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1 Introduction

Starting with early contributions more than a century ago by Newcomb (1886), Holmes (1892),

Weldon (1892, 1893), and Pearson (1894) among others, finite mixtures have been continuously

used in statistics (see section 2.18 in McLachlan and Peel 2000 for a short history of finite mix-

ture models and Table 2.13 in Titterington et al. 1985 for an extensive list of direct applications

of mixtures; see also the monographs of Everitt and Hand 1981, Scott 1992, and Frühwirth-

Schnatter 2006). More recently, mixtures of normal distributions have been increasingly applied

in macro- and micro-economics (e.g., regime-switching models of economic time series in Hamil-

ton 1989, or analysis of dynamics of educational attainment in Keane and Wolpin 1997, and

Cameron and Heckman 2001), marketing science (structured representation of market informa-

tion in DeSarbo et al. 2001, and forecasting of new product sales in Moe and Fader 2002), and

empirical finance (modeling stock returns in Kon 1984, and Tucker 1992, value-at-risk in Duffie

and Pan 1997, Venkataraman 1997, and Hull and White 1998, stochastic volatility models in

Kim et al. 1998 and Omori et al. 2007).

In the present paper we focus our attention on the specific problem of using finite mixture

of Gaussian densities for approximating a complex density kernel. Such approximations are

critically needed when inference requires integration of an analytically intractable density kernel,

such as a posterior density within a Bayesian framework or a likelihood for a nonlinear or

non-Gaussian dynamic state-space model. Whether one relies upon Importance Sampling (IS)

or Markov Chain Monte Carlo (MCMC) for inference, the numerical accuracy of the results

critically depends on how closely an importance sampler or proposal density approximates

the target integrand. Finite mixtures are conceptually attractive within this context since

theoretically they can produce accurate approximations to most density functions, depending

upon the number of components (Ferguson, 1973).

There exist a vast literature which proposes various procedures for constructing finite (mostly

Gaussian) mixture approximations. In a nutshell, the key numerical issues are the selection of a

distance measure to assess goodness of fit, the (typically sequential) determination of the number

of terms in the approximating mixtures and the estimation of its component parameters and

weights.

Extending earlier proposals by West (1992), Oh and Berger (1993), Cappé et al. (2004),

and Douc et al. (2007), Cappé et al. (2008) proposes an adaptive algorithm to optimize the IS

performance of a mixture sampler with a predetermined number of components. Specifically,

their Mixture Population Monte Carlo (M-PMC) algorithm aims at maximizing the entropy

criterion between a target kernel and the mixture approximation. It is adaptive in that it

relies upon sampling from the current mixture proposal in updating its weights and component

parameters. Convergence is assessed on the basis of the Shannon entropy of the normalized IS

ratios.

Hoogerheide et al. (2007) propose an adaptive algorithm to construct mixtures of Student-t

distributions to approximate an arbitrary target density with the objective of minimizing the

variance of the corresponding IS ratios. Adaption means that the components of the mixture

are introduced sequentially until a good enough fit obtains. This algorithm has been imple-

mented within the R package AdMit in Ardia et al. (2009). A subsequent adaptive algorithm
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is developed by Hoogerheide et al. (2012) and implemented into the R package MitISEM by

Basturk et al. (2012). The latter algorithm differs from the former in several significant ways. It

aims at minimizing the Kullback-Leibler divergence between the target density and the mixture.

Foremost, it fully re-optimizes the mixture with the introduction of each new component using

a computationally efficient EM algorithm. As we shall see, the algorithm we propose below is

adaptive in the sense of Basturk et al. (2012), but differs in several important ways: it relies

upon a different distance measure; the latter is evaluated by Gaussian quadrature instead of

importance sampling (classical) or Metropolis-Hastings (bayesian); optimization relies upon an

analytical gradient optimizer and initial values are computed differently.

Giordani and Kohn (2010) propose an adaptive Independent Metropolis-Hastings algorithm

for constructing mixture proposal densities. It is designated for speed and reliability and to

ensure that theoretical ergodicity conditions are respected during adaptation. It combines good

approximations over areas already well covered with exploring capabilities in regions that remain

poorly covered by the current proposal and does so by fattening the tails of the latter. Fast

re-estimation of the mixtures relies upon a k-means algorithm discussed in Bradley and Fayyad

(1998) and subsequently in Hamerly and Elkan (2002) and Giordani and Kohn (2010). Efficient

designs rely upon reducing the number of re-estimations as coverage improves.

Kurtz and Song (2013) propose a Cross-Entropy-Based Adaptive Importance Sampling algo-

rithm to construct an optimal Gaussian mixture IS density with a preassigned number of terms.

The objective function that is sequentially minimized is the Kullback-Leibler cross-entropy be-

tween the target density and the mixture. At step J , the cross-entropy is computed using a

random sample drawn from the step J − 1 mixture. Optimization relies upon the gradient of

the cross-entropy with respect to the mixture parameters, a technique we shell replicate below

for a different distance measure.

The approach of Bornkamp (2011) relies upon iterated Laplace approximations to add com-

ponents one by one as needed. However, only the weights of the mixture components are

re-optimized with each iteration while their Laplace modes and inverted Hessians are left un-

changed. It immediately follows that a mixture target cannot be reproduced. This is illustrated

by Bornkamp’s example 1, whose 3-component bivariate Gaussian target mixture ends being

closely approximated by a 9-component mixture. Actually, such “overfitting” appears to be

intrinsic to any algorithm that does not re-optimize the full parameter set of the approximating

mixture as additional components are added. In sharp contrast our algorithm includes full

sequential re-optimization to the effect that is will exactly reproduce a target mixture.

Last but not least, finite mixtures are used increasingly as substitutes or approximations

for nonparametric kernel densities. Indeed they offer the advantage of simpler mathematical

representations with typically much smaller numbers of components and, relatedly, better sta-

tistical performance. The paper by Han et al. (2008) and Wang and Wang (2015) include useful

surveys of the recent literature to that effect as well as new proposals for large reductions in the

number of components. We shell illustrate below through a simple example that the method

we propose can also be used for that purpose, though the development of a numerically fully

efficient high-dimensional reduction algorithm is left for future research.

