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Abstract 

This paper attempts to codify a standard nomenclature for similarity measures based on recent 

literature and to advance the field of similarity measures through the introduction of non-binary 

similarity between more than two attribute vectors.  

JEL Classifications: C12, C14, C53, C65  

Keywords: Binary Similarity, Nonbinary Similarity, Nonparametric Similarity Testing, 

Multivector Similarity 
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A Standardized Treatment of Binary Similarity Measures with an Introduction to k-Vector 

Percentage Normalized Similarity 

 Numerous papers have been written detailing methods to measure the similarity of two or 

more vectors (series) of binary attributes. This paper attempts to codify a standard nomenclature 

for similarity measures based on recent literature and to advance the field of similarity measures 

through the introduction of non-binary similarity between more than two attribute vectors. The 

first part of the paper, following the literature review, introduces the standardized nomenclature, 

while the second part builds the case for similarity measures of percentage normalized attributes, 

both in two and k-vector formulations. This includes a proposed method for evaluating any size 

group of vectors. For a detailed discussion concerning the application of the many similarity 

measures, how they are derived, and the similarities and differences between them Matthijs 

Warrens’ 2008 paper: “Similarity Coefficients for Binary Data” is a great resource. Warrens 

provides a thorough treatment of the subject through multi-variable measures and where a more 

detailed understanding of certain measures is desired, this paper will defer to his. 

Literature Review 

 As stated above Warrens (2008) provides a thorough treatment and remains the go-to 

reference for similarity measures. Warrens details the relationship between the different families 

of binary similarity metrics and generalizes most to a k-vector model. The treatment of non-

binary measures is limited to basic distance measures (dissimilarity), and doesn’t delve much 

beyond discussing Euclidean distance as the complement to Sokal-Michener (simple matching) 

for binary data (2 vector only); indeed, Warrens refers his readers to other sources for non-binary 

treatments. Warrens does include several interesting proofs. Especially relevant to this paper is 
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his proof concerning the relative value of various averages; specifically a comparison of the 

various averages of SDice1 (a/p1) and SDice2 (a/p2) shows that the square of the geometric mean 

(Sorgenfrei) is always less than Jaccard, which is always less than the minimum, harmonic mean, 

geometric mean, arithmetic mean, and maximum in that order. This holds for all formulations, 

and helps inform the decision concerning whether to use the arithmetic or quadratic mean when 

later discussing non-binary k-vector percentage normalized metrics. Warren also provides a 

detailed explanation for methods employed to correct for chance agreement between two vectors. 

It should be possible to employ these correction methods with k-vector percentage normalized 

non-binary measures, however that assertion is not tested in this paper.  

 Whereas Warrens is the most detailed, Choi, Cha, & Tappert (2010) is easily the most 

accessible with regard to explaining the four cases of agreement/disagreement among two 

vectors. Choi, et al develop a fairly comprehensive list of formulations for common similarity 

measures and is one of the best first resources for any practitioner or novice in the field. 

 Warrens and others (Choi, Cha, & Tappert 2010, Lourenço, Lobo,  & Bação 2006) use a 

somewhat standardized terminology for the various cases of agreement or disagreement between 

two vectors. Warrens switches back and forth between using each term to indicate the raw value 

(count of cases of agreement) versus the arithmetic average (cases of agreement divided by 

number of attributes n). Although he attempts to indicate each time which he is using, and often 

the formulation results in their being no difference in the outcome, the few times that it does 

matter become especially confusing. To address this shortfall this paper uses a,b,c,d for raw 

values and a′,b′,c′,d′ for the arithmetic average over n; this notation applies for all levels of 

discussion, and each time the prime version of a measure is seen it is the arithmetic average over 

n of the raw measure.  
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 Zhang and Srihari (2003) lay a fair groundwork for treating similarity as the complement 

to distance (or dissimilarity) and make one of the clearer cases for defining a measure as metric 

if it meets the four criteria of: non-negativity, commutativity, reflexivity, and satisfying the 

triangle inequality. Other researchers (e.g. Warrens 2008) focus on the triangle inequality and 

rarely mention reflexivity.  

 Several authors approach similarity as either a function of sets or with a Bayesian 

approach (Novak & Pap 2012, Lourenço, Lobo,  & Bação 2006). DeSarbo, De Soete, & 

Eliashberg (1987) posit that similarity measures can be treated as a Probit regression model 

based on the result being a probability of agreement between vectors. These methods are not 

explored here. However Novak & Pap’s discussion of a similarity between a single vector and k-

1 other vectors forms the basis for the k-vector approach discussed later.  

 Lastly, Wilson and Martinez (1997) establish the Heterogeneous Euclidean-Overlap 

Metric (HEOM) which forms the basis for the decision model posited as part of the k-vector 

percentage normalized metric. They also do a fair job of explaining the various distance 

measures with regard to averaging and how they interrelate (especially Minkowsky versus all 

others) . 

