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SOLVING THE SOCIAL CHOICE PROBLEM UNDER EQUALITY

CONSTRAINTS

JUAN A. CRESPO† AND J. J. SÁNCHEZ-GABITES‡

Abstract. Suppose that a number of equally qualified agents want to choose col-

lectively an element from a set of alternatives defined by equality constraints. Each

agent may well prefer a different element, and the social choice problem consists

in deciding whether it is possible to design a rule to aggregate all the agents’ pref-

erences into a social choice in an egalitarian way. In this paper we obtain criteria

that solve this problem in terms of conditions that are explicitly computable from

the constraints. As a theoretical consequence, we show that the only way to avoid

running into a social choice paradox consists in designing (if possible) the set of

alternatives satisfying certain optimality condition on the constraints, that is, in

the natural way from the point of view of economics.
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JEL classification codes. D71, C60, D63.

Introduction

Suppose that an element needs to be selected out of a set of alternatives X by a

number of agents, each of which may well want to choose a different one. In order

to make a collective decision it is necessary to provide some rule to aggregate the

individual preferences of the agents into a social one. Broadly speaking, the social

choice problem consists in deciding whether this aggregation process can be performed

in a socially acceptable manner or, more formally, whether there exist aggregation
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rules that satisfy certain axioms which are believed to capture whatever is meant by

“socially acceptable”.

There are several approaches to the social choice problem in the literature. In

the Arrowian model [1] each agent orders all the elements of X and the aggregation

rule yields an ordering of the alternatives that, in order to be socially acceptable, is

essentially required to be compatible with the orderings established by the agents.

By contrast, in the model of Chichilnisky [5, 6] each agent just reveals her preferred

alternative from X and the aggregation rule is simply a function that takes as an

input the bundle of individual selections and produces as an output a single element

of X, the social or collective choice. Again, for this aggregation rule to be socially

acceptable it is required to satisfy certain axioms: it should be anonymous in the

sense that all the agents are equally considered; unanimous, which means that if

all agents happen to select the same alternative from X then this has to be also

the social choice; and continuous, a condition about which we shall say a few words

shortly. These axioms are described formally in Section 1.

In this paper we want to analyze the social choice problem over sets of alternatives

that are defined, as is often the case in quantitative economics, by means of a collection

of equality constraints gi(x⃗) = ci; that is,

(1) X = {x⃗ ∈ R
n : gi(x⃗) = ci for i = 1, . . . ,m}.

Such sets usually consist of a continuum of alternatives, so it does not seem reasonable

to require that the agents order all the alternatives as in the Arrowian model, but just

state their preferred one. Moreover, the continuity axiom becomes almost unavoidable

since it is natural to assume that an agent cannot distinguish between two sufficiently

close alternatives and, as a consequence, switching from one to the other should cause

only a small change in the aggregation function (see a detailed discussion following

[16, Remark 2.3.1, p. 6]). These observations strongly suggest that we work within

the model of Chichilnisky, and then our social choice problem boils down to the

following question: given a set of alternatives X as above, is it possible to find an
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anonymous, unanimous and continuous aggregation rule over X? Notice that the

aggregation rule should be defined whatever the alternative chosen by each of the

agents, since there are no assumptions on how they perform their individual choices.

In particular, the agents are in principle independent from each other and may even

be completely irrational. It is important to keep this in mind to fully appreciate the

results obtained here, at least in their theoretical consequences.

The social choice problem was analyzed and solved, for a wide class of sets of

alternatives, by Eckmann [9, 10] in a mathematical guise1 and later on, in a social

choice context, by Chichilnisky and Heal [7] and Weinberger [22]. They showed

that, under certain hypotheses, the social choice problem has a solution if and only

if the set of alternatives X satisfies a mathematical condition called contractibility.

Although this solution is completely satisfactory from a mathematical point of view,

deciding whether a given set is contractible or not is still a very hard mathematical

problem. Also, the very notion of contractibility itself may probably be alien to

most readers. It seemed to us that these facts render the result of Chichilnisky and

Heal and Weinberger difficult to apply both in specific examples and in theoretical

investigations in economics, and our purpose in this paper is to obtain elementary

and explicitly computable criteria to analyze the social choice problem over sets X

defined by equality constraints. For the present expository purposes we shall just

state our main theorem (Theorem 3 in Section 1):

Main Theorem. Let X be defined as in (1). A necessary condition for the social

choice problem over X to have a solution is as follows: for any constraint gi(x⃗) = ci

such that the set Yi determined by the remaining constraints is bounded, ci must be

either the global maximum or the global minimum value that gi attains over Yi.

1Social choice functions may be regarded as some sort of generalized means. This point of view is
quite independent of any particular interpretation of the variables, and in this guise the social choice
problem already attracted mathematicians –for purely theoretical reasons– in the first part of the
past century. After the seminal paper of G. Aumann [2], several solutions for spaces satisfying certain
regularity conditions have been published [9, 11, 14]. The interested reader may enjoy Eckmann’s
account of the history of the problem [10].
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The condition that Yi is bounded guarantees that gi indeed attains a global max-

imum and a global minimum value on Yi. What the theorem says is that unless ci

happens to coincide with either of these; that is, unless the constraint gi(x⃗) = ci is

optimal with respect to the others, the social choice problem over X has no solution.

Notice that in general this optimality condition may have to be satisfied by several

constraints simultaneously, since several of the Yi may be bounded (however, each of

the corresponding constraints gi(x⃗) = ci would have to be optimal over a different

set Yi), and notice also that the theorem tells us nothing about those constraints

for which Yi is not bounded. Finally, observe how the language used in the state-

ment of the theorem is completely elementary, making no reference to contractibility

whatsoever.

In addition to its applicability to specific examples, this result has a theoretical

interpretation that we feel valuable because it shows that there exists a surprising

relationship between the social choice problem and economics. We will now discuss

these two aspects in turn.

A) Application to specific examples. The necessary optimality condition afforded

by the main theorem can be used as a criterion to show that a given social choice

problem has no solution. When this is the case it is customary to speak of a social

choice paradox, since any procedure to perform collective choices will violate at least

one of the three axioms (unanimity, anonimity and continuity) laid out earlier and,

in that sense, will fail to be socially acceptable.

Example 1 below is included to illustrate how computations may proceed in a

typical case. We have deliberately chosen an example without any particular inter-

pretation because at this point we want to emphasize that the main theorem is purely

mathematical in nature and therefore completely independent of the interpretation

(if any) of the social choice problem under consideration.
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Example 1. Suppose that we want to analyze the social choice problem over the set

X ⊆ R
3 defined as

X = {(x, y, z) ∈ R
3 : x4 + 2(y2 + 1)z2 + y2 = 1 , 2x2 − 2y2 = 1}.

The set defined by the first constraint alone (that is, removing the second con-

straint) is easily seen to be bounded. A computation using the method of Lagrange

multipliers shows that the second constraint is not optimal with respect to the first

and therefore, according to our main theorem, the social choice problem over X has

no solution. �

Example 1 is therefore an instance of a social choice paradox, and some playing

around with the mathematics would lead to many more examples. None of these

would be very interesting, however, since they would not mean anything. By con-

trast, as soon as one considers examples whose variables and constraints have some

meaningful interpretation, the optimality criterion provided by the main theorem ac-

quires in turn an interesting interpretation which, in particular, brings economics into

the picture in a somewhat unexpected way. This is what we discuss now.

B) Theoretical consequences of the main theorem. Suppose, for the purpose of il-

lustration, that in Example 1 the first constraint is exogenous in the sense that it

cannot be operated upon, but some agent (either the agents performing the choice

themselves or another, completely unrelated agent) can fix the value c2 of the second

constraint; that is, the social choice problem can be designed to some extent. Then we

know that only setting that second constraint to be optimal with respect to the first

will allow for the possibility of social choice on X. Thus optimization is a necessity

in designing a social choice problem if we want it to have a solution. We emphasize

that this is a purely mathematical conclusion, insofar as Example 1 was also purely

mathematical.

Now let us set ourselves in a context where the variables and the constraints have

an economical interpretation. For definiteness, assume that x⃗ represents the bundle of

production factors used by some firm. In general, of course, there will exist constraints
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on the bundles that can be used, maybe owing to technological limitations on the

production process, the necessity to satisfy a given demand, etc. These constraints

determine a set X from which the bundle of production factors has to be chosen. If

the firm is run by several agents, each one is entitled to her own preference and so

they are faced with a social choice problem over X. Will this problem have a solution,

as seems desirable? Let us consider, in turn, two particular cases:

(i) Imagine first that the constraints represent technological limitations on the

productive process that are enforced by several laws of Nature. These constraints are

exogenous, in the sense that they cannot be operated upon. There is no reason to

expect that any of these constraints will be optimal with respect to the others2, and

so the main theorem implies that the social choice problem over X has no solution.

