_t \) is the difference or the spread,

\((S_t) \) the discrete-change process,

\((\tilde{S}_t) \) the continuous-change process,

\(t \) - the time.

Discussing the one dimensional distributions of the relative changes of the rates, it is necessary to understand clearly one things, namely that the “long tails” effect can be approximated with the application of a number of different statistical distributions in Ghysels, Jasiak (1995), Schnidrig, Würtz (1995), Shiryaev (1998a). Let us comment that a significant criticism of the classic financial mathematics methods comes from the fact that the “long tails” effects can not be characterized accurately in the time domain, applying the known statistical and likelihood calculation mathematical techniques.

In addition, in the scientific literature, it was shown that the scaling behaviour can be observed in the foreign currencies exchange rates changes dynamics in Mantegna, Stanley (1995), Shiryaev (1998a). We can say that the volatility of the change of the foreign currencies exchange rate has the fractal structure, that is the volatility \(\ln \hat{v}_r(\alpha) \) as a function of \(\ln \Delta \) has the fractal structure, which can be described by the Hurst constant in Guillaume, Dacorogna, Dave, Muller, Olsen, Pictet (1997), Müller, Dacorogna, Olsen, Pictet, Schwarz, Morgenegg (1990), Peters (1994), Schnidrig, Würtz (1995), Shiryaev (1998a).

Considering the correlation properties of stationary time series (signals), it is possible to introduce the empirical autocorrelation function \(\hat{R}(k) \) of increments sequence \(\hat{h}_n \) in the Currency\(^1\)/Currency\(^2\) exchange rate, aiming to demonstrate the cyclical nature of the autocorrelation function \(R(k) \) in Dacorogna, Müller, Nagrel, Olsen, Pictet (1993), Guillaume, Dacorogna, Dave, Müller, Olsen, Pictet (1997), Shiryaev (1998a)

\[
R(k) = \frac{\|\hat{h}_n\| \|\hat{h}_{n+k}\| - \|\hat{h}_n\| \cdot \|\hat{h}_{n+k}\|}{\sqrt{D\|\hat{h}_n\| \cdot D\|\hat{h}_{n+k}\|}},
\]

where \(\hat{h} = ([\hat{h}_1], [\hat{h}_2], \ldots) \) is the stationary time series.

In recent time, it was shown that the foreign currencies exchange rates and the economic fundamentals are interconnected nonlinearly in Yiu, Ho, Ma, Tsang (2010) in the global capital markets in Lo (2000). The typical S-shaped relationship between the exchange rate and the economic fundamentals in a target zone model has been researched in Yiu, Ho, Ma, Tsang (2010).

The formula for the interest rates differential in FX markets can be written as in Yiu, Ho, Ma, Tsang (2010)

\[
1 + i_{t,m}^{\text{Currency1}} = \frac{1 + i_{t,m}^{\text{Currency2}}}{\exp[\frac{S_{t+m}}{S_t}]},
\]

where \(i_{t,m} \) is the stands for LIBOR with a maturity of \(m \) months;

\(E \) is the expectation of the \(m \)-month forward exchange rate;

\(S \) is the spot exchange rate.

Let us conclude our scientific discussion by stating that the classic mathematical analysis methods, including the probability and statistics formulas, could be used to characterize the trends in the foreign currencies exchange rates dynamics at the electronic trading process in the foreign currencies exchange markets in the short and long time periods, however the accuracy of characterization would depend on the theoretical models limitations in a general case.

The possible solution to improve an accuracy of the forecast in the capital markets is to apply the financial analysis methods, including the macroeconomics and microeconomics formulas, to try to closely predict the foreign currencies exchange rates dynamics during the electronic trading process in the foreign currencies exchange markets in the short and long time periods.

The financial analysis methods in the behaviour finance science would be considered in the next chapter.
Chapter 5

Financial analysis methods, including macroeconomics and microeconomics formulas, to closely predict foreign currencies exchange rates dynamics during electronic trading process in foreign currencies exchange markets in short and long time periods.

As we explained before, the problem on the forecast of the foreign currencies exchange rates at the ultra high frequency electronic trading in the foreign currencies exchange markets is considered as one of central research problems for the traders, investors and bankers to solve in Dornbusch (1976).

In general, the financial analysis methods can be used to solve a complicated research task toward the currencies exchange rates forecast at the ultra high frequency electronic trading in the foreign currencies exchange markets in Frankel, Froot (1990c). Discussing the financial forecast models, we would like to note that the existing research approaches to forecast the foreign currencies exchange rates at the ultra high frequency electronic trading in the foreign currencies exchange markets include, but not limited to, the well known financial analysis methodologies with a number of models in the classic finances science in Ledenyov D O, Ledenyov V O (2014c).

There are the macroeconomics analysis research approach and microeconomics analysis research approach in the financial analysis methods to predict the currencies exchange rates at the ultra high frequency electronic trading in the foreign currencies exchange markets. However, we have to keep in mind that all the financial analysis methods as any other methods have a limited accuracy due to various factors in Ledenyov D O, Ledenyov V O (2014c).

Let us consider the macroeconomics analysis research approach, which uses a number of the econometric models to forecast the trends in the foreign currencies exchange rates dynamics at the ultra high frequency electronic trading in the foreign currencies exchange markets in Lam, Fung, Yu (2008).

Explaining more specifically, the macroeconomic analysis research approach includes the following models:

1. The Purchasing Power Parity model;
2. The Uncovered Interest Rate Parity model;
3. The Sticky Price Monetary model;
4. The Bayesian Averaging Technique model;
5. The Combined Forecast model, including all the above models with benchmarks given by the random-walk model and the historical average return;
6. The State-Space model with the Stratanovich-Kalman-Bucy interpolation algorithm.

Fig. 15 shows the models in the macroeconomics analysis research approach to forecast the foreign currencies exchange rates at the ultra high frequency electronic trading in the foreign currencies exchange markets.

![Diagram showing macroeconomics analysis research approach](image)

Fig. 15. Macroeconomics analysis research approach.

We can see that a main research idea behind the macroeconomics analysis research approach is to solve the forecast problem by analyzing a possible impact by the macroeconomic processes and variables on the changing dynamics of the foreign currencies exchange rates at the ultra high frequency electronic trading in the foreign currencies exchange markets.
Considering the macroeconomics analysis research approach, it makes sense to explain that the fluctuations of the macroeconomic variables such as the GIP(t), GDP(t), GNP(t), PPP(t) have the immediate and unambiguous effects on the deviations of the foreign currencies exchange rates at the ultra high frequency electronic trading in the foreign currencies exchange markets in Ledenyov D O, Ledenyov V O (2016r).

Among a variety of listed models in the macroeconomics analysis research approach, we would like to focus on the state – space model, commenting that some other macroeconomic applications of the state-space interpolation models may also include in Proietti, Luati (2012a):

2. The dynamic factor models, for the extraction of a single index of coincident indicators, see Stock and Watson (1989), Frale et al. (2011), and for large dimensional systems Jungbacker, Koopman and van der Wel (2011).

4. The time varying auto-regressions with stochastic volatility: see Primiceri (2005), Cogley, Primiceri and Sargent (2010).

Finally, we would like to conclude that the macroeconomics analysis research approach is quite convenient from the scientific point of view, but as we already noted it’s forecast accuracy is limited to the forecast accuracies of the selected models.

Let us think on the microeconomics analysis research approach, which applies a number of the econometric models to forecast the trends in the foreign currencies exchange rates dynamics at the ultra high frequency electronic trading in the foreign currencies exchange markets in Frankel, Galli, Giovannini (editors) (1996).

Speaking more clearly, the microeconomics analysis research approach includes the following models in Frankel, Galli, Giovannini (editors) (1996):

1. The market microstructure model;
2. The transactions order flow model;
3. The generalized autoregressive conditional heteroskedasticity model;
4. The state-space model with the Stratanovich-Kalman-Bucy filtering algorithm;
5. The state-space model with the particle filtering algorithm.

A main research idea behind the microeconomics analysis method is to solve the forecast problem by analyzing a possible influence by the microeconomic processes on the changing dynamics of the foreign currencies exchange rates at the ultra high frequency electronic trading in the foreign currencies exchange markets.

Researching the microeconomics analysis research approach, it is necessary to explain that the oscillations of the microeconomic variables such as the volume of transactions over the selected time period, the order flow of transactions over the selected time period, the volatility of exchange rates over the selected time period, have a considerable impact on the on the foreign currencies exchange rates in Frankel, Galli, Giovannini (editors) (1996).

Fig. 16 shows the models in the microeconomics analysis research approach to forecast the foreign currencies exchange rates at the ultra high frequency electronic trading in the foreign currencies exchange markets.

Fig. 16. Microeconomics analysis research approach.
Making the general remarks on the microeconomics analysis models, we would like to say the following comments about the microeconomics variables.

Frankel, Galli, Giovannini (editors) (1996) highlight the fact that the changes of the microeconomic variables, which are connected with:

1. the foreign currencies exchange market transparency,
2. the foreign currencies exchange market decentralization,
3. the brokers behaviour,
4. the market-makers behaviour,
5. the auctioneers actions,
6. the location of trading,
7. the efficiency of clearing of foreign exchange transactions,
8. the relation between the spot market and the derivative market,
9. the associated systemic risk,

may have a significant impact on the foreign currencies exchange rates at the electronic trading (the ultra high frequency electronic trading) in the foreign currencies exchange markets.

The microeconomics variables may be correlated/uncorrelated in Frankel and Froot (1990b), Frankel, Galli, Giovannini (editors) (1996). For example, there may be a high intraday correlation between the trading volume and the trading volatility due to both

1) the asymmetric information flows between the informed traders and the uninformed traders;
2) the need for the liquidity from the side of the liquidity traders.

The customer transactions order flow at the ultra high frequency electronic trading in the foreign currencies exchange markets is an important microeconomic variable in Frankel, Galli, Giovannini (editors) (1996), Evans, Lyon (2005, 2006, 2007).

Let us explain that the state-space model with the Stratonovich-Kalman-Bucy filtering algorithm and the particle filtering algorithm in the microeconomic analysis research approach evolved into an independent scientific direction, which will be considered comprehensively in the Chapter 6.

We have discussed the advantages and drawbacks of the financial analysis methods, including macroeconomics and microeconomics formulas, to closely predict foreign currencies exchange rates dynamics during electronic trading process in foreign currencies exchange markets in short and long time periods. However, let us repeat, that the accuracy of characterization with an application of the financial analysis methods would depend on the theoretical models limitations in a general case. Therefore, it makes sense to apply the electronic analysis methods, including the Stratonovich-Kalman-Bucy filtering algorithm in the Stratonovich – Kalman – Bucy filter as well as the particle filter, to more accurately estimate the time series and predict the trends in the foreign currencies exchange rates dynamics during the electronic trading process in the foreign currencies exchange markets in the short and long time periods. The next chapter will consider the electronic analysis methods in details.
Chapter 6

Electronic analysis methods, including Stratonovich-Kalman-Bucy filtering algorithm in Stratonovich – Kalman – Bucy filter and particle filter, to accurately estimate time series and predict trends in foreign currencies exchange rates dynamics during electronic trading process in foreign currencies exchange markets in short and long time periods

We would like to continue our advanced scientific discussion on the forecast of the foreign currencies exchange rates at the ultra high frequency electronic trading in the foreign currencies exchange markets in the global cloud society with the increasing information streams, the complex communication networks and the global economic agents, by focusing on the electronic analysis methods in Ledenyov D O, Ledenyov V O (2014c).

In the beginning, let us remind that, in general, in the international financial markets in Grabbe (1991), the scientific forecast of the foreign currencies exchange rates at the ultra high frequency electronic trading in the foreign currencies exchange markets in Ledenyov D O, Ledenyov V O (2014c) in conditions of high volatility in Aliber (2002) can be done mathematically with an application of the three mathematical techniques:

We have already reviewed the classic mathematics methods with the probabilistic and statistical techniques in Chapter 3, hence in this chapter let us concentrate our research attention on the discrete mathematics filtering techniques toward the prediction of the trends of the foreign currencies exchange rates at the ultra high frequency electronic trading in the foreign currencies exchange markets, using the time series estimation in the signal filtering theories in the digital electronics, analog electronics, econometrics and econophysics sciences.

We prefer to continue our discussion with the review on the important scientific ideas presented in both:

1) the analogue signal processing theory, and
2) the digital signal processing theory.

Discussing the analogue signal processing, it is worth to say that, in the theory of electrodynamics and the theory of electronics (the radio-physics), it is a well known fact that the analogue signal with the encoded information can be transmitted by the signal carrier over the wireless, wireline or optical channels in Wanhammar (1999), Ledenyov D O, Ledenyov V O (2012e). This analogue signal can be accurately characterized by its changing amplitude, frequency, phase and power over the certain time period in Ledenyov D O, Ledenyov V O (2012e). The encoding of the information into the analogue signal can be done with the help of various modulation processes by changing the analogue signal’s parameters such as the amplitude (amplitude modulation), frequency (frequency modulation), phase (phase modulation) and power (pulse code modulation) over the time in Ledenyov D O, Ledenyov V O (2012e). The analogue signal can be continuously transmitted over the transmission channel for some time period (the continuous wave (CW) signal) or it can be discretely transmitted over the transmission channel for some time (the discrete signal). In the last case, the analogue signal can be represented as a sequence of the discrete magnitudes of physical parameters of the analogue signal in Ledenyov D O, Ledenyov V O (2012e). The analogue signals filtering with the frequency selective signal filters is needed in the cases, when it is necessary to transmit or receive the selected analogue signal over the certain frequency in the frequency domain only in Ledenyov D O, Ledenyov V O (2012e). The analogue signals filtering is well described in the book: “Nonlinearities in microwave superconductivity” in Ledenyov D O, Ledenyov V O (2012e): “The High Temperature Superconducting (HTS) microwave electromagnetic signal filter is one of the essential microwave components in modern wireless communication systems in which the complete and independent measurement of the entire signal space to identify and
decode the information in the spectral transmission sequences over the wireless channel is made. The main functions of microwave filter are to select the information signal carrier in the frequency domain and amplify its amplitude by the resonance.”

Discussing the digital signal processing techniques, it makes sense to explain that the analogue signal can also be uniformly sampled over the time, using the Nyquist theorem, with the help of the Analogue to Digital (A/D) converter to obtain the digital signal; or the digital signal can be de-sampled over the time with the help of the Digital to Analogue (D/A) converter to obtain the analogue signal in Wanhammar (1999). The analogue signal processing can be performed, using the analogue signal processing algorithms such as the Fourier transform, Laplace transform, etc. in Wanhammar (1999). The digital signal processing can be performed, using the digital signal processing algorithms such as the Discrete Fourier transform (DFT), Fast Fourier transform (FFT), Cooley-Turkey Fast Fourier transform (CT FFT), Sande-Tukey Fast Fourier transform (ST FFT), Inverse Fast Fourier transform (Inverse FFT), Discrete Cosine transform (DCT), Wavelet transform, z-transform, etc. in Wanhammar (1999). As explained in Wanhammar (1999): “The main purpose of a signal processing system is generally to reduce or retain the information in a signal.” The digital signal processing is usually done for the Linear Shift Invariant (LSI) systems, which are linear and time-invariant in Wanhammar (1999). The frequency response of the Linear Shift Invariant (LSI) system can be characterized by the frequency function, magnitude function, attenuation function, phase function, group delay function, and transfer function in Wanhammar (1999). The digital filters can also be classified in the Finite-length Impulse Response (FIR) filters and Infinite-length Impulse Response (IIR) filters, depending on their response functions characteristics in Wanhammar (1999).

The electronic analysis methods are based on the Stratonovich – Kalman – Bucy filter and the particle filter, which can be applied to accurately estimate the time series and predict the trends in the foreign currencies exchange rates dynamics during the ultra high frequency electronic trading process in the foreign currencies exchange markets in the short and long time periods.

The Stratonovich – Kalman – Bucy filtering algorithm was invented in the science of signal processing, hence let us discuss the Stratonovich – Kalman – Bucy filtering algorithm in Stratonovich (1959a, b, 1960a, b), Kalman, Koepcke (1958, 1959), Kalman, Bertram (1958, 1959), Kalman (1960a, b, 1963), Kalman, Bucy (1961).

Going to the discussion on the Stratonovich – Kalman – Bucy filtering algorithm, it is interesting to highlight the fact that, since the beginning of the XX century, the nonlinearities and nonlinear physical systems represented the subjects of strong research interest in the natural

The intensive research led to the creation of the optimal non-linear filtering theory in Stratonovich (1959a b, 1960a, b, 1961, 1964, 1966). During next few years, the optimal non-linear filtering theory has been extensively complemented by the various research findings; and its foundational principles have been used to develop the Stratonovich – Kalman – Bucy filtering algorithm in 1959-1963 in Stratonovich (1959a, b, 1960a, b), Kalman, Koepcke (1958, 1959), Kalman, Bertram (1958, 1959), Kalman (1960a, b, 1963), Kalman, Bucy (1961).

The Stratonovich – Kalman – Bucy filter performs the signal filtering, using the Stratonovich – Kalman – Bucy filtering algorithm, which is a Linear Quadratic Estimation (LQE) algorithm to measure the noisy signal over the selected time period and predicts the magnitudes of the changing signal parameters in the time domain in Stratonovich (1959a, b, 1960a, b), Kalman, Koepcke (1958, 1959), Kalman, Bertram (1958, 1959), Kalman (1960a, b, 1963), Kalman, Bucy (1961).

The Linear Quadratic Estimation (LQE) algorithm operates recursively on the measured noisy input signal data streams to make a statistically optimal estimate of the changing signal parameters in Stratonovich (1959a, b, 1960a, b), Kalman, Koepcke (1958, 1959), Kalman, Bertram (1958, 1959), Kalman (1960a, b, 1963), Kalman, Bucy (1961).

We would like to demonstrate the general linear continuous-dynamic system in Fig. 16, the general linear discrete-dynamic system in Fig. 17, the Stratonovich-Kalman-Bucy optimal filter in Fig. 18, showing the corresponding block schemes in Kalman (1960b).
The matrix block diagram of the general linear continuous-dynamic system is shown in Fig. 17 in Kalman (1960b).

![Fig. 17. Block diagram of general linear continuous-dynamic system (after Kalman (1960b)).](image)

The matrix block diagram of the general linear discrete-dynamic system is depicted in Fig. 18 in Kalman (1960b).

![Fig. 18. Block diagram of general linear discrete-dynamic system (after Kalman (1960b)).](image)
The matrix block diagram of the Stratonovich-Kalman-Bucy optimal filter is presented in Fig. 19 in Kalman (1960b).

![Block diagram of the Stratonovich-Kalman-Bucy optimal filter](image)

Fig. 19. Block diagram of Stratonovich-Kalman-Bucy optimal filter (after Kalman (1960b)).

