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TESTING GOLLIER AND WEITZMAN’S SOLUTION OF THE 

“WEITZMAN-GOLLIER PUZZLE” 

Szabolcs Szekeres1 

Abstract: Despite the fact that the “Weitzman-Gollier Puzzle” arose in the context 
of risk neutrality, Gollier and Weitzman (2009) claimed to have solved the puzzle 
by showing that, in case of risk aversion, discounting and compounding approaches 
yield the same result, and that these can be expressed in ways that are 
morphologically similar to the conflicting formulations of the original risk neutral 
model. This paper replicates their analysis with a simple numerical example and 
shows that the equality of results obtained is due to discount and compound factors 
being each other’s reciprocals in the risk averse model, while the inequality of the 
puzzle is due to this condition not being met in the risk neutral case. Their claim to 
have solved the puzzle is not sustained. It is shown that the source of the puzzle is 
Weitzman’s incorrect specification of the present value factor and that, correcting 
for this, the right conclusion under his assumptions is that certainty equivalent 
discount rates are growing functions of time. Gollier and Weitzman (2009) also 
claimed that “the ‘effective’ discount rate must decline over time toward its lowest 
possible value.” This paper finds that when long term market yields are a growing 
function of time, it makes no sense to invest in projects of similar risk but lesser 
yield, irrespective of one’s degree of risk aversion.  

JEL Codes: D61, H43 

1. Introduction 

In their paper entitled “How Should the Distant Future Be Discounted When Discount Rates 
Are Uncertain?” Christian Gollier and Martin L. Weitzman (2009) claim to have solved the 
“Weizman-Gollier puzzle,” which had spawned a substantial literature. They also confirm 
Weitzman’s original recommendation that the discount rate applicable to the distant future 
should be a declining function of time: “The bottom-line message that we wish for readers 
to take away from this paper is the following. When future discount rates are uncertain but 
have a permanent component, then the ‘effective’ discount rate must decline over time 
toward its lowest possible value.” 

In “Why the Far-Distant Future Should Be Discounted at Its Lowest Possible Rate” 
Martin L. Weiztman (1998) concluded that “Uncertainty about future discount rates provides 
a strong generic rationale for using certainty-equivalent social discount rates that decline 
over time.” Assuming risk neutrality, Weitzman defined the certainty equivalent discount 
factor A as the probability {pi} weighted average of the discount factors corresponding to 
the possible interest rate scenarios {ri} of a safe future payoff, where pi is the probability of 
ri occurring.  
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from which the following certainty equivalent discount rate can be derived2: 
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This – the same as expression (2) in Gollier and Weitzman (2009:4) – is a declining function 
of time and tends to the lowest possible ri, because present values of distant benefits 
computed at high rates of interest are much smaller than those computed at low rates of 
interest. At the limit only the lowest rate counts in determining the certainty equivalent. This 
is also observed in expression (4) of Gollier and Weitzman (2009:4). 

The “Weizman-Gollier puzzle” arose with the publication of Christian Gollier’s (2004) 
“Maximizing the Expected Net Future Value as an Alternative Strategy to Gamma 
Discounting,” in which, under similar assumptions, Gollier derived a certainty equivalent 
rate (CER) from the expected compound factor F, obtained by probability weighting possible 
future values of a safe initial investment.  
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from which the following certainty equivalent rate can be derived: 
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This – the same as expression (7) in Gollier and Weitzman (2009:5) – is an increasing 
function of time and tends to the highest possible ri, because future values of a given 
investment computed at high rates of interest are much higher than those computed at low 
rates of interest. At the limit only the highest rate counts in determining the certainty 
equivalent. This is also observed in expression (8) of Gollier and Weitzman (2009:5) 

In the Weitzman formulation the future value is certain while the present value is 
stochastic, whereas in the Gollier formulation the present value is certain while the future 
value is stochastic. This observation led Gollier (2004) to state that “Taking the expected net 
future value is equivalent to assuming that all risks will be borne by the future generation.” 
Even though risk is irrelevant in the context of risk neutrality, assumed by both fundamental 

papers of the puzzle, most of the literature trying to reconcile the two approaches appeals to 
the notion of risk aversion.  

This is the approach taken by Gollier and Weitzman (2009) as well, and because it is 
not immediately obvious how a contradiction that exists in the context of risk neutrality can 
be resolved in the context of risk aversion, the claims made by the authors are worth testing. 
This is what the present paper aims to do.  

“How might a person resolve this distressing paradox by choosing between two such 
seemingly symmetric formulations, with each one having diametrically opposed 
implications for distant-future discounting? The answer can only come from a ‘careful 
rigorous analysis’ ” state Gollier and Weitzman (2009), who suggest a specific model from 

                                                 
2 Subscripts W attribute to Weitzman, G to Gollier. 
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which they derive their conclusions. This paper summarizes their arguments, and creates a 
numerical example of their model to replicate their “rigorous analysis,” and attempts to 
verify their stated conclusions. The claims to be verified specifically are the following: 

1. “The two rigorous formulations [of the certainty equivalent rate] give the same 
discount rate (as a function of time), thereby resolving the ‘Weitzman-Gollier 
puzzle.’ ” The “two rigorous formulations” referred to in this quote are the ones 
found in Gollier and Weitzman (2009). Do the presented results derived 
assuming risk aversion transfer to the risk neutrality case and do they solve the 
puzzle thereby? 

2. “The bottom-line message that we wish for readers to take away from this paper 
is the following. When future discount rates are uncertain but have a permanent 
component, then the ‘effective’ discount rate must decline over time toward its 
lowest possible value.” What is the scope of this sweeping statement? 

a. Does it apply to any degree of risk aversion? 
b. Does it apply only to the certainty equivalents of project cash-flows, or 

does it apply directly to the expected monetary cash flows of projects as 
well? 