 There exists a veritable cornucopia of thoughtful analyses concerning measures of 

distance and similarity, especially when limited to binary attributes among two vectors. The 

depth of analysis decreases with the introduction of k-vector formulations, and the analysis is 

nearly non-existent for non-binary k-vector formulations. Discussion of normalization is almost 

completely limited to Wilson and Martinez (1997), and even then it is somewhat of a side note. 
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Binary Measures 

 Among the many papers written on this subject, most authors, especially of the more 

recent treatments, have tacitly agreed upon a somewhat standardized nomenclature, however 

there is some variation, especially when evaluating the defined measures as the arithmetic 

average over n. Warrens (2008) and Choi, et al (2010) interchangeably use a, b, c, and d to 

indicate the raw values of those measures and the averaged versions of the same.  

Two Vector Definitions 

 Suppose there are two objects (X1 and X2) each defined by a series of binary attributes 

such that they could be expressed as: 

 X1  X2 
Attribute 1 1 1 
Attribute 2 1 0 
Attribute 3 0 1 
Attribute 4 0 0 
…   
Attribute n 1 1 
Table 1: Binary Attributes (values are to show the possible options) 

where 1 indicates the presence of the attribute. There exist within Table 1, four distinct 

situations, defined as: 

 

 

 X1=1 X1=0  
X2=1 a c a+c=p2 

X2=0 b d b+d=q2 

 a+b=p1 c+d=q1 a+b+c+d=n 

Table 2: Attribute Measures 
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Utilizing the measures defined in Table 2 it can be seen from Table 1 that these values can be 

defined in several ways; for a single attribute, a can be defined as: the result of the Boolean 

expression 𝑎 = 𝑋1,𝑗 × 𝑋2,𝑗, the arithmetic expression 𝑎 = 𝑋1,𝑗 ∗ 𝑋2,𝑗, or in set notation as 𝑎 = 𝑋1,𝑗 ∩ 𝑋2,𝑗. When expanded to include all attributes it becomes 𝑎 = ∑ (𝑋1,𝑗 ∗ 𝑋2,𝑗)𝑛𝑗=1 . 

Including all measures yields: 

 Boolean Arithmetic Set 

a= 𝑋1 × 𝑋2 ∑ 𝑋1 ∗ 𝑋2 
𝑋1 ∩ 𝑋2 

b= 𝑋1 × 𝑋2̅̅ ̅ ∑ 𝑋1 ∗ (1 − 𝑋2) 
𝑋1\𝑋2 

c= 𝑋1̅̅ ̅ × 𝑋2 ∑(1 − 𝑋1) ∗ 𝑋2 𝑋2\𝑋2 

d= 𝑋1̅̅ ̅ × 𝑋2̅̅ ̅ ∑(1 − 𝑋1) ∗ (1 − 𝑋2) 𝑈 \(𝑋1 ∪ 𝑋2)  
p1= 𝑋1 ∑ 𝑋1 𝑋1 

p2= 𝑋2 ∑ 𝑋2 𝑋2 

q1= 𝑋1̅̅ ̅ ∑(1 − 𝑋1) 𝑈 \(𝑋1)  
q2= 𝑋2̅̅ ̅ ∑(1 − 𝑋2) 𝑈 \(𝑋2)  
n= 𝑋1 + 𝑋1̅̅ ̅ = 𝑋2 + 𝑋2̅̅ ̅ 𝑝1 + 𝑞1 = 𝑝2 + 𝑞2 = 𝑎 + 𝑏 + 𝑐 + 𝑑 (𝑋1 ∪ 𝑋2) − (𝑋1 ∩ 𝑋2) 

Table 3: Definitions of Measures 

The formulation for n in Table 3 assumes that the number of attributes measured for each X is 

the same (if they weren’t the same, the whole concept of a similarity measure falls apart), this 

value can easily be found within R using length(X1). 

 For those values used by Warrens (2008) and Choi, et al (2010) where the measure is 

averaged over n, the nomenclature a′ (or b′, c′, d′, etc.) will be used going forward, such that: 𝑎′ = 𝑎𝑛 = 𝑎𝑎+𝑏+𝑐+𝑑 
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This reduces several existing similarity measures to single character expression, e.g. 𝑆𝑅𝑢𝑠𝑠𝑒𝑙𝑙&𝑅𝑎𝑜 = 𝑎′. Appendix A contains several common similarity measures in 2 and k-vector 

formulations.  

 At this point an important heuristic should be presented regarding the choice between 

measures that account for d (co-non-occurrence or negative overlap) versus those that do not 

account for d. When the number of available attributes is finite and limited, those measures that 

account for d are more representative, as the non-occurrence of an attribute can be considered 

important when it is one of few possible attributes; when the number of attributes is large 

(including infinite) the measures that do not account for d should be used as the co-non-

occurrence of one of an infinite number of possible attributes is of little meaning. 

k Vector Definitions 

  To expand the similarity measures discussed it is necessary to establish a set of k 

vectors (Xi for i=1 to k), within each of these vectors Xi is described by n attributes (Xi,j is the 

attribute value for vector i for attribute j). Adding additional columns to Table 1 for additional X 

variables creates some problems when defining b and c. It remains easy to define a as all 

instances of an attribute being present in all Xs and d as all instances of an attribute being not 

present in all Xs. More Xs creates more options in the middle that do not cleanly fall into the 

definition of either b or c from the 2 variable formulation. 