Thus, it is important to memorize that the optimal filtering and prediction algorithms in the frames the theory of optimal non-linear filtering of random functions in Stratonovich (1959a, b, 1960 a, b), can be used to forecast the foreign currencies exchange rates at the ultra high frequency electronic trading in the foreign currencies exchange markets at an influence by the discrete information absorption processes in the diffusion – type financial systems with the induced nonlinearities. For example, the Stratanovich – Kalman – Busy filtering algorithm can be used to solve the foreign currencies exchange rates forecast problem.

In the microeconomics, the signal-extraction approach with an application of a state-space model with the Stratonovich-Kalman-Bucy filtering algorithm to predict the forward foreign currencies exchange rates, the expected spot rates, and the premia at the ultra high frequency electronic trading in the foreign currencies exchange markets is becoming quite popular in Wolff (1987), Yu, Fung, Hongyi (2005).
For example, Yu, Fung, Hongyi (2005) have discussed the possible mathematical techniques to evaluate the exchange rate risk premiums in Hong Kong dollar, using the signal-extraction approach for the research data analysis. Let us write a set of equations to describe the signal-extraction approach in Yu, Fung, Hongyi (2005):

\[E_t(S_{t,t}) = f_t, \quad (1) \]

where \(E_t(\ldots) \) is the conditional expectation, based on information available at time \(t \); \(S \) and \(f \) are the natural logarithm of the spot and forward exchange rates respectively.

\[S_{t,t}f_t + \varepsilon_{t+1}, \quad (2) \]

where \(\varepsilon_{t+1} \) is the rational expectation forecast error: a white-noise process with zero-mean.

\[\Delta S_{t,t} = \alpha + \beta(f_t - S_t) + \varepsilon_{t+1}, \quad (3) \]

where \(\Delta \) is the differencing operator, and \(\Delta S_{t,t} \) is defined as \(S_{t+1} - S_t \).

\[f_t = E_t(S_{t,t}) + rp_t, \quad (4) \]

\[f_t - S_{t,t} = rp_t + \eta_{t+1}, \quad (5) \]

where \(\eta_{t+1} \) is the expectation error, it is assumed to be serially uncorrelated with zero-mean.

\[f_t^{t,m} - S_{t+m} = rp_{t,m} + \eta_{t,m}, \quad (6) \]

where \(f_t^{t,m} \) is the natural logarithm of the forward exchange rate at time \(t \) for contracts delivered at \(m \) periods later, \(S_{t+m} \) is the corresponding natural logarithm of spot exchange rate at time \(t+m \), \(rp_{t,m} \) is equal to \(f_t^{t,m} - E_t(S_{t+m}) \), which is the time-varying risk premium on forward contracts for delivery at \(m \) periods later.

\[\eta_{t,m} = e_{t,m} + \hat{\theta}_0 e_{t+m-1} + \hat{\theta}_1 e_{t+m-2} + \ldots + \hat{\theta}_{m-1} e_{t+1}, \quad (7) \]

where \(e_{t,j} \sim N(0,V) \), \(j = 1, \ldots, m \), i.e. \(e_{t,j} \) is assumed to distribute normally with mean zero and variance \(V \).

\[rp_{t,m} = \sum_{i=1}^{m} \delta_i rp_{t-i,m} + \mu_{t,m}, \quad (8) \]

\[\mu_{t,m} \sim N(0, U), \quad (9) \]

where \(\eta_{t+m} \) and \(\mu_{t,m} \) are assumed to be independent for all \(t \). Yu, Fung, Hongyi (2005) note that the equations (6) to (9) in the state-space form are estimated by the maximum likelihood method through the application of the Stratonovich-Kalman-Bucy optimal filter.
As it can be seen in Yu, Fung, Hongyi (2005), the forward exchange rate can be viewed as the sum of the two components: an expected future spot rate and the time-varying risk premium, hence it is possible to use the signal-extraction approach to identify and measure the unobserved risk premiums as in the case of the Hong Kong dollar forward exchange rates.

Let us say that the particle filter performs a signal filtering, using the recursive Bayesian filtering algorithm with the Monte-Carlo simulations in Roncalli, Weisang (2008). The posterior density function is represented by a set of the random samples with the associated weights and the estimates are computed on these samples and weights in Roncalli, Weisang (2008).

The next chapter will deal with the quantum analysis methods, which could even better improve an accuracy of the forecast in the capital markets.
Chapter 7

Quantum analysis methods, including wave function, to precisely forecast foreign currencies exchange rates dynamics during ultra high frequency electronic trading in foreign currencies exchange markets in short and long time periods

Let us consider the perspective quantum analysis methods to precisely the forecast foreign currencies exchange rates dynamics during the ultra high frequency electronic trading in the foreign currencies exchange markets in the short and long time periods. In the beginning, we would like to make a few comments on the computing modelling, which is usually being used in making all kinds of the scientific forecasts. In the case of the forecast of the foreign currencies exchange rates at the ultra high frequency electronic trading in the foreign currencies exchange markets, an accuracy of the computing modeling results depends on the three main factors:

1. The mathematical-econometrical-econophysical model’s meaningfulness and validity;
2. The quality of the true random number sequence by the random number generator at the high performance computing system;
3. The technical parameters of the high performance computing system.

Fig. 20 depicts the computer modeling to forecast the foreign currencies exchange rates at the ultra high frequency electronic trading in the foreign currencies exchange markets.

Fig. 20. Block diagram of computer modeling to forecast foreign currencies exchange rates at ultra high frequency electronic trading in foreign currencies exchange markets.
Therefore, a considerable research attention has been paid to the development of the meaningful valid mathematical-econometrical-econophysical model, which must account for all the financial and economical variables changes in the time, frequency and space domains in a general case. It means that the meaningful valid mathematical-econometrical-econophysical model has to be designed by scientists, using all the modern theories on the ultra high frequency electronic trading in the foreign currencies exchange markets. Therefore, let us focus on the model creation to forecast a change of the foreign currencies forward exchange rate in the time domain.

The foreign currencies forward exchange rate can be represented as a sum of the two components in Yu, Fung, Hongyi (2005), Ledenyov D O, Ledenyov V O (2014c):

1. a foreign currencies future spot exchange rate; and
2. a time-varying risk premium of the foreign currencies future exchange rate.

The general formula for the foreign currencies forward exchange rate calculation can be written as in Yu, Fung, Hongyi (2005), Ledenyov D O, Ledenyov V O (2014c):

\[
\text{Foreign Currencies Forward Exchange Rate} = \text{Foreign Currencies Spot Exchange Rate} + \text{Time Varying Risk Premium}.
\]

The awesome fact is that the modern national/global financial systems of scale and scope can be described as the discrete-time quantum systems rather than the continuous-time classic systems, because of their discrete-time quantum nature in view of the spontaneous positive/negative transitions of macro/micro economics variables (GDP(t) or PPP(t)), caused by the disruptive events influences on the financial/economic processes in Ledenyov D O, Ledenyov V O (2015h, i, j, k). For example, the introduction of the technical disruptive innovation in the economy of the scale and scope can result in the step-like positive/negative transition of the GDP(t) or PPP(t) in the economy of the scale and scope.

Therefore, we propose that the quantum finances science instead of the classic finances science has to be used with the aim to accurately characterize the foreign currencies exchange rates dynamics at the ultra high frequency electronic trading in the foreign currencies exchange markets in Ledenyov D O, Ledenyov V O (2015h, i, j).

As a result, we think that the research approaches to predict the foreign currencies exchange rates at the ultra high frequency electronic trading in the foreign currencies exchange markets, which are based on the classic-mathematics analysis methods (see Chapter 4), the financial analysis methods ((see Chapter 5), may have a limited accuracy, because they can characterize the relatively slow changing continuous-time signals only, but not the discrete-time
digital signals or the quantum signals. The research approach to predict the foreign currencies exchange rates at the ultra high frequency electronic trading in the foreign currencies exchange markets, which is grounded on the electronic analysis methods (see Chapter 6), has also a limited accuracy, because it can characterize the discrete-time digital signals only, but not the quantum signals.

The scientific perspective on an introduction of the quantum forecast techniques of the foreign currencies exchange rates dynamics in the foreign currencies exchange markets, using the time dependent / time independent wave equation with wave function in the quantum finances theory has been discussed for the first time in Ledenyov D O, Ledenyov V O (2015l).

Applying the quantum macroeconomic theory in Ledenyov D O, Ledenyov V O (2015h) and the quantum microeconomic theory in Ledenyov D O, Ledenyov V O (2015j), we propose a new research methodology to forecast the foreign currencies exchange rates at the ultra high frequency electronic trading in the foreign currencies exchange markets, which include the following newly invented innovative financial analysis methods and models in the quantum finances science in Ledenyov D O, Ledenyov V O (2015l):

1. Macroeconomic analysis method, based on:
 1) The Ledenyov wave function in the time dependent Ledenyov quantum econophysical wave equation model;
 2) The Ledenyov wave function in the time independent Ledenyov quantum econophysical wave equation model.

2. Microeconomic analysis methods, based on:
 1) The Ledenyov wave function in the time dependent Ledenyov quantum econophysical wave equation model;
 2) The Ledenyov wave function in the time independent Ledenyov quantum econophysical wave equation model.

The time dependent Ledenyov quantum econophysical wave equation in the wave function method to forecast the foreign currencies exchange rates at the ultra high frequency electronic trading in the foreign currencies exchange markets can be written as in Ledenyov D O, Ledenyov V O (2015l)

$$i\hbar_{FX} \frac{\partial}{\partial t} w_{FX} = \hat{L}_{FX} w_{FX},$$

where: i – the imaginary unit,w_{FX} – the wave function of a quantum financial system, which is a mathematical function in the quantum mechanics to accurately characterize a specified state of a quantum
financial system. The square of the amplitude of the wave function at a given point being representative of the probability of the system being found in that state at that point.

\[l_{FX} \] – the Ledenyov constant,

\[t \] – the time,

\[\frac{\partial}{\partial t} \] – the partial derivative with respect to the time,

\[\hat{L}_{FX} \] – the Ledenyov operator to characterize the total energy of the wave function.

The time independent Ledenyov quantum econophysical wave equation in the wave function method to forecast the foreign currencies exchange rates at the ultra high frequency electronic trading in the foreign currencies exchange markets can be written as in Ledenyov D O, Ledenyov V O (2015):

\[E_{FX} w_{FX} = \hat{L}_{FX} w_{FX}, \tag{2} \]

where: \(w_{FX} \) – the wave function of a quantum financial system, which is a mathematical function in the quantum mechanics to accurately characterize a specified state of a quantum financial system. The square of the amplitude of the wave function at a given point being representative of the probability of the system being found in that state at that point,

\[\hat{L}_{FX} \] – the Ledenyov operator to characterize the total energy of the wave function,

\[E_{FX} \] – the energy of the state \(w_{FX} \).

Discussing the advantages of the quantum analysis methods, it is necessary to add that the quantum system state prediction algorithm, based on the time dependent / time independent wave equation with the wave function in the quantum finances theory, allow to forecast accurately the foreign currencies exchange rates at the ultra high frequency electronic trading in the foreign currencies exchange markets, because it takes to the consideration the existing quantum fluctuations of economic variables in the capital markets in Ledenyov D O, Ledenyov V O (2015). The quantum system state prediction algorithm, based on the time dependent / time independent wave equation with the wave function in the quantum finances theory and developed with the aim to forecast the foreign currencies exchange rates at the ultra high frequency electronic trading in the global foreign currencies exchange markets, is a subject of ongoing research in Ledenyov D O, Ledenyov V O (2015).

The highly innovative research on the quantum analysis methods, including the wave function equation, to precisely forecast the foreign currencies exchange rates at the ultra high frequency electronic trading in the foreign currencies exchange markets is done, using the following scientific literature:

Up to this point, we have already discussed the possible solutions of the accurate characterization problem by analyzing and forecasting the foreign currencies exchange rates at the ultra high frequencies electronic trading in the foreign currencies exchange markets, using the mathematical analysis methods, the financial analysis methods, the electronic analysis methods, and the quantum analysis methods.

Summarizing all the research discussions, we would like to express our research opinion that an application of a combination of the analysis methods, including the classic mathematical analysis methods, the financial analysis methods, the electronic analysis methods, the quantum analysis methods in the econometrics/econophysics may significantly improve an accuracy of forecast in the global capital markets. In the next chapter, we will focus on the quantum winning virtuous trading strategies creation and execution during the ultra high frequencies electronic trading in the foreign currencies exchange markets in short and long time periods. These quantum winning virtuous trading strategies can be created, using the obtained financial data at the process of forecast in the capital markets.
Chapter 8

Quantum winning virtuous trading strategies creation and execution during ultra high frequencies electronic trading in foreign currencies exchange markets in short and long time periods

The fundamental strategy theory - a pink diamond, which shines brightly and colorfully in a spectrum of illuminating lights of the business administration science, the macroeconomics science, the microeconomics science and the nanoeconomics science – continues to attract a considerable scientific interest among the leading strategy thinkers and undergoes a natural evolution by making a chain of the scientific evolutionary visions transformations in the best minds of the leading strategy thinkers in the World:

1. The classical philosophical views on the fundamental strategy theory, which consider the continuous-time processes in the economies of the scales and scopes in the mechanical devices disruption century in Chandler (1962, 1998; 1977, 1993; 1994; 2001; 2005);

2. The analogue philosophical views on the fundamental strategy theory, which deal with the continuous-time processes in the analogue creative economies of the scales and scopes in the analogue devices disruption century in Ledenyov D O, Ledenyov V O (2015b);

3. The digital philosophical views on the fundamental strategy theory, which deal with the discrete-time processes in the digital creative economies of the scales and scopes in the digital devices disruption century in Ledenyov D O, Ledenyov V O (2015b);

Fig. 21 illustrates the thinking approaches in the fundamental strategy theory.

![Fig. 21. Thinking approaches to fundamental strategy theory.](image-url)
In this chapter, we would like to share our professional expertise on the quantum winning virtuous trading strategies creation and execution in the process of the ultra high frequencies electronic trading in the foreign currencies exchange market. Let us attract attention to the fact that the quantum winning virtuous strategies creation and execution by the trader in the process of the ultra high frequencies electronic trading in the foreign currencies exchange market will generate an advantage in the form of a significant increase of the return premium for the smart active traders at the ultra high frequencies electronic trading in the foreign currencies exchange market in Ledenyov D O, Ledenyov V O (2014c), Huang, Cai, Wang (2002).

1. to get an increased return premium in the foreign currencies exchange markets,

3. to share a part of increased return premium to realize the shared value initiatives in the society in Porter, Kramer (December 2006).

Fig. 22 shows the block diagram of the quantum strategy search algorithm.

Fig. 22. Quantum strategy search algorithm.
In the subsequent scientific discussion, we would like to say a few additional clarifying words on the following research representations and terms as far as the Quantum Strategy Search Algorithm is concerned:

1. The information absorption phenomena in Quantum Strategy Search Algorithm;
2. The quantum logic definition in Quantum Strategy Search Algorithm;
3. The practical realization of the Quantum Strategy Search Algorithm.

Let us continue with the consideration of the factors, which can have an influence on the information absorption capacity, assuming that the information is a valuable capital in the hands of experienced financiers in 21st century in Shapiro, Varian (1999), and it can be thoroughly used in the fundamental and technical models of the foreign currencies exchange rates determination at the ultra high frequency electronic trading in the foreign currencies exchange markets in Rosenberg (1996), Ledenyov D O, Ledenyov V O (2014c).

First of all, let us explain that, in the process of the information-based electronic trading in the foreign currencies exchange market, there are the information diffusion, absorption and dispersion processes, which can precisely describe the individual traders, trading firms, trading banks on one side as well as to accurately characterize the electronic trading systems, financial systems, foreign currencies exchange markets on other side. The information diffusion, absorption and dispersion processes during the ultra high frequency electronic trading in the foreign currencies exchange markets in the diffusion-type financial systems with the induced nonlinearities have been researched in Ledenyov D O, Ledenyov V O (2015l). Franke, Hess (1997, 2000) investigated the problem of the information diffusion in the electronic and floor trading. Bacchetta, van Wincoop (2003) researched the information dispersion to explain the exchange rate disconnect puzzle. Evans, Lyons (2005b) researched one of the aspects of the information absorption: “Do currency markets absorb the news quickly?” De Zwart, Markwat, Swinkels, van Dijk (2009) considered the economic value of the fundamental and technical information in the emerging currency markets. Bjønnes, Osler, Rime (2011) researched the possible sources of the information advantage in the foreign currency exchange market. Rime (2000) researched the private and public information in the foreign currencies exchange markets. Chinn, Moore (2008) researched a role of the private information in the monetary model of exchange rates. Moore, Payne (2011) identified the main sources of private information in the foreign currencies exchange markets. We assume that these information diffusion, absorption and dispersion processes are present during the ultra high frequency electronic trading in the foreign currencies exchange markets in the diffusion-type financial systems with the induced nonlinearities.
Continuing our research discussion on the absorption phenomena in the econophysics, which is researched in the frames of the evolving learning process at the various practical settings and theoretical considerations in the econophysics in the finances, we would like to say that a new perspective on the learning and innovation with the particular research focus on the absorptive capacity has been presented in Cohen, Levinthal (1990), Farina (2008), Hussinger (2010, 2012). There are a number of innovative studies, which have been focused on the knowledge and information absorptive capacity by the firm in Farina (2008), Miller and Chen (1994), Hambrick (1982), Khandwalla (1973).

Let us explain that, in a general case, we think that the process of information absorption by the foreign currencies traders (by the buyers and by the sellers) may be strongly affected by a constant presence of the asymmetric information streams in the signaling information channels between the foreign currencies exchange markets agents in the foreign currencies exchange markets, resulting in a fluctuating nature of the foreign currencies exchange market behaviour. It is necessary to point out that the asymmetric information phenomena in an application to the automobile market and some other markets has been researched for the first time in Akerlof (1970, 2014). The problem of diverse information accumulation by various markets agents has been raised in Grossman (1976). The problem of impossibility of informationally efficient markets has been considered in Grossman, Stiglitz (1980). The problem of aggregation of information in the complete markets has been studied in Hellwig (1980). The information aggregation problem in a noisy rational expectations economy has been considered in Diamond, Verrecchia (1981). The information effects influence on the bid-ask spread in the foreign currencies exchange market have been investigated in Copeland, Galai (1983). The arrival of information and the reaction of traders have been analyzed in French, Roll (1986). The information intermediation from the foreign exchange market microstructure theory point of view has been discussed to some degree in Lyons (1993a). The price transmission and information asymmetry problems have been highlighted in Shyy, Lee (1995). The information content problem of the trading process has been researched in Easley, Kiefer, O’Hara (1997a). The asymmetric information and price discovery in the FX market have been analyzed in Covrig, Melvin (1998). The private information in the FX market has been selected as a research topic in Ito, Lyons, Melvin (1998). The asymmetric corporate exposures to the foreign exchange rate changes have been uncovered in Miller, Reuer (1998). The asymmetric information and the bid-ask spread in the FX market have been studied in Wang (1999). The asymmetric information and inventory effects in the US treasury market have been investigated in Brandt, Edelen, Kavajecz (2001). The asymmetric exchange rate exposure problem has been considered in Koutmos,
Martin (2003). The asymmetries in the bid and ask responses to the innovations in the trading process have been found to exist in Escribano, Pascual (2006). The problem of asymmetric information in the interbank foreign exchange market has been discussed in Bjønnes, Osler, Rime (2007). The limit-order submission strategies under the asymmetric information have been described in Menkhoff, Osler, Schmeling (2010). The sources of information advantage in the foreign exchange market have been identified in Bjønnes, Osler, Rime (2011).