(ii) Suppose instead that there are only two constraints P (x⃗) = d and U(x⃗) = u

which represent the requirements that the firm satisfies a given demand d and obtains

certain level of utility u. We take the external demand d to be fixed, so the first

constraint is exogenous, but assume that the agents can choose the level of utility

u. Then our main theorem implies that if the agents want to allow themselves to

perform a collective choice of the bundle of production factors to be used then they

must fix their utility level u to be either the best (or, quite paradoxically, the worst)

attainable while satisfying the given demand d. If there were additional technological

constraints as in (i), the conclusion would still be the same: the agents should fix an

optimal level of utility u that satisfies the demand d and accords to the technological

constraints.

The conclusion of the previous paragraph is, by itself, hardly surprising for anyone

and almost axiomatic for an economist. The puzzling point is how the conclusion is

reached : we have just applied a mathematical theorem, as we did in Example 1, and

nowhere in our argumentation have we made any assumptions with an economical

content. As mentioned at the beginning of the paper when describing the social

2More quantitatively, since gi|Yi
has exactly two global optimal values (or just one, if the maximum

and the minimum happen to coincide), the probability that ci actually agrees with any one of these
is zero.
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choice problem in the abstract, there are no conditions on how the agents choose

their preferred alternatives or how their individual utilities relate to each other3 or to

the utility U(x⃗) of the firm. In sum, there is no economics beyond the fact that the

variables and constraints have an economical interpretation. Our starting point was

just a bare problem in social choice but, nevertheless, in attempting to solve it we

have been led, by the mathematics alone, to the familiar condition that the level of

utility u should be optimal. This conclusion is economics, emerging spontaneously.

Mathematically it is nothing but the optimality condition from our main theorem

again, but now interpreted in an economical context, and to emphasize this we shall

refer to it as the condition of rationality in the design of the set of alternatives

X. This choice of terminology seems appropriate, given that optimization is one of

the distinguishing features of rationality. Summarizing, we may state the following

“principle of rational design”:

A social choice problem that is not designed rationally has no solution.

Conversely, another result in this paper (Theorem 5) establishes the following:

A social choice problem that is designed rationally has, generically4, a solution.

We call these “principles” because they provide a general idea about how a social

choice problem should be designed (when possible) but, as always, their application

to each particular case has to be exercised with due care using the precise statements

of the theorems and observing that their hypotheses are satisfied.

Let us emphasize once again that we are considering rationality in the design of the

social choice problem, not rationality of the agents that make the collective decision.

In (i) above the latter may well be rational but, still, the social choice problem they

face has no solution because there was no rationality involved in its design (one could

even object to the use of the term “design” in that example, given that the constraints

came from laws of Nature). In (ii) the same agents making the collective decision

3In fact, their individual utilities appear nowhere in the social choice problem.
4The strict converse to the main theorem is not true in general, as shown in Example 12 in Section
4, thus the word “generically”. Its precise meaning will be explained in Section 4; for the moment
it may be understood as “for almost every social choice problem that is rationally designed”.
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could participate, to some extent, in the design of the social choice problem and

therefore avoid running into a social choice paradox. This is probably the situation

where the principle of rational design more clearly reproduces results that are familiar

in economics, as just seen. Still, yet another situation can arise: that in which the

problem can be designed but not by the agents making the decision themselves.

In that case we may be led to conclusions that cannot be interpreted in such a

straightforward way. As an illustration, consider the following:

(iii) Revisit example (i) above, but now suppose that the productive process is such

that the agents can, by combining the production factors in different proportions,

vary the level of pollution generated by the firm. Assume that the latter is fixed by

the government, thereby adding a further constraint to those already in (i). By the

principle of rational design, unless the allowed level of pollution is the minimum or

the maximum allowed by the technological constraints, the agents running the firm

will again face a social choice paradox.

Now there is no economic reason5 to explain why the pollution level should be

minimized or maximized (subject to the technological constraints) but, still, this is

a necessary condition to allow for a socially acceptable aggregation rule. Thus we

see that there is a variety of situations where the principle of rational design can be

applied, sometimes leading to familiar conclusions and sometimes not.

Finally, it might be interesting to remark that the fact that no economics was in-

volved in our reasoning actually leaves a subtle trace: in (ii) we concluded that the

utility u had to be the global maximum or the global minimum allowed by the con-

straint on the demand, but we could not discriminate between the two. Mathematics

took us that far, but no more. This owes to the fact that, mathematically, both types

of extrema are on the same footing and there is no reason to discard one in favour

of the other. It is only economics that tells us that (in this case) the maximum is

desirable while the minimum is not. Something similar happens in (iii), where again

5At least within the variables and constraints contemplated in the social choice problem.
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the choice between the maximum or the minimum should be guided by considerations

which lie beyond mathematics.

Having seen how the results in this paper can be used both as practical criteria

to analyze specific examples and also as tools for more theoretical investigations, we

finish this Introduction with a brief account of how the paper is organized. In Section

1 we formally describe the model of social choice and the main theorem introduced

above. We also state an auxiliary result (Proposition 2) which provides a useful

criterion by itself. Since the proof of the main theorem is somewhat involved, we

have thought it convenient to introduce first an outline of the main ideas that come

into play (we do this in Section 2) and then start with the proof proper (Section 3).

Some technical lemmas are postponed to appendices A and B. Up to Section 2 we

will be able to introduce the necessary mathematical background along the way, but

later on some notions from algebraic topology (homology theory and some duality

results) and differential geometry will be needed. Suitable references will be included

where appropriate.

1. Statement of results

In this section we review very briefly the basic elements of the social choice model

of Chichilnisky and give the formal statements of our results.

1.1. Basic definitions of the social choice model. Let k ≥ 2 be the number of

agents performing the collective choice over the set of alternatives X. As argued in

the Introduction, for us the preference of the ith agent will simply consist of a single

element pi ∈ X (the favourite alternative of the agent) and an aggregation rule will

therefore be a mapping F (p1, p2, . . . , pk) = p, where p ∈ X is the collective choice.

Notice that the agents have absolute freedom in choosing their preferred alternative,

so F should be defined for any tuple (p1, p2, . . . , pk) ∈ X× (k). . . ×X; that is, it should

be a mapping F : X× (k). . . ×X −→ X. Also, in order for the aggregation rule F to be

socially acceptable it is required to satisfy the axioms of anonimity, unanimity and

continuity which, formally, read as follows:
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• Anonimity: F (p1, p2, . . . , pk) should be independent of the ordering of the pi.

• Unanimity: F (p, p, . . . , p) = p for every p ∈ X.

• Continuity: F is a continuous mapping (notice that it makes sense to speak

of continuity since X is a subset of some R
n).

An aggregation rule F that satisfies the above three axioms is called a social choice

function over the given set of alternatives X. With this terminology, the social choice

problem is stated as follows: given a set of alternatives X, is it possible to find a

social choice function over X?

When X is simple enough the existence of social choice functions can sometimes be

easily established directly. For example, when X is an interval of the real line then

the mean, the maximum and the minimum

F (p1, . . . , pk) :=
1

k

k
∑

i=1

pi , F (p1, . . . , pk) = max
1≤i≤k

pi , F (p1, . . . , pk) = min
1≤i≤k

pi

are all well defined social choice functions. The mean is, more generally, a social

choice function over any convex set X ⊆ R
n, but it can no longer be assured to be

a suitable social choice function over sets X defined by equality constraints, which

are the ones of interest to us. The reason is that, as soon as some of the constraints

defining X are nonlinear6, the mean of two elements from X does not need to belong

to X. As another example, most auction methods (first price, second price, etc.) also

satisfy the above axioms.

Recall that we speak of a social choice paradox whenever X does not admit a social

choice function. The classical example of such a set of alternatives X is the circum-

ference, a result obtained by Chichilnisky [5] when considering linear preferences on

the commodity space of bundles of two collective goods (the paper by Baigent [3]

contains a clear exposition of the main ideas and techniques involved in the proof).

Together with higher dimensional spheres and the Möbius band [4], these seem to be

6In passing, let us observe that if all the constraints defining X are linear then X is a convex subset
of Rn and therefore the social choice problem over X has a solution; namely, the mean. This does
not contradict our results because neither X nor any of the sets Y obtained by removing any one of
the constraints are bounded, being linear subspaces of Rn.
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the only examples ever considered in the literature. The methods presented in this

paper, because of their simplicity, greatly enlarge the variety of examples of social

choice paradoxes.