This paper proceeds as follows. In Section 2, the line of reasoning of Gollier and 
Weitzman (2009) is summarized. In Section 3, a numerical example is built of their analysis, 
and the calculations performed within its framework are used to evaluate their claims. It is 
found that while it is true that the same expected discount rate can be obtained from either 
discount or compound factors in the risk averse model formulated, this fails to solve the 
puzzle, for in the original risk neutral context the discrepancy remains. In Section 4, it is 
explained that the reason why the same discount rates are obtained through both discounting 
and compounding in the Gollier and Weitzman (2009) model is that their expected discount 
and compound factors are each other’s reciprocals, while in the original puzzle this is not 
the case, and therefore the corresponding CERs (certainty equivalent rates) are different. The 
real solution to the puzzle lies in the recognition that Weitzman’s (1998) original formulation 
of the expected discount factor (1) is not correct. Using the correct formulation resolves the 
puzzle. Section 5 is devoted to checking Gollier and Weitzman’s (2009) second claim. Under 
the assumption of perfectly auto-correlated stochastic interest rates, risk-neutral certainty 
equivalent discount rates are a positive function of time. While the discount rates applicable 
to risk-averse certainty equivalents of future payoffs are declining functions of time in the 
example presented, the monetary yield from which certainty equivalent payoffs are 
computed must increase with time on a par with market yields, if their risks are similar, as 
the calculation of certainty equivalents treats market and project yields similarly. Section 6 
presents conclusions. 

The supporting calculations performed with the data of the numerical example are 
presented in Appendix A, references to which, including the relevant section number, are 
provided in parentheses where needed.  

2. Summary of the Gollier and Weitzman argument 

The model proposed in Gollier and Weitzman (2009:3) is as follows: 
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“In the highly stylized model of this paper, time t = 0, 1, 2, ..., is measured in discrete 
periods of unit length. To state loosely the issue at hand, a decision must be taken now, just 
before time zero (call it time 0−), whether or not to invest a marginal cost δ that will yield a 
marginal benefit ɛ at future time t. Right now, at time 0−, it is unknown what will be the 
appropriate future rate of return on capital in the economy. There are n possible future states 
of the economy, indexed by i = 1, 2, ..., n. As of now (time 0−), future state i is viewed as 
having marginal product of capital ri with probability pi > 0, where Σipi = 1. A decision must 
be made now (at time 0−, just before the “true” state of the world is revealed at time t = 0) 
about whether or not to invest δ now in order to gain payoff ɛ at future time t. To pose the 
problem sharply, it is assumed that immediately after the investment decision is made, at time 
0, the true state of the world i is revealed and the marginal product of capital will thenceforth 
be ri, from time t = 0 to time t = ∞.” 

Gollier and Weitzman (2009) postulate that if a decision maker optimizes his 
consumption path by reference to a linear budget constraint represented by interest rate ri of 
state of the world i, then the optimal consumption trajectory for each scenario i must satisfy 
the following first order condition 

 V’i (C0) = V’i (Ct) exp(ri t) (5) 

where V’i (Ct) is the marginal utility of consumption of the period indicated by the subscript 
of C, in the state of the world identified by subscript i of V’. 

At time t = 0– a safe investment opportunity arises that expends marginal cost of δ in 
time period 0 to yield a marginal benefit of ɛ in time period t. The investment project will 
increase the expected utility of the decision maker if and only if  

 ɛ Σ pi V’i (Ct) ≥ δ Σ pi V’i (C0) (6) 

Using optimality condition (5) this can be rewritten in two ways. The one called the 
“Weitzman approach,” which first defines an expected discount factor, eliminates V’i(Ct) 
from (6) yielding: 

  ɛ Σ qW
i exp(–ri t) ≥ δ (7) 

where qW
i = pi V’i (C0) / Σ pi V’i (C0). 

According to Gollier and Weitzman (2009) this is equivalent to discounting ɛ at the 

following rate3: 
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Alternatively, the “Gollier approach,” which first defines an expected compound factor, 
consist of eliminating V’i(C0) from (6) yielding: 

 ɛ ≥ δ Σ qG
i exp(ri t) (9) 

                                                 
3 The subscript d of R refers to the discounting approach and the subscript c to the compounding approach. 
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where qG
i = pi V’i (Ct) / Σ pi V’i (Ct) 

According to Gollier and Weitzman (2009) this is equivalent to discounting ɛ at the 

following rate: 
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Since both (8) and (10) were derived from (6), it must be true that Rd = Rc. The authors 
go on to state that “This means that the adjustment of the valuation for risk resolves the 
‘Weitzman-Gollier puzzle,’ ” denote this the “risk adjusted discount rate” R*, and go on to 
state that “qualitatively the properties of the efficient discount rate R∗(t) resemble closely 
those of RW(t) recommended by Weitzman, with the only quantitative difference being the 

substitution of “Weitzman-adjusted probabilities” {qW
i} for the unadjusted probabilities 

{pi}.” 

3. A numerical example of the Gollier-Weitzman model 

The utility function proposed by the authors is: 
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where ρ>0 is the pure rate of time preference and U(Ct) is a utility function that the authors 
did not specify, but which will be taken here to be of the constant-inter temporal-elasticity-
of-substitution (CIES) type: 
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where consumption C > 0, and the elasticity of marginal utility with respect to consumption 
σ > 0 but not equal to 1. This is also the measure of the decision maker’s constant 
proportional risk aversion. 

The above utility function will be maximized subject to a budget constraint given by an 
original endowment of consumptions Ct for time periods 0 and t, and a constant interest rate 
ri for each scenario i. Under these circumstances the welfare impact of investing at time 0 
for a yield of exp(r×t) at time t can be measured by the changes in the value of the utility 
function (11) used. 

The following parameters are assumed in the simple two-scenario numerical example 
proposed: 
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Table 1 

Parameters of the numerical example 

Scenario 1 interest rate, r1 1% 

Scenario 2 interest rate, r2 5% 

Probability of scenario 1, p1 0.5 

Probability of scenario 2, p2 0.5 

Consumption at time = 0 $2,000 

Annual growth of consumption 0.75% 

Constant proportional risk aversion, σ 0.8 

Pure rate of time preference, ρ 0.5% 

Time t in years 200 

The data of this simple example will be used to verify the claims made in Gollier and 
Weitzman (2009). 