Let us state that, in our opinion, the process of information absorption by the foreign currencies traders in the process of the ultra high frequencies electronic trading in the foreign currencies exchange market can depend on:

1. The applied information coding and spreading techniques before the information transmission in the signaling information channels between the foreign currencies exchange markets agents in the foreign currencies exchange markets (the information de-coding techniques after the information transmission).

2. The applied information modulation and multiplexing techniques during the information transmission in the signaling information channels between the foreign currencies exchange markets agents in the foreign currencies exchange markets.

3. The applied transmitted information de-coding and error correction techniques during the information extraction from the signaling information channels between the foreign currencies exchange markets agents in the foreign currencies exchange markets.

The above listed factors, including the information coding (de-coding) techniques, the information modulation/multiplexing techniques, the information error correction techniques, the presence of highly asymmetric information flows can have the multiple possible impacts on the following trading variables:

1. The total absorption/analytic thinking/decision making time, which is necessary for the foreign currencies traders to absorb/think/decide on the particular trade deal during the ultra high frequency electronic trading strategies creation and execution under an influence by the discrete information absorption process during the ultra high frequencies electronic trading in the foreign currencies exchange markets in the diffusion - type global financial system with the induced nonlinearities.

2. The trade order processing/placing time, which is necessary for the foreign currencies traders to analyse/decide/place/process the trade orders during the ultra high frequency electronic trading strategies creation and execution under an influence by the discrete information absorption process during the ultra high frequencies electronic trading in the foreign
currencies exchange markets in the diffusion - type global financial system with the induced nonlinearities.

3. The return premium generation time, which is necessary for the foreign currencies traders to reach the expected return premiums magnitudes during the ultra high frequency electronic trading strategies creation and execution under an influence by the discrete information absorption process during the ultra high frequencies electronic trading in the foreign currencies exchange markets in the diffusion - type global financial system with the induced nonlinearities.

Now, let us say a few words on the quantum logic (the probability logic), the inductive logic, the deductive logic, the abductive logic in Ledenyov D O, Ledenyov V O (2015n):

1. Quantum logic (Probability logic) – the logic of what may occur – reasons through computing of events probabilities distributions. Quantum logic allows a and b to be realized, depending on a and b events probabilities distributions equal to square of the Schrödinger’s wave function.

2. Inductive logic – the logic of what is operative — reasons from the specific to the general. Induction allows inferring a entails b from multiple instantiations of a and b at the same time.

3. Deductive logic – the logic of what must be — reasons from the general to the specific. Deduction allows deriving b as a consequence of a. In other words, deduction is the process of deriving the consequences of what is assumed.

4. Abductive logic – the logic of what could possibly be true – reasons through successive approximation. Abduction allows inferring a as an explanation of b, because of this, abduction allows the precondition a to be inferred from the consequence b.

The practical realization of the Quantum Strategy Search Algorithm by the smart active trader during ultra high frequencies electronic trading in foreign currencies exchange markets in short and long time periods:

1. the smart active trader absorbs the information of interest on the particular currencies pair exchange rate trend/business events/business processes/ecosystems,

2. the smart active trader applies the creative imperative integrative intelligent conceptual co-lateral adaptive logarithmic thinking process to analyze the particular currencies pair exchange rate trend, using the different analysis methods,

3. the smart active trader uses the inductive, deductive and abductive logics (the value based logic, the binary logic) to come to a certain logical conclusion on the desirable trading
strategy of the choice during the strategic choice structuring process in Ledenyov D O, Ledenyov V O (2015b),

4. the smart active trader applies the quantum logic (the probability logic) to evaluate the trading strategies of the choice, with the ultimate purpose to create the quantum strategy and/or to disregard the failing strategy during the strategic choice structuring process, and then

5. the smart active trader creates and executes quantum winning virtuous trading strategy.

In the practical case of the ultra high frequency electronic trading strategy creation and execution processes in the foreign currencies exchange markets in the conditions of the continuous and discrete information absorption processes in the diffusion-type global financial system with the induced nonlinearities, we think that the parallel processing of the classic mathematical analysis methods, financial analysis methods, electronic analysis methods, quantum analysis methods can help to accurately estimate the time series and predict the trends in the foreign currencies exchange rates dynamics under a possible influence by the discrete information absorption processes during the ultra high frequencies electronic trading in the foreign currencies exchange markets in the diffusion-type global financial system with the induced nonlinearities.

Of course, the high performance computing systems have to be used for the execution of the embedded optimized near-real-time artificial intelligence algorithm to numerically solve the challenging research problem on the creation, selection and execution of the ultra high frequency electronic trading strategies under a possible influence by the discrete information absorption during the ultra high frequencies electronic trading in the foreign currencies exchange markets in the diffusion-type global financial system with the induced nonlinearities.

Let us say that the MicroFX developed tested software program can operate with the commonly traded foreign currencies pairs in the foreign currencies exchange markets, making the quite accurate forecasts on the trends in the foreign currencies exchange rates dynamics during the electronic trading process in the selected foreign currencies exchange markets, making it possible:

1. to accurately forecast the trends in the foreign currencies exchange rates dynamics during the electronic trading process in the foreign currencies exchange markets in the practical cases of the non-Gaussian non-linear chaotic distributions of the financial variables in the time domain in Ledenyov D O, Ledenyov V O (2014c); and

2. to create, select and execute the winning virtuous ultra high frequency electronic trading strategies under a possible influence by the discrete information absorption during the
ultra high frequencies electronic trading in the foreign currencies exchange markets in the diffusion - type global financial system with the induced nonlinearities.

In the MicroFX software program, we would like to emphasis that there is a distinctive technical feature of the developed embedded optimized near-real-time artificial intelligence algorithm such as an application of the quantum in Ledenyov D O, Ledenyov V O (2015 n, o, q) and inductive, deductive and abductive logics in Martin (1998-1999, 2005-2006) in the frames of the strategic choice structuring process, that is the winning through the distinctive choices process in Martin (1998-1999a, 2005-2006a, 2004, 2009), Moldoveanu, Martin (2001), Lafley, Martin (2013), during the numerical solution finding for the decision making problem on the quantum winning virtuous strategy.

It may worth to comment that an increased accuracy of the computations by the MicroFX software program is reached due to an application of a combination of the prediction models, including: the classic mathematical analysis methods, the financial analysis methods, the electronic analysis methods, the quantum analysis methods in the econometrics/econophysics and the near-real-time artificial intelligence reasoning algorithm in the computer engineering.

Looking into the future, we also propose the Ledenyov law on the on the limiting frequency: The processing frequency of electronic trading systems in the foreign currencies exchange markets in the diffusion - type financial systems with the induced nonlinearities will double every two years, which has been formulated in an analogy with the Moore’s law, which describes the integrated circuits capacity doubling every 18 – 24 months in Moore (1995, 2003).
Conclusion

The capital has been a subject of considerable research interest by the economists, financiers, philosophers, and scientists over the decades, who directed their main efforts toward an understanding of the capital origination, accumulation and distribution principles in various social economical political settings and systems in the World in Marx (1867, 1893, October 1994), Bagehot (1873, 1897), von Böhm-Bawerk (1884, 1889, 1921), Dodd (2014). The processes of the capital origination, accumulation and distribution have been comprehensively studied, highlighting the unequal capital distributions in the form of increasing gaps between the different social hierarchy layers in various countries in Stiglitz (2015), Piketty (August 2013, August 15 2014).

The research problems on the forecast of the capital changes in different capital markets have been formulated, discussed and partly solved in the frames of existing slightly outdated theoretical approaches in the economics, finances, econometrics, and econophysics sciences in recent years.

Presently, we think that the research problem on the forecast of the capital changes in the different capital markets represents a considerable scientific interest in view of such factors as:

a) an introduction of the numerous financial innovations in the capital markets,

b) a presentation of new discoveries of the econometrics science,

c) a creation of the quantum econophysics science, and

d) a fast progress in the discrete mathematics science.

It worth to note that the foreign currencies exchange market represents a biggest part of the existing global capital market. Discussing the foreign currencies exchange market, let us say that, in the Schumpeterian creative disruption age, an increasing application of the electronic technologies in the finances opens a big number of unlimited opportunities toward a new era of the ultra high frequency electronic trading in the foreign currencies exchange markets in the conditions of the discrete information absorption processes in the diffusion - type financial systems with the induced nonlinearities.

Therefore, in this book, we decided to propose a number of the new theoretical methods and the sophisticated scientific approaches for an accurate forecast of the foreign currencies exchange rates during the ultra high frequency electronic trading in the foreign currencies exchange markets in the short and long time periods.
Chapter 1 discussed briefly the history of creation of the capital markets, the evolution of the capital markets and the present state of the capital markets in Asia, Europe and North America, going from the academic literature. The main historical facts to emphasis are:

1. A creation of the money and a foundation of the first financial system in the ancient time of the Song dynasty and the Yuan Dynasty in mainland China;
2. A significant role by the Austrian school of economic and financial thinking toward the modern financial system shaping;
3. A considerable impact by the Chicago school of the economic and financial thinking on the creation of the foreign currencies exchange markets around the globe.

Chapter 2 provided a literature review on an application of the financial mathematics to analyse the capital markets in general. A particular focus is given to an application of the classic financial mathematics to analyse the foreign currencies exchange markets. The main research findings to keep in mind are:

1. The classic financial mathematics in the finances was formulated in Bachelier (1900);
2. An original research idea to estimate the valuable financial papers prices evolution in the finances was proposed in Bachelier (1900), applying the probability theory in the mathematics in De Laplace (1812), Bunyakovsky (1846), Chebyshev (1846, 1867, 1891), Markov (1890, 1899, 1900, 1906, 1907, 1908, 1910, 1911, 1912, 1913).

Chapter 3 explained an essence on the ultra high frequencies electronic trading in the foreign currencies exchange markets. The main innovative research proposals to summarize are:

1. A general research idea on the electronic trading is derived from an original research idea on the fully automated stock exchange in Black (1971, part II);
2. An original research idea on the high frequency electronic trading in the foreign currencies exchange markets was proposed in Goodhart, Hall, Henry, Pesaran (1993), Goodhart, O'Hara (1995), Goodhart, O’Hara (1997);
3. An original research idea on the ultra high frequency electronic trading in the foreign currencies exchange markets was proposed in Ledenyov D O, Ledenyov V O (2014c);

Chapter 4 focused on the modern mathematical analysis methods, including the probability and the statistics equations, to accurately characterize all the trends in the foreign currencies exchange rates dynamics during the ultra high frequencies electronic trading in the foreign currencies exchange markets in the short and long time periods. The main innovative research outcomes to pay attention are:
1. The financial mathematical formula for the spot exchange rate \(S_{t}^{i} \) of the Currency\(^1\) in relation to the Currency\(^2\);

2. The financial mathematical formula for a change of the spot exchange rates \(\Delta S_{t} \) of the Currency\(^1\) in relation to the Currency\(^2\) in the time domain;

3. The foreign currencies exchange rates and the fundamental economic variables in the economics science and the finances science are interconnected nonlinearly.

Chapter 5 considered the financial analysis methods, including the macroeconomics and microeconomics formulas, to closely predict the foreign currencies exchange rates dynamics during the electronic trading process in the foreign currencies exchange markets in the short and long time periods. The main innovative research analysis results to remember are:

1. The financial analysis method can include a number of the different financial mathematical models in frames of the macroeconomics theory;

2. The financial analysis method can include a number of the different financial mathematical models in frames of the microeconomics theory;

3. All the financial analysis methods, based on the different financial mathematical models in frames of the macroeconomics and microeconomics theories, have the limited accuracies.

Chapter 6 uncovered the electronic analysis methods, including the Stratanovich-Kalman-Bucy filtering algorithm in the Stratanovich – Kalman – Bucy filter and the particle filter, to accurately estimate the time series and predict all the trends in the foreign currencies exchange rates dynamics during the ultra high frequencies electronic trading in the foreign currencies exchange markets in the short and long time periods. The main innovative research proposals to memorize are:

1. The application of the the Stratanovich – Kalman – Bucy filtering algorithm to accurately forecast the trends in the foreign currencies exchange rates dynamics during the ultra high frequency electronic trading in the foreign currencies exchange markets in the short and long time periods;

2. The application of the the particle filtering algorithm to accurately forecast the trends in the foreign currencies exchange rates dynamics during the ultra high frequency electronic trading in the foreign currencies exchange markets in the short and long time periods;

3. All the electronic analysis methods, based on the different financial mathematical models in frames of the digital signal processing theory and the discrete-mathematics theory, have the limited accuracies.
Chapter 7 introduced the quantum analysis methods, including the wave function, to precisely forecast the foreign currencies exchange rates dynamics during the ultra high frequency electronic trading in the foreign currencies exchange markets in the short and long time periods, using the quantum system state prediction algorithm with both the wave function and the time dependent / time independent wave equation in the quantum finances theory. In addition, we say a few words on the unlimited perspectives of the quantum forecast techniques application at the ultra high frequencies electronic trading in the foreign currencies exchange markets. The main innovative scientific findings to think about are:

1. the application of the wave function to accurately forecast the trends in the foreign currencies exchange rates dynamics during the ultra high frequency electronic trading in the foreign currencies exchange markets in the short and long time periods;

2. the application of the time dependent / time independent wave equation to finely forecast the trends in the foreign currencies exchange rates dynamics during the ultra high frequency electronic trading in the foreign currencies exchange markets in the short and long time periods;

3. All the quantum analysis methods, based on the different financial mathematical models in frames of the quantum econophysics theory and the quantum econometrics theory, have the limited accuracies.

Chapter 8 proposed the new research approaches to the quantum winning virtuous strategies creation and execution with the use of the quantum logic, inductive logic, deductive logic and abductive logic during the ultra high frequencies electronic trading in the foreign currencies exchange markets in the short and long time periods. The main innovative research ideas to remember are:

1. the conceptual design of the quantum strategy search algorithm with the use of the quantum logic, inductive logic, deductive logic and abductive logic for the ultra high frequencies electronic trading in the foreign currencies exchange markets in the short and long time periods;

2. the definition of the quantum logic (the probability logic) for the decision making in frames of the quantum strategy search algorithm for the ultra high frequencies electronic trading in the foreign currencies exchange markets in the short and long time periods;

3. the formulation of the Ledenyov law on the limiting frequency for the ultra high frequencies electronic trading in the foreign currencies exchange markets in the short and long time periods.

We conclude with a research statement that an application of a combination of the modern mathematical analysis methods, the financial analysis methods, the electronic analysis
methods, and the quantum analysis methods can result in a much more accurate forecast of the foreign currencies exchange rates during the ultra high frequency electronic trading in the foreign currencies exchange markets in the short and long time periods.
Acknowledgement

We would like to thank all our colleagues-researchers, including the professors from the leading universities, the academics from the national academies of sciences, the researchers from the big multinational corporations and small startups, the subject experts from the professional consulting firms, the governmental officials from the government agencies, the financiers from the central banks, the analysts from the analytic “think tanks”, the policy makers from the management consulting firms, and the senior executives from the international financial organizations for presenting us with the multiple wonderful global opportunities to deliver our invited speeches, public lectures, research talks, scientific presentations on the subject of our research interest during the expert level seminars, scientific symposiums, international conferences, and business meetings in the Eastern and Western Europe, North America, East Asia, Middle East, and Australia over the last 25 years.

We thank all the young researchers, talented students and their professors from the leading universities for a big number of interesting questions, which were posed to the authors during the questions and answers (Q&A) sessions after our presentations and considered by the authors as quite useful and encouraging. The multiple research inputs by the academicians, practitioners, subject experts allowed us to think differently on the multi-dimensional scientific problems and encouraged us to work intensively toward the research book completion.

We gratefully acknowledge the insightful thoughtful comments on the subject of our research interest, made by Dr. Ben Shalom Bernanke, former Chairman of the Board of Governors of the Federal Reserve System in the process of our innovative research. In addition, Dr. Ben Shalom Bernanke, Chairman of the Board of Governors of the Federal Reserve System is appreciated for an electronic copy of his Ph. D. Thesis: “Long-term commitments, dynamic optimization, and the business cycle” as well as the copies his innovative research articles, analytic research reports, informative slide presentations, minutes of research discussions on the various financial topics and strategic economic issues within the scope of our research interest.

We are very grateful to Prof. Robert F. Engle III, Department of Finance, New York University in New York, USA for his visionary statements, interesting discussions and comprehensive research data on the Stratonovich – Kalman – Bucy filtering algorithm, in particular, the thoughtful discussion on the derivation of the probability density function as a sum of its predictive or conditional densities in the case the state-space model in Engle (2006) has to be mentioned.
We found that the integrative thinking is a quite useful theoretical approach to solve the financial engineering problems, hence we sincere thank Profs. Roger L. Martin and John C. Hull from the Rotman School of Management at the University of Toronto in Toronto, Canada for the numerous long-hours scientific discussions on the integrative thinking and the financial engineering in the financial laboratory at U of T in Toronto, Canada in 1998-1999 and 2005-2006.

It is a real privilege for the second author to deliver his special personal thanks to Profs. Janina E. Mazierska, Electrical and Computer Engineering Department, James Cook University in Townsville in Australia, who helped the first author to cultivate the logical scientific thinking to tackle the complex scientific problems on the analogue and digital signal processing, the accurate measurements of physical parameters, the nonlinearities in the microwave superconductivity, applying the interdisciplinary scientific knowledge.

The important groundbreaking research results on the creative disruption and evolutionary economics, obtained by Prof. Joseph Alois Schumpeter at the University of Vienna in Austria in 1905 – 1908, University of Czernowitz in Ukraine in 1909 – 1911, University of Graz in Austria in 1912 – 1914, University of Bonn in Germany in 1925 – 1932, Harvard University in the USA in 1932 – 1950, had a considerable enigmatic influence on the presented research opinions by the authors. The first author’s visit to University of Czernowitz in Ukraine in March 2015 is just a clear confirmation of the above statements. As we all know, the ideas on the creative destruction have been further researched by Prof. Clayton M. Christensen, Kim B. Clark University Professor of Business Administration, Harvard Business School, Harvard University and some other notable scientists, hence we studied and absorbed the modern research approaches and findings on the creative destruction before making our innovative scientific vision. Let us say that Prof. Clayton M. Christensen presented the very Scandinavian approach to the understanding of the research problem on the creative disruption and evolutionary economics in his lecture notes, research articles and numerous books.