1.2. Our results. As mentioned earlier, we are interested in the social choice prob-

lem over sets of alternatives X ⊆ R
n that are defined by a collection of equality

constraints. Thus, let there be a collection of smooth maps g1, . . . , gm : Rn −→ R

and values c1, . . . , cm ∈ R which determine the set of alternatives X as

X = {x⃗ ∈ R
n : gi(x⃗) = ci for every 1 ≤ i ≤ m}.

The constraints can be completely arbitrary (in particular, they do not need to be

linear) but we shall always assume that the set of alternatives X they determine is

bounded, which is a reasonable requisite in most problems that try to capture some

aspect of reality. Of course, for the social choice problem to make sense X should

be nonempty. Also, if X is finite then the problem has a somewhat trivial answer in

the affirmative (see Section 4), so the case of interest is when X is actually infinite.

A convenient way of encapsulating these considerations consists in requiring that the

number of constraints m is strictly smaller than the dimension of the ambient space

n; that is, m < n.

We will first consider an auxiliary base case (which, however, has some interest

in itself) assuming that the gi satisfy the standard constraint qualifications ; that is,

the gradients of the gi are linearly independent at each x⃗ ∈ X. In this case we will

definitely run into a social choice paradox:

Proposition 2. Let the set of alternatives X be bounded, m < n, and assume that

the gi satisfy the constraint qualifications. Then the social choice problem over X has

no solution.

The classical case when X is a sphere can be analyzed very easily using Proposition

2. An (n− 1)–dimensional sphere is described by a single (m = 1) implicit equation
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x2
1 + . . .+ x2

n = 1 in R
n which evidently satisfies the constraint qualifications. Hence

the social choice problem over spheres has no solution for n ≥ 2.

Now we move on to the precise statement of our main theorem. Observe that

Proposition 2 entails that, in order to have any hope of solving the social choice

problem over X, it is necessary that the gi do not satisfy the constraint qualifications.

The simplest case is whenm−1 of the constraints (say, for definiteness, the firstm−1)

do satisfy them and it is only the addition of the remaining constraint what spoils

this condition. Thus, we shall assume that the gradients of g1, . . . , gm−1 are linearly

independent at each point of the feasible set they determine

Y = Ym = {x⃗ ∈ R
n : g1(x⃗) = c1, . . . , gm−1(x⃗) = cm−1}.

Having chosen the last constraint as the one on which we are going to focus, in the

sequel we shall safely omit the subindex from Ym and simply write Y without risk of

confusion. Then our main theorem reads as follows:

Theorem 3. Let the set Y be bounded and connected, m < n, and assume that

the first m − 1 constraints satisfy the constraint qualifications.7 If the social choice

problem over X has a solution then the last constraint must be optimal with respect

to the remaining ones.

The connectedness assumption on Y means that it consists only of a single “piece”

and is included just for convenience: if Y is not connected, that is, if it consists of

several disjoint pieces, then the conclusion of the theorem is that cm must be the

global optimum value of gm restricted to one of those pieces.

The optimality condition provided by Theorem 3 is necessary, but in general not

sufficient, to avoid a social choice paradox (see Example 12 in Section 4). However,

there is a second order condition which once again only involves notions familiar from

optimization theory and turns out to be enough to guarantee that the optimality

7Also, as a technical hypothesis, it is necessary to assume that gm|Y has only finitely many critical
values. We shall explain this in detail later on.
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condition is indeed sufficient. Construct the Lagrangian function

L(λ1, . . . , λm−1, x⃗) = gm(x⃗)−
m−1
∑

i=1

λi (gi(x⃗)− ci) ,

which corresponds to the optimization problem of finding the critical points of gm

subject to the first m − 1 constraints. The Hessian matrix of L with respect to all

its variables (the λi and the xi) is called the bordered Hessian of the optimization

problem. Then:

Theorem 4. Let the set Y be bounded and connected, m < n, and assume that

the first m − 1 constraints satisfy the constraint qualifications. Suppose that the last

constraint is indeed optimal with respect to the others. In addition, assume that the

bordered Hessian has a nonzero determinant at each point in X. Then the social

choice problem over X has a solution.

Applying this theorem may be difficult in practice, but in fact its interest is mainly

theoretical. This stems from the fact that the condition concerning the nonzero

determinant of the bordered Hessian is satisfied generically, in a sense to be explained

later on in Section 4. Thus we can state the following result:

Theorem 5. Let the set Y be bounded and connected, m < n, and assume that

the first m − 1 constraints satisfy the constraint qualifications. Then a necessary

and, generically, sufficient condition for the social choice problem over X to have a

solution is that the last constraint be optimal with respect to the remaining ones.

2. A rough outline of the proof of Theorem 3

The proof of Theorem 3 is somewhat complicated and we have thought it convenient

to include an outline of the basic ideas and difficulties that it involves.

Since the spaces of alternatives X of interest to us go beyond the simple cases

of convex sets or spheres, there is no straightforward way of deciding whether there

exists a social choice function over and we need to resort to the beautiful result
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of Chichilnisky and Heal already mentioned in the Introduction, and whose precise

statement is the following [7, Theorem 1, p. 82]:

Theorem. Let the space of alternatives X be a parafinite CW complex. A necessary

and sufficient condition for the existence of social choice functions on X, for every

number of agents, is that each component of X is contractible.

In addition to the difficulty of deciding whether a given space is contractible or not,

another issue that arises in applying the theorem of Chichilnisky and Heal concerns

the condition that X should be a parafinite CW complex. Without entering into

the details, this technical condition means that X is sufficiently well behaved from a

topological point of view. For instance, any manifold M (with or without boundary)

is indeed a parafinite CW complex because it can be triangulated, as shown by White-

head [23] or Whitney [24, Theorem 12A, p. 124]. Unfortunately, a set X defined by a

collection of constraints that do not satisfy the constraint qualifications (as in Theo-

rem 3) may have a very complicated structure and in particular the characterization

of Chichilnisky and Heal may not be applicable. To circumvent this difficulty we will

introduce the concept of homotopy social choice functions in Section 3.

We shall need the following two lemmas concerning the contractibility of manifolds:

Lemma 6. Let M be a compact manifold of dimension d ≥ 1 and without boundary.

Then none of the components of M is contractible.

Lemma 7. Let M be a compact contractible manifold of dimension d ≥ 2. Then its

boundary ∂M is nonempty (by the previous lemma) and connected.

In proving these results it seems unavoidable to make use of homology with real

coefficients, which is a powerful tool from algebraic topology. Since this machinery

might not be familiar to the reader, we have postponed the proofs to Appendix A.

Let us continue by explaining briefly the general scheme that will be followed to

prove Theorem 3. We will consider the whole family of social choice problems that

arise as cm runs in the real numbers, thus changing the set of alternatives X. To
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emphasize that cm now plays the role of a parameter we shall replace it by u and

reflect this explicitly in the notation for X, letting

Xu = {x⃗ ∈ R
n : gi(x⃗) = ci for 1 ≤ i ≤ m− 1 and gm(x⃗) = u}.

This can be equivalently described as

Xu = {x⃗ ∈ Y : gm(x⃗) = u},

where Y is the set defined by the first (m− 1) constraints as introduced earlier.

Recall that a point x⃗ ∈ Y is called a critical point of the restricted map gm|Y if

the gradient ∇gm(x⃗) is a linear combination of {∇g1(x⃗), . . . ,∇gm−1(x⃗)}; that is, the

gradient of gm is a linear combination of the gradients of the constraints that define

Y (notice that this is the classical necessary condition from the theory of Lagrange

multipliers for gm|Y to reach a local extremum value at x⃗). In that case u = gm(x⃗)

is said to be a critical value of gm|Y . Equivalently, u is a critical value of gm|Y if Xu

contains a critical point of gm|Y . Otherwise u is said to be a regular value of gm|Y .

(1) Consider first the case when u is a regular value of gm|Y . This amounts to saying

that the gradients of g1, . . . , gm are all linearly independent at each x⃗ ∈ Xu; that is,

they satisfy the constraint qualifications. This is precisely the situation considered

in Proposition 2. Geometrically, this condition guarantees that (if nonempty) Xu is

a differentiable manifold of dimension d = n−m without boundary (see for instance

[8, Theorem 2.3, p. 213]) and in particular it is indeed a parafinite CW complex as

mentioned earlier. Thus we can directly apply the theorem of Chichilnisky and Heal

and reduce the problem to deciding whether the components ofXu are contractible. In

Proposition 2 we assumedXu to be bounded and infinite. The first condition, together

with the fact that Xu is closed in R
n (because it is the preimage of (c1, c2, . . . , u) via

the continuous map g = (g1, . . . , gm) : R
n −→ R

m), entails that Xu is compact. The

second condition implies that the dimension d of Xu is at least 1, since otherwise

Xu would consist only of finitely many points. Therefore we can apply Lemma 6 to

M = Xu to learn that none of the components of Xu is contractible, and we conclude
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that the social choice problem over Xu has no solution. This proves Proposition 2,

settling the case when u is a regular value of gm|Y .