In this paper we propose a fully adaptive algorithm to construct Gaussian mixture approxi-
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mation to a target density kernel. It includes full re-optimization with the introduction of each

additional component. Since such mixture approximations will often be used as importance

sampling or proposal densities, we use an efficient importance sampling (EIS) approximation

of the sampling variance as our distance measure to be minimized, whereby optimization takes

the form of an auxiliary non-linear least squares problem.

Our algorithm is illustrated by several test cases. The first application approximates a

mixture of three bivariate normal distributions and demonstrates the ability of the proposed

algorithm to exactly reproduce the target mixture. The second application approximates a

bivariate skew-distribution, a class of densities of growing importance in economics (modeling

fertility patterns in Mazzuco and Scarpa, 2015, stochastic frontier analysis in Domı́nguez-Molina

et al., 2004, sample selection models in Marchenko and Genton, 2012; Ogundimu and Hutton,

2016) and finance (capital asset pricing models in Adcock, 2004, 2010). Our third application

deals with a basic stochastic volatility model, whose measurement density can be approximated

by a mixture of normal distributions (see, e.g. Kim et al., 1998; Omori et al., 2007). The

potential scope of applications of our procedure is not limited to approximating analytically

intractable densities. Our procedure provides alternative numerical solutions to a wide range

of problems in economics and finance, some of which we outline in the paper.

The paper is organized as follows: the baseline algorithm is presented in section 2; examples

are presented in section 3. In section 4, we discuss future research plans together with pilot

applications. Section 5 concludes. Technical derivations are regrouped in as Appendix.

2 Mixture approximation

2.1 Notation

Let ϕ(x) denote the target (density) kernel to be approximated. Its integrating constant on the

support D ⊂ Rd is given by

G =

∫

D
ϕ(x)dx (1)

and is typically unknown. We note that ϕ and G could depend on unknown parameters in which

case the approximations presented below would have to be re-computed for each new parameter

value. Dependence on such parameters is omitted in our notation for ease of presentation. Let

k(x, α) denote a parametric Gaussian kernel of the form

k(x, α) = |R| exp
[

−1

2
(x− µ)

′

RR
′

(x− µ)

]

, (2)

with R (Cholesky) lower triangular (with the elements rij , where rii > 0) and α = (µ,R). Since

G is generally unknown and not equal to 1, we aim at constructing an un-normalized Gaussian

mixture kernel of the form

kJ(x, aJ) =
J
∑

j=1

eδjk(x, αj) (3)
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with aJ = ((α1, δ1), ..., (αJ , δJ)). The corresponding importance sampling density is given by1

mJ(x|aJ) = χ−1
J (aJ)kJ(x, aJ) (4)

χJ(aJ) = (2π)d/2
J
∑

j=1

eδj (5)

with component probabilities

πi = eδi





J
∑

j=1

eδj





−1

. (6)

The corresponding IS ratios are proportional to

ν(x, aJ) =
ϕ(x)

kJ(x, aJ)
(7)

with proportionately constant G−1χJ(aJ).

2.2 Distance measure

Most of the approximation methods we have surveyed, as well as the one we propose, can be

subsumed under the heading “minimum distance estimators”. Table 4.5.1 in Titterington et al.

(1985) lists several distance measures that have been used in the literature and discusses their

relative merits, noting that the choice of a distance measure can be very important and should,

therefore, be guided by the intended usage of the approximations. Since most of the applications

that we have in mind require the construction of efficient proposal densities for IS and MCMC,

we rely upon the distance measure proposed by Richard and Zhang (2007) for EIS. It consists

of a second order approximation to the sampling variance of the IS ratios in Equation (7) and

is proportional to

fJ(aJ) =
1

2

∫

D
[lnϕ(x)− ln kJ(x, aJ)]

2 ϕ(x)dx. (8)

Note the absence of an intercept in the squared difference. Inclusion of an intercept would indeed

require that the mixture weights eδj add up to 1 for identification. It is far more convenient

to leave these weights unconstrained by setting the intercept equal to zero. This being said, in

order to avoid potentially large imbalances between lnϕ(x) and ln kJ(x, aJ), it is often advisable

to normalize ϕ(x) by (2π)d/2Ĝ0, where Ĝ0 denotes an initial estimate of G as obtained below.

In such a case we might expect the sum of the mixture weights to get closer to 1 as J increases.

2.3 Gaussian integration

Obviously, fJ(aJ) in Equation (8) has to be evaluated numerically. In order to apply IS for

that purpose, Richard and Zhang (2007) propose replacing fJ(aJ) in Equation (8) by

f̃J(aJ) =
1

2

∫

D
[lnϕ(x)− ln kJ(x, aJ)]

2mJ(x|aJ)dx. (9)

1Or a truncated version thereof is D is a strict subset of Rd.
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While f̃ is not equivalent to f (unless mJ(x|aJ) were proportional to ϕ(x), in which case

the problem is solved), it provides an alternative operational distance measure to approximate

lnϕ(x). Foremost, its IS estimate is then given by

f̂J(aJ) =
1

2S

S
∑

i=1

[lnϕ(x̃i)− ln kJ(x̃i, aJ)]
2 , (10)

where {x̃i}Si=1 denotes S i.i.d. draws from mJ(x|aJ). Since these draws depend on aJ , mini-

mization of f̂J(aJ) obtains from a fixed point sequence whereby â
[l]
J is computed under draws

from mJ(x|â[l]J ), with an initial estimate â
[o]
J obtained e.g. from Laplace approximations (see

Richard and Zhang, 2007, for implementation details). However, we found out from initial trial

runs that such a fixed point procedure cannot be recommended for mixtures since it fails to

produce enough draws for reliable estimation of low probability mixture components (since, in

particular, the gradient for αj is proportional to eδj , as discussed further in section 3 below).

Instead we propose to evaluate fJ(aJ) using a product of univariate Gaussian quadrature.

