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Abstract  
We present data structures from multiregional multisectoral trade activities from the 
perspective of networks. To illustrate our approach we make use of trade patterns 
taken from three classical input-output models. Unlike other conventional approaches 
by which networks statistics are evaluated, here, emphasis is given on recovering the 
structure architecture of interrelations in the input-output model. By self-explanatory 
visual outputs we display the interaction of the trading partners, the number of trade 
links and the density of interrelations. Connectivity and density are quantified by 
evaluating the node degrees. Our network approach traces the feedback loops among 
regions and activities. Some global structural properties are also examined. 
Programming in Mathematica allows for the creation of iterative schemes explaining 
aspects of the nature of trade and the evolution of spatial trading/production cycles in 
growing trading systems. Mathematica’s environment enables interactive visual 
schemes and infinite number of experiments.  
 
 
Keywords:  Trade data visualization; trade networks; Mathematica-based  
  computations; graph theory.  
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1. Introduction 

 Multi-region, multi-sector classical models are traditionally described in their 

compact forms by recursive formulas and by using matrix notations (Batten and 

Martellato 1985; Hitomi at al. 2000; Sargento 2009; Munroe et al. 2007; Wixted et al.  

2006). Several papers even use snapshots of the associated trade patterns (Hitomi et 

al. 2002; McNerney et al. 2013; Halkos and Tsilika, 2015, 2016).   

 Since the trade network representation has been proposed in the analysis of 

trade interdependencies (see indicatively Smith and White 1992; McFadzean and 

Tesfatsion, 1999; Wilhite 2001; Serrano et al., 2007; Garlaschelli and Loffredo, 2005; 

Kim and Shin, 2002; McFadzean et al. 2001; Amman et al. 2003; Alkemade et al. 

2002), a network approach using elements from graph theory in Mathematics can 

restore structural information embodied in their topology (Chow, 2013; Fagiolo et al., 

2008; Fagiolo et al., 2013; Wei and Liu 2012, Benedictis and Tajoli, 2011; 

Garlaschelli & Loffredo, 2005).  

Graph models have been deeply integrated into the input-output analysis and 

were treated between others by Studer et al. (1984), Olsen (1992), Lantner and 

Carluer (2004), McNerney (2009), Blöchl et al. (2011), Fedriani and Tenorio (2012), 

Garcia Muñiz (2013), McNerney et al. (2013), Montresora and Marzettib (2009), 

Cerina et al. (2015). Kaveh (2013) among others, having considered a great variety of 

applications using graphs, highlights graphs’ contribution in representing a system so 

that its topology can clearly be understood. 

 In this conceptual direction, multiregional input-output models are depicted as 

graphs made up of vertices (also called nodes) and edges, representing traders and 

trade links. A graph G={V,E} consists of a set of vertices V and a set of edges E. 
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Each vertex V stands for a regional activity (or sector or industry). Edges E represent 

significant trade relationships.  

 To make theory into computational practice, classical trade models proposed 

by Isard (1951), Chenery, Moses (Chenery et al. 1953, Moses 1955), Leontief (1953), 

Riefler and Tiebout (Riefler and Tiebout 1970) are employed. We create a three-

paradigm presentation that allows for a variety of extensions to the whole IO 

framework. Computations and graph modelling are performed in the environment of 

one of the most popular computer algebra systems (CASs), Mathematica1. Our 

programming ideas result in automatic creation of graphs of interregional intersectoral 

input-output models, with the only input required be the number of regions and the 

number of sectors. The evaluation of certain graph metrics for increasing network 

sizes provides information for the network formation and evolution. Graph-based 

classification and its practical interpretation set directions for policy making.  

All computer codes are given in section 3, being accesible to the wide community 

of Mathematica users. Section 2 of the paper briefly presents the mathematical 

framework used and, section 4 concludes the paper. 

 
2. Basic notions and fomulations  

 Assuming m regions and n sectors in interregional trade models, nm×nm 

intersectoral and interregional trade flows occur. Technical coefficient matrix T is a 

block matrix composed by nm×nm elements with 2m submatrices klT  containing the 

coefficients for n traded commodities. In the general case of m regions and n sectors, 

matrix T has the following sub-matrix structure: 

                                                
1 Mathematica software is tradable from Wolfram Research, Inc.  
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klT  is an n× n matrix. The coefficient kl
ijt  indicates the fraction of the total 

production of sector i supplied to the jth sector in region l that has produced and 

shipped from region k. 