It follows from the previous paragraph that only when u is a critical value of gm|Y

there is some hope for the social choice problem over Xu to have a solution. Saying

that u is a critical value of gm|Y means that there exists a critical point x⃗ ∈ Xu, which

by definition satisfies the classical necessary condition from the theory of Lagrange

multipliers for gm|Y to reach a local extremum value at x⃗. However, it is well known

that this is not a sufficient condition, in that x⃗ could very well be a saddle point (so

that u would be neither a local maximum value nor a local minimum value) or, even

if it is indeed a local extremum, it does not need to be a global one. This is why

Theorem 3 is not a straightforward consequence of Proposition 2: we have to rule

out all the possibilities just described and conclude that u must in fact be a global

optimum of gm|Y .

To illustrate this let us refer back to Example 1. The method of Lagrange mul-

tipliers shows that there are actually six critical points and three critical values of

g2|Y , which are u = ±2 (the global optima of g2|Y ) and u = 0. For these three values

of u Proposition 2 tells us nothing about the social choice problem on Xu, since the

constraints do not satisfy the constraint qualifications. A finer analysis is needed to

show that also for u = 0 the social choice problem over Xu has no solution. This finer

analysis is precisely the content of Theorem 3.

(2) Let us sketch now how the proof of Theorem 3 goes. We need to prove that,

if there exists a social choice function over Xu, then u is either the global maximum

umax or the global minimum umin of gm|Y (these global optima exist as consequence of

the assumption that Y is bounded, and hence compact). We already know by (1) that

u must be a critical value of gm|Y and, in particular, this implies that now we cannot

guarantee that Xu is a manifold (nor a CW complex, in fact) and therefore we cannot

apply the theorem of Chichilnisky and Heal directly. To overcome this difficulty we

need to make a rather lengthy detour. The argument will be by contradiction, so

suppose that there exists a social choice function over Xu but umin < u < umax. Pick
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two numbers u1 and u2 such that umin < u1 < u < u2 < umax and consider the

auxiliary set

X[u1,u2] = {x⃗ ∈ Y : u1 ≤ gm(x⃗) ≤ u2}.

With a suitable choice of u1 and u2 the set X[u1,u2] can be shown to be a compact

manifold with boundary. In fact, its boundary ∂X[u1,u2] is the union of the two disjoint

sets

Xu1
= {x⃗ ∈ Y : gm(x⃗) = u1} and Xu2

= {x⃗ ∈ Y : gm(x⃗) = u2}.

We will prove that:

(i) The social choice function that exists over Xu by assumption can “almost” be

extended to another one defined on all X[u1,u2] (Proposition 9).

(ii) As a consequence of (i) and the theorem of Chichilnisky and Heal applied to

the manifold X[u1,u2], it follows that the latter must be contractible (Lemma

8).

(iii) But, since umin < u1 < u < u2 < umax, both sets Xu1
and Xu2

are nonempty

and therefore the boundary of X[u1,u2] is not connected, having at least two

pieces. This entails that X[u1,u2] cannot be contractible (Lemma 7).

A contradiction arises between (ii) and (iii), proving that the assumption that

umin < u < umax is untenable and so u must be a global optimum value of gm|Y .

The word “almost” in (i) owes to the following: while it may not always be possible

to extend a social choice function originally defined only on Xu to a social choice

function defined on the larger set X[u1,u2], it is always possible to extend it at the ho-

motopy level. This is what prompts the definition of homotopy social choice function

mentioned earlier, a notion which is slightly weaker than that of a true social choice

function, but still good enough for our purposes.



18 JUAN A. CRESPO AND J. J. SÁNCHEZ-GABITES

3. Proof of Theorem 3

As a technical assumption we require that gm|Y has at most finitely many critical

values8, a condition that will be fulfilled in any problem with a reasonable economical

interpretation. For instance, whenever gm is an analytic function (polynomials being

the simplest case) this condition is automatically satisfied.

Note. For the sake of brevity, from now on we shall sometimes abbreviate “social

choice function” as SCF.

3.1. Homotopy social choice functions. Let us first recast the conditions of una-

nimity and anonimity in a slightly different –but well known– equivalent way. Suppose

F is an SCF for k agents on a space of alternatives X. Denote by the letter ∆ the

diagonal map

∆ : X −→ Xk ; ∆(p) = (p, p, . . . , p)

and by the letter P any permutation map P : Xk −→ Xk. The conditions of una-

nimity (U) and anonimity (A) on F can then be equivalently stated as

(U) F ◦∆ = id,

(A) F ◦ P = F .

As it turns out, the argument given by Chichilnisky and Heal to prove that the ex-

istence of social choice functions for any number of agents implies that the preference

space is contractible works equally well if (U) and (A) only hold at the homotopy

level; that is, if they are replaced by

(HU) F ◦∆ ≃ id,

(HA) F ◦ P ≃ F for any permutation P : Xk −→ Xk.

The reason is that, when one considers the maps F ∗, ∆∗ and P ∗ induced by F ,

∆ and P between homotopy groups, unanimity (U) and its homotopical counterpart

(HU) yield the same relation F ∗ ◦ ∆∗ = id, and the same goes for (A) and (HA)

8It might be convenient to recall the distinction between critical points and critical values: since
many critical points may correspond to the same critical value, gm|Y may well have infinitely many
critical points in spite of having only finitely many critical values as required.
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(namely, F ∗ ◦ P ∗ = F ∗). Since it is only these relations that are needed to conclude

that X is contractible, our assertion follows.

For the sake of brevity let us call a continuous map F : Xk −→ X a homotopy SCF

(for k agents) if it satisfies conditions (HU) and (HA) above. These functions are not

to be interpreted in any economical sense, but just as mathematical objects that will

be useful to prove Theorem 3. Our discussion may be summed up in the following

Lemma 8. Let M be a compact manifold. Assume there exist homotopy social choice

functions over M for any number of agents. Then M is contractible.

3.2. An extension result. Now we are going to establish the extension result that

is key in proving Theorem 3; namely, that an SCF on Xu can be extended to a

homotopical SCF on X[u1,u2].

Let u be a critical value of gm|Y and suppose that it is not a global optimum,

so that umin < u < umax. As a consequence of the technical assumption that gm|Y

only has finitely many critical values we may choose u1, u2 ∈ [umin, umax] such that

u1 < u < u2 and u is the only critical value of gm|Y on the interval [u1, u2].

Proposition 9. Let u1 and u2 be chosen as above. If there exists a social choice

function F for k agents on Xu, then there exists a homotopy social choice function

F ′ for k agents on X[u1,u2].

The proof of the proposition needs Lemmas 10 and 11, which we state now. Their

proofs are postponed to Appendix B, since they are slightly technical.

Lemma 10. There exist a neighbourhood U of Xu in X[u1,u2] and a continuous func-

tion FU : Uk −→ X[u1,u2] with the properties

(1) FU(p, . . . , p) = p,

(2) FU(p1, . . . , pk) is independent of the ordering of the pi.

Notice that FU is close to being an SCF on U (it is certainly unanimous and

anonymous), but it does not qualify as such because its target space is X[u1,u2] rather

than U .
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Lemma 11. Given any neighbourhood U of Xu in X[u1,u2] there exists a continuous

mapping r : X[u1,u2] −→ X[u1,u2] such that:

(1) r(p) ∈ U for every p ∈ X[u1,u2],

(2) r is homotopic to the identity in X[u1,u2].

We are going to put these two results together to prove Proposition 9.

Proof of Proposition 9. Apply Lemma 10 to find U and FU ; then apply Lemma 11 to

the U just obtained to get r. Define F ′ : Xk
[u1,u2]

−→ X[u1,u2] by

F ′(p1, . . . , pk) := FU(r(p1), . . . , r(pk)).

Notice that the definition is correct: all the r(pi) belong to U and therefore it makes

sense to evaluate FU on the k–tuple (r(p1), . . . , r(pk)).

We claim that F ′ is a homotopy SCF on X[u1,u2]. Clearly F ′ is insensitive to the

ordering of its arguments because the same is true of FU , so (HA) holds. Also,

composing F ′ with the diagonal map ∆(p) = (p, . . . , p) yields

F ′ ◦∆(p) = FU(r(p), . . . , r(p)) = r(p),

and since r ≃ id in X[u1,u2], we see that

F ′ ◦∆ ≃ id.