The authors would like to explain that the quantum strategy represents a new research subject for a big number of the leading research institutions and universities, hence we sincerely acknowledge an enormous interest to our innovative research on the quantum strategy application in the finances from the side of Prof. Michael E. Porter, Founding Director, Strategy Institute, Harvard Business School, Harvard University, USA. It is wonderful to see that Prof. Michael E. Porter, Founding Director, Strategy Institute, Harvard Business School, Harvard University finds the enough time to write his numerous research articles and books despite of his heavy administrative work load at the Strategy Institute, Harvard Business School, Harvard
University. We are very grateful to Prof. Michael E. Porter, Bishop William Lawrence University Professor, Harvard University, who is considered by the authors as a father of the modern business strategy, for his valuable personal efforts and time to write and discuss a number of his interesting informative research articles and books as well as to create the lecture notes, providing us with his professional expertise, exceptional quality professional advices and wise opinions in the field of competitive strategy in the 21st century. In fact, Prof. Michael E. Porter is regarded by the authors as a “guiding star” in the science of strategy.

The most important lesson, which we learned in the processes of our education and research at the universities over the years is that the innovative research ideas matter a lot in the modern society. The innovative research ideas move the social scientific economic progress forward. Fortunately, we obtained the multidisciplinary knowledge, completing the university degrees in the Radio-Physics and Electronics at V.N. Karazin Kharkiv National University in Kharkiv, Ukraine in 1993 and 1999. Therefore, we would like to share an opinion that all the discoveries are made due to the multi-disciplinary knowledge application, which is considered as a key factor on the way toward the social scientific economic progress.

Let us explain the origins of some innovative research ideas, which are presented in this book:

1. The research on the microwave theory in the electrical and computer engineering allowed us to propose the idea on the ultra high frequency (UHF) electronic trading in foreign currencies exchange markets in the finances;

2. The research on the quantum computing in the quantum physics made it possible to formulate the quantum macroeconomics theory and the quantum microeconomics theory in the economics;

3. The research on the quantum physics, namely the quantum transitions by the quantum objects, facilitated the creation of the discrete-time business cycles theory in the economics;

4. The research on the analogue signal processing theory and the digital signal processing theory in the electrical and computer engineering let us to formulate the discrete-time wave generation theory by the disruptive innovations in the economics;

5. The research on the digital signal processing theory in the electrical and computer engineering let us to apply the Stratonovich-Kalman-Bucy nonlinear signals filtering theory in the finances;

6. The research on the digital signal processing theory in the electrical and computer engineering and the nuclear physics let us to apply the particle filter theory in the finances;
7. The research on the quantum random number generators on magnetic flux qubits in the quantum physics helped us to better understand the random fluctuations of financial variables in the finances;

8. The research on the quantum computing in the quantum physics helped us to derive the theoretical conception on the quantum money;

9. The research on the research on the quantum computing in the quantum physics led us to the invention of the quantum logic, which can be used in the strategy theory, the decision making theory, and the financial analysis theory in the business administration science.

It worth to comment that the scientific thinking school in Bunyakovsky (1825a, b, c, 1846), who was born in Town of Bar, Region of Vinnytsia, Ukraine; influenced the authors’ strategic scientific vision creation and helped to develop the authors’ tactical approaches to the scientific problems solutions in the case of the problem on the forecast in the capital markets.

The authors acknowledge the multiple scientific discussions on the econophysics and the quantum mechanics with Oleg P. Ledenyov in Kharkiv, Ukraine over recent decades. Speaking about Kharkiv, we can say that Prof. Niels Bohr, Copenhagen University, Denmark visit to Kharkov, Ukraine in 1933 led to the creation of the econophysics science, and the second author’s visits to Roskilde, Lyngby, Denmark and Copenhagen, Denmark in 1995, 1996-1997 resulted in the new quantum theories formulation in the modern econophysics science.

The first author thanks for a wonderful opportunity to deliver the invited research seminar, answer the multiple research questions, and make an exchange by the research opinions on the nonlinear signals processing at Electrical and Computer Engineering Department, James Cook University, Townsville, Australia in April, 2016.

The authors thank the senior management team at The Mathworks for the license and kind permission to get a remote access to the software libraries with the different implementations of the digital signal processing algorithm, including the Stratonovich – Kalman - Bucy filtering algorithm in the Matlab, at the Mathworks servers in the USA.

It is not conceivable to write this book without the multiple useful research inputs from and encouragements by many brilliant people, who are not listed in the acknowledgement. Indeed, playing the tennis at the tennis courts or the golf at the golf play grounds with our respected research collaborators, business partners, family friends in various countries around the World, we have already conducted many thousands of thoughtful discussions on the research topics of study, hence we would like to thank all our global Friends for their brilliant ideas, interesting opinions, wise suggestions and shared experiences on the subject of our research interest in the economics and finances.
References:

Economics Science, Finance Science, Economic History Science, Finance History Science:

7. Menger C 1871 Principles of Economics (Grundsätze der Volkswirtschaftslehre) Ludwig von Mises Institute Auburn Alabama USA

8. Bagehot W 1873, 1897 Lombard Street: A description of the money market Charles Scribner's Sons New York USA

http://www.gutenberg.org/ebooks/4359.

10. von Böhm-Bawerk E 1884, 1889, 1921 Capital and interest: History and critique of interest theories, positive theory of capital, further essays on capital and interest Austria; 1890 Macmillan and Co Smart W A (translator) London UK

13. Bachelier L 1914 Le jeu, la chance et le hazard Bibliothèque de Philosophie scientifique Ernest Flammarion Paris France

http://gallica.bnf.fr/ark:/12148/bpt6k61926m.

18. Schumpeter J A 1906 Über die mathematische methode der theoretischen ökonomie *ZfVSV* Austria.

27. von Mises L 1912 The theory of money and credit *Ludwig von Mises Institute* Auburn Alabama USA

29. Keynes J M 1936 The general theory of employment, interest and money *Macmillan Cambridge University Press* Cambridge UK.

33. Ellis H, Metzler L (editors) 1949 Readings in the theory of international trade Blakiston Philadelphia USA.
34. Friedman M (editor) 1953 Essays in positive economics Chicago University Press Chicago USA.
37. Olson M 1965 The logic of collective action Harvard University Press Cambridge Massachusetts USA.
38. Olson M 1982 The rise and decline of nations: Economic growth, stagflation, and social rigidities Yale University Press New Haven Connecticut USA.
45. Roseveare H 1991 The financial revolution 1660-1760 Longman UK.

51. Landes D 1969 The unbound Prometheus: Technological change and industrial development in Western Europe from 1750 to the present Cambridge University Press Cambridge UK.

http://piketty.pse.ens.fr/en/capital21c2 ,

Juglar Economic Cycle:

Kondratiev Economic Cycle:
67. Kondratieff N D 1922 The world economy and its trends during and after war Regional branch of state publishing house Vologda Russian Federation.
68. Kondratieff N D 1925 The big cycles of conjuncture The problems of conjuncture 1 (1) pp 28 – 79.
70. Kondratieff N D 1928 The big cycles of conjuncture Institute of Economics RANION Moscow Russian Federation.
72. Kondratieff N D 1984 The Long wave cycle Richardson & Snyder New York USA.
83. Van Duijn J J 1979 The long wave in economic life *De Economist* 125 (4) pp 544 – 576.
85. Van Duijn J J 1983 The long wave in economic life *Allen and Unwin* Boston MA USA.
89. Tinbergen J 1981 Kondratieff cycles and so-called long waves: The early research *Futures* 13 (4) pp 258 – 263.
94. Wallerstein I 1984 Economic cycles and socialist policies Futures 16 (6) pp 579 – 585.
98. Freeman C, Louçã F 2001 As time goes by: From the industrial revolutions to the information revolution Oxford University Press Oxford UK.
105. Tylecote A 1992 The long wave in the world economy Routledge London UK.

110. Perez C 2002 Technological revolutions and financial capital – The dynamics of bubbles and golden ages Edward Elgar Cheltenhem UK.

http://www.eolss.net.

118. Wikipedia 2015a Kondratieff Wikipedia USA

Kitchin Economic Cycle:

Kuznets Economic Cycle:
120. Kuznets S 1924 Economic system of Dr. Schumpeter *M. Sc. Thesis under Prof. Wesley Clair Mitchell* Columbia University NY USA.

121. Kuznets S 1930 Secular movements in production and prices *Ph. D. Thesis under Prof. Wesley Clair Mitchell* Columbia University NY USA.

122. Kuznets S 1930 Secular movements in production and prices. Their nature and their bearing upon cyclical fluctuations *Houghton Mifflin* Boston USA.

128. Kuznets S 1968 Toward a theory of economic growth, with reflections on the economic growth of modern nations.

129. Kuznets S 1971 Economic growth of nations: Total output and production structure.

Ledenyov Economic Cycle:

147. Ledenyov D O, Ledenyov V O 2016r Precise measurement of macroeconomic variables in time domain using three dimensional wave diagrams MPRA Paper no 69609 Munich University Munich Germany, SSRN Paper no SSRN-id2733607 Social Sciences Research Network New York USA pp 1 – 52 http://mpra.ub.uni-muenchen.de/69609/ ,
Accurate Characterization of Properties of Economic Cycles:

152. Samuelson P A 1947 Foundations of economic analysis Harvard University Press Cambridge MA USA.

172. Sussmuth B 2003 Business cycles in the contemporary World *Springer* Berlin Heidelberg Germany.

178. Jourdon Ph 2008 La monnaie unique Europeenne et son lien au developpement economique et social coordonne: une analyse cliometrique *Thèse Universite Montpellier* France.

188. Central Banking Newsdesk 2013 Swiss board member supports counter-cyclical capital buffer

192. Desai M, King St, Goodhart Ch 2015 Hubris: why economists failed to predict the crisis and how to avoid the next one Public Lecture on 27.05.2015 London School of Economics and Political Science London UK http://media.rawvoice.com/lse_publiclecturesandevents/richmedia.lse.ac.uk/publiclecturesandevents/20150527_1830_hubris.mp4.

Disruptive Innovation in Technology, Economics and Finances:

194. Schumpeter J A 1911; 1939, 1961 Theorie der wirtschaftlichen entwicklung; The theory of economic development: An inquiry into profits, capital, credit, interest and the business cycle Redvers Opie (translator) OUP New York USA.

213. Christensen C M 1999a Innovation and the general manager *Irwin McGraw-Hill* Homewood IL USA.

214. Christensen C M 1999b Impact of disruptive technologies in telecommunications in Bringing PC economies to the telecommunications industry *PulsePoint Communications*.

231. Shah Ch D, Brennan T A, Christensen C M April 2003 Interventional radiology: Disrupting invasive medicine.

232. Christensen C M March April 2003 Beyond the innovator's dilemma Strategy & Innovation 1 no 1.

248. Christensen C M 2015 Disruptive strategy *Course for Senior Executives* Harvard Business School Harvard University Cambridge USA.

251. Rodin J 2015 Managing disruption, avoiding disaster and growing stronger in an unpredictable World Public Lecture on 19.01.2015 London School of Economics and Political Science London UK

252. Dobbs R, Woetzel J, Flanders St 2015 No ordinary disruption: The four global forces breaking all the trends Public Lecture on 08.06.2015 London School of Economics and Political Science London UK

Metal Coins, Paper Money, Electronic Money, Network Money, Electronic Cash, Digital Cash, Bit Coin, Electronic Payments, Debit Cards, Credit Cards, Stored Value Cards, Smart Cards (Electronic Purses):

250. Del Mar A 1894 History of money in ancient countries New-York USA.

251. Fisher I 1933 Stamped scrip Adelphi & Co New York USA
http://userpage.fu-berlin.de/~roehrigw/fisher/

258. Tobin J 1963 Commercial banks as creators of money in Banking and monetary studies Carson D (editor) Irwin Homewood IL USA pp 408 – 419.

268. Hayek F A 1978 Denationalization of money: The argument refined The Institute of Economic Affairs London UK.

276. White L H 1989 Competition and currencies *New York University Press* NY USA.

277. White L H (editor) 1993 Free banking vols 1, 2, 3 *E Elgar Publishing* Aldershot Hants UK.

288. Kennedy M 1989 Interest and inflation free money: How to create an exchange medium that works for everyone *Permakultur Institute e.V.*

295. Crede A 1995 Electronic commerce and the banking industry: The requirement and opportunities for new payment systems using the Internet *Journal of Computer Mediated Communication* vol 1/3

www.bis.org/publ/index.htm.

www.bis.org/publ/index.htm.

www.bis.org/publ/index.htm.

www.bis.org/publ/index.htm.

www.bis.org/publ/index.htm.

www.bis.org/publ/index.htm.

www.bis.org/publ/index.htm.

www.bis.org/publ/index.htm.

311. Bernkopf M 1996 Electronic cash and monetary policy *First Monday Munksgaard International Publishers* Copenhagen Denmark
http://www.firstmonday.dk.
313. Dorn J A (editor) 1996 The future of money in the information age Cato Institute Washington DC USA.
315. Lynch D, Lundquist L 1996 Digital money: The new era of Internet commerce John Willey and Sons Inc New York USA.
319. Berentsen A 1997a Digital money, liquidity, and monetary policy First Monday Munksgaard International Publishers Copenhagen Denmark
320. Berentsen A 1997b Supervision and regulation of network banks First Monday Munksgaard International Publishers Copenhagen Denmark
http://mpra.ub.uni-muenchen.de/37392/ .

333. McKnight L, Bailey J (editors) 1997 Internet economics MIT Press Cambridge MA USA.

334. Neuman C, Medvinsky G 1997 Internet payment services in Internet economics McKnight L, Bailey J (editors) MIT Press Cambridge MA USA.

www.ecb.int/pub/pdf/emoney.pdf

351. Orr B July 1999a At last Internet banking takes off ABA Banking Journal p 36.

352. Orr B July 1999b E-banks or E-branches? Both are in play as early adopters make them work ABA Banking Journal pp 32 – 34.

360. Rahn R W 2000 The impact of digital money on central banks *Cato Journal Institute’s 18th Annual Monetary Conference*
361. Workshop October 20 – 21 2000 The analysis of new electronic payments systems based on Carl Menger’s institutional theory of the origin of money *Workshop* Vienna Austria.
365. Beck H 2001 Banking is essential, banks are not. The future of financial intermediation in the age of the Internet *Netnomics* vol **3** pp 7 – 22.

375. Davies G 2002 A history of money from ancient times to the present day 3rd edition University of Wales Press Cardiff UK.

382. Markose Sh M, Yiing Jia Loke 2003 Network effects on cash-card substitution in transactions and low interest rate regimes Economic Journal 113 (487) pp 456 – 476.

Central Banks, Federal Reserve Banks, Federal Reserve System:
http://eprints.lse.ac.uk/39606/ .
400. Ferguson R W Jr 2003 Rules and flexibility in monetary policy Remarks at the University of Georgia Athens Georgia USA

Ultra high frequency electronic trading science, foreign currencies exchange rates science, foreign currencies exchange markets science:

410. Ellis H, Metzler L (editors) 1949 Readings in the theory of international trade Blakiston Philadelphia USA.

411. Machlup F 1949 The theory of foreign exchanges in Readings in the theory of international trade Ellis H, Metzler L (editors) Blakiston Philadelphia USA.

412. Robinson J 1949 The foreign exchanges in Readings in the theory of international trade Ellis H, Metzler L (editors) Blakiston Philadelphia USA.

413. Friedman M 1953 The case for flexible exchange rates in Essay in positive economics University of Chicago Press Chicago USA.

414. Friedman M (editor) 1953 Essays in positive economics Chicago University Press Chicago USA.

422. Shiryaev A N 1967 Two problems of sequential analysis Cybernetics 3 pp 63 – 69.

433. Graversen S E, Peskir G, Shiryaev A N 2001 Stopping Brownian motion without anticipation as close as possible to its ultimate maximum Theory of Probability and its

467. Arrow K 1970 Essays in the theory of risk bearing Markham Chicago USA.
474. Shapiro A C 1975 Exchange rate changes, inflation, and the value of the multinational corporation

482. Frankel J A (editor) 1983 Exchange rate and international macroeconomics *University of Chicago Press* Chicago USA.

489. Frankel J A (editor) 1993 On exchange rates *MIT Press* Cambridge MA USA.

503. Mussa M 1981 The role of official intervention Group of Thirty New York NY USA.

509. Clark, Logue, Sweeney (editors) 1977 The effects of exchange rate adjustment Department of the Treasury Washington DC USA.

523. Brunner K, Meltzer A H (editors) 1979 Policies for employment, prices and exchange rates

524. Deardorff A 1979 One way arbitrage and its implications for the foreign exchange markets

526. Aliber R (October) 1980 The integration of the offshore and domestic banking system

528. Allen P, Kenen P 1980 Asset markets, exchange rates, and economic integration
Cambridge University Press New York USA.

530. Amihud Y, Ho T, Schwartz R (editors) 1985 Market making and the changing structure of the securities industry *Lexington* Massachusetts USA.

550. Loosignian A M 1981 Foreign exchange futures Dow Jones - Irwin Homewood IL USA.
551. Mussa M 1981 The role of official intervention Group of Thirty New York NY USA.
552. Stigum M 1981 Money market calculations: Yields, break - evens, and arbitrage Dow Jones - Irwin Homewood IL USA.
553. Stigum M 1990 The money market Dow Jones - Irwin Homewood IL USA.
559. Bigman D, Taya T (editors) 1983 Exchange rate and trade instability Ballinger Cambridge Massachusetts USA.

590. Engel Ch M, West K (May) 2004a Accounting for exchange rate variability in present value models when the discount factor is near one *American Economic Review* 94 pp 118 – 125.

593. Engel Ch M, Mark N, West K D 2007 Exchange rate models are not as bad as you think *NBER Working Paper* NBER USA.

635. Andersen T, Bollerslev T 1994 Intraday seasonality and volatility persistence in foreign exchange and equity markets *Working Paper no 186* Department of Finance Northwestern University USA.

Lyons R K 1986 Tests of the foreign exchange risk premium using the expected second moments implied by option pricing International Finance Discussion Papers 290 Board of Governors of the Federal Reserve System USA.

677. Fan M, Lyons R (July) 2001 Customer-dealer trading in the foreign exchange market Typescript UC Berkeley USA.

682. Lyons R K 2003 Explaining and forecasting exchange rates with order flows *Economie Internationale* CEPII research center issue 96 pp 107 – 127.