For the Leontief model, sub matrices klT  of the global trade table T (1) are 

written in full as follows 
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 Par example, the Leontief interregional trade matrix table for 10 regions, 26 

sectors is defined as  
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For Chenery-Moses model sub matrices klT  of the global trade table T (1) are 

written in full as follows (for a detailed analysis see Hitomi et al. 2000, p. 518) 























kl
n

kl

kl

kl

t

t
t

T









00

00
00

2

1

                                                    (4) 



 5 

 As similar example, the Chenery-Moses interregional trade matrix table for 10 

regions, 26 sectors is defined as  
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 For Riefler-Tiebout model sub matrices klT  of the global trade table T defined 

in (1) are written in full as follows 
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where ti is the trade coefficient of sector i. 

The Riefler-Tiebout interregional trade matrix table for 10 regions, 26 sectors is 

defined as (Yamano and Hitomi 2005) 
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From the network aspect, the numerical configuration of a network hinges on the 

adjacency matrix A of a binary network. Its entries aij obey the rule: 
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where ije  is the exports from i to j (Chow, 2013). 

The adjacency matrix for a graph will have dimensions n×n, where n is the 

number of vertices. A symmetric adjacency matrix results in an undirected graph. An 

undirected edge is interpreted as two directed edges with opposite directions. In the 

three models under study the associated adjacency matrices are symmetric. 

Though much useful information for trading interactions is gained by matrix 

representations and tabular visualization techniques, feedback loops2 and global 

connectivity patterns are not obvious from a trade coefficient matrix or an adjacency 

matrix. A sophisticated approach to measure the impact of loops and regional 

feedbacks by Lantner and Carluer (2004) relies on matrix algebra and its application 

requires several mathematical skills. In this study, computer output with dynamic 

content is created to present the formation and evolution of trading patterns and 

feedback loops, with images. 

 
3. Computer codes / Illustrative examples 

In graph theory terminology, two vertices (nodes) u and v form an edge of the 

graph if {u,v}E. If {u,v}E implies that {v,u}E, then G is an undirected graph. 

Otherwise it is a directed graph. The graphs presented in sections 3.1-3.3 are 

undirected, since their associated adjacency matrices are symmetric.  

 
                                                
2 The study and analysis of the interregional trade flows in interregional economic activities often 
reveal interregional and inter-activity linkages, referred to as «feedback loops» and/or spatial 
production cycles in interregional level (see also Sonis et al. 1993, 1995; Sonis and Hewings, 2001; 
Hitomi et al. 2002). 
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3.1 The case of Leontief model  

Leontief interregional trade model having 3 regions with 4 sectors each is 

presented by a graph consisting of 12 nodes {i, j}: the first index corresponds to the ith 

region and the second index corresponds to the jth sector. The Leontief trade structure 

results in a scheme with twelve vertices that are linked to themselves. This scheme 

practically represents self-flows or transactions between firms of the same sector. 

To create the Leontief trade model with 3 regions having 4 sectors each with 

graphs, the codes in Mathematica are: 

multileontiefmatrix[i_, j_] := ArrayFlatten[ 
  Table[If[n == m, DiagonalMatrix[Table[1, {j}]],  
    SparseArray[{}, {j, j}]], {n, i}, {m, i}]] 
 
AdjacencyGraph[Flatten[Table[{i, j}, {i, 1, 3}, {j, 1, 4}], 
1],multileontiefmatrix[3, 4], VertexLabels -> "Name", 
ImagePadding -> 30] 

 

 

 By the aforementioned routine, a user could generate the adjacency graph of 

any Leontief model, with the desired number of regions and sectors. The only input 

that needs to be defined is the arguments [i, j] (i corresponds to the number of regions 
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and j corresponds to the number of sectors) of the multileontiefmatrix programmed 

function within Mathematica’s matrix graph constructor AdjacencyGraph. 

In the case where only interregional and/or intersectoral interactions are of our 

interest, self-flows can be ignored. The graph scheme without illustrating self-loops 

can be also created. Below, an iterative scheme of a 3-region Leontief trade pattern 

with growing number of activities is generated: 

GraphicsGrid[ Partition[  
Table[GraphPlot[multileontiefmatrix[3, j], PlotLabel -> p], 
{j, 2, 10}, {p, { j "activities per region - 3 regions"}}], 
3], ImagePadding -> 150] 
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 A main measure in the study of social structures is the vertex (node) degree for 

a vertex V which counts the number of edges incident to V. An edge is incident to a 

vertex whether it is an in-edge or an out-edge. 