As the arguments of Gollier and Weitzman are predicated on the decision maker being 
on his optimal consumption trajectory, the first thing to do is to calculate it for each scenario. 
This means that the investor pondering whether to invest in the safe project of the Gollier 
Weitzman model at time 0– must also prepare to take action to bring himself into optimality 
once the interest rate to prevail in an instant and forever thence is revealed. To this end, he 
must solve for the optimal capital market action by maximizing, subject to his budget 
constraint, the following expression for each interest rate scenario, where x is the amount to 
invest (or borrow if negative): 
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The calculation of the optimal investment or borrowing is shown in Appendix A, 
Section 1 (referred to as A.1 henceforth). With the data of our simple example, the investor 
would borrow $182.24 in the low interest rate scenario, and would invest $1,554.51 in the 
high interest rate scenario. It will be on the basis of the resulting alternative optimal 
consumption paths (A.1) that he will ponder whether to invest in a safe project costing δ and 

yielding ɛ. 

At this point we can compute Rd. To this end expression (6) will be adapted to our simple 
example, as follows, keeping the notation of the previous Section: 

 ɛ ( p1 V’1 (Ct) + p2 V’2 (Ct) ) ≥ δ ( p1 V’1 (C0) + p2 V’2 (C0) ) (14) 

Employing the “Weitzman approach,” which seeks to define a discount factor, this 
becomes:  
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If we convert the above relationship into a strict equality, and replace δ/ɛ by D, we can 

interpret D as the expected value of the Weitzman approach discount factor, from which we 
can compute: 

 Rd = – (1/t) ln( D ) (16) 

To follow the “Gollier approach” of finding a compound factor instead, all we have to 
do is invert expression (15), make it a strict equality, and replace ɛ/δ by F, which can be 

interpreted as the expected value of the “Gollier approach” compound factor, from which 
we can compute: 

 Rc = (1/t) ln( F ) (17) 

It is clear from this that D = 1/F, which is as it should be4, as expected discount factors 
are the inverses of expected compound factors, and therefore Rd = Rc. This means that CERs 
can be computed from either expected discount or compound factors. Notice that the 
transformations defined by (7) and (9) are not needed for computational purposes. Gollier 
and Weitzman (2009) only performed those to show that expressions that look like (2) and 
(3) can be derived from (6).  

With the data of our example we obtain (A.2) that Rd = Rc = 1.76%. This result was 
calculated directly from (14), without going through the transformations that Gollier and 
Weitzman (2009) used to obtain expressions morphologically similar to the original 
Weitzman (1998) and Gollier (2004) formulations, or using “risk adjusted probabilities.” 
The same result is obtained, however, if one works through those transformations (A.3). 

Gollier and Weitzman’s (2009) assertion that “The two rigorous formulations give the 
same discount rate (as a function of time), thereby resolving the ‘Weitzman-Gollier puzzle.’ 
” is incorrect, however, for the fact that the two formulations Rd and Rc, (8) and (10), derived 
above in the context of risk aversion, are the same, does not solve the puzzle, as they are 
unrelated to RW and RG, (2) and (3), which are defined in the context of risk neutrality. As 
the following table shows, these rates are not the same (A.4).  

Table 2 
Certainty equivalent rates for selected time horizons 

Years till time t 50 100 200 300 400 500 

Risk neutral RW 2.13% 1.67% 1.35% 1.23% 1.17% 1.14% 

Risk averse Rd or Rc 2.65% 2.18% 1.76% 1.62% 1.57% 1.54% 

Risk neutral RG 3.87% 4.33% 4.65% 4.77% 4.83% 4.86% 

The pairwise morphological resemblance between the definitions of Rd and Rc, as 
defined in expressions (8) and (10) respectively, on the one hand, and those of RW and RG, 
as defined in expressions (2) and (4) respectively, on the other, does not make them all equal. 
The equality between Rd and Rc neither makes RW = RG nor provides an explanation for RW 
≠ RG. Furthermore, there is no reason why Rd should equal RW, as the former pertains to a 

                                                 
4 If D = δ/ɛ and F = ɛ/δ, then D = 1/F. 
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risk averse investor, whereas the latter applies to a risk neutral one. This is why Gollier and 
Weitzman (2009) fail to resolve the puzzle. 

4. Solving the Puzzle 

The puzzle resides in the fact that RW ≠ RG. Solving it requires finding the conditions 
that would make RW = RG. Using the notation of the previous section in which D is the 
expected discount factor and F is the expected compound factor, we can say that the puzzle 
will be solved if the following expression, obtained by setting expressions (2) and (4) to be 
equal, is true: 

    D
t

RW ln 1 =    F
t

RG ln 1  (18) 

For this to be true, the following must hold: 

   )ln(ln FD   (19) 

Which means that it must be true that 

 
F

D
1

  (20) 

This condition is met in the Gollier-Weitzman’s (2009) model, analyzed in the previous 
section. In both sections 2 and 3 of Appendix A we can see that the expected compound 
factor F is 33.69026 and the expected discount factor is D is 0.029682, which are each 
other’s reciprocals.  

Furthermore, D complies with the definition of present value5, as demonstrated in A.5: 
investing the present value of δ in the stochastic market has the same expected utility as the 

safe amount ɛ. Gollier and Weitzman’s (2009) statement that “the two rigorous formulations 

give the same discount rate (as a function of time)” is therefore perfectly justified, but it 
refers exclusively to the values calculated in their model, Rd and Rc (see A.2). There is no 
puzzle in Gollier and Weitzman’s (2009) because the expected discount and compound 
factors are each other’s reciprocals. However, Weitzman’s original expected discount factor 
and Gollier’s original expected compound factor, both of which pertain to risk neutral 
investors, are not each other’s reciprocals, as can be seen by multiplying (1) and (3): 

 1  tr

i

tr

i

ii

epep  (21) 

The puzzle can be solved by extending the “rigorous formulation” proposed by the 
authors to the case of risk neutrality. As the marginal utility of income of risk neutral 
investors is constant over their entire utility function, the expected compound and discount 
factors cannot be defined from expressions involving marginal utilities, as in (6), but only 
by considering what the safe yield ɛ of investing δ should be in order to increase the 

                                                 
5 “The present value of an asset is obtained by calculating how much money invested today would be needed, 
at the going interest rate, to generate the asset's future stream of receipts.” (Paul A. Samuelson and William D. 
Nordhaus, 1992:271.) 
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investor’s utility. Given that the investor can invest at the stochastic market yield {ri}, 
investing δ for a safe yield of ɛ is only worthwhile if the following holds: 

 
tr
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By making the relationship a strict equality and dividing through by δ we get the 
expected compound factor: 
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Alternatively, we can rearrange (22) to get the expected discount factor: 
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As D is the inverse of F in (23) and (24) above, there will be no paradox.  