725. Sager M, Taylor M P 2005 Order flow and exchange rate movements Typescript University of Warwick UK.

761. Humpage O 1989 On the effectiveness of exchange market intervention *Federal Reserve Bank of Cleveland USA*.
765. Van Hagen J 1989 Monetary targeting with exchange rate constraints: The Bundesbank in the 1980s *Federal Reserve Bank of St Louis USA*.

the foreign exchange market Review of Financial Studies 4 pp 513 – 541.
800. Burnham J B 1991 Current structure and recent developments in foreign exchange markets
in Recent developments in international banking and finance Khonry S J (editor) Elsevier
801. Campbell J, LaMaster S, Smith V, Van Boening M 1991 Off-floor trading, disintegration,
802. Campbell J, Lo A, MacKinlay A 1997 The econometrics of financial markets Princeton
University Press USA.
803. Chinn M D 1991 Some linear and non-linear thoughts on exchange rates Journal of
804. Chinn M D, Meese R A 1995 Banking on currency forecasts: How predictable is change in
Studies 4 pp 483 – 511.
806. Edwards S 1991 Real exchange rates, devaluation, and adjustment – Exchange rate policy
in developing countries MIT Press USA.
807. Froot K A, Obstfeld M 1991 Exchange rate dynamics under stochastic regime shifts: A
808. Froot K A, Rogoff K 1995 Perspectives on PPP and long-run real exchange rates in
Handbook of international economics Grossman G, Rogoff K (editors) Elsevier Science
Amsterdam pp 1647 – 1688.
809. Froot K A, Ramadorai T (August) 2002 Currency returns, institutional investor flows, and
exchange rate fundamentals NBER Working Paper 9101 NBER USA.
810. Froot K A, Donohue 2004 Decomposing the persistence of international equity flows
811. Froot K A, Ramadorai T 2005 Currency returns, intrinsic value, and institutional-investor
flows Journal of Finance 60 pp 1535 – 1566.
Inc New York USA.
814. Harvey C R, Huang R D Volatility in the foreign currency futures market Review of
Financial Studies 4 pp 543 – 569.

Curcio R, Goodhart Ch 1992 When support / resistance levels are broken, can profits be made? Evidence from the foreign exchange market Discussion Paper no 142 Financial Markets Group London School of Economics London UK.

Edison H J (September) 2003 Are foreign exchange reserves in Asia too high? in World economics outlook (September 2003) International Monetary Fund Washington DC USA.

in Finance (HFDF-1) vol 3 Research Institute for Applied Economics Olsen & Associates Zürich Switzerland.

858. Zhou B 1992a High frequency data and volatility in foreign exchange rates Manuscript Department of Finance Sloan School of Management MIT Cambridge MA USA.

859. Zhou B 1992b Forecasting foreign exchange rates subject to de-volatilization Working Paper no 3510 Sloan School of Management Massachusetts Institute of Technology Cambridge MA USA.

962. Mark N, Wu Y 1998 Rethinking deviations from uncovered interest parity: The role of
964. Mark N 2009 Changing monetary policy rules, learning, and real exchange rate dynamics
Journal of Money, Credit and Banking.
965. Obstfeld M, Rogoff K 1995 Exchange rate dynamics redux *Journal of Political Economy*
103 pp 624-660.
in Contemporary economic policy: Essays in honor of Assaf Razin; Helpman E, Sadka E
(editors) *Cambridge University Press* Cambridge UK.
967. Osler C L 1995 Exchange rate dynamics and speculator horizon *Journal of International
968. Osler C L 1998 Short-term speculators and the puzzling behavior of exchange rates
969. Carlson J A, Osler C L (March) 1999 Determinants of currency risk premiums
Federal Reserve Bank of New York Staff Reports Series no 70.
972. Osler C L 2003 Currency orders and exchange-rate dynamics: Explaining the success of
973. Osler C L 2005 Stop-loss orders and price cascades in currency markets
975. Osler C L 2006 Macro lessons from microstructure *International Journal of Finance and
976. Osler C L 2008 Foreign exchange microstructure: A survey in Springer encyclopedia of
complexity and system science *Springer* Germany.
and system science Meyers R A (ed.) *Springer* pp 5404 – 5438.
978. Osler C L, Vandrovych V 2009 Hedge funds and the origins of private information in currency markets *Typescript* Brandeis University.

979. Osler C L, Yusim R 2009 Intraday dynamics of foreign-exchange spreads *Typescript* Brandeis University.

984. Peiers B (October) 1995 Informed traders, intervention, and price leadership: A deeper view of the microstructure of the foreign exchange market *University California Los Angeles* California USA.

1012. Tsang Sh-K 1996 A study of the linked exchange rate system and policy options for Hong Kong Hong Kong Policy Research Institute Hong Kong P R China.

1014. Tsang Sh-K, Sin Ch-Y, Cheng Y-Sh 1999 The robustness of Hong Kong’s linked exchange rate system as a currency board arrangement The 54th European Meeting of the Econometric Society Hong Kong P R China.

1015. Tsang Sh-K 1999a A study of the linked exchange rate system and policy options for Hong Kong Hong Kong Policy Research Institute Ltd Hong Kong P R China.

1033. Evans M D D (November) 1997 The microstructure of foreign exchange dynamics *Typescript* Georgetown University USA.

156
Evans M D D, Lyons R K (July) 2002c Time-varying liquidity in foreign exchange

Evans M D D, Lyons R K (November) 2002d Informational integration and FX Trading

Evans M D D, Lyons R K (January) 2003 How is macro news transmitted to exchange

Cao H, Evans M, Lyons R (August) 2003 Inventory information NBER Working Paper

Evans M D D, Lyons R K (March) 2004a A new micro model of exchange rate dynamics
NBER Working Papers 10379 National Bureau of Economic Research Inc USA

Evans M D D, Lyons R K 2004b, 2007 Exchange rate fundamentals and order flow
Working Papers guerconwpa~05-05-03 Department of Economics Georgetown University;

Evans M D D, Lyons R K 2005a Meese-Rogoff redux: Micro-based exchange-rate
(2) pp 405 – 414.

Evans M D D, Lyons R K 2005b Do currency markets absorb news quickly? Working
Paper 11041 NBE USA pp 1 – 25, Journal of International Money and Finance 24 (2) pp
197 – 217.

Evans M D D, Lyons R 2005c Are different-currency assets imperfect substitutes? in
USA.

Evans M D D 2005 Where are we know? Real-time estimates of the macroeconomy

Evans M D D, Hnatkovska V 2005 International capital flows, returns and world financial
integration NBER Working Paper NBER USA.

1051. Evans M D D, Lyons R K 2009 Forecasting exchange rate fundamentals with order flow Working Paper Georgetown University USA.

1062. Hartmann P 1997 The currency denomination of international trade after European Monetary Union Typescript European Central Bank.

1067. Kirilenko A 1997 Endogenous trading arrangements in emerging foreign exchange markets Typescript International Monetary Fund USA.

1076. Madhavan A (March) 2000 Market microstructure: A survey University of Southern California USA.

1078. Madhavan A (October) 2000 In search of liquidity in the internet era 9th Annual Financial Markets Conference of the Federal Reserve Bank of Atlanta USA.

1080. Montiel P J 1997 Exchange rate policy and macroeconomic management tin ASEAN countries in macroeconomic issues facing ASEAN countries International Monetary Fund Washington USA.

1083. Reiss P, Werner I (February) 1997 Interdealer trading: Evidence from London Stanford Graduate School of Business Research Paper no 1430 University of Stanford California USA.
1088. Wei S, Kim J (November) 1997 The big players in the foreign exchange market: Do they trade on information or noise? NBER Working Paper 6256 NBER USA.
1089. Werner I (September) 1997 A double auction model of interdealer trading Research Paper no 1454 Stanford University California USA.

Eddelbuttel D, McCurdy T 1998 The impact of news on foreign exchange rates: Evidence from high frequency data Typescript University of Toronto Canada.

Mende A, Menkhoff L (March) 2003 Different counterparties, different foreign exchange trading? The perspective of a median bank.

Menkhoff L, Schmeling M 2010 Trader see, trader do: How do (small) FX traders react to large counterparties’ trades? *Journal of International Money and Finance*.

1143. Neely Ch J 2000a The practice of central bank intervention: Looking under the hood
Central Banking XI pp 24 – 37.

1144. Neely Ch J 2000b Are changes in foreign exchange reserves well correlated with official
intervention? Economic Review of the Federal Reserve Bank of St Louis September/October pp
17 – 30.

1145. Neely C J 2004 Forecasting foreign exchange volatility: Why is implied volatility biased
and inefficient? And does it matter? Working Paper 2002-017D Federal Reserve Bank of St
Louis MO USA.

1146. Neely Ch J 2005 An analysis of recent studies of the effect of foreign exchange
intervention Federal Reserve Bank of St Louis Review November/December 87 (6) pp
685 – 717.

1147. Pesaran M, Hasem P M, Smith R P 1998 Structural analysis of co-integrating VARs

1148. Portes R, Rey H 1998 The emergence of the Euro as an international currency Economic
Policy 26 pp 307 – 332.

1149. Rey H 2001 International trade and currency exchange Review of Economic Studies 68 pp
443 – 464.

53 pp 1657 – 1704.

1151. Sarkar A, Tozzi M (January) 1998 Electronic trading on futures exchanges Current Issues in

Working Paper Duke University North Carolina USA.

Duke University Durham North Carolina USA.

1154. Vitale P 1998 Two months in the life of several gilt-edged market makers on the London
Stock Exchange Journal of International Financial Markets, Institutions, & Money 8 pp
301 – 326.

1155. Vitale P 1999 Sterilized central bank intervention in the foreign exchange market Journal of

1156. Vitale P 2000 Speculative noise trading and manipulation in the foreign exchange market

1157. Vitale P 2003 Foreign exchange intervention: How to signal policy objectives and stabilize
the economy Journal of Monetary Economics 50 pp 841 – 870.

1187. Rigobon R (September) 1999 On the measurement of the international propagation of shocks NBER Working Paper 7354 NBER USA.

1188. Saar G (July) 1999 Demand uncertainty and the information content of order flow Typescript Johnson School Cornell University NY USA.

1190. Scalia A (August) 2004 Is foreign exchange intervention effective? Some micro-analytical evidence from Central Europe Typescript Bank of Italy Rome Italy.

1197. Aliber R Z, Chowdhry Bh, Yan Sh 2000 Transactions costs in the foreign exchange market University Of Chicago, The Anderson Graduate School of Management UCLA, University of Arizona USA http://www.escholarship.org/uc/item/4qw3p6rp.

1201. Carlson J (August) 2002 One minute in the life of the DM/$: Public information in an electronic market Typescript Purdue University USA.

1206. Fujiwara I (June) 2000 Liquidity and leverage risk in the Dollar/Yen market Typescript Nuffield College Oxford UK.

1220. McCallum B (April) 2000 Theoretical analysis regarding a zero lower bound on nominal interest rates *NBER Working Paper no 7677* NBER USA.

1231. Rime D, Sarno L, Sojli E 2006 Exchange rate dynamics and order flow: A step beyond Typescript Warwick University UK.

1249. Duarte M, Stockman A (July) 2001 Rational speculation and exchange rates *NBER Working Paper* 8362 NBER USA.

1261. Sinn H, Westermann F (July) 2001 Why has the euro been falling? An investigation into the determinants of the exchange rate *NBER Working Paper* 8352 NBER USA.

1265. Aguiar M (March) 2002 Informed speculation and the choice of exchange rate regime *Typescript* University of Chicago USA.

1269. Chari A 2006 Heterogeneous market making in foreign exchange markets: Evidence from individual bank responses to central bank interventions *Journal of Money, Credit, and Banking*.

Kaul A, Mehrotra V (June) 2002 Ticker or trade? How prices adjust in international markets Typescript University of Alberta Edmonton Alberta Canada.

1300. Carpenter A, Wang J (January) 2003 Sources of private information in FX trading Typescript University of New South Wales Sydney Australia.

1313. Mathisen J 2003 Estimation of the equilibrium real exchange rate for Malawi *IMF Working papers 03/104* IMF USA.

1319. Wright J H 2003 Bayesian model averaging and exchange rate forecasts *International Finance Discussion Papers no 779* Board of Governors of the Federal Reserve System USA.

1376. Charlebois M, Sapp St 2006 Temporal patterns in foreign exchange returns and options Richard Ivey School of Business University of Western Ontario Canada.

1416. Genberg H, He D, Leung F 2007 Recent performance of the Hong Kong dollar linked exchange rate system Research Note 02/2007 Hong Kong Monetary Authority Hong Kong P R China.

1417. Genberg H, He D, Leung F 2007 The ‘Three refinements’ of the Hong Kong dollar linked exchange rate system two years on Hong Kong Monetary Authority Quarterly Bulletin 51 pp 5 – 11.

1419. Hong Kong Monetary Authority (December) 2007 The foreign exchange and derivatives markets in Hong Kong Hong Kong Monetary Authority Quarterly Bulletin Hong Kong P R China.

1427. Van Wincoop E, Tille C 2007 International capital flows NBER Working Paper 33 NBER USA.

Brunnermeier M K, Nagel S, Pedersen L H 2008 Carry trades and currency crashes NBER Macroeconomics Annual 2008 NBER USA.

Lien K 2008 Day trading and swing trading the currency market: Technical and fundamental strategies to profit from market moves John Wiley and Sons New York USA.

Liu L-G, Tsang A 2008 Exchange rate pass-through to domestic inflation in Hong Kong Working Paper 02/2008 Research Department Market Research Division Hong Kong Monetary Authority Hong Kong P R China pp 1 – 23.

1453. Adrian T, Etula E, Shin H S 2009 Risk appetite and exchange rates Staff Report no 361 Reserve Bank of New York NY USA.

1465. Hattori M, Shin H S 2009 Yen carry trade and the subprime crisis *IMF Staff Papers* IMF USA.

1469. Meyers R A (editor) 2009 Encyclopedia of complexity and system science *Springer*.

1484. Diamond R (April 4) 2011 Banks’ profits could take hit in fight over forex fees Pensions and Investments.

1489. Plantin G, Shin H H 2011 Carry trades, monetary policy and speculative dynamics Princeton University USA.

1495. Sheng A (February) 2012a Hong Kong’s global challenge - How to build on success pp 1 – 3

http://riskbooks.com/the-future-of-central-banking ,
http://www.fungglobalinstitute.org/en/future-central-banking ,

1501. Ingves St, Danielsson J, Goodhart Ch (July 7) 2014 Towards a safer and more stable financial system: Stefan Ingves Public Lecture London School of Economics and Political Science London UK
http://media.rawvoice.com/lse_publiclecturesandevevents/richmedia.lse.ac.uk/publiclecturesandeve
nts/20140707_1830_saferStableFinancial.html.

Probability Theory, Statistics Theory, Brownian Movement Theory, Diffusion Theory and Chaos Theory in Econometrics and Econophysics:

1503. Bernoulli J 1713 Ars conjectandi (The art of guessing).

1505. De Moivre 1730 Miscellanea analytica supplementum (The analytic method).

1509. Connor J J, Robertson E F (July) 2000 Viktor Yakovlevich Bunyakovsky (December 16, 1804 - December 12, 1889) School of Mathematics and Statistics University of St Andrews Scotland UK
http://www-history.mcs.st-andrews.ac.uk/Biographies/Bunyakovsky.html.

1511. Chebyshev P L 1846 An experience in the elementary analysis of the probability theory Crelle’s Journal fur die Reine und Angewandte Mathematik.

Markov A A 1900, 1912, 1913 Calculation of probabilities *St Petersburg* Russian Federation; Wahrscheinlichkeits-Rechnung *Teubner* Leipzig-Berlin Germany; 3rd edition *St Petersburg* Russian Federation.

Markov A A 1906 Extension of law of big numbers on variables, depending from each other *Izvestiya Fiziko-Matematicheskogo Obschestva pri Kazanskom Universitete* 2nd series vol 15 (94) pp 135 – 156 Russian Federation.

1532. Kolmogorov A N 1947 The contribution of Russian science to the development of probability theory Uchenye Zapiski Moskovskogo Universiteta no 91.

Hannan E J 1960 Time series analysis Methuen London.

Hannan E J 1970 Multiple time series John Wiley and Sons Inc New York USA.

Mandelbrot B B 1963a The stable Paretian income distribution when the apparent exponent is near two International Economic Review no 4.

Mandelbrot B B 1967a The variation of some other speculative prices Journal of Business vol 40 pp 393 – 413.

1558. Mandelbrot B B 1977 Fractals: Form, chance and dimension W H Freeman San Francisco USA.

1559. Mandelbrot B B 1982 The fractal geometry of nature W H Freeman San Francisco USA.

1561. Gnedenko B V, Khinchin A Ya 1961 An elementary introduction to the theory of probability Freeman San Francisco USA.

1566. Lamperti J 1966 Probability Benjamin New York USA.

1572. Breiman L 1968 Probability Addison-Wesley Reading MA USA.

1591. Taylor S 1986 Modeling financial time series *John Willey and Sons Inc* New York USA.

1592. Tong H 1986 Nonlinear time series *Oxford University Press* Oxford UK.

1600. Pesaran M H, Potter S M (editors) 1993 Nonlinear dynamics, chaos and econometrics *John Willey and Sons Inc* New York USA.

1609. Moore G E 2003 No exponential is forever – but we can delay forever *ISSCC*.

Wiener Filtering Theory, Pugachev Filtering Theory, Stratanovich Optimal Nonlinear Filtering Theory, Stratanovich-Kalman-Bucy Filtering Algorithm, Stratanovich-Kalman-Bucy Filter, Particle Filter in Econometrics, Econophysics, Electrical and Computer Engineering:

1637. Wiener N 1949 The extrapolation, interpolation and smoothing of stationary time series John Wiley & Sons Inc New York NY USA.

1656. Pugachev V S 1980b Finite distributions of processes, defined by stochastic differential equations, and extrapolation of these processes DAN USSR vol 251 no 1 pp 40 – 43.

1685. Rytov S M 1957 Development of theory of nonlinear oscillations in the USSR Radio-
Technique and Electronics no 11 pp 1435 – 1450.

NJ USA.

1687. Bellman R E, Glicksberg I, Gross O A 1958 Some aspects of the mathematical theory of
control processes RAND Report R-313 pp 1 – 244.

1688. Blum M 1958 Recursion formulas for growing memory digital filters Trans IRE Prof

1689. Darlington S 1958 Linear least-squares smoothing and prediction with applications Bell

1690. Davenport W B Jr, Root W L 1958 An introduction to the theory of random signals and
noise McGraw-Hill Book Company Inc New York NY USA.

1691. Sherman S 1958 Non-mean-square error criteria Trans IRE Prof Group on Information
Theory IT-4 pp 125 – 126.

1692. Shinbrot M 1958 Optimization of time-varying linear systems with nonstationary inputs

USA.