This establishes property (HU) and shows that F ′ is indeed a homotopy SCF. �

3.3. The proof of Theorem 3. We are finally ready to prove Theorem 3.

Proof of Theorem 3. The hypothesis that Y is connected implies that gm(Y ) is a

connected subset of R, and so it must be an interval. Thus gm(Y ) is the interval

[umin, umax]. As already mentioned we reason by contradiction, so assume that umin <

u < umax and there exists an SCF over Xu. By Proposition 2 u must be a critical

value of gm|Y . As we did before, we may choose u1 and u2 in the interval [umin, umax]

such that u1 < u < u2 and u is the only critical value of gm|Y in the interval [u1, u2].

Notice that X[u1,u2] is a manifold, because both u1 and u2 are regular values of gm|Y .
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Its dimension is the same as that of Y , which is d = n− (m− 1) ≥ 2 because of the

condition m < n. As in the proof of Proposition 2, X[u1,u2] is compact.

By Proposition 9 the SCF that exists over Xu can be extended to a homotopical

SCF on X[u1,u2] and, as a consequence of Lemma 8, it follows that X[u1,u2] is con-

tractible. Then by Lemma 7 its boundary ∂X[u1,u2] has to be connected. However,

this boundary is the disjoint union of Xu1
and Xu2

, both of which are nonempty

because both u1 and u2 belong to gm(Y ). This contradiction finishes the proof. �

4. On the sufficiency of the optimality condition

Let us begin by presenting an example that illustrates how the optimality condition

of Theorem 3 is generally not sufficient to avoid a social choice paradox:

Example 12. Consider the set of alternatives

X = {(x, y, z) ∈ R
3 : (x2 + y2 + z2 + 3)2 − 16(x2 + y2) = 0 , z = 1}.

It turns out that the second constraint is optimal with respect to the first one,

so the necessary condition provided by the main theorem is satisfied.9 Substituting

z = 1 in (x2+y2+z2+3)2−16(x2+y2) = 0 and rearranging terms yields the implicit

equation x2+ y2 = 4, so X is actually a circumference of radius 2 centered at (0, 0, 1)

and contained in the plane z = 1. But circumferences are the prototype of a set of

alternatives that does not admit a social choice function, so we conclude that the

social choice problem over X has no solution. �

In spite of the previous example, it is often the case that when a constraint is

optimal with respect to the others the set of alternatives X actually reduces to a

finite number of points, and in this case there do exist social choice functions over

X. To see why, begin by labelling the alternatives (that is, the elements of X) in

any order. Then, given the bundle of individual preferences (p1, . . . , pk), simply let

F (p1, . . . , pk) be that alternative, among those that appear in (p1, . . . , pk), having

9The set Y2 defined by the second constraint alone is not bounded, so the main theorem does not
require the first constraint to be optimal with respect to the second one.
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the highest label. It is easy to check that F satisfies the three axioms of anonimity,

unanimity and continuity10 and is therefore a social choice function over X. (It

is, however, questionable to what extent such a function is actually of interest in the

realm of social choice.) This very simple observation lies at the heart of both Theorem

4 and Theorem 5.

4.1. The proof of Theorem 4. The strategy consists in showing that, under the

hypotheses of the theorem, X is indeed finite and therefore admits an SCF as just

shown.

Proof of Theorem 4. Consider the constrained optimization problem

(P ) :































optimize gm(x⃗)

subject to g1(x⃗) = c1
...

gm−1(x⃗) = cm−1

Let x⃗0 be a point in X. Since by assumption the constraint gm(x⃗) = cm is optimal

with respect to the remaining ones, x⃗0 is a solution to (P ) and, in particular, it must

satisfy the standard first order conditions of constrained optimization. Although

we know that x⃗0 is a global, and hence local, optimum of gm|Y , let us pretend for a

second that we ignore this and classify x⃗0 using the second order criterion appropriate

to optimization under constraints.

Denote D2
x⃗L the matrix of second partial derivatives of the Lagrangian L with

respect to x⃗ and consider the quadratic form q that results from restricting D2
x⃗L to the

nullspace of the Jacobian matrix of the constraints (g1, . . . , gm−1). Of course, all the

derivatives should be evaluated at the point of interest, x⃗0. Then (see [8, Theorem 8.9,

p. 154]), depending on whether q is indefinite, negative definite, or positive definite,

we conclude that gm|Y has either a saddle point, a strict local maximum, or a strict

10Notice the vacuous role of the continuity axiom, owing to the fact that any function is continuous
on any finite subset of Euclidean space.
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local minimum at x⃗0. If q is only semidefinite, we cannot conclude anything about

the nature of x⃗0.

According to the theory of restricted quadratic forms, q can be classified in terms

of the matrix D2
x⃗L bordered with the Jacobian of the gi, and this matrix is nothing

but the bordered Hessian. The assumption that the latter has a nonzero determinant

implies that q is either indefinite or definite, but not semidefinite [20, Theorem 16.4,

p. 389]. Thus the second order criterion allows us to classify x⃗0 as either a saddle

point or a strict (local) optimum. However, as mentioned in the first paragraph, x⃗0

is certainly not a saddle point because it is a global optimum, so it must be a strict

optimum. The word “strict” is crucial here: it implies that x⃗0 has a neighbourhood

U in Y such that gm|U attains the value cm at x⃗0 and only at x⃗0. Since this is true for

every x⃗0 ∈ X and X is compact, it follows that gm(x⃗) = cm only has finitely many

solutions on Y or, otherwise stated, that X is actually a finite set. �

It is worthwhile to interpret the proof of Theorem 4 in the context of Morse func-

tions, since we will then be able to generalize it to a proof of Theorem 5. This is the

goal of the following two subsections.

4.2. Morse functions. Hidden in the proof of Theorem 4 is the concept of non-

degeneracy of a critical point, whose abstract definition is as follows. Let M be a

compact, boundariless manifold, and let h : M −→ R be a smooth function. A crit-

ical point p ∈ M for h is said to be nondegenerate if the matrix of second partial

derivatives of h at p has a nonzero determinant11. The map h itself is called a Morse

function if all its critical points are nondegenerate.

In the case of Theorem 4 the manifold M is Y , which is a smooth compact sub-

manifold of Rn, and h is the restriction of the globally defined map gm to Y , that

is, h = gm|Y . The matrix of second partial derivatives of h = gm|Y is the matrix of

the restricted quadratic form q (this is not entirely obvious, since q was constructed

11One would express h in local coordinates around p and construct the matrix of second partial
derivatives of this local expression. Whether or not this matrix has a nonzero determinant turns
out to be independent of the coordinates chosen, and this makes the above definition valid. The
interested reader can find more information about this in [17, Chapter 2, pp. 33ff.]
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from the Lagrangian rather than directly from gm, but see equation (3) in [8, p.

290]). With this language, the condition that the bordered Hessian has a nonzero

determinant at each x⃗ ∈ X amounts to requiring that every critical point of gm|Y is

nondegenerate, that is, that gm|Y is a Morse function.

By their very definition, nondegenerate critical points of a map h have the property

that the quadratic term in the Taylor expansion of h around them is either definite

or indefinite, but not semidefinite. In particular, regardless of the nature of the

critical point (whether a saddle or a local optimum), it is isolated in the sense that

it has neighbourhood U that contains no other critical point. As a consequence, a

Morse function on a compact manifold M can only have finitely many critical points

altogether (see for instance [17, Corollary 2.19, p. 47]). This is reminiscent of the

proof of Theorem 4 and, in fact, we may now rephrase the latter as follows:

Theorem 4′. Let the set Y be bounded and connected, m < n, and assume that

the first m − 1 constraints satisfy the constraint qualifications. Suppose that the last

constraint is indeed optimal with respect to the others. In addition, assume that gm|Y

is a Morse function. Then the social choice problem over X has a solution.

Proof. Every point in X is a critical point of gm|Y because of the assumption about

the optimality of the last constraint with respect to the others. Since Morse functions

on compact manifolds have only finitely many critical points, it follows that X is finite

and so the social choice problem over X has a solution. �

Yet another property of Morse functions of interest to us is that they are “generic”

in the set C∞(M,R) of all smooth functions h : M −→ R (together with the above

reformulation of Theorem 4, these will be the main ingredients in the proof of Theorem

5). More precisely, combining [17, Lemma 2.26, p. 52] and [17, Theorem 2.20, p. 47]

one has:

Theorem. For a compact, boundariless, smooth manifold M , the set of Morse

functions is open and dense in C∞(M,R) in the strong C2–topology.
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The strong C2–topology on C∞(M,R) can be most easily described by saying that

two functions h1, h2 ∈ C∞(M,R) are ϵ–close when the functions themselves, together

with their derivatives up to second order, differ by no more than ϵ at each point of M .