With the data of our simple example we have F = $11,016.93 (A.6), and using 
expression (18) of the compounding approach, the CER is: 

 Rc = (1/t) ln( F ) = (1/200) ln(11,016.93) = 4.65% (25) 

This is the same as the value of RG in Table 2. 

Alternatively, D = 1 / 11,016.93 = 9.07694E-05, and using expression (16) of the 
discounting approach we have:  

 Rd = – (1/t) ln( D ) = – (1/200) ln(9.07694E-05) = 4.65% (26) 

which confirms the absence of the paradox in the risk neutral case as well, provided that the 
correct expected discount factor is used. Risk-neutral Rc = RG ≠ RW because the correct 
expected discount factor D is 9.07694E-05 (A.6), and not Weitzman’s discount factor A, 
which is 0.067690342 (A.7). The paradox was due to the Weitzman’s adoption of expression 
(1) as the expected discount factor6, which results in a different CER value of 1.35% with 
our data (A.7). 

It should be clear enough from (22) that the correct discount factor is D, expression (24), 
and not A, expression (1). None the less, it might be useful to point out two additional 
properties of D and A. 

First, discount factor D complies with the definition of present value, as the expected 
present value of a safe $1 in year 200 is $ 9.07694E-05, which if invested in the market for 
200 years will have and expected yield of $1. Weitzman’s discount factor A does not comply, 
as investing its expected present value of $0.067690342 has an expected yield of $745.74 
(A.8). 

                                                 
6 Weitzman discounting is equivalent to discounting conventionally with the negatives of the interest rates assumed, and then multiplying 
the resulting expected CER value by –1, which is tantamount to reversing the arrow of time. For an explanation of this, and an exploration 
of the properties of Weitzman discounting, see Szabolcs Szekeres (2015a) “Governments Should Not Use Declining Discount Rates  in 
Project Analysis.” 



10 

 

Second, making a small investment yielding Rd = Rc (4.65% in our example) will leave 
the welfare of the risk neutral investor unchanged, because the opportunity cost of making 
the small investment is equal to its yield. Someone investing in a small project yielding RW 

(1.35% in our example), however, will incur a loss, as the opportunity cost of the funds 
exceeds the small investment’s yield. Therefore, using Weitzman’s discount factor A to 
judge investment decisions will lead to welfare loss. Someone investing A = $0.067690342 
for a gain of $1 in year 200, when he could instead invest just D =$ 9.07694E-05 in the 
market for the same gain, will lose the difference between A and D. This is equivalent to 
wasting 99.9% of the investment with the data of our example (A.9). This is just an 
illustrative example of an assertion that will hold in all cases under the assumptions of the 
Weitzman model: an investor paying a Weitzman present value for any future yield will 
always suffer an opportunity loss, for the Weitzman present value, computed at declining 
discount rates, will always be higher than that computed at the growing discount rates of the 
market. 

In arguing for the correctness of Weitzman discounting under risk aversion, Gollier and 
Weitzman (2009:9) make special mention of the case in which the utility function is 
logarithmic, and point out that “In this case, Weitzman’s rule was qualitatively and 
quantitatively correct.” This happens to be a very special case, however, in which the 
standard and the Weitzman CER calculation methods yield the same result, but display 
neither growing nor declining trends. This is due to the coincidence that the natural logarithm 
of the utility function is the inverse function of the exponentiation that continuous 
compounding involves. This case therefore neither proves that the Weitzman method is 
correct, nor supports declining or growing CERs. See A.10. 

In conclusion, the rigorous analysis proposed by Gollier and Weitzman (2009) shows 
that CERs can be computed either from compound or discount factors, provided that these 
are each other’s reciprocals, which their analysis shows to be the case. This is true 
irrespective of the degree of risk aversion assumed, and this paper has shown that risk 
neutrality, which means constant proportional risk aversion of zero, is no exception. The 
Weitzman method of CER calculation under risk neutrality is incorrect therefore, contrary 
to the authors’ assertion, precisely because it fails to comply with this proviso.  

5. Which discount rates should be declining? 

“The bottom-line message that we wish for readers to take away from this paper is the 
following. When future discount rates are uncertain but have a permanent component, then 
the “effective” discount rate must decline over time toward its lowest possible value” 
(Gollier and Weitzman, 2009:9). The aspects of this statement to be addressed are: 

 “When future discount rates are uncertain but have a permanent component…” 
That this condition holds, is an implicit assumption of the Weitzman model, 
because representing the long run with a single stochastic market rate implies 
that annual interest rates are perfectly correlated. Otherwise, this source of 
alleged declining rates would vanish, as according to Christian Gollier (2009:4) 
“the term structure [of interest rates] obtained in this framework depends heavily 
upon the assumption that shocks on the interest rate are permanent. If they are purely 
transitory, the term structure of discount rates should be flat.” 

 “ ‘effective’ discount rate…” To address this comprehensively we will consider: 
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o The expected monetary return of an investment. This is the internal rate 
of return (IRR) between the expected value of the investment and the 
expected value of the payoff (or, more generally, the IRR of the expected 
project cash-flow). 

o The CER of the investment, which is the IRR defined by the certainty 
equivalent of the investment and the certainty equivalent of its payoff(s). 
For risk neutral investors this is the same as the above, as the certainty 
equivalent of a payoff is its expected monetary value, but for risk averse 
investors it is different. 

Numerical examples will be used to explore these questions. Calculations will be made 
of expected monetary returns and CERs corresponding to small investment projects that have 
the same expected annual return as the market, but (a) are riskier, or (b) are equally risky, 
but their risk is negatively correlated with the market’s risk. Their monetary CERs and risk 
averse CERs will be computed for selected time horizons, in order to check whether they 
indeed “decline over time toward [their] lowest possible value.” 