1694. Kalman R E, Koepcke R W 1958 Optimal synthesis of linear sampling control systems

1695. Kalman R E, Koepcke R W 1959 The role of digital computers in the dynamic
optimization of chemical reactors Proceedings of the Western Joint Computer Conference pp

1696. Kalman R E, Bertram J E 1958 General synthesis procedure for computer control of single
and multi-loop linear systems Transactions of the AIEE vol 77 II pp 602 – 609.

International Conference on Automatic Control Moscow USSR.

1699. Kalman R E 1960b A new approach to linear filtering and prediction problems Journal of

of Basic Engineering Transactions ASME Series D 83 pp 95 – 108.

201
1704. Stratonovich R L 1959a Optimum nonlinear systems which bring about a separation of a signal with constant parameters from noise Radiofizika 2 (6) pp 892 – 901.

1735. Wright-Patterson Air Forces Base (AFB) 1970 – 2014 Full extended complemented digital collection of technical research reports and research seminars minutes *Wright-Patterson Air Forces Base (AFB)* Ohio USA.

1740. Maybeck P S 1974 Applied optimal estimation—Kalman filter design and implementation *Air Force Institute of Technology* Wright-Patterson Air Forces Base (AFB) Ohio USA.

1761. Harvey A C 1989 Forecasting, structural time series models and the Kalman filter *Cambridge University Press* Cambridge UK.
1762. Lewis F 1986 Optimal estimation *John Wiley & Sons Inc USA.*

1779. Tanizaki H 1993 Non-linear filters: Estimation and applications *Lecture Notes in economics and mathematical systems Springer Verlag Germany.*

1781. Bar-Shalom, Xiao-Rong Li 1993 Estimation and tracking: Principles, techniques and software *Artech House* Boston USA.

1783. Grimble M J 1994 Robust industrial control: Optimal design approach for polynomial systems *Prentice Hall* USA.

1790. Hayes M H 1996 Statistical digital signal processing and modeling *John Wiley and Sons Inc* USA.

1792. Haykin S (editor) 2001 Kalman filtering and neural networks *Wiley Inter-Science* USA.

1793. Fuller W A 1996 Introduction to statistical time series *John Wiley & Sons Inc* USA.

1797. Krelle W 1997 How to deal with unobservable variables in economics *Discussion Paper no B 414 Bonn University* Germany.

1808. Welch G, Bishop G 2001 An introduction to the Kalman filter Department of Computer Science University of North Carolina at Chapel Hill Chapel Hill USA.

1831. Pasricha G K 2006 Kalman filter and its economic applications *MPRA Paper no 22734 Munich University Munich Germany* pp 1 - 14 http://mpra.ub.uni-muenchen.de/22734/.

1844. Theoret R, and Racicot F - E 2010 Forecasting stochastic volatility using the Kalman filter: an application to Canadian interest rates and price-earnings ratio MPRA Paper no 35911 Munich University Munich Germany http://mpra.ub.uni-muenchen.de/35911/.

Continuous Time Signal, Analog Signals, Discrete Time Signal, Digital Signals, Spectrum of Signals in Physics and Engineering Sciences:

1856. Walsh J L 1923b A property of Haar’s system of orthogonal functions Math Ann 90 p 3845.

1867. Fountain T 1987 Processor arrays, architecture and applications Academic Press London UK.
1882. Wanhammar L 1999 DSP integrated circuits Academic Press San Diego California USA

1884. McMahon D 2007 Signals and systems demystified McGraw Hill New York USA

1887. Wikipedia 2015f Continuous wave Wikipedia Inc USA

1888. Wikipedia 2015g Discrete-time signal Wikipedia Inc USA

1889. Wikipedia 2015h Hadamard code Wikipedia USA

1890. Wikipedia 2016i Polarization Wikipedia USA

1891. Wikipedia 2016j Circular polarization Wikipedia USA

1892. Wikipedia 2016k In phase and quadrature components Wikipedia USA

1893. Wikipedia 2016l Constellation diagram Wikipedia USA

1894. Matlab 2014 IQ diagram MathSoft California USA.

1895. Ledenyov D O, Ledenyov V O 2015a Nonlinearities in microwave superconductivity

Quantum Physics, Quantum Electronics, Quantum Computing, Quantum Mechanics:

1896. Planck M 1900a Über eine Verbesserung der Wienschen Spektralgleichung On an
improvement of Wien's equation for the spectrum Verhandlungen der Deutschen Physikalischen
Gesellschaft 2 pp 202 – 204
http://archive.org/stream/verhandlungende01goog#page/n212/mode/2up .

1897. Planck M 1900b Zur Theorie des Gesetzes der Energieverteilung im Normalspektrum
Verhandlungen der Deutschen Physikalischen Gesellschaft 2 p 237
http://archive.org/stream/verhandlungende01goog#page/n246/mode/2up .
http://adsabs.harvard.edu/abs/1900AnP...306..719P ,
https://dx.doi.org/10.1002%2Fandp.19003060410 .

http://adsabs.harvard.edu/abs/1900AnP...306...69P ,
https://dx.doi.org/10.1002%2Fandp.19003060105 .

http://adsabs.harvard.edu/abs/1901AnP...309..553P ,
https://dx.doi.org/10.1002%2Fandp.19013090310 ,

1901. Planck M 1903 Treatise on thermodynamics *Longmans, Green & Co* London UK
http://archive.org/stream/treatiseonthermo00planuoft#page/n7/mode/2up ,
http://openlibrary.org/books/OL7246691M .

1902. Planck M 1906 Vorlesungen über die Theorie der Wärmestrahlung *JA Barth* Leipzig Germany
http://lcen.loc.gov/07004527 .

1903. Planck M 1914 The theory of heat radiation 2 nd edition *P Blakiston's Son & Co*
http://openlibrary.org/books/OL7154661M .

http://adsabs.harvard.edu/abs/1943NW.....31..153P ,
https://dx.doi.org/10.1007%2FBF01475738 .

1906. Einstein A 1905 Zur Elektrodynamik bewegter Körper On the electrodynamics of moving bodies *Annalen der Physik* Berlin Germany (in German) **322** (10) pp 891 – 921
http://onlinelibrary.wiley.com/doi/10.1002/andp.19053221004/pdf ,
http://adsabs.harvard.edu/abs/1905AnP...322..891E) ,
http://dx.doi.org/10.1002%2Fandp.19053221004 .

1907. Einstein A 1917 Zur Quantentheorie der Strahlung On the quantum mechanics of radiation *Physikalische Zeitschrift* (in German) **18** pp 121 – 128

1913. de Broglie L 1926 Ondes et mouvements Waves and motions Gauthier-Villars Paris France.

1914. de Broglie L 1927 Rapport au 5e Conseil de Physique Solvay Brussels Belgium.

1919. Fermi E 1934 Radioattività indotta da bombardamento di neutroni La Ricerca scientifica 1 (5) p 283 (in Italian)

http://adsabs.harvard.edu/abs/1934RSPSA.146..483F,
https://dx.doi.org/10.1098/rspa.1934.0168.

1921. Townes Ch 1939 Concentration of the heavy isotope of carbon and measurement of its nuclear spin PhD thesis Caltech California USA
http://thesis.library.caltech.edu/4202/.

http://adsabs.harvard.edu/abs/1955PhRv...99.1264G,
https://dx.doi.org/10.1103/PhysRev.99.1264.

http://adsabs.harvard.edu/abs/1956PhRv..102.1308S,
https://dx.doi.org/10.1103/PhysRev.102.1308.

1925. Townes Ch H 1964 Nobel Prize in Physics Stockholm Sweden

1926. Townes Ch H 1966 Obtaining of coherent radiation with help of atoms and molecules Uspekhi Fizicheskikh Nauk (UFN) vol 88 no 3.

1927. Townes Ch H 1969 Quantum electronics and technical progress Uspekhi Fizicheskikh Nauk (UFN) vol 98 no 5.

Wave Function in Schrödinger Quantum Mechanical Wave Equation in Quantum Mechanics:

https://dx.doi.org/10.1103%2FPhysRev.47.777.

2002. Rylov Y A 2015 What is the wave function and why is it used in quantum mechanics? pp 1 – 18

Artificial Intelligence Science, Computer Science:

Deoxyribonucleic acid (DNA);

2025. Kol'tsov N K December 12, 1927 The physical-chemical basis of morphology 3rd All-Union Meeting of Zoologist, Anatomists, and Histologists Leningrad USSR.

http://mpra.ub.uni-muenchen.de/68960/ ,

Business Administration Science, Management Science, Strategy Science:

2042. Andrews K R 1971a The concept of corporate strategy *Richard D Irwin* Homewood USA.

2053. Porter M E 1982a Cases in competitive strategy *Free Press* New York USA.
2056. Porter M E 1983 Analyzing competitors: Predicting competitor behavior and formulating offensive and defensive strategy *in* Policy, strategy, and implementation Leontiades M (editor) *Random House* USA.

Porter M E 2001b The technological dimension of competitive strategy in Research on technological innovation, management and policy vol 7 Burgelman R A, Chesbrough H (editors) JAI Press Greenwich CT USA.

2084. Yelle L E 1979 The learning curve: Historical review and comprehensive survey Decision Sciences 10 (2) pp 302 – 328.

2112. McKiernan P 1997 Strategy past, strategy futures Long range planning vol 30 no 5 p 792.

joint ventures Oxford University Press Oxford UK.

Boston USA.

Rotman School of Management University of Toronto Canada.

2117. Moldoveanu M, Martin R L 2001 Agency theory and the design of efficient governance
mechanisms Joint Committee on Corporate Governance Meeting Rotman School of
Management University of Toronto Ontario Canada pp 1 – 57.

2118. Martin R L 2004 Strategic choice structuring: A set of good choices positions a firm for
competitive advantage Rotman School of Management University of Toronto Canada
pp 1 – 14

2119. Martin R L 2007 Becoming an integrative thinker Rotman Magazine Rotman School of
Management University of Toronto Ontario Canada pp 4 – 9.

2120. Martin R L 2007 Designing the thinker Rotman Magazine Rotman School of Management
University of Toronto Ontario Canada pp 4 – 8.

USA.

1422177807 pp 1 – 256.

2124. Martin R L 2013 Strategy award Thinkers50 London UK
www.thinkers50.org.

2131. Drejer A 2002 Strategic management and core competencies 1st edition Quorum Books Westport Connecticut USA.

2140. Besanko D, Shanley M, Dranove D 2007 Economics of strategy John Wiley &Sons Inc USA.

2143. Murphy T, Galunic Ch 2007 Leading in the age of talent wars INSEAD Leader-casts INSEAD France.

2148. Sull D 2007d Closing the gap between strategy and execution: The strategy loop in action Public Lecture London School of Economics and Political Science London UK.

2149. Sull D 2008 An iterative approach to the strategy Public Lecture London School of Economics and Political Science London UK.

http://www.lse.ac.uk/collections/LSEPublicLecturesAndEvents/events/2008/20080819t1316z001.htm

http://richmedia.lse.ac.uk/publicLecturesAndEvents/20081013_1830_japansGrandStrategy.mp3

2152. Chamberlain G P 2010 Understanding strategy Create Space Charleston South Carolina USA.

2155. Iive J, Foulkes N March 6 2015 The man behind the Apple watch How to Spend It Financial Times London UK

2156. Ledenyov D O, Ledenyov V O 2015b Winning virtuous strategy creation by interlocking interconnecting directors in boards of directors in firms in information century MPRA Paper no
61681 Munich University Munich Germany, SSRN Paper no SSRN-id2553938 Social Sciences Research Network New York USA pp 1 – 108
http://mpra.ub.uni-muenchen.de/61681/ ,

2157. Ledenyov D O, Ledenyov V O 2015n Quantum strategy creation by interlocking interconnecting directors in boards of directors in modern organizations at time of globalization
MPRA Paper no 68404 Munich University Munich Germany, SSRN Paper no SSRN-id2704417 Social Sciences Research Network New York USA pp 1 – 104
http://mpra.ub.uni-muenchen.de/68404/ ,

http://mpra.ub.uni-muenchen.de/68730/ ,

http://mpra.ub.uni-muenchen.de/69405/ ,

Selected Research Papers in Macroeconomics, Microeconomics & Nanoeconomics Sciences:

2149. Ledenyov V O, Ledenyov D O 2012a Shaping the international financial system in century of globalization Cornell University NY USA pp 1 – 20

2150. Ledenyov V O, Ledenyov D O 2012b Designing the new architecture of international financial system in era of great changes by globalization Cornell University NY USA pp 1 – 18

2152. Ledenyov D O, Ledenyov V O 2012b On the risk management with application of econophysics analysis in central banks and financial institutions Cornell University NY USA pp 1 – 10
2153. Ledenyov D O, Ledenyov V O 2013a On the optimal allocation of assets in investment portfolio with application of modern portfolio management and nonlinear dynamic chaos theories in investment, commercial and central banks Cornell University NY USA pp 1 – 34
2156. Ledenyov D O, Ledenyov V O 2013d To the problem of turbulence in quantitative easing transmission channels and transactions network channels at quantitative easing policy implementation by central banks Cornell University NY USA pp 1 – 40
2157. Ledenyov D O, Ledenyov V O 2013e To the problem of evaluation of market risk of global equity index portfolio in global capital markets MPRA Paper no 47708 Munich University Munich Germany pp 1 – 25
http://mpra.ub.uni-muenchen.de/47708/ .
2158. Ledenyov D O, Ledenyov V O 2013f Some thoughts on accurate characterization of stock market indexes trends in conditions of nonlinear capital flows during electronic trading at stock exchanges in global capital markets MPRA Paper no 49964 Munich University Munich Germany pp 1 – 52
http://mpra.ub.uni-muenchen.de/49964/ .
http://mpra.ub.uni-muenchen.de/50235/ ,
http://mpra.ub.uni-muenchen.de/51176/ ,

http://mpra.ub.uni-muenchen.de/51903/ ,

http://mpra.ub.uni-muenchen.de/61946/ ,

http://mpra.ub.uni-muenchen.de/53780/ ,

http://mpra.ub.uni-muenchen.de/61863/ ,

2165. Ledenyov D O, Ledenyov V O 2014d On the fundamentals of winning virtuous strategies creation toward leveraged buyout transactions implementation during private equity investment in conditions of resonant absorption of discrete information in diffusion - type financial system

2167. Ledenyov D O, Ledenyov V O 2014f MicroLBO software program with the embedded optimized near-real-time artificial intelligence algorithm to create winning virtuous strategies toward leveraged buyout transactions implementation and to compute direct/reverse leverage buyout transaction default probability number for selected public/private companies during private equity investment in conditions of resonant absorption of discrete information in diffusion - type financial system with induced nonlinearities ECE James Cook University Townsville Australia, Kharkov Ukraine.

2171. Ledenyov D O, Ledenyov V O 2015d Information money fields of cyclic oscillations in nonlinear dynamic economic system MPRA Paper no 63565 Munich University Munich
http://mpra.ub.uni-muenchen.de/64368/ ,

http://mpra.ub.uni-muenchen.de/64755/ ,

http://mpra.ub.uni-muenchen.de/64991/ ,

http://mpra.ub.uni-muenchen.de/65566/ ,

http://mpra.ub.uni-muenchen.de/66577/ ,

http://mpra.ub.uni-muenchen.de/67010/ ,
http://mpra.ub.uni-muenchen.de/67162/ ,

http://mpra.ub.uni-muenchen.de/67470/ ,

2180. Ledenyov D O, Ledenyov V O 2015m Quantum money MPRA Paper no 67982 Munich University Munich Germany, SSRN Paper no SSRN-id2693128 Social Sciences Research Network New York USA pp 1 – 70
http://mpra.ub.uni-muenchen.de/67982/ ,

http://mpra.ub.uni-muenchen.de/68404/ ,

http://mpra.ub.uni-muenchen.de/68730/ ,

http://mpra.ub.uni-muenchen.de/68960/ ,
http://mpra.ub.uni-muenchen.de/69405/ ,

http://mpra.ub.uni-muenchen.de/69609/ ,

2186. Ledenyov D O, Ledenyov V O 2015s MicroID software program with the embedded optimized near-real-time artificial intelligence algorithm to create the winning virtuous business strategies and to predict the director’s election / appointment in the boards of directors in the firms, taking to the consideration both the director’s technical characteristics and the interconnecting interlocking director’s network parameters in conditions of the resonant absorption of discrete information in diffusion - type financial economic system with induced nonlinearities ECE James Cook University Townsville Australia, Kharkov Ukraine.

2187. Ledenyov D O, Ledenyov V O 2015t MicroITF operation system and software programs: 1) the operation system to control the firm operation by means of the information resources near-real-time processing in the modern firms in the case of the diffusion - type financial economic system with the induced nonlinearities; 2) the software program to accurately characterize the director’s performance by means of a) the filtering of the generated/transmitted/received information by the director into the separate virtual channels, depending on the information content, and b) the measurement of the levels of signals in every virtual channel with the generated/transmitted/received information by the director, in the overlapping interconnecting interlocking directors networks in the boards of directors in the firms during the Quality of Service (QofS) measurements process; and 3) the software program to create the winning virtuous business strategies by the interlocking interconnecting directors in the boards of directors in the modern firms in the case of the diffusion - type financial economic system with the induced nonlinearities, using the patented recursive artificial intelligence algorithm ECE James Cook University Townsville Australia, Kharkov Ukraine.

2188. Ledenyov D O, Ledenyov V O 2015u MicroIMF software program: the MicroIMF software program to make the computer modeling of 1) the interactions between the information
money fields of one cyclic oscillation and the information money fields of other cyclic oscillation(s) in the nonlinear dynamic economic system, 2) the interactions between the information money fields of cyclic oscillation and the nonlinear dynamic economic system itself, and 3) the density distributions of the information money fields by different cyclic oscillations (the economic continuous waves) in the nonlinear dynamic economic system ECE James Cook University Townsville Australia, Kharkov Ukraine.

2189. Ledenyov D O, Ledenyov V O 2015v MicroSA software program 1) to perform the spectrum analysis of the cyclic oscillations of the economic variables in the nonlinear dynamic economic system, including the discrete-time signals and the continuous-time signals; 2) to make the computer modeling and to forecast the business cycles for a) the central banks with the purpose to make the strategic decisions on the monetary policies, financial stability policies, and b) the commercial/investment banks with the aim to make the business decisions on the minimum capital allocation, countercyclical capital buffer creation, and capital investments ECE James Cook University Townsville Australia, Kharkov Ukraine.

2190. Ledenyov D O, Ledenyov V O 2015w DNACode software program 1) to model the Digital DNA’s complex knowledge base structure for the selected economy of the scale and scope in the case of the G20 nations; 2) to accurately forecast the generation/propagation of the Ledenyov discrete time digital waves of GIP(t)/GDP(t)/GNP(t)/PPP(t) (the discrete-time digital business cycles of GIP(t)/GDP(t)/GNP(t)/PPP(t)) in the G20 economies of the scales and scopes) ECE James Cook University Townsville Australia, Kharkov Ukraine.