We will write ∥h1 − h2∥ < ϵ to denote this.12 Equivalently, a sequence hn converges

to h if and only if the maps hn, together with their partial derivatives up to second

order, converge uniformly to h and its corresponding partial derivatives.

4.3. The proof of Theorem 5. Let us begin by explaining more carefully the state-

ment of the theorem. Consider once more the bounded set Y defined by the firstm−1

constraints alone. These should be thought of as being fixed once and for all, and

we imagine that the last constraint gm(x⃗) = cm is a parameter so that the map gm

and the number cm can vary, yielding a whole family of sets of alternatives Xcm
gm

.

However, since we are only interested in the case when the last constraint is optimal

with respect to the others, for each map gm there are only two possible choices of cm:

either the global maximum cmax
m or the global minimum cmin

m of gm|Y . The content of

Theorem 5 is that for most choices of gm both possibilities lead to a set of alternatives

where the social choice problem has a solution.

Let us formalize this idea. For any smooth map gm : Rn −→ R denote cmax
m =

max gm|Y and cmin
m = min gm|Y (since Y is bounded by assumption, these two

numbers are well defined) and consider the two sets of alternatives

Xmax
gm

= {x⃗ ∈ R
n : g1(x⃗) = c1, . . . , gm−1(x⃗) = cm−1, gm(x⃗) = cmax

m }

and

Xmin
gm

= {x⃗ ∈ R
n : g1(x⃗) = c1, . . . , gm−1(x⃗) = cm−1, gm(x⃗) = cmin

m }.

With this notation, the precise statement of Theorem 5 is the following:

Theorem 5′. Let the set Y be bounded and connected, m < n, and assume that

the first m − 1 constraints satisfy the constraint qualifications. There is a set M ⊆

12Since the derivatives depend on the coordinates chosen to compute them, this definition has to
be set up with some care, but we have no need to go any further into these details. The interested
reader is referred to [17, p. 51].



26 JUAN A. CRESPO AND J. J. SÁNCHEZ-GABITES

C∞(Rn,R) which is open and dense (with the strong C2–topology) and such that, when

gm belongs to this set, the social choice problems over both Xmax
gm

and Xmin
gm

admit a

solution.

Proof. Consider the set

M = {g ∈ C∞(Rn,R) : g|Y is a Morse function}.

According to Theorem 4′, whenever gm belongs to M the social choice problem

over both Xmax
gm

and Xmin
gm

has a solution. Therefore, we only need to show that M

is open and dense in C∞(Rn,R). Since we will work in C∞(Y,R) and in C∞(Rn,R)

simultaneously, we denote their respective distances by ∥ · ∥Y and ∥ · ∥.

(1) Openness. Pick a map g ∈ M; that is, a smooth map g : Rn −→ R such that

g|Y is a Morse function. Since Morse functions form an open subset of C∞(Y,R) as

discussed at the end of the previous section, there exists ϵ > 0 such that any other

smooth map h0 : Y −→ R satisfying ∥g|Y − h0∥Y < ϵ is also a Morse function. Now,

given any smooth h : Rn −→ R such that ∥g−h∥ < ϵ, setting h0 = h|Y one evidently

has ∥g|Y − h0∥Y ≤ ∥g − h∥ < ϵ and so h|Y is also a Morse function, that is, h ∈ M.

Hence M is open in C∞(Rn,R).

(2) Density. We have to show that given any g ∈ C∞(Rn,R) and any ϵ > 0 there

is h ∈ C∞(Rn,R) such that ∥g − h∥ < ϵ and h|Y is a Morse function. Consider the

restriction g|Y . By the density of Morse functions in C∞(Y,R) mentioned earlier there

is a Morse function h0 : Y −→ R such that ∥g − h0∥Y < ϵ. Extend h0 to a smooth

h̃0 : R
n −→ R and find an open neighbourhood U of Y in R

n such that ∥g − h̃0∥ < ϵ

on U . Choose an even smaller neighbourhood V of Y such that V̄ ⊆ U and a smooth

bump function Θ : Rn −→ [0, 1] such that Θ|V ≡ 1 and Θ ≡ 0 outside U . Finally, let

h := Θ · h̃0 + (1−Θ) · g. This is a smooth function defined on R
n that coincides with

h0 on Y ; therefore, h|Y is a Morse function. As for the distance between g and h, we

have:
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(i) on V the equality h = h̃0 holds, so

∥g − h∥V = ∥g − h̃0∥V < ϵ,

(ii) on U − V

∥g − h∥U−V = ∥g −Θ · h̃0 − (1−Θ) · g∥U−V = (sup
U−V

|Θ|) · ∥g − h̃0∥U−V < ϵ,

(iii) outside U the equality Θ ≡ 0 holds, so

∥g − h∥Uc = ∥g − g∥Uc = 0.

Therefore ∥g − h∥ < ϵ on all of Rn, proving that M is dense in C∞(Rn,R). �

5. Appendix A: proofs of Lemmas 6 and 7

In this appendix we establish Lemmas 6 and 7. As mentioned earlier, we need to

use some homology theory. Since this topic is rather elaborate we cannot even recall

here the basic definitions, so we refer the interested reader to the book by Hatcher

[13] and limit ourselves to state the results that we need.

To any space U we may assign a sequence of (real) vector spaces Hj(U ;R) for j =

0, 1, 2, . . . which capture some geometric information about U . These are called the j–

dimensional homology groups of U (even though they are actually vector spaces) with

coefficients in the real numbers. For simplicity we shall just speak of the homology

groups of U and denote them Hj(U), supressing R from the notation.

The following properties hold:

(a) The dimension of H0(U) is the number of path connected components of U .

(b) If U is contractible, then H0(U) = R and Hj(U) = {0} for every j ≥ 1.

(c) Poincaré duality: if U is a compact, boundariless manifold of dimension d,

then Hj(U) = Hd−j(U) for every j.

With these properties, the proof of Lemma 6 reduces to a simple computation:

Proof of Lemma 6. Let U be a connected component ofM . Then U is itself a compact

manifold of dimension d ≥ 1 and without boundary. We have H0(U ;R) = R by (a)
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above, because U is connected. By Poincaré duality Hd(U ;R) = H0(U ;R) = R, and

it follows from (b) that U is not contractible, because it has a homology group of

dimension ≥ 1 (namely, its d–dimensional homology group) which is nonzero. �

The proof of the second lemma requires slightly more sophisticated tools. We

need to use relative homology groups, which are defined not just for a space U but

for a pair (U,U0) formed by a space U and a subset U0 of U . That is, for each

j = 0, 1, 2, . . . there is a real vector space Hj(U,U0) called the j–dimensional relative

homology group of the pair (U,U0) with coefficients in the real numbers. There is a

relation between the relative homology of a pair (U,U0) and the homology groups of

both U and U0, which is expressed by a so-called long exact sequence as follows. For

each dimension j there are linear maps Hj(U0) −→ Hj(U), Hj(U) −→ Hj(U,U0) and

Hj(U,U0) −→ Hj−1(U0) that fit into a sequence

. . . −→ H2(U) −→ H2(U,U0) −→ H1(U0) −→ H1(U) −→ H1(U,U0) −→ 0

(which continues to the left in the same fashion) having the property of being exact :

the image of the map entering any one of the terms of the sequence coincides with

the kernel of the map connecting that term to the one to its right.

In addition to this, we shall also make use of

(d) Lefschetz duality: if M is a compact manifold (with boundary) of dimension

d, then Hj(M,∂M) = Hd−j(M) for every j.

Proof of Lemma 7. By Lefschetz duality H1(M,∂M) = Hd−1(M). The latter homol-

ogy group is zero by (b), because M is contractible and d− 1 ≥ 1, so H1(M,∂M) is

zero too. Also, again by (b) we have that H0(M) = R.

Consider the following portion of the long exact sequence for the pair (M,∂M):

H1(M,∂M)
∆

−→ H0(∂M) −→ H0(M) −→ 0.

Since H1(M,∂M) = {0}, the image of ∆ is zero and, by the exactness of the sequence,

the map connecting H0(∂M) to H0(M) has zero kernel. It is therefore injective. In



SOLVING THE SOCIAL CHOICE PROBLEM UNDER EQUALITY CONSTRAINTS 29

a similar fashion one proves that it is surjective, now analyzing what happens with

the arrow H0(M) to 0. Hence it is an isomorphism, which shows that H0(∂M) =

H0(M) = R. Using (a) we conclude that ∂M is connected. �

6. Appendix B: proofs of Lemmas 10 and 11

In this section, and to unclutter the notation, we shall denote the elements of Xu

and Y with letters p, q, . . . instead of vectors x⃗, y⃗, . . . as before.