The data of the previous section will be used again, but one assumption of the Gollier-
Weitzman (2009) model will be dropped, namely the assumption of clairvoyance. This will 
make the model much more realistic, as investors don’t normally know the future values of 
distant future stochastic interest rates in advance of investing their portfolios. This means 
that instead of optimizing their portfolio separately for each scenario, they will choose an 
investment amount that maximizes their expected utility, knowing only the probability 
distribution of the market rate. In such cases the optimal consumption path under uncertainty 
will not prove to have been optimal in any scenario, ex-post. Consequently, the 
computational formulas used in Gollier and Weitzman (2009), which are based on the 
assumption of scenario specific optimization, will no longer be useful. Utility maximizing 
actions and CERs can still be identified, however, through numerical methods. 

The analysis proceeds as follows. For each of the selected time horizons, the following 
is done: 

1. The optimal investment to be made in the market is calculated by maximizing 
expected utility. This fixes the consumption paths (C0 will be the same in both 
scenarios, Ct will be scenario specific). 

2. The market’s expected monetary return is computed. This is also the CER of risk 
neutral investors. 

3. The risk averse market CER is computed by finding the rate of return of an 
investment of $1 with a safe yield such that the investor is indifferent between 
investing in it or at the stochastic market rate.  

4. A small project is defined with an investment cost of $1, an expected annual 
return of x, and high and low rates defined in such a way that the coefficient of 
variation of rate x is 1.5 times the coefficient of variation computed from the low 
and high market rates (1% and 5%, respectively). It is assumed that the market 
risk and project risk are perfectly correlated. For each time horizon the value of 
x that leaves the total utility of the risk averse decision maker unchanged is 
found, and from that the expected monetary CER of the small project so defined 
is computed. 

5. Another small project costing $1 is defined, the coefficient of variation of its 
expected annual return x is the same as that of the market rates, but this time the 
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risk of this project is inversely correlated with the risk of the market. The 
corresponding monetary CER of the small project so defined is computed. 

With these assumptions, the following results were obtained (see A.11 for details of the 
calculations): 

Table 3 

Certainty equivalent rates for selected time horizons 

Years till time t 50 100 200 300 400 500 

Risk neutral CER 3.87% 4.33% 4.65% 4.77% 4.83% 4.86% 

Risk averse CER 3.13% 2.65% 2.13% 1.95% 1.88% 1.85% 

Risky project’s required monetary 
CER 

3.99% 4.44% 4.70% 4.79% 4.83% 4.86% 

Negatively correlated project’s 
required monetary CER 

2.19% 2.14% 1.80% 1.72% 1.71% 1.71% 

What the above results show is that risk neutral CERs increase with time. Risk averse 
CERs decline, but these can only be applied to the certainty equivalent payoffs of investment 
projects. Investment projects with risk equal to that of the market must have (growing) 
expected monetary returns as high as those of the market in order to have sufficiently high 
(declining) risk averse CERs to be acceptable to risk averse investors. Projects that are riskier 
than the market must have (growing) expected monetary returns even higher than those of 
the market. If the risks are the same as those of the market, but negatively correlated with it, 
then the required expected monetary returns decline. These projects are better than safe 
projects, hence their required monetary CER is below the risk averse market CER7. 

Weitzman’s original model was framed in the context of risk neutrality, and therefore 
the recommendation to use declining discount rates is equivalent to the prescription of 
discounting the expected monetary flows of projects at declining rates. As the results of 
Table 3 illustrates – but expressions (24) and (25) demonstrate – this recommendation is not 
justified for risk neutral investors, and neither is it justified for projects that are as risky or 
riskier than the market for risk averse investors. Risk averse CERs of market rates do 
decline8, because risk averse investors are willing to trade yield for safety, but by the same 
reasoning risk averse CERs of project yields also decline. Therefore, for a project to be 
preferred to the market by a risk averse investor, its risk averse CER would have to be higher 
than that of the market, and for that to occur, its expected monetary returns should be higher 
as well, provided that its risks are not lower than those of the market, or are not negatively 
correlated with it.  

Clearly the above results are just illustrative examples, but two generalizations are 
possible:  

1. Risk neutral CERs are a growing function of time regardless of the probability 
distribution of interest rates assumed, as long as the Weitzman assumption of 

                                                 
7 For completeness Table 3 has been calculated also with the clairvoyance assumptions of the Weitzman (1998) model (A.11). The values 
obtained are slightly different, but the substantive conclusions are the same. 
8 For a comprehensive review of how CERs behave as a function of risk aversion and time see Szabolcs Szekeres (2015b). 
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perfectly correlated interest rates holds, for the reasons given in the explanation 
of (4) above, which is identical to the expression for expected risk neutral 
discount rate given in (26) above. 

2. The actual behavior of risk averse CERs could very well differ from that derived 
from the current example (see Szekeres 2015b) because effective risk averse 
behavior is both a function of the degree of risk aversion and of the probability 
distribution of the decision maker’s endowment. What can be generalized from 
the example, however, is that the process of converting monetary risk to 
expected utility affects market and project yields equally, and for that reason 
projects with risks similar to those of the market (and correlated with them) will 
have to yield at least as much as the market for them to be acceptable to risk 
averse investors. Required yields may be lower for independent, lower, or 
negatively correlated risks. 

Gollier and Weitzman’s (2009:9) “bottom-line message that […] when future discount 
rates are uncertain but have a permanent component, then the ‘effective’ discount rate must 
decline over time toward its lowest possible value” is not sustained. CERs do decline for 
some degrees of risk aversion, but the implication that the monetary CERs of projects can 
be declining over time (meaning that the longer the life of the project, the lower its required 
monetary return) is not true, unless their risks are much lower than, or negatively correlated 
with, those of the market. 