2191. Ledenyov D O, Ledenyov V O 2016x MacroSoft software program, which creates the proposed three dimensional (3D) wave diagram to accurately characterize and to finely display the GIP(t), GDP(t), GNP(t), PPP(t) dependences for the G7 economies of the scales and scopes in the time domain for the two possible cases: 1) the continuous-time waves of GIP(t), GDP(t), GNP(t), PPP(t), and 2) the discrete-time waves of GIP(t), GDP(t), GNP(t), PPP(t).
List of Figures:

Chapter 1:
1. Fig. 1. Continuous-time wave...10
2. Fig. 2. Discrete-time wave...10
3. Fig. 3. Discrete-time wave with tilted wave fronts.................................11
4. Fig. 4. Discrete-time wave, modulated by disruptive innovations in economics........11
5. Fig. 5. Money design evolution in time...18

Chapter 2:
1. Fig. 6. a) Gauss normal distribution of probability of occurring events; b) Valuable financial papers prices evolution estimation in probability theory in mathematics in Bachelier (1900, 1914, 1937, 19 May 1941). Three Gauss normal distributions of probabilities of valuable financial papers prices at various time periods of 1, 5, 10 years are depicted.................................27
2. Fig. 7. Discrete-time signal filter..30
3. Fig. 8. Fractal in form of Cantor set...30
4. Fig. 9. Range of possible frequencies at electronic trading in foreign currencies exchange markets..32
5. Fig. 10. Matrix block diagram to illustrate change of foreign currencies exchange rate during electronic trading in foreign currencies exchange markets at various time moments..........32

Chapter 3:
1. Fig. 11. Schematic diagram of electronic trading system in foreign currencies exchange market..38
2. Fig. 12. Bid-ask spread for ratio currency 1 / currency 2 over time................38
3. Fig. 13. Analysis methods for accurate characterization of foreign currencies exchange rates in FX markets...41

Chapter 4:
1. Fig. 14. Classic financial mathematics foundations.......................................43

Chapter 5:
1. Fig. 15. Macroeconomics analysis research approach...................................48
2. Fig. 16. Microeconomics analysis research approach.....................................50
Chapter 6:
1. Fig. 17. Block diagram of general linear continuous-dynamic system (after Kalman (1960b))...57
2. Fig. 18. Block diagram of general linear discrete-dynamic system (after Kalman (1960b))..57
3. Fig. 19. Block diagram of Stratonovich-Kalman-Bucy optimal filter (after Kalman (1960b))..58

Chapter 7:
1. Fig. 20. Block diagram of computer modeling to forecast foreign currencies exchange rates at ultra high frequency electronic trading in foreign currencies exchange markets.................62

Chapter 8:
1. Fig. 21. Thinking approaches to fundamental strategy theory...68
2. Fig. 22. Quantum winning virtuous strategy search algorithm...70
Accuracy of computing modeling, 56
Accurate characterization of, 32
 foreign currencies exchange rates, 32
 ultra high frequencies electronic trading, 32
 foreign currencies exchange markets, 32
Algorithm, 64
 quantum strategy search, 64
 Stratanovich-Kalman-Bucy, 5, 47
Analysis methods, 32
 mathematical, 32, 39
 financial, 32, 43
 electronic, 32, 47
 quantum, 32, 56
Asymmetric information flows, 51
Autocorrelation information flows, 51
Autocorrelation function, 41
Bachelier, 26, 27, 28
 estimation of valuable papers, 26, 27, 28
 financial mathematics theory, 26, 27, 28
 financial speculations theory, 26, 27, 28
 probability theory application, 26, 27, 28
Bid-ask spread for ratio of currency 1 / currency 2 over time, 36
Block diagram of, 51
 computer modeling to forecast foreign currencies exchange rates at ultra high frequency electronic trading in foreign currencies exchange markets, 56
 general linear continuous-dynamic system, 51
 general linear discrete-dynamic system, 51
 Stratanovich-Kalman-Bucy optimal filter, 51
Business cycles, 80, 81, 84, 85
 Juglar, 9, 12, 80
 Kondratiev, 9, 12, 81
 Kitchin, 9, 12, 84
 Kuznets, 9, 12, 84
 Ledenyov, 9, 12, 85
Capital, 71
 origination, 71
 accumulation, 71
 distribution, 71
Chicago school of economics, 7
Central bank, 8
 monetary policy, 8
 financial policy, 8
Correlated/uncorrelated microeconomics variables, 51
Currency pairs, 36
Digital DNA of economy of scale and scope, 34, 35, 215
Discrete-time digital business cycles, 9
Disruptive innovation in technology, economics and finance, 89
Economic cycles, 80, 81, 84, 85
 Juglar, 80
 Kondratiev, 81
 Kitchin, 84
 Kuznets, 84
 Ledenyov, 85
Effect(s), 28
 Joseph, 28
 Noah, 28
Electronic money, 13, 14
 the privately issued money with a usage fee, whose value is based on official money, 13
 the government issued money with a usage fee, 13
 the privately issued money with a usage fee redeemable into a specified commodity, 13
Electronic trading advantages, 36
 anonymous, 36
 automatic, 36
 complex orders processing, 36
 fast, 36
 low cost, 36.
Electronic trading process at, 37, 43, 47, 56
 low frequencies, 43
 high frequencies, 37
 ultra high frequencies, 37, 47, 56
Electronic trading system, 36, 39
Electronic trading system functions, 36
 electronic order routing (the delivery of orders from users to the system), 36
 automated trade execution (the transformation of orders into trades), 36
electronic dissemination of pre-trade (bid/offer quotes and depth), 36
post-trade information (transaction price and volume data), 36

Filter, 5, 47
 particle, 47
 Stratanovich-Kalman-Bucy, 5, 47
 Wiener, 47

Financial analysis of, 24
 foreign currencies exchange rates, 24
 foreign currencies trading, 24
 foreign currencies exchange markets, 24

Financial analysis research approaches, 48, 51
 Macroeconomics analysis, 48
 Microeconomics analysis, 50

Financial macroeconomics analysis with, 43
 Purchasing Power Parity model, 43
 Uncovered Interest Rate Parity model, 43
 Sticky Price Monetary model, 43
 Bayesian Averaging Technique model, 43
 Combined Forecast model, 43
 State-space model with Stratanovich-Kalman-Bucy interpolation algorithm, 43

Financial microeconomics analysis with, 45
 Market microstructure model, 45
 Transactions order flow model, 45
 Generalized autoregressive conditional heteroskedasticity model, 45
 State-space model with Stratanovich-Kalman-Bucy filtering algorithm, 45
 State-space model with particle filtering algorithm, 45

Forecast of foreign currencies exchange rates with, 47
 classic-mathematics probabilistic techniques, 47
 discrete-mathematics filtering techniques, 47
 chaos-mathematics scaling techniques, 47

Foreign currencies exchange rate, 33
 average, 33
 long, 33
 short, 33

Foreign currencies exchange rates at
 free float, 12
 managed float, 12
 dirty float, 12

Formula, 57

foreign currencies forward exchange rate calculation, 57
 particle filter, 47
 probability calculation, 39
 wave function, 56

Fractal structure, 41
 Function, 41
 autocorrelation, 41

Gauss normal distribution, 27

High-performance computing, 28

History of, 6
 capital markets evolution, 6
 paper money, 6
 metal coins, 6
 electronic money, 6
 quantum money, 6

Information, 65
 absorption, 65
 asymmetric, 66
 diffusion, 65
 dispersion, 65

Information advantage in foreign exchange currencies market, 71

Information communication technologies, 28

Interbank spot foreign exchange market, 36

Joseph effect, 28

Ledenyov discrete-time digital waves of
 GIP(t)/GDP(t)/GNP(t)/PPP(t), 9

Ledenyov law on limiting frequency, 76

Liquidity need, 51

Logic, 68
 abductive, 68
 deductive, 68
 inductive, 68
 quantum logic (probability logic), 68

Linear Shift Invariant (LSI) systems, 49

Macroeconomics formulas, 43

McGuire, 25

Means of value payments, 6

Microeconomics formulas, 43

Microeconomics variables, 51
 foreign currencies exchange market transparency, 51
 foreign currencies exchange market decentralization, 51
brokers behaviour, 51
market-makers behaviour, 51
auctioneers actions, 51
location of trading, 51
efficiency of clearing of foreign exchange transactions, 51
relation between spot market and derivative market, 51
associated systemic risk, 51
Money design evolution, 16
Money types, 6
- natural money based on single commodity, 6
- natural money based on multiple commodities, 6
- "no base money", 6
Noah effect, 28

Oscillations of economic variables, 9

Particle filter, 47
- formula, 47
Periodic oscillations of economic variables, 9

Periods in US Federal Reserve System operation, 7
- Great Experiment, 7
- Great Depression, 7
- Stable Inflation, 7
- Great Inflation, 7
- Disinflation, 7
- Great Moderation, 7
- Great Recession, 7
Probability, 27, 39
- formula, 39
Price, 40
- ask, 40
- bid, 40

Quantum econophysics, 71
Quantum strategy search algorithm, 70
Quantum money, 6
Quantum winning virtuous strategies, 61
- creation, 61
- execution, 61
Rate, 40
- spot currencies exchange, 40
Return premium, 40

Schematic diagram of electronic trading system in foreign currencies exchange market, 36
Schumpeterian creative disruption age, 5
Signal, 10
- Continuous-time, 10
- Discrete-time, 10
Speculative economic sector, 47
Statistics formulas, 39
Stratanovich-Kalman-Bucy, 5, 43, 47
- filter, 5, 47
- filtering algorithm, 5, 47
- formula, 47
- interpolation algorithm, 43

Theory, 39
- digital DNA of the modern digital creative economy of the scale and scope, 35
- discrete-time signal filtering, 28
- financial mathematics, 26, 27, 28
- financial speculations theory, 26, 27, 28
- fundamental strategy, 63
- multi-fractals, 29
- probability, 26, 27, 28, 39
- statistics, 26, 27, 28, 39

Ticks of, 40
- foreign currencies exchange rates, 40

Time periods, 39, 43, 47, 56, 61
- long, 39, 43, 47, 56, 61
- short, 39, 43, 47, 56, 61

Traders, 37
- informed, 37
- uninformed, 37

Trends in, 39, 43, 47, 56
- foreign currencies exchange rates dynamics, 39, 43, 47, 56

Ultra high frequency electronic trading definition, 40
US Congress, 7
US Federal Reserve Act, 7
US Federal Reserve System, 7
US Federal Reserve System’s main duties, 8
United States, 7

Wave, 10, 56
- continuous-time, 10
- discrete-time, 10
- function formula, 56
Wiener filtering, 47
Authors Index

Abers, 66
Abhyankar, 22
Abrams, 22
Abreu, 23
Acemoglu, 24, 33
Adams, 24
Adler, 19
Admati, 20
Adrian, 25
Aguiar, 23
Aitken, 24
Akaike, 59, 61
Akram, 23, 24
Alberola, 22
Alexender, 24
Alexander, 68
Aliber, 18, 23, 53
Allayannis, 23
Allen, 18, 20, 33, 51
Allison, 66
Almekinders, 21, 33
Amihud, 18, 19, 33, 51
Anmer, 21
Anand, 67, 69
Andersen, 19
Anderson, 6, 23, 59, 61
Andreasen, 59, 61
Andrew, 21
Andrews, 67
Andronov, 56
Ansoff, 68
Anthony, 22
Anwar, 24
Arjalies, 70
Arora, 70
Arrow, 18
Athans, 59
Atkins, 66
Ausloos, 23, 29, 45, 53
Aziz, 22
Baba, 25
Babbs, 59
Bacchetta, 23, 24, 25

Bachelier, 26, 27, 28, 42
Backus, 19
Baek, 24
Bagehot, 6, 26, 31
Baglioni, 24
Bahmani, 59
Bahmani-Oskooee, 19
Baillie, 19, 23
Bakker, 21, 33
Baldwin, 19, 20
Bali, 20
Balke, 22
Ball, 21
Ballentine, 66
Balmuth, 6
Banerjee, 33, 66, 69
Bank for International Settlements, 21
Banti, 25
Barbosa, 24
Barker, 24
Barndorff-Nielsen, 24
Barney, 68
Baron, 70
Bar-Shalom, 59, 61
Bartlett, 29, 53, 58, 61
Bartov, 21
Bartram, 24
Bates, 18
Bationo, 59
Batkov, 58
Battin, 58
Baumol, 6, 18
Bauwens, 24
Bayoumi, 24
Baysinger, 68
Baxter, 20
Bayoumi, 19
Beato, 22
Beaupain, 24
Beine, 23
Bekaert, 20
Bellman, 58
Berger, 25, 52
Bergsten, 23, 33
Berestetsky, 66
Berk, 6
Berry, 21
Bertola, 20, 21