6.1. Proof of Lemma 10. It is both notationally and conceptually simpler to prove

a slightly more general result, from which Lemma 10 follows letting M = X[u1,u2] and

Z = Xu:

Lemma 13. Let M be a compact manifold and Z ⊆ M a closed subset of M . Suppose

F : Zk −→ Z is an SCF over Z. Then there exist a neighbourhood U of Z in M and

a continuous map FU : Uk −→ M such that FU is unanimous and anonymous.

Proof. Think of F as a mapping F : Zk −→ M and extend it setting F (p, . . . , p) = p

for every p ∈ M . Now its domain is

D := Zk ∪ {(p, . . . , p) : p ∈ M},

which is a compact subset of Mk. Clearly F is still continuous on this new larger

domain D.

Consider the quotient space obtained from Mk by identifying, via an equivalence

relation ∼, each k–tuple (p1, . . . , pk) with all of its permutations. We shall denote

π : Mk −→ Mk/ ∼ the canonical projection. The set D projects onto a compact

subset π(D) of Mk/ ∼. In turn the map F , due to its invariance under permutation

of its arguments, descends to a continuous map

F̄ : π(D) −→ M.

Now we make use of the following extension result: every continuous map from a

closed subset of a metric space into a manifold M can be extended to a continuous
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map defined on a neighbourhood W of the subset (see for instance [15, Proposition

8.3, p. 47]). Applying this result to the closed subset π(D) of the metric space

Mk/ ∼ and the map F̄ we see that the latter can be extended continuously to a

neighbourhood W of π(D) in Mk/ ∼. For notational ease the extension will still be

denoted F̄ .

The set π−1(W ) is a neighbourhood of D in Mk, so in particular it is a neighbour-

hood of Zk. It is easy to see that there exists a neighbourhood U of Z in M such

that Uk ⊆ π−1(W ). Then the map

FU : Uk −→ M ; FU(p1, . . . , pk) = (F̄ ◦ π)(p1, . . . , pk)

provides the desired extension: it is clearly continuous and unanimous, and it is also

anonymous because any two permutations of a k–tuple (p1, . . . , pk) are projected by

π onto the same element of Mk/ ∼. �

6.2. Proof of Lemma 11. The construction of the map r is rather indirect: we shall

define a tangent vectorfield on Y , consider the flow φ that it generates and then use

φ to define r. This approach is closely related to Morse theory, and a quick glance

at the book by Milnor [18, pp. 12 and 13] may be useful. Some acquaintance with

differential geometry is required to follow the argument.

Recall that Y ⊆ R
n is a differentiable manifold defined by the constraints gi(p) = ci

for i = 1, 2, . . . ,m − 1. At any point p ∈ Y their gradients are all orthogonal to Y

or, otherwise stated, the tangent space to Y at p is the subspace of Rn orthogonal to

all the {∇gi(p) : 1 ≤ i ≤ m − 1}. Denote V (p) the projection of ∇gm(p) onto that

tangent space, thus obtaining a tangent vectorfield p 7→ V (p) on Y . This vectorfield

V (p) can be given a very rough but rather helpful intuitive interpretation: inasmuch

as ∇gm(p) tells us the direction along which f increases most quickly, its projection

V (p) tells us in what direction we should advance to obtain the quickest increase of

gm while remaining in Y .

Assertion 1. V (p) is zero precisely when p is a critical point of gm|Y .
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Proof. Notice that V (p) is zero precisely when ∇gm(p) is orthogonal to Y at p; that

is to say, precisely when ∇gm(p) is a linear combination of the gradients {∇gi(p) :

1 ≤ i ≤ m− 1} or, equivalently, when p is a critical point of gm|X . �

Assertion 2. The scalar product ∇gm(p) · V (p) is always nonnegative and it is

actually positive when p is not a critical point of gm|Y .

Proof. Observe that by construction the angle between ∇gm(p) and V (p) is at most

ninety degrees, so the scalar product ∇gm(p) · V (p) is always nonnegative. Together

with Assertion 1, this proves the result. �

Using V (p) we define a new tangent vectorfield W : p 7→ (u − gm(p))V (p). Let

φ : Y ×R −→ Y be the flow generated on Y by the vectorfield W . Notice that, since

Y is compact, φ is globally defined.

At this point it may be helpful to have a look at Figure 1. Panel (a) shows a very

simple set of alternatives Y in R
3 defined by a single restriction, so Y is a surface.

The remaining constraint gm in this case is taken to be gm(x, y, z) = z. The Z axis

is represented vertically, so the level set Xu is simply the intersection of Y with the

horizontal plane at height u. The gradient of gm|X is the vertical vector (0, 0, 1),

which is perpendicular to Y precisely at the two points p and q (and possibly others

not shown in the picture); these are, then, critical points13. Since p belongs to Xu, we

see that u is not a regular a value of gm|Y and we cannot expect Xu to be manifold.

And indeed, as shown in the drawing, Xu is an “eight-figure” (two circumferences

having a single point in common) so it is not a manifold. By contrast, u1 and u2 are

regular values of gm|X since Xu1
and Xu2

do not contain critical points, and they are

both manifolds.

Let us focus our attention on the set X[u1,u2], which is the whole region of Y

comprised between heights u1 and u2. It is also a manifold, this time with boundary.

Panel (b) shows X[u1,u2] together with an sketch of W (p) and φ. We mentioned earlier

13Notice that q is a local minimum but p is neither a local maximum nor a local minimum (it is a
saddle point). This is related to the fact that being a critical point is a necessary but not sufficient
condition for being a local optimum, as already highlighted in Section 2.
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that V (p) points, at each p ∈ X, in the direction that we should follow, moving within

Y , to obtain the quickest increase of gm. Given that gm(x, y, z) = z, in our case V (p)

points in the direction of quickest ascent along Y from p. The vector field W (p) is

obtained multiplying V (p) by the modulating factor u−gm(p), which is zero precisely

on Xu, negative above Xu and positive below Xu. Taking into account these signs,

W (p) is zero on Xu, points in the direction of quickest descent if p is above Xu, and

points in the direction of quickest ascent if p is belowXu. The small arrows to the right

of panel (b) in Figure 1 are intended to convey this idea. If we follow the directions

of these arrows, starting at any point p, it seems clear that we will move towards

Xu advancing ever more slowly, since W (p) (which is our speed) becomes smaller the

closer we get to Xu. Unless p ∈ Xu, in which case we would actually stay still since

W (p) = 0, we would approach Xu asymptotically but never get there. In any case,

there will be a finite time tp at which we will enter any prescribed neighbourhood U

of Xu and never leave it again. The map r that we are looking for will essentially be

defined as r(p) = the point we reach at time tp. In our trip from p to r(p) we might

follow a simple path like the ones shown to the left side of the drawing or, possibly,

a much more complicated one which approaches Xu spiralling around it or in some

other strange fashion.

Let us go back to mathematics again. The following proposition collects some

properties of φ that are the formal counterparts of the ideas just described:

Proposition 14. The flow φ has the following properties:

(1) For every q ∈ X[u1,u2] and every t ≥ 0, the point φ(q, t) belongs to X[u1,u2] too.

(2) For every neighbourhood U of Xu in X[u1,u2] there exists T > 0 such that

φ(q, t) ∈ U for every q ∈ X[u1,u2] and every t ≥ T .

In the parlance of dynamical systems, (1) means that X[u1,u2] is positively invariant

under φ and (2) states that Xu is a stable attractor in X[u1,u2]. As a preparation to

prove the proposition we are going to investigate some qualitative properties of the

trajectories of φ.
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Y

p

q

u1

u

u2

Xu

(a) Setup for Lemma 11

X[u1,u2]

(b) The vector field W and the flow ϕ

Figure 1.

Fix a point q ∈ X[u1,u2] and let γ be the trajectory of φ with initial condition

γ(0) = q (in terms of the flow, γ(t) = φ(q, t)). More explicitly, γ : R −→ Y is a

smooth curve in Y which satisfies γ(0) = q and

dγ

dt
(t) = W (γ(t))

for every t ∈ R (that is, γ is an integral curve of the vectorfield W ). We are interested

in the behaviour of γ(t) for t ≥ 0, and for definiteness we consider the case u < f(q) ≤

u2.

Assertion 3. The inequality u < gm(γ(t)) holds for every t ∈ R.