In this study, we evaluate the degree of a node ni in order to quantify the trading 

activity of the node. For the aforementioned Leontief example with 3 regions having 4 

sectors each, the node degrees are calculated below: 

VertexDegree[AdjacencyGraph[multileontiefmatrix[3, 4]]] 
{2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2} 
 

In the Leontief graph model all nodes have the same degree (each self-loop counts for 

two trading activities). 

Mathematica tests whether two Leontief graphs are isomorphic3. Roughly 

speaking, graph isomorphism is a property to certify the structural equivalence of two 

graphs (see also García Muñiz, 2013). By the following codes, Leontief graphs with 

symmetric number of regions and sectors (i, j) are proved to be isomorphic: 

IsomorphicGraphQ[AdjacencyGraph[multileontiefmatrix[3,5]],  
AdjacencyGraph[multileontiefmatrix[3, 5]]] 
True 

 
3.2 The case of Chenery-Moses model  

 Chenery Moses interregional trade model having 3 regions with 4 sectors each 

corresponds to a graph consisting of 12 nodes {i, j}: the first index corresponds to the 

ith region and the second index corresponds to the jth sector. The undirected edges 

stand for a bilateral trading activity. The graph model consists of four 3-regular 

graphs4. In other words, four separate trading systems act together. 

                                                
3 Two graphs are called isomorphic if they have the same number of nodes and the adjacency is 
preserved (Kaveh, 2013). 
4 A graph is called regular if all its nodes have the same degree. If the degree is k then it is a k-regular 
graph (Diestel, 2000; Kaveh, 2013). 



 10 

To create the Chenery-Moses trade model with 3 regions having 4 sectors each 

with graphs, the codes in Mathematica are:  

multicmmatrix[i_,j_]:=ArrayFlatten[Table[If[n฀m,DiagonalMatrix
[Table[1,{j}]],DiagonalMatrix[Table[1,{j}]]],{n,i},{m,i}]] 
 
AdjacencyGraph[Flatten[Table[{i, j}, {i, 1, 3}, {j, 1, 4}], 
1], multicmmatrix[3, 4], VertexLabels -> "Name", ImagePadding 
-> 30] 
 
The relevant output5 is  

 

 
 

 

 

For a network description of the trading scheme from Chenery-Moses model with 

10 regions having 10 sectors each, the code and the corresponding output in 

Mathematica are: 

 

 

 

                                                
5 The text boxes are added by the authors in the MS Word processor and are not part of Mathematica’s 
output. 

Interregional intrasectoral 
feedback loop concerning 
the first sector  

Interregional intrasectoral 
feedback loop concerning 
the forth sector  

Interregional intrasectoral 
feedback loop concerning 
the second sector  

Interregional intrasectoral 
feedback loop concerning 
the third sector  
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AdjacencyGraph[multicmmatrix[10, 10]] 
 

 
 
 

Mathematica provides the choice to generate a graph without connecting self-

joined nodes (self-loops). The practical value of such a scheme is to present the 

trading activities among different nodes. The dialog in Mathematica consists of the 

following input and output: 

GraphPlot[multicmmatrix[10, 10]] 
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 A visual output with controllers added to the number of regions and the 

number of sectors is presented in Figure 1. The selection of the number of regions and 

sectors is made from a dedicated drop down list. The code to generate the dynamic 

scheme is: 

Manipulate[GraphPlot[multicmmatrix[regions, sectors],  
  PlotLabel -> "Chenery Moses model"], {regions, Range[20]}, 
{sectors,    Range[20]}, ControlType -> Automatic] 

 
 

 
Figure 1: Snapshots from the dynamic output of Chenery Moses trading network 

 
 

 The codes below generate sequences of Chenery-Moses graphs, by following 

an additive rule for the number of regions or the number of sectors (activities). The 

automatic creation of an assigned title per graph, containing the exact number of 

regions and sectors (activities), is also programmed. The images enable the user 

realize the intensity of interactions when varying the number of regions (Figure 2) or 

the number of sectors (Figure 3).  
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GraphicsGrid[Partition[Table[GraphPlot[multicmmatrix[i, 5],  
 PlotLabel -> p], {i, 2, 10},  
{p, {i "regions and 5 activities"}}], 3]] 
 

 
Figure 2:  
Mathematica output: Chenery-Moses trading network sequence with varying the number of regions 
 
 
 
 
GraphicsGrid[Partition[ 
  Table[GraphPlot[multicmmatrix[5, j], PlotLabel -> p], {j, 2,  
    10}, {p, {j "activities per region - 5 regions"}}], 3]] 
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Figure 3:  
Mathematica output: Chenery-Moses trading network sequence with varying the number of activities 
 

 

All graphical outputs presented can be reproduced for any case of Chenery-

Moses model, with the desired number of regions and sectors. The only input that 

needs to be defined is the arguments [i, j] (i corresponds to the number of regions and 

j corresponds to the number of sectors) of the multicmmatrix programmed function 

within the routines. 