Product rules remain manageable for low dimensions, say d 6 3. Higher dimensions require the

use of sparse grids, as will be discussed in section 4. We can also take advantage of situations

where ϕ(x) can be partitioned into

ϕ(x) = ϕ1(x1)ϕ2(x2|x1) (11)

with x1 low-dimensional and ϕ2 a linear Gaussian kernel, in which case only ϕ1 needs to be

approximated by a mixture.

We implemented three different product rules based on Legendre, Hermite and Mixture-

Hermite quadratures, all of which are paired with appropriate linear transformations of x.

2.3.1 Legendre

Depending on how far we might want to account for tail behaviour, we might consider restricting

the range of approximation to a bounded linear subspace of Rd. This can be done by introducing

a linear transformation of the form

x = b+ Cy, y ∈ [−1, 1]d (12)

with Jacobian JL = |C|. For example, if we use the diagonal transformation

xi =
1

2
[(bi + ci) + yi(bi − ci)], bi > ci (13)

with Jacobian JL =
∏d

i=1
1
2(bi − ci), then xi ∈ [ci, bi]. More generally, by using a non-diagonal

transformation, we can take advantage of tilted axes or asymmetries in ϕ(x).

Selection of an n-point Legendre quadrature generates N = nd product nodes and weights

{(yLi , wL
i )}Ni=1 that are transformed into {(xi, wi)}Ni=1 by Equation (12), together with wi =
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JLw
L
i ϕ(xi). It follows that the distance measure fJ(aJ) in Equation (8) is approximated by

f̂J(aJ) =
1

2

N
∑

i=1

wi [lnϕ(xi)− ln kJ(xi, aJ)]
2 . (14)

Minimization of f̂J(aJ) with respect to aJ is discussed in section 2.4 below. One potentially

important computational advantage of Legendre quadratures as well as Hermite quadratures

discussed next, is that the nodes and weights {(xi, wi)}Ni=1 remain unchanged across all J ’s.

This is not the case with Importance Sampling in Equation (10), or with Hermite mixture

quadratures in section 2.3.3 below.

2.3.2 Hermite

The use of Hermite quadratures offers the advantage that it operates on Rd though it requires

attention since it relies on a Gaussian thin tail weight function. It is particularly attractive

when ϕ(x) itself includs a Gaussian kernel, say

ϕ(x) = φ(x)F (x) (15)

with

φ(x) = exp

[

−1

2
(x−m0)

′

H0(x−m0)

]

(16)

and F (x) typically well-behaved. In such a case we can rely on a transformation of the form

x = m0 +
√
2P0y, with P

′

0H0P0 = Id (17)

and Jacobian JH = 2d/2|P0|. φ(x) is then transformed into the Hermite weight function

exp(−y
′
y). The Hermite nodes and weights {(yHi , wH

i )}Ni=1 are transformed into {(xi, wi)}Ni=1

by Equation (17) together with wi = JHwH
i and f̂J(aJ) is estimated according to the Equation

(14).

Actually, we can use Hermite even when ϕ(x) does not include a Gaussian kernel provided

we pay attention to tail behaviour. Specifically, by introducing an auxiliary kernel φ(x) of the

form given by Equation (16) we can rewrite fJ(aJ) as

fJ(aJ) =
1

2

∫

[lnϕ(x)− ln kJ(x, aJ)]
2

[

ϕ(x)

φ(x)

]

φ(x)dx. (18)

This equation is then evaluated using the Equation (14) with the following adjustments: we

now use Hermite nodes and weights and the corresponding adjusted weights wi are given by

wi = JHwH
i

[

ϕ(xi)

φ(xi)

]

. (19)

It is then critical that the ratios ϕ(xi)/φ(xi) remain sufficiently well-behaved (at minimum for

all xi’s). Laplace approximations are often used to construct Gaussian kernel approximations.

However, they can produce tails that are too thin and induce unacceptably large variations in
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the weights wi. We recommend instead using moment approximations for m0 and H0, following

a procedure presented in section 3 to compute initial values.

2.3.3 Mixture-Hermite

A computationally more intensive but potentially more accurate procedure consists of using a

J-term mixture approximation as weight function in step J . Specifically, fJ(aJ) is rewritten as

fJ(aJ) =
1

2

J
∑

j=1

eδ
o
j

∫

[lnϕ(x)− ln kJ(x, aJ)]
2 ν(x, aoJ)kJ(x, α

o
J)dx. (20)

with

ν(x, aoJ) =
ϕ(x)

kJ(x, aoJ)
, j : 1 → J (21)

where aoJ = {αo
j , δ

o
j}Jj=1, are set (and kept fixed) at the initial values selected for the aJ opti-

mization. Indeed, we do not recommend using an EIS type fixed-point optimization sequence

for âJ since, in particular, the optimal mixture that obtains at step J will be replaced by a new

one at step J + 1 (as long as we keep increasing J). An obvious choice for aoJ = {αo
j , δ

o
j}J−1

j=1

for J > 1 consists of the optimal âJ−1 obtained at step J − 1, while for (αo
J , δ

o
J) we can use the

initial values for step J obtained as described in section 2.5.2 below. Actually, for J > 1, we

can run the summation in Equation (20) from j = 1 to J − 1, ignoring the new term. Both

alternatives are covered by Equation (20) if we run summation from j = 1 to JM , where JM = 1

for J = 1 and either J or J − 1 for J > 1.