Proof. Each point of Xu is a zero of W and therefore a fixed point of the flow φ. Since

the trajectory γ goes through the point q, which does not belong to Xu, it follows

that γ(t) ̸∈ Xu for every t ∈ R. Consider the map t 7→ (gm ◦ γ)(t). By what we have

just seen, it never attains the value u, so (as it continuous) it must be the case that
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gm(γ(t)) is either always > u or < u. Since we have taken gm(q) > u, it follows that

gm(γ(t)) ̸= u for every t ∈ R. �

Assertion 4. The inequality gm(γ(t)) ≤ u2 holds for every t ≥ 0.

Proof. Using the chain rule we compute the time derivative of the map t 7→ (gm◦γ)(t)

as follows:

d

dt
(gm ◦ γ)(t) = ∇gm(γ(t)) ·

dγ

dt
(t) = ∇gm(γ(t)) ·W (γ(t)),

and since by definition W (p) = (u − gm(p))V (p), we have ∇gm(p) · W (p) = (u −

gm(p))∇gm(p) · V (p), so

(2)
d

dt
(gm ◦ γ)(t) = (u− gm(γ(t)))∇gm(γ(t)) · V (γ(t)).

The right hand side is the product of two factors. The first is u−fm(γ(t)), which is

strictly negative by the previous assertion, and the second is ∇gm(γ(t)) · V (γ(t)) ≥ 0

which is nonnegative by Assertion 2. Thus the derivative of t 7→ (gm ◦ γ)(t) is

nonpositive, and so the map is nonincreasing. In particular, since at t = 0 we have

(gm ◦ γ)(t) = gm(q) ≤ u2, this same inequality holds for all t ≥ 0. �

Assertion 5. For any p ∈ X[u1,u2] such that u < gm(p) ≤ u2 the inequality

(u− gm(p))∇f(p) · V (p) < 0

holds true.

Proof. Since u − gm(p) < 0, we only need to prove that ∇gm(p) · V (p) > 0. By

Assertion 2, this scalar product is always nonnegative and it is zero precisely when p

is a critical point of gm|X . Now, the choice of u1 and u2 guarantees that the critical

points that gm|Y may have in the set X[u1,u2] are all contained in Xu. Since p ̸∈ Xu,

the assertion follows. �

Assertion 6. gm(γ(t)) → u as t → +∞.
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Proof. Notice that t 7→ (gm ◦ γ)(t) must indeed converge to some u∗ as t → +∞

because according to the computation in Assertion 4 it is a monotonous nonincreasing

function bounded below by u. Let us assume that u∗ is strictly larger than u and

arrive at a contradiction.

Set D(p) = (u− gm(p))∇gm(p) · V (p) for brevity. Let Xu∗
= {p ∈ Y : gm(p) = u∗}.

This set is closed in Y , so it is compact. Also, the previous assertion says that

D(p) < 0 for every q ∈ Xu∗
. Since Xu∗

is compact and D is continuous, there is

an ϵ < 0 such that D(p) < ϵ for every p ∈ Xu∗
. In fact, more is true: there is a

neighbourhood U of Xu∗
in X[u1,u2] where the same inequality holds; that is, D(p) < ϵ

for every p ∈ U .

We are almost finished. Since gm(γ(t)) → u∗ as t → +∞, there exists T > 0 such

that γ(t) ∈ U for every t > T . By the mean value theorem, for any t there exists ξt

between t and t+ 1 such that

(3) gm(γ(t+ 1))− gm(γ(t)) =
d

dt
(gm ◦ γ)(ξt) = D(γ(ξt)),

where in the last equality we have used equation (2). Let us consider what happens

in the above expression when t → +∞. Since ξt lies between t and t + 1, as soon as

t > T we also have ξt > T and therefore γ(ξt) ∈ U , which entails D(γ(ξt)) < ϵ. Thus

the right hand side of (3) is bounded away from 0 (recall that ϵ < 0). However, its

left hand side converges to 0 as t → +∞ because both summands converge to u∗.

This contradiction finishes the proof. �

Proof of Proposition 14. (1) We have seen that for an initial condition q = γ(0) satis-

fying u < gm(q) ≤ u2, the trajectory γ(t) remains in the set {p ∈ Y : u < gm(p) ≤ u2}

for every t ≥ 0. Evidently, if the initial condition q satisfies u1 ≤ gm(q) < u, similar

arguments show that γ(t) remains in the set {p ∈ Y : u1 ≤ gm(p) < u} for all t ≥ 0.

The remaining case, gm(q) = u, is very simple: q is then a zero of the vectorfield W

and so γ(t) = q for every t ∈ R. Summing up, for an initial condition q ∈ X[u1,u2]
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the trajectory γ remains in the set X[u1,u2]. Part (1) of the proposition is just a re-

statement of this, since in terms of the flow the trajectory γ with initial condition

q = γ(0) is simply γ(t) = φ(q, t).

(2) Find u′
1 and u′

2 such that u1 < u′
1 < u < u′

2 < u2 and X[u′

1
,u′

2
] ⊆ U . In

accordance with the notation we have been using so far, denote

X(u′

1
,u′

2
) = {p ∈ Y : u′

1 < gm(p) < u′
2},

which is an open subset of X[u1,u2] by continuity of gm. In fact it is a neighbourhood

of Xu in X[u1,u2], so by Assertion 6 for each q ∈ X[u1,u2] there exists tq ≥ 0 such

that φ(q, tq) ∈ X(u′

1
,u′

2
). Now the continuity of φ guarantees that q has an open

neighbourhood Uq in X[u1,u2] such that φ(Uq × {tq}) ⊆ X(u′

1
,u′

2
). In particular φ(Uq ×

{tq}) ⊆ X[u′

1
,u′

2
], and by part (1) of this proposition (applied to X[u′

1
,u′

2
] rather than

X[u1,u2]) we see that φ(Uq×{t}) ⊆ X[u′

1
,u′

2
] for every t ≥ tq. The Uq cover the compact

set X[u1,u2], so a finite family of them cover it too, say Uq1 , Uq2 , . . . , Uqr . Let T be the

maximum of tq1 , tq2 , . . . , tqr . Then whenever t ≥ T we have that φ(q, t) ∈ X[u′

1
,u′

2
] for

every t ∈ X[u1,u2], proving the proposition. �

We are finally ready to prove Lemma 11. For the convenience of the reader, we

restate it here:

Lemma. Given any neighbourhood U of Xu in X[u1,u2] there exists a continuous map-

ping r : X[u1,u2] −→ X[u1,u2] such that:

(1) r(p) ∈ U for every p ∈ X[u1,u2],

(2) r is homotopic to the identity in X[u1,u2].

Proof. According to Proposition 14 there exists T ≥ 0 such that φ(p, t) ∈ U for every

p ∈ X[u1,u2] and every t ≥ T . Let r be defined by r(p) := φ(p, T ). By construction

r(p) ∈ U , so indeed satisfies condition (1). Also, r is homotopic to the identity:

the flow φ(p, t), for 0 ≤ t ≤ T , provides a suitable homotopy. Thus the lemma is

proved. �
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7. Concluding remarks

Many of the sets of interest in economics are naturally described as subsets of Eu-

clidean space defined by a number of constraints. Solving the social choice problem

over such a set X can be very hard even with the aid of the classical characteriza-

tion of Chichilnisky and Heal (i.e., that X should be contractible) because: (i) the

contractibility condition is probably unfamiliar to someone without a specific mathe-

matical background in topology, (ii) deciding whether a given set X is contractible is

in general very difficult, and even more so because describingX in terms of constraints

makes it difficult to gain any geometric intuition about it.

Motivated by this, we have provided several criteria that are easy to check and solve

the social choice problem over sets X defined in terms of constraints. Besides their

practical use, these criteria also have two interesting theoretical consequences. The

first one is that, generically, the social choice problem over a set X defined by equality

constraints gi(x⃗) = ci has no solution. Thus, if the constraints gi come from some

natural or random process (in a nontechnical sense of the word), with probability one

the social choice problem over X will have no solution. In fact (and this is the second

consequence), the ci have to be very finely tuned indeed if we want a social choice

function over X to exist: namely, one of the ci has to be either the global maximum

or the global minimum of its constraint gi over the set of alternatives defined by the

remaining constraints gj = cj, j ̸= i. Thus, if one of the constraint values is not

fixed but can be operated upon by some agent, it must be carefully chosen to be a

global optimum. We call this the principle of rational design. In this sense, the only

way to avoid a social choice paradox consists in designing the set of alternatives (if

possible) in a way that is natural in economics. An interesting point to observe here is

that the need for optimization emerges unexpectedly and not as a consequence of any

assumption concerning rationality, utility functions, or any other element related to

economics, of which there are none in the social choice problem under consideration.
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