6. Conclusions 

In their paper entitled “How Should the Distant Future Be Discounted When Discount 
Rates Are Uncertain?” Christian Gollier and Martin L. Weitzman (2009) claim to have 
solved the “Weitzman-Gollier puzzle.” To do so they conducted a “careful rigorous analysis” 
through a model that replicates the assumptions of the original Weitzman (1998) paper, but 
in which the behavior of a risk averse investor is analyzed, rather than that of the risk neutral 
investor of Weitzman’s model and the puzzle. This paper created a numerical example with 
which to verify the validity of their assertions by carrying out the calculation suggested in 
their paper, and arrived at the following conclusions: 

1. Regarding the claim of having solved the “Weizman-Gollier puzzle:” 
a. CERs derived from either discounting or compounding are the same in the model 

proposed in Gollier and Weitzman (2009), just as claimed. 
b. Gollier and Weitzman (2009) show that it is possible to find expressions 

involving “risk adjusted probabilities” that are morphologically similar to the 
Weitzman (1998) and Gollier (2004) expressions for risk neutral CERs. 
However, their equality in the risk averse case does not translate into the equality 
of the analogous expressions of the risk neutral case, and therefore their claim to 
have solved the puzzle thereby is not sustained. 

c. CERs derived from either discounting or compounding in the Gollier-Weitzman 
(2009) model are the same because the corresponding expected compound and 
discount factors are each other’s reciprocals. 

d. The “Weitzman-Gollier Puzzle” is due to the fact that Weitzman’s (1998) 
expected discount factor is not the inverse of Gollier’s (2004) expected 
compound factor. Using the reciprocal of the latter as a discount factor eliminates 
the puzzle. 
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e. Weitzman’s risk neutral expected discount factor does not comply with the 
definition of present value, and will lead to significant welfare loss if relied upon 
for investment decisions. 

2. The claim that “when future discount rates are uncertain but have a permanent 
component, then the ‘effective’ discount rate must decline over time toward its 
lowest possible value” is not unequivocally sustained. 
a. When interest rates are perfectly correlated, risk neutral discount rates are not a 

declining, but an increasing function of time, and tend not to the lowest, but to 
the highest possible rate. 

b. Risk averse CERs of market rates can decline, but so can risk averse CERs of 
project yields.  

c. For a project to be preferred to the market by a risk averse investor, its risk averse 
CER would have to be higher than that of the market, and for that to occur, its 
expected monetary returns should be higher than the market’s as well, provided 
its risks is not lower than that of the market, or is not negatively correlated with 
it. 

d. Risk averse CERs of projects with the same risk as that of the market, but which 
is negatively correlated with it, are declining functions of time. 

In summary, an attempt to verify the claims made in Gollier and Weitzman (2009) by 
replicating the “careful rigorous analysis” of their suggested model through a numerical 
example has yielded the conclusion that Gollier and Weitzman (2009) have not solved the 
“Weitzman Gollier Puzzle.” The true solution of the puzzle lies in the recognition that 
Weitzman’s (1998) expected discount factor is incorrect. Their “bottom-line message that [] 
when future discount rates are uncertain but have a permanent component, then the 
“effective” discount rate must decline over time toward its lowest possible value” has not 
been unequivocally sustained. Risk neutral discount rates increase instead to their highest 
possible value. Risk averse CERs can decline, but barring a more favorable risk profile, the 
monetary CERs of projects must match the growing monetary CERs of the market for them 
to be attractive to risk averse investors. 

This is what corresponds to common sense. In the (probably unlikely) event of market 
interest rates being sufficiently auto-correlated to make CERs of long term market yields a 
growing function of time, it makes no sense to invest in projects of similar risk but lesser 
yield, irrespective of one’s degree of risk aversion. 
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Appendix A 

1. Optimal investment or borrowing in each scenario 

Maximize 
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Differentiating9 this expression with respect to x, and setting the result equal to 0, gives 
the first order condition of the optimization: 
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The optimal market action to be taken can be obtained by solving for x in the above 
expression10: 
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With the data of our simple example, the investor would borrow $182.24 in the low 
interest rate scenario and would invest $1,554.51 in the high interest rate scenario. This 
defines the following scenario dependent optimal consumption paths: 

 

Consumption Scenario 1 Scenario 2 

Time 0 2,000 + 182.24 = 2,182.24 2,000 – 1,554.51 =445.49 

Time t 
2,000   exp(0.0075   200) 
– 182.24   exp(0.01   200) 
= 7,616.78 

2,000   exp(0.0075   200) 
+ 1554.51   exp(0.05   200) 
= 34,249,304.84 

2. Calculation of the certainty equivalent discount factor 

Differentiating11 (11) with respect to C0 and Ct we obtain the marginal utilities: 

 
0

1
)( 0

'

C
CVi    

                                                 
9 Result courtesy of http://www.derivative-calculator.net 
10 Solution courtesy of http://www.wolframalpha.com 
11 Results courtesy of http://www.derivative-calculator.net 
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With the data of the quantitative example, these assume the following values: 

 

Marginal 

utilities 

Scenario 1 Scenario 2 

Time 0 
002132444.0

24.182,2

1
8.0
  007602019.0

49.445

1
8.0
  

Time t 
8.08.7616)200005.0exp(

1


 

= 0.000288595 

8.08.3424304)200005.0exp(

1


 

= 3.45131E-07 

Using the computed marginal utilities in expression (15) allows us to calculate the 
expected discount factor D as follows: 

 029682.0
007602019.05.0002132444.05.0

0745131.35.0000288595.05.0



 E

  

and from that Rd can be computed using (16): 

 Rd = – (1/200) ln(0.029682) = 1.76%  

Inverting the expected discount factor we obtain the expected compound factor: 

 F = 1 / 0.029682 = 33.69026 

from which Rc can be computed using (17) as follows: 

 Rc = (1/200) ln( 33.6903) = 1.76%  

3. Test of the Gollier and Weitzman (2009) calculation method 

Gollier and Weitzman’s (2009) calculation method can be tested as well. From (7) the 
expected discount factor D following the “Weitzman” approach is 

 D = Σ qW
i exp(– ri t)  

For the “Weitzman approach” the “risk adjusted” probabilities are defined as 

 qW
i = pi V’i (C0) / Σ pi V’i (C0) 

which using our data become: 
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 Scenario 1 Scenario 2 

q
W 

`
007600203.05.0002132444.05.0

00213244.05.0




 

= 0.21906126 
007600203.05.0002132444.05.0

007602019.05.0




 

= 0.78093874 

The expected discount factor therefore can be calculated as follows: 

D = 0.21906126   exp (– 0.01   200) + 0.78093874   exp (– 0.05   200) = 0.029682 

which is the same result as was obtained in A.2, and from which, using (16), we get 

 Rd = – (1/200) ln(0.029682) = 1.76%  

Alternatively, from (9), the expected compound factor F following the “Gollier” 
approach is 

 F = Σ qG
i exp(ri t)  

For the “Gollier approach” the “risk adjusted” probabilities are defined as 

 qG
i = pi V’i (Ct) / Σ pi V’i (Ct) 

which using our data become: 