Next, we apply the transformation in Equation (17) indexed by j to each term in the

summation. This produces a new set of nodes and weights that are given by

xij = mj
0 +

√
2P j

0 yi (22)

wij = eδ
0

jwjν(xij , a
o
J) (23)

for i : 1 → N and j : 1 → JM . The estimate of fJ(aJ) is then given by

f̂J(aJ) =
1

2

JM
∑

j=1

N
∑

i=1

wij [lnϕ(xij)− ln kJ(xij , aJ)]
2 . (24)

Potential advantages of that procedure are twofold. As J increases, kJ(x, aJ) provides a closer

approximation to ϕ(x) so that the variance of the ratios ν(x, aoJ) is expected to decrease signifi-

cantly thereby alleviating the thin tail problem inherent to Hermite. Also the number of nodes

is now given by NJM and is, therefore, proportional to the number of auxiliary parameters

in aJ . Thus it is possible to reduce the number N of grid points accordingly. A significant

drawback is that each J iteration relies upon a new grid, in sharp contrast with the Legendre

and Hermite when the grid remains the same for all J ’s.
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2.3.4 Identification

In it well known that Maximum Likelihood (thereafter ML) estimation of mixtures raises im-

portant issues of identifiability and regularity. See Titterington et al. (1985, section 3.1) or

Frühwirth-Schnatter (2006, section 1.3). These are three main issues: (i) mixtures are invariant

relative to a permutation (relabeling) of their components; (ii) parameters of a component with

(near) zero probability or of two equal components are not (or poorly) identified - this is referred

to as “overfitting”; and (iii) determination of the number of components is complicated by the

fact that standard asymptotic theory does not apply when parameters lie at the boundary of

the parameter space. See McLachlan and Peel (2000, section 6.1) or Kasahara and Shimotsu

(2015).

Relabeling or permutation appear to have no practical implications for our algorithm. While

it certainly can happen, it is inconsequential for our gradient minimization of fJ(aJ). We

have never faced a convergence problem that could be attributed to relabeling. Initially, we

did incorporate in our algorithm an ordering of the means but found out that is complicates

programming and does not affect or even accelerate convergence. Failure of regularity conditions

is irrelevant in a framework where we discuss approximating a known density kernel and when,

as we discuss next, addition of new terms is linked to further reductions in the distance measure

fJ(aJ).

Overfitting is obviously an issue but one that is actually easy to address. As discussed in the

Appendix, gradients are proportional to the mixture weights eδ
o
j to the extent that optimization

will inevitably be problematic for any new term with a (relatively) very low weight. However,

such terms would minimally contribute to lowering further fJ(aJ). Thus, as discussed next, low

weight is one of the stopping criterion that can be implemented.

2.4 Minimization of the distance measure

In order to minimize the distance measure fJ(aJ) in Equation (8), more specifically its quadra-

ture estimates in Equation (14), (18) or (24), we can take advantage of the fact that the first and

second order derivatives of ln kJ(x, aJ) with respect to aJ obtain analytically. Thus, we can use

numerical optimizers that rely upon analytic gradients and, possibly, Hessians. After extensive

initial experimentation, we found out that a quasi-Newton method using analytic gradient is

numerically efficient for minimizing fJ(aJ). The expressions for the analytic gradient of fJ(aJ)

are derived in Appendix.

In addition to supplying subroutines to analytically evaluate fJ(aJ) and its gradient, we also

need to provide initial values and a diagonal scaling matrix. Initial values are derived in the next

section. As for scaling, we found that the default option (all diagonal entries set to 1) works

perfectly fine as long as ϕ(x) is approximately normalized in order to avoid large imbalances

with kJ(x, aJ). While such normalization was not needed for the examples presented below, an

obvious solution consists of dividing ϕ(x) by G0, an initial quadrature estimate of its integral

as presented next.
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2.5 Initial values

Numerical minimization of fJ(aJ) in step J requires initial values for aJ = {µj , Rj , δj}Jj=1 in

Equation (3). Thus, for J = 1, we need to provide initial (µo
1, R

o
1, δ

o
1). For J > 1, it is natural to

define the new initial value of aoJ as aoJ = âJ−1 ∪ (µo
J , R

o
J , δ

o
J), where âJ−1 denotes the optimal

mixture parameters obtained at step J−1 (with a minor proportional adjustment to the mixture

weight).

A fairly common practice in the literature surveyed in Introduction, consists of relying upon

(local) Laplace approximations to construct µo
J and Ho

J = Ro
JR

o′

J . For example, Ardia et al.

(2009) define µo
J as the (global) maximum of the importance sampling log ratio

ln νJ−1(x, âJ−1) = lnϕ(x)− ln kJ−1(x, âJ−1), (25)

and use minus its Hessian for Ho
J . Bornkamp (2011) applies the same idea to the log difference

ln rJ−1(x), with

rJ−1(x) = ϕ(x)− kJ−1(x, aJ−1), (26)

where rJ−1(x) has to be bounded below by some ǫ > 0 to avoid problems computing its log-

arithm. We experimented with Bornkamp’s method and found out that it works overall quite

well.

However, we now rely on a different approach to construct initial values that takes advantage

of the fact that Gaussian quadratures can be used to compute moments (whether truncated

or not) directly. The advantage of this procedure is twofold: (i) it replaces local Laplace

approximations by global ones, a concept that is central to the EIS principle introduced by

Richard and Zhang (2007); and (ii) it relies exclusively upon function evaluations that were

already produced using the step J−1 Gaussian grid, while Laplace approximations require new

function evaluations for the mode and Hessian. Thus, the computation of initial values relies

upon integrals of the form:

H =

∫

D
h(x)ϕ(x)dx. (27)

Under Legendre and Hermite rules, the computation of H relies upon the fixed grid (xi, wi)
N
i=1

associated with the selected rule. Under the mixture approach for J > 1, the grid consists of

the grids associated with the J−1 individual Gaussian kernels in kJ−1(x, âJ−1). For the ease of

notation, we run the summation over i from 1 to M , where M is either N (Legendre, Hermite)

or (J − 1)N (mixture for J > 1). Let ν(x) denote the ratio between ϕ(x) and the selected

weight function. It is given by

Legendre : ν(x) = 1 (28a)

Hermite : ν(x) = ϕ(x)/φ(x), with φ(x) defined in (18) (28b)

Mixture(J > 1) : ν(x) = ϕ(x)/kJ−1(x, âJ−1) (28c)
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The quadrature estimate of H is then given by

ĤN =
M
∑

i=1

w̃ih(xi), (29)

where w̃i denotes the adjusted weight

w̃i = wiν(xi). (30)

Next, we describe how formulas (28)-(30) are used to construct the initial values aoJ = {µo
j , R

o
j ,

δoj}Jj=1.