To quantify the trading activity of a node we evaluate the degree of a node ni. For 

the aforementioned Chenery-Moses example with 3 regions having 4 sectors each and 

the example with 10 regions having 10 sectors each, the node degrees are calculated 
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below (we realize that in the Chenery-Moses graph model, all nodes have the same 

degree): 

VertexDegree[AdjacencyGraph[multicmmatrix[3, 4]]] 
{4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4} 
 

The above output’s interpretation is that each one of the 12 traders is involved in 4 

trading activities; each self-loop counts for two trading activities. 

VertexDegree[AdjacencyGraph[multicmmatrix[10, 10]]] 
{11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 
11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 
11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 
11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 
11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 
11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 
11, 11, 11, 11, 11, 11, 11, 11, 11, 11} 
 

The above output’s interpretation is that each one of the 100 traders is involved in 11 

trading activities. 

By the following Mathematica codes we prove empirically that when we increase 

the number of activities, the degree of each node (i.e. the number of partners per 

trader) does not increase. In the next graphical output we plot the number of activities 

versus the vertex degree, for a Chenery-Moses model with 5 regions.  

ListPlot[Table[{k,   
VertexDegree[AdjacencyGraph[multicmmatrix[5, k]]][[1]]}, {k, 
2, 10^2}], AxesLabel -> {"number of activities", "vertex 
degree"}] 
 

 

 



 16 

 On the contrary, the number of regions and the number of partners per trader 

are growing analogously. In the next graphical output we plot the number of regions 

versus the vertex degree, for a Chenery-Moses model with 5 activities. 

ListPlot[Table[{k,   
VertexDegree[AdjacencyGraph[multicmmatrix[k, 5]]][[1]]}, {k, 
2,100}], AxesLabel -> {"number of regions", "vertex degree"}] 
 

 
 

 By the following Mathematica codes we prove empirically that the degree of 

each node (i.e. the number of partners per trader) is the number of regions i plus 1. 

For an indicative case of a Chenery-Moses model with 5 activities per region, when 

plotting the number of regions versus the number of trading relationships per trader 

and the number of regions versus the number of regions plus 1 in the same axis 

system, the two scatterplots coincide. 

ListPlot[{Table[{k,    
VertexDegree[AdjacencyGraph[multicmmatrix[k, 5]]][[1]]}, {k, 
2, 10^2}], Table[{k, k + 1}, {k, 2, 10^2}]}, AxesLabel -> 
{"number of regions", "vertex degree"}] 
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Using a graph-based classification, the Chenery-Moses graph model with i-

regions is an i+1-regular graph.  

 

3.3  The case of Riefler-Tiebout model  

Riefler-Tiebout interregional trade model having 3 regions with 4 sectors each 

corresponds to a graph consisting of 12 nodes {i, j}: the first index corresponds to the 

ith region and the second index corresponds to the jth sector. The undirected edges 

stand for a bilateral trading activity. The graph model forms a 7-regular graph. The 

codes to create the Riefler-Tiebout model with 3 regions and 4 sectors are6: 

multirtmatrix[i_, j_] := ArrayFlatten[Table[If[n == m, 1, 
DiagonalMatrix[Table[1, {j}]]], {n, i}, {m, i}]] 
 
AdjacencyGraph[Flatten[Table[{i, j}, {i, 1, 3}, {j, 1, 4}], 1], 
multirtmatrix[3, 4], VertexLabels -> "Name", ImagePadding -> 30] 

  
 

 

 

                                                
6 The text boxes are added by the authors in the MS Word processor and are not part of Mathematica’s 
output. 

Intraregional intersectoral 
feedback loop concerning 
the second region  

Intraregional intersectoral 
feedback loop concerning 
the first region  

Intraregional intersectoral 
feedback loop concerning 
the third region 
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Mathematica provides the choice to generate a graph without connecting self-

joined nodes:  

GraphPlot[multirtmatrix[10, 10]] 

 
 

The codes below generate sequences of Riefler-Tiebout graphs by following an 

additive rule for the number of regions (figure 4). The automatic creation of an 

assigned title per graph containing the exact number of regions and activities, is also 

programmed. By this approach, the complex nature of the structure architecture and 

the intensive interrelationship of the entities emerge. 