246
Cheng, 22
Chernenko, 22, 25, 52
Cheung, 21, 23
Chi, 24
Chiang, 21
Child, 68
Chinn, 20, 21, 25, 52
Chiquoine, 23, 40
Choi, 20, 22, 24
Choo, 68, 69
Chordia, 23
Chou, 19, 22, 24
Chow, 59, 61
Chowdhry, 20, 23
Chowdry, 23
Christodoulou, 24
Chu, 24
Chu-Chun-Lin, 59, 61
Chui, 24
Chung, 24
Claassen, 21, 31
Claessens, 23
Clapp, 59
Clarida, 22
Clark, 16, 22, 23, 49, 70
Clinton, 20
Cogley, 49
Cohen, 19, 51, 72
Coimbra, 59
Collins, 23, 33
Collis, 68
Compton, 66
Conroy, 19, 51
Cook, 6
Copejans, 22
Copeland, 19, 72
Cornell, 18
Corsetti, 23
Courakis, 20, 33
Courtault, 26
Coval, 23
Covrig, 22, 23, 72
Cox, 19, 70
Crawford, 6
Creal, 59
Crépel, 26
Crifo, 70
Cristescu, 24
Crockett, 25
Croushore, 23
Cuche, 59
Cumming, 70
Curcio, 20, 44
Czarnecki, 21, 33
Dacorogna, 20, 21, 23, 31, 33, 42, 43, 44, 45, 46
Daems, 67
Dahl, 21
Danielsson, 23, 51
Danker, 21
D’Arcy, 37
Darlington, 58
Darvas, 59
Das, 19
Dave, 20, 33, 43, 44, 45, 46
Davenport, 58
Davidson, 33, 66, 69
Davies, 6
Davis, 26, 58, 59, 61, 68
De Alba, 59
Deardorff, 18
Debreu, 18, 31
De Broglie, 66
Decupere, 20
De Freitas, 59
De Grauwe, 20, 24, 33, 37, 40
DeGennaro, 22
Degryse, 21
De Jong, 21, 59, 61
De Koning, 59, 61
De Laplace, 26, 42, 53, 66
Del Mar, 61
DeLong, 19, 20
Dempster, 59, 61
Demsetz, 18
Demos, 20, 44
Derviz, 23
D’Souza, 23
Dess, 68
Deutsche Bundesbank, 23
Devereux, 19
De Vos, 59
De Vries, 21
Dewachter, 22
De Wet, 24
De Zwart, 25
Diamond, 19, 25
Diebold, 19, 20
Dietrich, 16
DiMillo, 22
Dini, 21
Ding, 25
Dirac, 66
Dodge, 22
Dolado, 33, 66, 69
Dominguez, 19, 21, 24, 52
Domowitz, 19, 20, 22
Donohue, 20
Doob, 58
Dooley, 16, 18, 20
Doran, 59
Dornbusch, 18, 47
Doucet, 59
Doyne, 23
Dranove, 68, 69
Drejer, 68, 69
Dreyer, 24
D’Souza, 52
Duarte, 23
DuCharme, 24
Dueker, 24
Dukas, 21
Dumas, 19, 21
Dunne, 24, 25, 52
Durbin, 33, 59, 61, 66, 69
Durčáková, 25
Durré, 24
Dwyer, 21
Easley, 21, 72
Ebrahim, 23
Ebrahimijam, 59
Edelbuttel, 22
Edelen, 23, 72
Edelston, 21
Edison, 20, 22
Edin, 21
Edwards, 19, 20, 33
Egstrup, 24
Eichengreen, 24, 25, 52
Eichenbaum, 20, 23, 24
Eichengreen, 20, 23, 24
Einstein, 66
Eisberg, 66
Ellis, 18
El-Shagi, 24
Elyasiani, 20
Embrechts, 22
Enge, 59, 61
Engel, 18, 19
Eichengreen, 33
Einstein, 28
Escribano, 24, 73
Esquivel, 28
Etheridge, 26
Etula, 25
Evans, 19, 22, 24, 33, 51, 52, 68
Everts, 21
Falconer, 59, 61
Fama, 6, 18
Fan, 19
Farhmeir, 59, 61
Farina, 72
Farstrup, 24
Faruqee, 21, 22
Fatemi, 21
Fatum, 23, 24
Faulkner, 68
Faust, 24
Fermi, 56
Fernandez, 59
Fernandez-Villaverde, 49, 59
Fetherston, 22
Feynman, 66
Fialkowski, 21
Fieeleke, 19
Fiess, 23
Figliuoli, 20, 44
Finch, 66
Fischer, 6, 23, 24
Fleming, 18, 22, 23, 24
Flemming, 22
Flood, 19, 20, 52
Folkerts-Landau, 21
Fombrum, 68
Fomby, 22
Fong, 24
Forbes, 23
Forget, 70
Foster, 20
Frale, 49
Franke, 22, 23, 33, 59
Frankel, 18, 19, 21, 33, 47, 49, 50, 51, 52
Franklin, 58, 59, 61
Fratzscher, 24
Freihube, 23
French, 18, 19, 72
Frieden, 24
Friedman, 6, 18, 33, 58, 61
Frino, 21, 24
Frömmel, 22, 52
Froot, 18, 20, 47, 51, 52
Hart, 19, 47, 68
Harte, 29, 53
Hartmann, 22, 33
Harvey, 20, 49, 59
Hasbrouck, 19, 51
Hashimoto, 19
Hasem, 22
Hattori, 25
Hau, 19, 22, 24, 25, 52
Havlina, 59, 61
Havlena, 23, 29, 45, 53
Havrilesky, 21
Hawkins, 23
Hayashi, 33, 66, 69
Hayek, 6, 7, 31
Hayes, 59, 61
Haykin, 59, 61
Hayt, 22
Hazlitt, 7
He, 22, 24, 25
Heath, 25, 36, 37, 39, 40
Heimer, 25
Hellwig, 19, 72
Helpman, 22, 33
Henderson, 18, 21
Hendry, 33, 66, 69
Henry, 20, 31, 44
Heppelmann, 67
Hess, 22, 23, 59
Hesse, 20, 44
Higashio, 25, 37
Higbee, 24
Hill, 24, 33, 66, 68, 69
Hillion, 18, 52
Hiraki, 22
Hirscheleifer, 21
Hitt, 68, 69
Hjalmarsso, 23, 40
Hnatkovska, 22
Ho, 19, 25, 33, 46, 51, 59, 61
Hodder, 19
Hodrick, 19, 20, 49, 59
Hofer, 68
Hogan, 21
Holden, 20
Holland, 68
Holt, 68
Holthausen, 20
Hong, 21, 23
Hong Kong Monetary Authority, 22, 24
Hongyi, 24, 59, 60, 61, 63
Horsewood, 23
Horst, 70
Hoskiison, 68, 69
Hounkpodote, 59
Howe, 21, 22
Howergo, 6
Howorka, 24, 25, 52
Hsieh, 19, 22
Huang, 18, 20, 23
Huff, 68
Hübner, 23
Hui, 24
Huisman, 20
Hull, 70
Humpage, 20, 22, 23, 24
Hung, 22
Hussinger, 72
Hutchison, 23, 24
Hwang, 59, 61
Ilinski, 33, 66, 69
Ingersoll, 19, 22
Inoue, 24
Ireland, 68, 69
Isard, 19, 21, 22, 23, 33
Ito, 19, 20, 29, 33, 44, 52, 53, 56, 59, 61, 72
Iversen, 21
Iwasaki, 25, 37
Jacobson, 6
Jacquillat, 20, 33
Jaeger, 49
James, 25, 33
Jang, 59, 61
Jarnecic, 24
Jasiak, 21, 42, 43, 44, 45
Javaheri, 59
Jayanthi, 24
Jayaraman, 19
Jazwinski, 59, 61
Jeanne, 23
Jenkins, 33, 66, 69
Jeon, 24
Jiang, 21, 24, 25, 29, 45, 54
Jo, 70
Joachain, 66
Johan, 70
Johansen, 20
Johnson, 68, 70
Jones, 19, 21, 33, 68, 69
Jorion, 20
Joseph, 59, 61
Joseph Penso de la Vega, 6, 26
Joshi, 23
Judd, 24
Juglar, 9, 12
Julier, 59, 61
Jungbacker, 49, 59
Juselius, 20
Kabanov, 26
Kaiser, 58
Kagan, 6
Kalman, 29, 53, 55, 56, 57, 58, 61
Kaminsky, 22
Kanas, 22, 23
Kandel, 21, 23
Kantelhardt, 23, 29, 45
Karatzas, 33, 66, 69
Karjalainen, 20
Karl, 59, 61
Karolyi, 24
Kaul, 20, 21, 23, 24
Kavajecz, 23, 24, 51, 72
Kearney, 19
Kehoe, 23
Kehr, 23
Keim, 22
Kenen, 18, 19, 33
Kennedy, 6
Kevin, 21
Keynes, 6
Khandwalla, 72
Khanna, 67, 68, 69
Khonry, 20, 33
Kiefer, 21, 72
Kilian, 24
Killeen, 19, 22, 24
Kim, 20, 22, 23, 24, 29, 45, 49, 54, 59
King, 6, 23, 31, 36, 37, 38, 40, 52
Kincare, 22
Kirby, 22
Kirilenko, 22
Kisselev, 23
Kitchin, 9, 12
Kiyotaki, 21
Kleeman, 59
Kleidon, 22
Klein, 20, 21
Kleshchelski, 25
Klueppelberg, 22
Kočenda, 24, 25
Koedijk, 20
Koepecke, 29, 53, 55, 56, 58, 61
Kohlhagen, 19
Kolmogorov, 28, 42, 53, 66
Kon, 25
Kondratieff, 9, 12
Konrad, 59, 61
Koop, 66
Koopman, 33, 49, 59, 61, 66, 69
Kopecky, 20
Kortian, 23
Koscielny-Bunde, 23, 29, 45, 53
Kotler, 70
Kouri, 16
Koutmos, 24, 72, 73
Ková, 22
Kraay, 6
Krahnen, 23
Kramer, 67, 69, 70
Kratzig, 59
Kraus, 21
Kräussl, 24
Krele, 59
Kreps, 19, 47
Kroner, 19
Krugman, 19, 20
Kurths, 59, 61
Kushner, 58
Kutan, 24
Kuznets, 9, 12
Kuznetsov, 29, 53, 56, 61
Kyle, 19
Labys, 19
Laffont, 68
Lafluey, 69, 76
Laird, 59, 61
Laloe, 66
Lam, 25, 47
Lamoureux, 22
LaMaster, 19
Landau, 66
Lane, 23
Lang, 24
Laning, 58, 59
Lassmann, 25
Laurenceson, 24
Lautier, 59
Leach, 20, 22
Leahy, 20
Lease, 20, 52
LeBaron, 20, 22, 23, 24
Lefon, 26
Lenedyov D O, 9, 12, 31, 34, 35, 39, 40, 47, 49, 53, 54, 56, 63, 64, 65, 67, 68, 69, 71, 74, 75
Lenedyov O P, 41
Lenedyov V O, 9, 12, 31, 34, 35, 39, 40, 47, 49, 53, 54, 56, 63, 64, 65, 67, 68, 69, 71, 74, 75
Lee, 20, 21, 22, 23, 24, 33, 59, 61, 66, 69, 70, 72
Lees, 58
Leftwich, 20
Leighton, 66
Le Marchand, 26
Leondes, 59, 61
Lessard, 19
Leung, 24
Levich, 19, 21, 33
Levinthal, 68, 72
Lewis, 20, 21, 22, 59, 61
Liang, 20
Liboff, 66
Lieberthal, 68
Lien, 24, 25
Lifshits, 66
Ligterink, 21
Lim, 24
Lin, 19, 21, 59, 61
Lin Wen-Ling, 19
Lindley, 25
Lipson, 21
Litterman, 22
Litvin, 59, 61
Lizondo, 20
Liu, 22, 25, 29, 45, 54
Ljung, 59, 61
Lo, 20, 22, 23, 24, 25, 33, 46, 52, 66, 69
Locke, 21
Logue, 18
Longstaff, 21
Loopesko, 19
Loosignian, 19, 33
Lopez, 22, 23, 59
Loretan, 23
Lorino, 68
Louche, 70
Love, 20, 23, 44, 51
Lu, 25, 29, 45, 54
Luati, 49, 59, 61
Luchs, 68
Lunde, 24
Luo, 23, 51
Lutkepol, 33, 66, 69
Lydenberg, 70
Lyndenburg, 70
Lyons, 19, 22, 24, 33, 51, 52, 72
Lyrio, 22
Ma, 23, 24, 25, 29, 45, 46, 54
MacDonald, 19, 22, 23
Macey, 23
Machlup, 18, 31
MacKinley, 20, 22, 33, 66, 69
MacKinnon, 33, 66, 69
McMahon, 66
Macrae, 21
Madhavan, 20, 22, 52
Madrigal, 22
Mahieu, 20, 21
Maier, 19, 51
Maistrenko, 41
Mallo, 23
Mancini, 25
Mandelbrot, 29, 45, 53
Mandel'shtam, 56
Manolakis, 59, 61
Mantegna, 21, 42, 43, 44, 45
Mapa, 59
Marion, 20
Mark, 19, 21
Markov, 26, 27, 42, 53, 66
Marks, 23
Markwat, 25
Marsh, 21, 22, 24, 25, 33, 51
Marston, 19, 22, 33
Martens, 22
Martin, 23, 24
Martin R, 68, 69, 73, 76
Marx, 23
Marzo, 25
Maskell, 59
Mason, 18
Massib, 21, 52
Masulis, 20, 52
Mathisen, 24
Mathieson, 20, 23
Mathur, 22
Matisko, 59, 61
O’Connor, 24
Oesterhelweg, 21
Ofek, 23
Oh, 24
O’Hara, 19, 20, 21, 23, 31, 33, 44, 52, 72
Okunev, 24
Oldfield, 19, 52
Oliveira, 28
Olsen, 20, 21, 23, 31, 33, 42, 43, 44, 45, 46
Olson, 12
Olsson, 59
Omrane, 24
Ordorica, 59
O’Rourke, 24, 25
Osler, 21, 22, 23, 31, 36, 40, 52, 73
Ossolinski, 25
Ostdiek, 22
Osterberg, 23
Ostry, 22
Ozale, 59
Ozbek, 59
Packer, 25
Pagano, 22
Page, 20, 52
Palepu, 68
Pan, 25
Panthaki, 21, 24
Paperman, 21
Park, 59
Pascual, 21, 24, 66, 73
Pasquariello, 24, 25
Pasricha, 59
Pasta, 56
Paudyal, 21
Payne, 20, 23, 25, 33, 44, 51, 52
Peake, 21
Pearce, 19
Pearson, 21, 59, 61, 66, 68
Pedersen, 24, 25
Peiers, 21, 22, 52
Peinke, 22
Pelham, 24
Peng, 24
Penzner, 59, 61
Perri, 23
Persaud, 25
Pesaran, 20, 22, 31, 33, 44, 66, 69
Pesenti, 23
Peters, 42, 43, 44, 45
Petersen, 21
Pfleiderer, 20
Phelps, 21, 52
Phylaktis, 25
Pictet, 20, 21, 23, 31, 42, 43, 44, 45, 46
Pierse, 59
Pinheiro, 59
Pitaevsky, 66
Pitol-Belin, 68
Pirrong, 22
Pitt, 59
Planck, 66
Plantin, 25
Plesoianu, 25, 29, 45, 52, 54
Podolsky, 66
Poghosyan, 24
Poonawala, 18
Pope, 21
Popper, 22, 23
Porter, 67, 69, 70
Portes, 20, 22, 33
Potter, 33, 66, 69
Powell, 59, 61
Poyiadgis, 59
Prahalad, 68
Prasad, 21
Prescott, 49, 59
Price, 6
Priestley, 59, 61
Primiceri, 49
Proakis, 59, 61
Proietti, 49, 59, 61
Protter, 41
Pugachev, 29, 53, 56, 58, 61
Pulvino, 24
Qian, 25, 29, 45, 54
Quinn, 6
Racicot, 59
Radner, 18
Rafferty, 25
Ragazzini, 58
Rahmani, 24, 29, 45, 54
Rajamani, 59, 61
Rajan, 21
Ramadorai, 20, 25
Ramaswamy, 23
Ranaldo, 25
Raviv, 21
Rawlings, 59, 61
Razin, 23, 33
Ready, 20
Rebelo, 23, 24, 25, 52
Redlich, 6
Reinhardt, 70
Reinhart, 24
Reiss, 22
Reitz, 20
Reger, 68
Remolona, 22
Renneboog, 70
Resnick, 66
Reuer, 22, 72
Rey, 22, 23, 24
Rhee, 20
Ricardo, 6
Ricker, 61
Richardson, 22
Ricker, 59
Rigobon, 23, 24
Rijken, 24
Rime, 20, 22, 23, 24, 25, 31, 36, 37, 38, 40, 44, 51, 52
Ristic, 59
Rivkin, 67, 68, 69
Roberts, 6
Robinson, 18, 19, 31, 33
Roche, 23
Rodriguez, 19
Rodrik, 23, 24, 33
Röell, 20, 21, 22
Rogers, 24, 33, 66, 69
Rogoff, 19, 20, 21, 24, 33
Rojas-Suarez, 21
Roll, 19, 23, 72
Roley, 19
Roma, 21
Romer, 21
Roncalli, 59
Roney, 68, 69
Romanenko, 41
Roomans, 22
Root, 58
Rose, 18, 19, 20, 21, 23
Rosenberg, 22, 33, 72
Rosengren, 20
Roseveare, 6
Ross, 19
Rossi, 59
Rothbard, 7
Rothenberg, 70
Roubini, 23
Rose, 33
Rozeff, 21
Rosen, 66
Rübel, 24
Rubin, 59, 61
Rubinstein, 20
Rubio-Ramirez, 49, 59
Rue, 68
Ruiz, 59
Ruiz, 22, 33
Rydel, 59, 61
Rylov, 56, 58
Rylov, 66
Saar, 23, 51
Sack, 24
Sadka, 22, 33
Sadler, 68, 69
Sager, 20, 24, 52
Sahay, 24
Sahminan, 24
Sakakibara, 67, 69
Salandro, 20
Salmond, 59, 61
Salter, 67, 69
Samiei, 20, 23
Samuels, 68
Samuelson, 26
Sandoval, 59
Sands, 66
Sanger, 21
Sapp, 24, 25, 52
Sargent, 49
Sarkar, 22
Sarno, 20, 22, 23, 24, 25, 33, 51, 52
Sato, 23
Saunders, 19
Savas, 21
Scalia, 23
Scarlat, 24
Schäfer, 25, 40
Schendel, 68
Schenzler, 18
Schiereck, 23
Schiff, 66
Schmeling, 22, 73
Schmidt, 21
Schnadt, 6

256
Tabak, 24
Tadic, 59
Takezawa, 22
Talay, 33, 66, 69
Talkner, 22
Tam, 24
Tanizaki, 59
Tanner, 21
Tarone, 68
Tavakkol, 21
Taya, 19, 33
Taylor, 22, 23, 29, 33, 45, 51, 52, 53
Taylor A, 24
Taylor D, 19, 20
Taylor J B, 24
Taylor M P, 24
Taylor S J, 21, 33, 66, 69
Teece, 68, 69
Tenorio, 22
Terada, 25, 37
Teräsvirta, 33, 66, 69
Tesfatsion, 24
Teschl, 66
Theissen, 23
Theoret, 59
Thiebaut, 68
Thiveaud, 6
Thomas, 21
Thomas, 6
Tikhonov, 29, 53, 56, 61
Tille, 24
Timmer, 59, 61
Tirone, 68
Titman, 21
Tobin, 6
Toner, 21
Tong, 33, 59, 61, 66, 69
Tozzi, 22
Trenca, 25, 29, 45, 52, 54
Treske, 21
Tripe, 24
Tryon, 21
Tsang, 22, 23, 25, 46
Tse, 23, 24, 25
Tukey, 29, 53, 58, 61
Turnbull, 20
Tutz, 59, 61

Ubide, 22
Uhlmann, 59, 61
Ulam, 56
US Air Forces Office of Scientific Research, 58
US General Accounting Office, 23

Vacca, 23
Vahid, 23
Vakarchuk, 66
Valachy, 24
Valente, 22
Van Boening, 20
Van der Wel, 49, 59
Van Dijk, 25
Van Hagen, 20
Van Horne, 33, 66, 69
Van Kervel, 21
Van Loan, 59, 61
Van Ness, 29, 45, 53
Van Norden, 24, 51
Van Willigenburg, 59, 61
Van Wincoop, 23, 24, 25
Vandrovych, 21
Vanthoor, 21, 33
Varga, 59
Varian, 23, 72
Vaubel, 24
Vayanos, 23
Vega, 19, 23, 40
Venegas, 59
Vermeiren, 22
Verrecchia, 19, 20
Verschoor, 21, 24, 25
Vialar, 69
Vijayraghavan, 21
Viceira, 22
Vietor, 70
Viswanathan, 20, 21, 22, 23
Vitale, 22, 23, 24, 25, 51, 52
Vivex, 21
Vogler, 22
Von Böhm-Bawerk, 7, 31
Von Mises, 7, 31
Von Peter, 25
Von Weizsäcker, 20
Voss, 59, 61
Vredin, 21

Waddock, 70
About Authors

Dimitri O. Ledenyov graduated from Department of Radio-Physics and Electronics at V. N. Karazin Kharkiv National University in Kharkiv, Ukraine in 1994 - 1999. He conducted the research in the field of the microwave superconductivity, the solid state physics, the telecommunications, the quantum liquids and the quantum computing at Department of Electrical and Computer Engineering at James Cook University in Townsville, Queensland, Australia in 2000 - 2016. He completed the research in the fundamental and applied economics as well as in the fundamental and applied finances, solving the complex economical and financial problems with an application of the econometrics and econophysics sciences at Department of Electrical and Computer Engineering at James Cook University in Townsville, Queensland, Australia in 2000 - 2016. He authored the numerous research papers, reviews and books in the natural and social sciences. He participated in a big number of the international conferences, symposiums, forums, seminars and business meetings around the World.

Viktor O. Ledenyov graduated from Department of Radio-Physics and Electronics at V. N. Karazin Kharkiv National University in Kharkiv, Ukraine in 1988 - 1993. He conducted the research in the fields of the microwave superconductivity, the solid state physics, the telecommunications, the quantum liquids and the quantum computing in a number of the research institutions and universities in Europe and in North America in 1993 – 2016. He completed the research in the fundamental and applied economics as well as in the fundamental and applied finances, solving the complex economical and financial problems with an application of the econometrics and econophysics sciences in a number of the research institutions and universities in Europe and in North America in 1993 – 2016. He authored the numerous research papers, reviews and books in the natural and social sciences. He participated in a big number of the international conferences, symposiums, forums, seminars and business meetings around the World.
Forecast in Capital Markets establishes an essential scientific understanding on the modern techniques to forecast the dynamics of the capital changes in the capital markets in the finances, focusing on the foreign currencies exchange markets.

It is written with the aim to improve a forecast accuracy of the foreign currencies exchange rates changes at the ultra high frequencies electronic trading in the foreign currencies exchange markets in the short and long time periods.

It is centered around the theories on the mathematical analysis methods, the financial analysis methods, the electronic analysis methods and the quantum analysis methods in the econometrics and econophysics to forecast the trends dynamics of the foreign currencies exchange rates changes at the ultra high frequencies electronic trading in the foreign currencies exchange markets in the short and long time periods.

It is focused on the quantum winning virtuous trading strategies creation and execution during the ultra high frequencies electronic trading in the foreign currencies exchange markets in the short and long time periods.

It is intended for the financiers, investors, traders, professors, engineers, students, who are interested to learn more knowledge on the problem on the ultra high frequencies electronic trading in the foreign currencies exchange markets in the short and long time periods.

Key Features:

* Discovers the history of capital markets from the metal coins to the quantum money.

* Formulates the problem on an accurate characterization of the foreign currencies exchange rates at the foreign currencies trading in foreign currencies exchange markets.

* Solves the problem on an accurate characterization of the foreign currencies exchange rates at the foreign currencies trading in foreign currencies exchange markets.

* Explains the fundamentals of the theories on the mathematical analysis methods, the financial analysis methods, the electronic analysis methods and the quantum analysis methods in the econometrics and econophysics sciences.

* Applies a number of discussed analysis methods to forecast the trends dynamics of the foreign currencies exchange rates changes at the ultra high frequencies electronic trading in the foreign currencies exchange markets in the short and long time periods.

* Formulates the problem on the quantum winning virtuous trading strategies creation and execution during the ultra high frequencies electronic trading in the foreign currencies exchange markets in the short and long time periods.

* Presents a set of practical actions toward the quantum winning virtuous trading strategies creation and execution during the ultra high frequencies electronic trading in the foreign currencies exchange markets in the short and long time periods.

* Discusses a present state of progress on the modern technologies application to forecast the dynamics of the capital changes in the capital markets in the finances.