2.5.1 Initial values for step J = 1

Under Legendre and Hermite rules, we compute initial values for (µo
1, R

o
1) as follows:

µo
1 =

M
∑

i=1

w∗
i xi (31)

Σo
1 =

M
∑

i=1

w∗
i (xi − µo

1)(xi − µo
1)

′

(32)

with

w∗
i =

w̃i
∑M

j=1 w̃j

. (33)

and Ro
1 obtaining from the Cholesky factorization of Ho

1 = Σo−1
1 = Ro

1R
o′
1 .

As for δo1, we equate the initial estimate of G0 with (2π)d/2, the integrating factor of k(x, αo
1).

Thus

δo1 = ln

(

M
∑

i=1

w̃i

)

− d

2
ln 2π. (34)

For the mixture approach, we use either Legendre or Hermite, as described above, to produce

the initial step J = 1 mixture.

2.5.2 Initial values for step J > 1

As already mentioned, the initial values for step J > 1 essentially consist of the optimal âJ−1

obtained at step J − 1 complemented by initial values for the added term:

aoJ ≃ âJ−1 ∪ (µo
J , R

o
J , δ

o
J) (35)

with a downward adjustment for (δ̂j)
J
j=1. The latter is justified by the fact that the integrating

factor of the successive mixture kJ(x, âJ) all approximate the same (unknown) constant G.

Thus the addition of a new term with exp(δoJ) > 0 should result in a reduction of the current

δ̂j ’s. We experimented with a variety of rules of thumb to select δoJ . Based on the observation

that new terms generally exhibit decreasing δ̂j ’s, we adopted the following simple rule that

works consistently well:
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(i) Define δ∗J as the smallest of the current δ̂j ’s:

δ∗J = min δ̂j , for j = 1, ..., J − 1 (36)

(ii) Compute an adjustment ratio θJ < 1 defined as

θJ =





J
∑

j=1

eδ̂j







eδ
∗
J +

J−1
∑

j=1

eδ̂j





−1

(37)

(iii) The step J initial weights are then given by

δoj = δ̂j + ln θJ for j = 1, ..., J − 1

δoJ = δ∗J + ln θJ
(38)

Given θJ , we define the truncated density kernel

κJ−1(x) = ϕ(x)− θJkJ−1(x, âJ−1) if positive

= 0 otherwise,
(39)

and the initial values for (µo
J , R

o
J) obtain as for step 1, with ϕ(x) replaced by κJ−1(x). Even with

θJ < 1, there remain a theoretical possibility that κJ−1(x) could have a sharp peak (relative to

the quadrature grid) to the effect that the (non-negative) Σo
J could be (near) singular. We have

not yet encountered that eventuality but it would be trivial to fix either by adding to Σo
J a small

positive scalar multiple of the identity matrix Id, or by reverting to a Laplace approximation of

lnκJ−1(x), where κJ−1(x) would then be bounded below by ǫ > 0, as in Bornkamp (2011).

3 Test cases

In this section we present three test cases taken from the literature and highlighting key features

of our approach. The first is taken from Gilks et al. (1998) (also used in Bornkamp, 2011)

with a bivariate target mixture and illustrates the importance of full re-optimization of the

approximating mixture with the introduction of each new term. The second case is taken

from Azzalini and Dalla Valle (1996). The target is bivariate skew-distribution representing

a class of densities of growing importance in econometrics. It also illustrates the importance

of reducing the dimension of the kernel that has to be approximated as mixtures do suffer

from an obvious curse of dimensionality, to be discussed further below. The last case discusses

a mixture approximation to the density of a logχ2
1 variable. As we discuss in section 4, such

approximations provide an important tool to construct a mixture filtering approach to stochastic

volatility models.

11



Table 1: Initial and terminal values for approximating the mixture of three bivariate normal
distributions

J j initial values terminal values

exp(δoi ) µo
i Σo

i exp(δ̂i) µ̂i Σ̂i

1 1 0.027

(

−0.336
−0.336

) (

5.155 4.159
4.159 5.155

)

0.204

(

−0.298
−0.298

) (

6.110 4.936
4.936 6.110

)

f1(a
o
1) = 59.131 f1(â1) = 18.381

2 1 0.102

(

−0.298
−0.298

) (

6.110 4.936
4.936 6.110

)

0.757

(

1.447
1.447

) (

2.365 0.610
0.610 2.365

)

2 0.102

(

−0.332
−0.333

) (

5.215 4.220
4.220 5.215

)

0.399

(

−2.671
−2.671

) (

1.751 1.640
1.640 1.751

)

f2(a
o
2) = 18.431 f2(â2) = 0.967

3 1 0.562

(

1.447
1.447

) (

2.365 0.610
0.610 2.365

)

0.330

(

2.000
2.000

) (

1.000 −0.900
−0.900 1.000

)

2 0.296

(

−2.671
−2.671

) (

1.751 1.640
1.640 1.751

)

0.330

(

−3.000
−3.000

) (

1.000 0.900
0.900 1.000

)

3 0.296

(

−0.059
−0.059

) (

5.160 4.066
4.066 5.160

)

0.340

(

0.000
0.000

) (

1.000 0.000
0.000 1.000

)

f3(a
o
3) = 1.076 f3(â3) = 2.136E − 8

3.1 Mixture of three bivariate normal distributions

Example 2 in Bornkamp (2011) applies the iterated Laplace algorithm to the following bivariate

target mixture, originally used in Gilks et al. (1998):

ϕ(x) =

3
∑

i=1

πifN (x|µi,Σi), (40)

with (π1, π2, π3) = (0.34, 0.33, 0.34), µ
′

1 = (0, 0), µ
′

2 = (−3, 3), µ
′

3 = (2, 2), Σ1 = ( 1 0
0 1 ),

Σ2 = ( 1 0.9
0.9 1 ), Σ3 =

(

1 −0.9
−0.9 1

)

. Bornkamp’s algorithm constructs the mixture approximation

sequentially as we do but does not re-optimize their Laplace moments. Thus it cannot replicate

the target. Actually, it ends producing a five-term mixture approximation whose means and

standard deviations are all within less than 1% of those of the moments of the target density.