 

GraphicsGrid[ Partition[  Table[GraphPlot[multirtmatrix[i, 5], 
PlotLabel -> p], {i, 2, 10}, {p, {i "regions and 5 
activities"}}], 3]] 
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Figure 4:  
Mathematica output: Riefler-Tiebout trading network sequence with varying the number of regions  
 

The codes below generate a version of a graph for Riefler-Tiebout model with 

controls added to allow interactive manipulation of the number of regions and the 

number of sectors. The following images enable the user realize the complexity of the 

trading structure when adding regions and/or sectors to a Riefler Tiebout trading 

system (see indicatively the alterations between Figure 5 and Figure 6). 

Manipulate[GraphPlot[multirtmatrix[regions, sectors],  
  PlotLabel -> "Riefler Tiebout model"], {regions,  
Range[20]}, {sectors, Range[20]}, ControlType -> Automatic] 
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Figure 5: A screen shot of the dynamic image of 
Riefler Tiebout trade network consisting of 4 
regions having 4 sectors each.  

Figure 6: A screen shot of the dynamic image of 
Riefler Tiebout trade network consisting of 5 
regions having 9 sectors each.  

 
The codes below permit visualization of the formation and evolution of Riefler-

Tiebout trade network by means of real-time animations. 

Animate[GraphPlot[multirtmatrix[regions, sectors],  
  PlotLabel -> "Riefler Tiebout model"], {regions, 1, 20}, 
{sectors, 1, 20}] 
 

  
 

 
All graphical outputs presented can be reproduced for a Riefler-Tiebout model 

with any number of regions and sectors. The only input that needs to be defined is the 

arguments [i, j] (i corresponds to the number of regions and j corresponds to the 

number of sectors) of the multirtmatrix programmed function within the routines. 

Mathematica also verifies that a Riefler-Tiebout graph is connected7: 

                                                
7 A graph is called connected if all pairs of its nodes are connected (Diestel, 2000; Kaveh, 2013). 



 21 

ConnectedGraphQ[AdjacencyGraph[multirtmatrix[3, 5]]] 
True 
 
and performs graph matching. In Riefler-Tiebout case, graphs with symmetric number 

of regions and sectors (i, j) are proved to be isomorphic: 

IsomorphicGraphQ[AdjacencyGraph[multirtmatrix[3, 5]],  
AdjacencyGraph[multirtmatrix[5, 3]]] 
True 
 

To quantify the trading activity of a node we evaluate the degree of a node ni. For 

the aforementioned Riefler-Tiebout example with 3 regions having 4 sectors each and 

the example with 10 regions having 10 sectors each, the node degrees are calculated 

below (we realize that in the Riefler-Tiebout graph model all nodes have the same 

degree): 

VertexDegree[AdjacencyGraph[multirtmatrix[3, 4]]] 
{7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7} 

 

The above output’s interpretation is that each one of the 12 traders is involved in 7 

trading activities; each self-loop counts for two trading activities. 

VertexDegree[AdjacencyGraph[multirtmatrix[10, 10]]] 
{20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 
20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 
20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 
20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 
20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 
20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 
20, 20, 20, 20, 20, 20, 20, 20, 20, 20} 
 
The above output’s interpretation is that each one of the 100 traders is involved in 20 

trading activities. 

By the following Mathematica codes we prove empirically that the degree of 

each node (i.e. the number of partners per trader) is the sum of the number of regions i 

with the number of sectors j. For an indicative case of a Riefler-Tiebout model with 5 

regions, when plotting the number of activities versus the number of partners per 
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trader and the number of regions versus the sum of regions and sectors in the same 

axis system, the two scatterplots coincide.  

ListPlot[{Table[{k,    
VertexDegree[AdjacencyGraph[multirtmatrix[5, k]]][[1]]}, {k, 
2, 10^2}], Table[{k, 5 + k}, {k, 2, 10^2}]}, AxesLabel -> 
{"number of activities", "vertex degree"}] 
 

 

 

 
Using a graph-based classification, the Riefler-Tiebout graph model with i-

regions and j-sectors is an i+j-regular graph.  