 

 Scenario 1 Scenario 2 

qG 
`

07-3.45131E5.000288595.05.0

00288595.05.0




 

= 0.998805527 
07-3.45131E5.000288595.05.0

07-3.45131E5.0




 

= 0.001194473 

The expected compound factor therefore can be calculated as follows: 

F = 0.998805527  exp (0.01   200) + 0.001194473  exp (0.05   200) = 33.69026 

which is the same result as was obtained before, and from which, using (17), we get again 

 Rc = (1/200) ln(33.69026) = 1.76%  

4. Certainty equivalent rates for selected time horizons 
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Certainty equivalent rates for selected time horizons 

Years till time t 50 100 200 300 400 500 

Risk neutral RW 2.13% 1.67% 1.35% 1.23% 1.17% 1,14% 

Risk averse Rd or Rc 2.65% 2.18% 1.76% 1.62% 1.57% 1.54% 

Risk neutral RG 3.87% 4.33% 4.65% 4.77% 4.83% 4.86% 

The values of RW and RG (risk neutral case) were obtained by evaluating expressions (2) 
and (4) of the main text for the values of t shown in the column headings, with all other 
required data being the same as given in Table 1 for our numerical example. The values of 
Rd or Rc (risk averse case) were obtained by repeating the calculations shown in Sections 1 
and 2 of this Appendix for the relevant time horizons.  

5. Test of compliance with the definition of present value (risk averse) 

The calculated expected discount factor will calculate a correct expected present value 
of a future safe sum if investing the expected present value in the capital market will yield a 
stochastic return such that its expected utility is the same as that of the future safe sum to 
which the discount factor was applied. In this section we will test if D = 0.029682 complies 
with this requirement. 

 

Concept Calculation Result 

Safe yield at time 200 
(an arbitrary small sum).  ɛ 0.001 

Utility of consumption 
at time 200 in scenario 
1, including safe yield 
of 0.001. 

8.1

10.001)814(7,616.775 8.1


 

 
24.8761238 

Utility of consumption 
at time 200 in scenario 
2, including safe yield 
of 0.001. 

8.1

10.001)4.84(34,249,30 8.1


 

 
155.6572603 

Expected utility with 
safe yield of 0.001. 

(24.8761238+155.6572603)/2 90.26669203 

Expected present value 
of safe yield at time 200. 

δ = D × ɛ =0.029682 × 0.001 2.96822E-05 

Yield at time 200 of 
investing δ in scenario 1 

2.96822E-05 × exp(200 × 0.01) 0.000219323 
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Yield at time t of 
investing δ in scenario 2 

2.96822E-05 × exp(200 × 0.05) 0.653793353 

Utility of consumption 
at time t in scenario 1, 
including yield of 
investing δ. 

8.1

13)0.00021932814(7,616.775 8.1


 

 
24.87612319 

Utility of consumption 
at time t in scenario 2, 
including yield of 
investing δ. 

8.1

13)0.653793354.84(34,249,30 8.1


 

 
155.6572609 

Expected utility having 
invested present value δ. 

0.5×24.87612319+0.5×155.6572609 90.26669203 

The above table shows that the expected utility of the safe yield is the same as the 
expected utility of investing the expected present value of that yield12.  

6. Standard risk neutral compound and discount factors 

The risk neutral compound factor for the numerical example can be computed as 
follows, on the assumption that $1 is invested: 

F = 0.5 × exp (0.01 × 200) + 0.5 × exp (0.05 × 200) = 11,016.93 

And consequently the discount factor is: 

D = 1 / 11,016.93 = 9.07694E-05 

from which, using (16), the CER computes to: 

Rd = (1/t) ln( D ) = – (1/200) ln(9.07694E-05) = 4.65% 

7. Weitzman risk neutral discount factor 

Weitzman’s risk neutral discount factor for the numerical example can be computed as 
follows, on the assumption that a safe $1 in year 200 is to be discounted: 

A = 0.5 × exp(– 0.01 × 200) + 0.5 × exp(– 0.05 × 200) = 0.067690342 

from which the CER computes to: 

RW = – (1/t) ln( A ) = – (1/200) ln(0.067690342) = 1.35% 

                                                 
12 The expected value of the yield is of course not equal to the safe yield [(0.000219323 + 0.653793353)/2 = 0.327006338]. 
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8. Test of compliance with the definition of present value (risk neutral) 

The standard discount factor D is compliant: 

D × F = 1 

9.07694E-05 × 11,016.93 = 1 

Weitzman’s discount factor A is not compliant: 

A × F ≠ 1 

0.067690342 × 11,016.93 = 745.74 

9. Loss from following the Weitzman present value rule 

As the Weitzman discounting rule results in present values much higher than those of 
the conventional method, anyone investing in a project that has a positive present value 
according to the Weitzman rule would suffer an opportunity loss, for the same future benefits 
could be had much more cheaply by investing in the market instead. The loss can be 
quantified using the difference between Weitzman’s and the correct discount factors. For 
each $1 of future benefits, this is as follows with the data of our example:  

Absolute loss =$0.067690342 – $9.07694E-05 = $0.067599573 

Fractional loss = $0.067599573 / $0.067690342 = 0.998659056 

The fact that investing Weitzman’s present value A in a project yielding a safe $1 leads 
to welfare loss can be shown for the formal Gollier-Weitzman (2009) model by assuming 
that the decision maker is risk neutral. In that case the utility function to be used in (11) 
should be linear. In its simplest form U(C) = C, and expression (11) becomes: 

   t

t

t
CeCV 


   

The risk neutral investor would invest all he could in both the scenarios, because both 
the low and high interest rates exceed his pure rate of time preference, making the 
postponement of consumption the welfare maximizing action in both scenarios. Therefore, 
the welfare consequence of investing A = $ 0.067690342 (A.7) in the safe project yielding 
$1 is the opportunity cost at t = 200 less the safe yield obtained, which is (see A.8) 745.74 – 
1 = 744.74. Discounting this at the pure rate of time preference of 0.5% yields a utility loss 
of 273.97. Had A been calculated using the correct discount rate, the welfare loss would have 
been zero, as the opportunity loss of investing in any project with an expected return equal 
to that of the market is zero. 
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10. Standard and Weitzman CERs when the utility function is logarithmic 

For the standard CER we compute the certainty equivalent of future payoffs, noting that 
the utility function is logarithmic and that the utility function is the inverse function of 
exponentiation: 

rtrptep
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where r is the expected value of the annual interest rate. Consequently, 
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which means that the CER rate is constant as a function of time, and equal to the expected 
annual rate of interest. 