In sharp contrast, our algorithm reproduces exactly the target density (up to the optimizer’s

stopping rule). In order to illustrate how it works, we reproduce in Table 1 initial and final

values for the three successive iterations using Legendre rule on the range [−6, 6]2, though any

reasonable range will deliver the same perfect fit. Similar results obtain under the Hermite and

mixture approach.
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Figure 1: Contour plot SN2 for ω = 0.3 and δ = 0.8.

3.2 Skew-Normal density

Our second test case consists of the following bivariate skew-normal density taken from Azzalini

and Dalla Valle (1996):

ϕ(x) =
1

π

[

|Ω|− 1

2 exp(−1

2
x′Ω−1x)

]

Φ(αι′x), (41)

where Φ denotes the standardized Normal cdf, ι′ = (1, 1), Ω = ( 1 ω
ω 1 ), and α = δ(1 − ω){(1 −

ω2)[1− ω2 − 2δ2(1− ω)]}− 1

2 , with ω = 0.3 and δ = 0.8. Its skewed contour plot is presented in

Figure 1.

Since ϕ(x) already includes a Gaussian kernel, it is natural to apply Hermite rule. The two

obvious Ω factorizations leading to transformation (17) are the Cholesky and orthogonal ones.

The corresponding transformations are given by

x =
√
2

(

1.00 0.00

0.30
√
0.91

)

y, (42a) x =
√
2

(√
0.65

√
0.35√

0.65 −
√
0.35

)

y, (42b)

respectively. It turns out that the orthogonal transformation produces a much simpler expres-

sion for the transformed target that is given by

ϕ(y) =
2

π
ϕ1(y1)ϕ2(y2), (43)

with ϕ1(y1) = Φ(8
√
2y1) exp(−y21), and ϕ2(y2) = exp(−y22). Therefore, we only need to con-

struct a univariate mixture approximation k1(y1, â) for ϕ2(y2) and the corresponding bivariate

13



mixture approximation for ϕ(y) obtains as

k(y, â) = k1(y1, â)ϕ2(y2), (44)

to be transformed back into a mixture approximation for ϕ(y) by the inverse transformation

(42b). We can also apply Hermite quadrature to compute the “true” moments of y1 and,

therefore, those of x. Using 1,000 quadrature points since Φ(8
√
2y1) is very tight, we find

that µ1 = µ2 = 0.63830765, σ11 = σ22 = 0.59256335 and σ12 = σ21 = −0.10743665. Both

transformations in (42) produce 5-term mixture approximations with plot contours that are

virtually indistinguishable from that of ϕ(y) in Figure 1. The corresponding mixture moments

under both transformations are given by

Cholesky (28×28 product rule nodes): µ =

(

0.63681772

0.63834638

)

, Σ =

(

0.59222632 −0.10416062

−0.10416062 0.59035351

)

,

computing time 2.54 seconds;

Orthogonal (90 univariate nodes): µ1 = µ2 = 0.63992832, Σ =

(

0.59044312 −0.10955688

−0.10955688 0.59044312

)

,

computing time 0.45 seconds.

The orthogonal transformation produces fairly accurate results as expected, though it re-

quires additional algebraic transformations. It illustrates the importance of exploring dimension-

reducing transformations both for accuracy and to reduce the curse of dimensionality inherent

to finite mixtures.

3.3 Basic stochastic volatility model

A density kernel for a logχ2
1 random variable is given by

ϕ(x) = exp

[

1

2
(x− ex)

]

, (45)

As is well known and discussed further in section 4 below, this kernel plays a central role in

likelihood (filtering) evaluations of a number of Stochastic Volatility (thereafter SV) models.

Since ϕ(x) is significantly skewed, it is natural to consider approximating it by a finite Gaussian

mixture. One such mixture is proposed by Kim et al. (1998, Equation (10) and Table 4) and is

obtained by “using a non-linear least squares program to move the weights, means and variances

around until the answers were satisfactory”. Adjusting for their mean shift of 1.2704, we use

their parameter values as initial values for a direct 200 point Legendre minimization of f̂7(a7)

in Equation (14) over the range [-20, 4]. The comparable results are reported in Table 2.

Optimization has reduced the distance measure f7 by a factor 19. Since fJ(aJ) is (ap-

proximately) proportional to the Importance Sampling variance of the corresponding IS ratios,

such large reductions would result in equally large reductions in the number of draws in IS

applications.

4 Future research

Our generic procedure to construct finite Gaussian mixture approximations to analytically in-

tractable density kernels provides alternative numerical solutions to a wide range of problems

14



Table 2: Mixture approximation of the logχ2
1 kernel

initial values optimal values
πi µi σ2

i πi µi σ2
i

1 0.00730 -10.12999 5.795960 0.00002 -8.58075 3.70735
2 0.00002 -8.56686 5.179500 0.01661 -6.44535 13.58034
3 0.10556 -3.97281 2.613690 0.08720 -3.59047 4.86088
4 0.25750 -1.08819 1.262610 0.20824 -1.38055 2.09610
5 0.34001 0.61942 0.640090 0.30992 0.23027 0.99504
6 0.24566 1.79518 0.34023 0.27751 1.43183 0.51327
7 0.04395 2.77786 0.16735 0.10073 2.37341 0.28337

f7(a
o
7)=6.8544E-003 f7(â7)=3.6942E-004

in statistics, economics and finance. We outline below three ongoing projects for which we

have already produced promising initial results. We also discuss extensions to non-Gaussian

mixtures.