 

4. Discussion and conclusions 

 Our computerized graph-based approach creates functions for network 

description of the trading scheme for classical IO models. Our codes provide a 

passage from tabular formats of mathematical formulation to graphical formats of 

network analysis. Dedicated routines create visual versions of networks displaying 

classical IO trade models with graphs. Static and dynamic images recover the global 

structure of trade interactions. The proposed approach enables the user present, 

understand and consider the impact of the model size on the intensity of trading 

interactions and/or the density of the associated network.  

 In the technical context, the first step of our computational approach is 

programming the adjacency matrix (the vertex–vertex adjacency matrix of the graph) 
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for every IO model used, being the required input in the upcoming codes for visual 

outputs. In a second step, selected built-in Mathematica functions generate plots of 

the associated graph. Graph drawing and graph programming commands and options 

result in advanced schemes of trade representations. Quantitative results are obtained 

by built-in Mathematica functions which evaluate metrics and test graph properties 

for infinite cases of the classical models studied.  

 The main advantage of our schematic representation, compared with other 

visualization techniques, is the focus on trade-cycle loops. The relative findings from 

our illustrative examples bring out three different cases. The Leontief case study 

reveals a trade structure with no trade-cycle loops among regions or among sectors 

(only self-loops are traced). The Chenery-Moses case study reveals a global trade 

network with a number of autonomous8 intrasectoral networks equal to the sectors of 

the regions. There, interaction and connectivity involve part of the system (partial 

interconnectedness). The Riefler-Tiebout case study reveals a trading system 

equivalent to one compact trade network (one connected graph) with trade ties among 

most its entities. In this case, interaction and connectivity involve the whole system 

(global interconnectedness). 

 The practical interpretation of the node degree results is that in Chenery-

Moses model an increase in the number of activities does not affect the network 

density and gives no benefit to any trader of the system. On the contrary, an increase 

in the number of regions seems in benefit of all traders, since their trading activity 

increases. In Riefler-Tiebout model, an increase in the number of both parameters, 

regions and activities, rises the network density. These results, along with the iterative 

                                                
8 The set SN is autonomous if and only if there are not any edges from the vertex of N\S to a vertex 
of S (Fedriani and Tenorio, 2012). 
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schemes which perform experiments with a comparative character, set some 

directions for policy making. 

 Leontief and Riefler-Tiebout models with symmetric number of regions and 

sectors (i.e. models with i-regions and j-sectors and models with j-regions and i-

sectors) are isomorphic. This information permits the decision maker to manage the 

number of regions and sectors properly in order to control the network’s connectivity 

and the distribution of commodities.  

 Last, the fact that the trade patterns of the three models under study result in 

regular graphs, means that traders of the same model deal with the same consequences 

coming from alterations in the network’s density. 
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     Appendix 

 The adjacency matrix associated with each one of the I-O models under study, 

is generated in Mathematica by dedicated programmed functions. The codes in 

Mathematica are given below. In each matrix, entry 1 is used to indicate the fact that 

two sectors are related and 0 that they are not.   

multileontiefmatrix programmed function takes as arguments the number of 

regions i and the number of sectors j that correspond in each region. 

multileontiefmatrix programmed function generates the adjacency matrix of the 

Leontief model.  

multileontiefmatrix[i_, j_] := ArrayFlatten[ 
  Table[If[n == m, DiagonalMatrix[Table[1, {j}]],  
    SparseArray[{}, {j, j}]], {n, i}, {m, i}]] 

 

For example, by writing 

multileontiefmatrix[3, 4] // MatrixForm 
the relevant output is 

 

 
 

multicmmatrix programmed function takes as arguments the number of regions i 

and the number of sectors j that correspond in each region. multicmmatrix 

programmed function generates the adjacency matrix of the Chenery-Moses model. 

multicmmatrix[i_,j_]:=ArrayFlatten[Table[If[n฀m,DiagonalMatrix
[Table[1,{j}]],DiagonalMatrix[Table[1,{j}]]],{n,i},{m,i}]] 

 

For example, by writing 

multicmmatrix[3, 4] // MatrixForm 



 26 

the relevant output is 

 

 
 

multirtmatrix programmed function takes as arguments the number of regions i 

and the number of sectors j that correspond in each region. multirtmatrix 

programmed function generates the adjacency matrix of the Riefler-Tiebout model. 

multirtmatrix[i_, j_] := ArrayFlatten[Table[If[n == m, 1, 
DiagonalMatrix[Table[1, {j}]]], {n, i}, {m, i}]] 

 

For example, by writing 

multirtmatrix[3,4] // MatrixForm 
the relevant output is 
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