The same happens with the Weitzman CER method: 
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So indeed the two methods yield quantitatively identical results, but only in this case, 
which does not make the Weitzman method correct for other cases, nor does it support 
declining or growing discount rates. 

A.11 CERs and required monetary returns 

The analysis proceeds as described in the Section 5 of the main text. The risk neutral 
CERs are calculated as in A.6. The following table shows the calculation of the required 
monetary CER of a project that is riskier than the market. The small project has an 
investment cost of $1, the coefficient of variation of its annual rate is 1.5 times that of the 
market, the correlation between market and project risks is 1, and t = 200. The calculation 
of the risk averse CER would be identical to this, except that the small project’s annual return 
probability would then be the same as that of the market. 
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Concept Calculation Result 

Optimal market 
investment. 

Total expected utility is maximized by 
changing the amount invested at time 0, 
taking into account, under each scenario, how 
much extra consumption would result from it 
at time 200. 

1,255.321051 

Consumption at time 0. 
This is the same in both 
scenarios. 

Consumption endowment less optimal 
investment in the market.  

2,000 – 1,255.321051  

744.6789487 

Consumption Scenario 
1, time 200. 

Consumption endowment plus market yield 
of the optimal investment 

8,963.378141+1,255.321051 × EXP(200×0.01)  

18,239.01581 

Consumption Scenario 
2, time 200. 

Consumption endowment plus market yield 
of the optimal investment 

8,963.378141+1,255.321051 × EXP(200×0.05) 

27,659,249.58 

Expected total utility 0.5 × ((744.6789487(1-0.8) – 1) / (1 – 0.8)) 
+0.5 × ((744.6789487(1-0.8) – 1) / (1 – 0.8)) 
+(0.5 × ((18,239.01581 (1-0.8) – 1) / (1 – 0.8)) 
+0.5 × ((27,659,249.58(1-0.8) – 1) / (1 – 0.8))) / 
EXP(200 × 0.005) 

46.78510666 

Expected annual yield x 
of the small project. 

This is the solution of the iterative search for 
annual yield x. The search stops when 
expected total utilities are the same in the row 
above and in the last row of this table. 

2.524429% 

Coefficient of variation 
multiple. 

Assumption. 1.5 

Coefficient of variation 
of the project's rates. 

The coefficient of variation of the market 
rates is ((0.01–0.03)2+(0.05–
0.03)2)0.5/0.03=0.9428, which multiplied by 
1.5 gives the coefficient of variation of the 
project.  

1.414213562 

Deviation d from 
annual mean of project 
high and low rates. 

d = x × v / 20.5  

= 0.02524429 × 1.414213562 / 20.5 

2.524429% 

Project low rate. 0.02524429 – 0.02524429 0.00% 

Project high rate. 0.02524429 + 0.02524429 5.0489% 
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Project monetary 

CER 

(1/200) × LN (0.5 × EXP(0 × 200) 
+ 0.5 × EXP(0.050489 × 200)) 

4.70% 

Correlation with 
market. 

Assumption. 1 

Consumption at time 0. 
This is the same in both 
scenarios. 

Consumption endowment less investment in 
the market and in the project.  

2,000 – 1,255.321051 – 1 

743.6789487 

Consumption Scenario 
1, time 200. 

Consumption endowment plus market and 
project yields. 

8,963.378141+1,255.321051 × EXP(200×0.01) 

+ EXP(200 × 0) 

18,240.01581 

Consumption Scenario 
2, time 200. 

Consumption endowment plus market and 
project yields. 

8,963.378141+1,255.321051 × EXP(200×0.05) 

+ EXP(200 × 0.050489) 

27,683,537.09 

Expected total utility 0.5 × ((743.6789487(1-0.8) – 1) / (1 – 0.8)) 
+0.5 × ((743.6789487(1-0.8) – 1) / (1 – 0.8)) 
+(0.5 × ((18,240.01581(1-0.8) – 1) / (1 – 0.8)) 
+0.5 × ((27,683,537.09(1-0.8) – 1) / (1 – 0.8))) / 
EXP(200 × 0.005) 

46.78510666 

Repeating these calculations for the selected values of t yields the following results: 

 
No clairvoyance certainty equivalent rates for selected time horizons 

Years till time t 50 100 200 300 400 500 

Optimal investment 765.18 987.00 1,255.32 1,494.10 1,683.45 1,813.88 

Risk neutral CER 3.87% 4.33% 4.65% 4.77% 4.83% 4.86% 

Risk averse CER 3.13% 2.65% 2.13% 1.95% 1.88% 1.85% 

Risky project’s required 
monetary rate 

3.99% 4.44% 4.70% 4.79% 4.83% 4.86% 

Negative correlation project’s 
required monetary CER. 

2.19% 2.14% 1.80% 1.72% 1.71% 1.71% 

 

For completeness, these values have been calculated with the clairvoyance assumption 
of the Weitzman (1998) model. Details of the calculations are not shown. In this case the 
optimal consumption path also differs in the values of C0, which become scenario specific 
and are calculated as in A.1. The rest of the calculations follow the same pattern as given 
above for the no clairvoyance case. 
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Clairvoyant certainty equivalent rates for selected time horizons 

Years till time t 50 100 200 300 400 500 

Optimal investment in 
Scenario 1 

–58.46 –108.47 –182.24 –223.02 –236.67 -230.89 

Optimal investment in 
Scenario 2 

1054.07 1292.76 1554.51 1734.07 1848.28 1915.82 

Risk neutral CER 3.87% 4.33% 4.65% 4.77% 4.83% 4.86% 

Risk averse CER 2.65% 2.18 1.76% 1.62% 1.57% 1.54% 

Risky project’s required 
monetary rate 

4.13% 4.55 4.76% 4.82 4.85% 4.88% 

Negative correlation project’s 
required monetary CER. 

2.10% 1.68% 1.44% 1.40% 1.40% 1.40% 

 