4.1 Filtering

Dynamic state space models are increasingly widely used in sciences, including economics. When

the latent state and the measurement process are both linear Gaussian, the Kalman Filter pro-

vides operational fully analytical solutions. When this is not the case, Particle Filters (hereafter

PF’s) that rely upon Sequential Important Sampling and extensions thereof are commonly used

to produce approximations to the relevant densities (filtering, predictive and likelihood) in the

form of discrete mixtures of Dirac measures (referred to as swarms of particles). PF’s are widely

applicable but also suffer from potential problems, foremost degeneracy and sample impoverish-

ment (see e.g. Ristic et al., 2004, for an in-depth presentation of particle filters with emphasis

on tracking applications). Various extensions of the baseline PF algorithm have been produced

to enhance its numerical efficiency (see e.g. Pitt and Shephard, 1999, the collection of papers in

Doucet et al., 2001; see also section II.D in Cappé et al., 2007 for advances in Sequential Monte

Carlo, of which the Mixture Kalman filter is directly relevant to the present project). It applies

to a broad range of state space models that consist of a linear Gaussian latent state process com-

bined with a non-linear or non-Gaussian measurement process. It combines Kalman filtering for

the state part, and particle filtering for the measurement part. Our ongoing project consists of

replacing the latter by a Gaussian mixture approximation of the measurement density. Doing

so essentially amounts to constructing a mixture extension of the Kalman filter.

In a nutshell, it operates as follows. The non-linear or non-Gaussian measurement densities

are approximated by finite Gaussian mixtures. In period t, one inherits a period t− 1 filtering

mixture approximation, which is combined with the state linear Gaussian transition in order to

produce a predictive mixture approximation. The latter is then multiplied by the measurement

mixture approximation. Assuming we are relying upon J-term mixtures, this product takes the

form of a J2-term mixture that can in turn be approximated by a J-term mixture (by selecting

the J terms with highest probability, re-scaling them into initial values and re-optimizing). The

likelihood then obtains as the analytical integrating constant of the mixture kernel and the
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period t filtering density as the normalized version of that same mixture. Moreover, once we

have run the forward filtering algorithm, it is possible to run it backward in order to produce

smooth (mixture bound) estimates of the state variables.

Unsurprisingly, there is a fair amount of analytical details to be cleaned up in order to

produce a generic mixture extension of the Kalman filter but we have already tested it on a

univariate baseline stochastic volatility application taken from Liesenfeld and Richard (2006).

That application offers the critical advantage that the period t measurement density obtains

as a linear transformation of a canonical logχ2
1 density, whose mixture approximation was

presented in section 3.3 and needs to be computed only once. The application consists of

a sample of 945 weekly exchange rates for the British pound against the US dollar. Using

mixture approximations, we obtained the following values for the log-likelihood at the ML

parameter values: -918.62 (7-term mixtures) and -918.61 (8-term mixtures). For comparison,

Liesenfeld and Richard (2006, Table 1, column 2) report an EIS estimate of -918.60. Moreover,

100 MC-EIS replications produce a mean of -918.66 with a standard deviation of 0.026 and a

range (-918.72, -918.59). Obviously, our mixture estimates are non-stochastic but their high

numerical accuracy is illustrated by the near identical values obtained under 7- and 8-term

mixtures.

The results of that pilot application are extremely encouraging and we are currently de-

veloping a generic multivariate mixture extension of the baseline Kalman filter (log)-likelihood

estimation as well as filtered and smooth state estimates.

4.2 Mixture approximations of non-parametric density estimates

As already mentioned in our introduction, finite Gaussian mixtures are used increasingly as

approximations for nonparametric kernels (see Scott and Szewczyk, 2001; Han et al., 2008; Wang

and Wang, 2015). The most commonly proposed method consists of sequential reductions of the

number of terms based upon a variety of clustering procedures. We propose instead to apply

our algorithm directly to the nonparametric kernel as target, adding terms one by one using

our distance measure to assess the goodness of fit of the mixture approximation. As a pilot

illustration of the potential of such procedure, we used a simple example taken from Duong

(2007), where the author constructs nonparametric density kernels for a data set consisting 200

i.i.d. draws from a “dumbbell” (unimodal) density given by the normal mixture

4

11

[

N
((

−2
2

)

, I2
)

+N
((

2
−2

)

, I2
)]

+
3

11
N
(

( 00 ) ,
(

0.80 −0.72
−0.72 0.80

))

.

The density is illustrated in Figure 2, whereas the 200 data points drawn from this density are

plotted in Figure 3.

We applied our algorithm to produce a 6-term mixture approximation to Duong’s (2007)

plug-in nonparametric kernel estimate. The contours for the Duong’s (2007) nonparametric

estimate are presented in Figure 4, whereas Figure 5 illustrates our 6-term mixture approxima-

tion. Here again, the results of this pilot application are very promising. Our current objective

is that of producing an algorithm applicable to large data sets, where dramatic reductions in

the number of terms and clustering will be critical for analysis. We aim at achieving high nu-
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Figure 2: “Dumbbell” density
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Figure 3: Data points drawn from “dumb-
bell” density
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Figure 4: Duong’s (2007) kernel density es-
timates for “dumbbell” data
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Figure 5: 6-term mixture approximation

merical efficiency for such simplification exercises. A critical step toward that objective consists

of replacing the quadrature grid by the data, reinterpreted as equal weight draws from the

nonparametric kernel estimate to be approximated. Initial value calculations are to be adjusted

accordingly.

4.3 Sparse grids

The product rules used for the numerical evaluation of the distance measure in Equation (8)

suffer from an obvious “curse of dimensionality”. As explained by Heiss and Winschel (2008,

section 2.4), the exponential growth of computational costs as a function of the dimension

d originates from the fact that the product rule is exact for a tensor product of univariate

polynomials, not for polynomials of bounded total order. The concept of sparse grids combines

univariate rules in such a way that it is exact for complete polynomials of a given order with
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computational costs rising considerably slower than exponentially. The basic idea originates

from Smolyak (1963) providing a generic procedure for multivariate generalizations of univariate

operators (see Bungartz and Griebel, 2004 for a detailed presentation or Heiss and Winschel,

2008 for a self-contained description of how to construct sparse grids).

We have started exploring how to produce a sparse grid version of our mixture algorithm. An

immediate problem arises from the fact that a significant percentage (typically close to 50%) of

the weights associated with the nodes are negative. It follows that the baseline distance measure

in Equation (23) is no longer bounded below by zero and, consequently, that its minimization

generally fails. An obvious remedy consists of replacing the negative weights in (23) by their

absolute values. This produces an objective function that can no longer be interpreted as an

approximation of the sampling variance of the IS ratios in Equation (7) but one that can still

be interpreted as a distance measure.

Our next step will be that of adjusting our procedure to compute initial values. While

using Laplace approximations remains possible, it can be computationally inefficient, especially

as the dimension d gets larger and sparse grid points increasingly dispersed. Our truncated

moments approach avoids additional target evaluations outside of the grid but negative weights

remain problematic as they could occasionally produce non-positive truncated initial covariance

matrices.

For illustration purposes, we rerun the bivariate skew-normal density example presented in

section 3.2 under sparse grids with Laplace initial values. We obtain the following results

Cholesky (200 sparse-grid nodes): µ =

(

0.63657460

0.63658100

)

, Σ =

(

0.58987717 −0.10914464

−0.10914464 0.58987327

)

,

which are similar to those reported in section 3.2. Computing time is 0.53 seconds. Thus, the

use of sparse grids provides a very promising lead for extending our algorithm beyond dimension

two or three.

4.4 Other mixture types

While Gaussian mixtures are by far the most commonly used, other types are worthy of con-

sideration. For example, Hoogerheide et al. (2007) and Hoogerheide et al. (2012) use mixtures

of Student-t kernels with one degree of freedom to approximate targets with fat tails. Tit-

terington et al. (1985, Table 2.1.3, pages 6-21) provide an extensive list of applications, many

with non-Gaussian mixture types (von Mises, Gamma, Poisson, Weibull, negative binomial,

exponential, beta, log-normal, multinomial etc.). There certainly are no conceptual problems in

using non-Gaussian mixtures for ln kJ(x, aJ), at the cost of programming analytical gradients

(finite difference optimization is computationally very inefficient) and adjusting accordingly the

computation of initial values. Depending upon the situation, we can also use alternative quadra-

ture rules, such as Generalized Laguerre on (0,∞). Note, in particular, that the sparse grid

approach discussed above allows for combining different types of univariate quadrature rules.

All in all, the algorithm we present in this paper can be extended in a number of ways

to improve its flexibility at the cost of conceptually fairly straightforward though somewhat

tedious additional programming.
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5 Summary

We have proposed a generic sequential algorithm to construct Gaussian mixture approximations

to analytically intractable density kernels. Our algorithm aims at minimizing a distance mea-

sure between the target kernel and the mixture that approximates the Monte Carlo variance

of the corresponding IS ratio. In order to identify low probability terms, it currently relies

upon products of univariate quadrature rules as an alternative to importance sampling. It is

operational for low dimensions (say, up to three) but we expect to be able to handle higher

dimensional targets by using instead sparse grid rules. For minimization of the distance mea-

sure we rely upon a quasi-Newton method using analytical gradient. Reliance upon analytical

gradients requires one-time programming under an appropriate parametrization but has proved

computationally much more efficient than minimizers relying upon finite difference or simplex

optimizers. Extensions to other mixture types are computationally straightforward at the cost

of programming of the corresponding gradients and adjusting accordingly the computation of

initial values for the mixture terms. Pilot applications have demonstrated the flexibility as well

as numerical accuracy of our algorithm.

Foremost, it is applicable to a wide range of important empirical mixture applications of

considerable interest in the statistical and econometric literature. Two such applications are

currently under development. One consists of a mixture filtering extension of the Kalman filter

applicable to a broad range of dynamic state-space models combining a linear Gaussian latent

fields with non-linear or non-Gaussian measurement densities. Essentially, the Kalman filter

swarms of particles (mixtures of Dirac measures) are replaced by sequential finite Gaussian mix-

tures. The other application aims at producing finite mixture approximations to nonparametric

density kernels. By reducing the number of terms well below the number of data points, we

aim at facilitating the interpretations of the result e.g. by identifying data clusters captured by

individual mixture terms. Pilot applications have already proved highly promising.

Programs for our current algorithm are available at http://sf.cbs.dk/nk. Further devel-

opments will be added as they became available.

Appendix

The distance measure fJ(aJ) in Equation (8) can be approximated by Equation (14), which we

reproduce here:

f̂J(aJ) =
1

2

N
∑

i=1

wi [lnϕ(xi)− ln kJ(xi, aJ)]
2 . (46)

In order to minimize f̂J(aJ), we first need to adopt a parametrization that guarantees the

positivity of the diagonal elements rjss of the lower triangular Cholesky factor Rj . This is

achieved by re-parameterizing rjss as exp{r̃jss}. Hence, the set of auxiliary parameters consists

of (µj , {rjts}t<s, {r̃jss}, δj). The gradient of f̂J(aJ) with respect to (µj , {rjts}t<s, {r̃jss}, δj) is given
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by

g =
N
∑

i=1

wi
[ln(ϕ(xi))− ln kJ(xi, aJ)]

kJ(xi, aJ)

J
∑

h=1

eδhk(xi, αh)dh(xi), (47)

where the summation in h represents the gradient of kJ(xi, aJ) with respect to (µj ,{rjts}t<s,

{r̃jss},δj). The vector dh(xi) consists of the following components

dµh(x) = RhR
′

h(x− µh)

drtsh(x) = −(xs − µh
s )etR

′

h(x− µh) if t < s for t, s = 1, ..., d

dr̃ssh(x) = −(xs − µh
s )esR

′

h(x− µh) exp{r̃hss}+ 1 for s = 1, ..., d,

dδh(x) = 1,

where es for s = 1, ..., d is the d-dimensional vector, which consists of zeros and a unity at the
s’th element of that vector, and µh

s is the s element of d-dimensional vector of means µh for
h = 1, ..., J .
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