 X1 X2 X3 
a 1 1 1 
? 1 1 0 
? 1 0 1 
? 1 0 0 
? 0 1 0 
? 0 1 1 
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? 0 0 1 
d 0 0 0 
Table 4: Three Variables 

First, c is abandoned in favor of multiple formulations of b and rewrite Table 4 as follows: 

 X1 X2 X3 
a 1 1 1 
b1 1 1 0 
b2 1 0 1 
b3 1 0 0 
b4 0 1 0 
b5 0 1 1 
b6 0 0 1 
d 0 0 0 
Table 4a: Three Variables with b’s 

This resolves the limitations of the b/c nomenclature but creates extensive formulations. Upon 

examination of the many similarity measures in existence it becomes apparent that most use 

some function of p1 and/or p2 in the denominator. From Table 3 we can see that p1 is simply the 

sum of X1 over all attributes, from that we expand the p measures to include one for each column 

and the q measures simply become the complement of the p’s, i.e. q1=n-p1. This formulation 

allows for multi-variable approaches to existing measures such as (for three variables): 

𝑆𝐷𝑖𝑐𝑒−3 = 3𝑎𝑝1 + 𝑝2 + 𝑝3 

This works because the denominator for Dice (in the two variable format) is made up of 

(a+b)+(a+c) or p1+p2. Dice (and other similar measures) lends itself nicely to expansion in this 

form and results in (for k variables): 

𝑆𝐷𝑖𝑐𝑒−𝑘 = 𝑘𝑎𝑝1 + 𝑝2 + ⋯ + 𝑝𝑘 
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and 

𝑆𝑆𝑜𝑟𝑔𝑒𝑛𝑓𝑟𝑒𝑖−𝑘 = 𝑎𝑘𝑝1 ∗ 𝑝2 ∗ … ∗ 𝑝𝑘 

In the case of similarity measures that do not use such a formulation like Jaccard, some other 

form can be used, e.g. 𝑆𝐽𝑎𝑐𝑐𝑎𝑟𝑑 = 𝑎𝑛−𝑑 where n remains the number of attributes; in fact this 

formulation of Jaccard works for any number of vectors. The simple matching measure even 

retains its original form: 𝑆𝑆𝑜𝑘𝑎𝑙−𝑀𝑖𝑐ℎ𝑒𝑛𝑒𝑟 = 𝑎+𝑑𝑛 = 𝑎′ + 𝑑′. 
 These multi-variable similarity measures yield the similarity between all vectors; as such 

it is advisable to only compare three way measures with three way measures when evaluating for 

which group is more similar than another, as three-way measures will always be smaller than 

two-way measures, etc. of similar vectors (as p1+p2+…+pk goes up S goes down).  

 

Non-binary Measures 

 Until now the vast majority of the proposed measures of similarity have been based on 

the presence or absence of binary attributes. There exist, however, countless instances of 

attributes being present within an individual that are not expressed completely. These cases 

represent a problem for traditional similarity measures; should the partial presence be treated as 

presence or absence, or is there some third option? 

 Conceptual Formulation 
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 Consider two vectors, X1 and X2, each described by n attributes; each attribute can be 

expressed as a percentage at which it is expressed in the vector, e.g. X1 expresses 27% of 

attribute 1. The sum of the strengths of the individual attributes within each vector do not 

necessarily add up to 100%, nor do the sum of strengths across vectors add to 100%. This type of 

test data was used to evaluate potential measures of similarity and distance. 

 Data generation and testing. First, a random data set was created to assess various trial 

similarity measures. Two vectors of n=100 were generated in Excel; the first vector using rand() 

and the second vector as a function of the first vector. A weight of between 0.7 and 1.0 was 

applied to the first vector randomly to create the second vector such that it is no more than 30% 

less in all values than the first. Since this weighting was via a uniformly distributed random 

number (Appendix B), it is expected that X2 will be 15% less than X1 on average. Therefore 

should yield a similarity approximately equal to 0.85 by city-block distance. 

 The first attempt at a percentage similarity measure began with calculating the Pearson 

Product Moment for the two vectors. This test yielded a result of r=0.983. The Pearson 

correlation breaks down in cases of one vector attribute value equaling zero with the other vector 

having some non-zero value (b or c cases from binary similarity). Pearson reduces the numerator 

for each b or c, however since the other vector may be very near zero there is no reason why 

close proximity (e.g. between 0 and 0.1) should be treated differently than between 0.8 and 0.9. 

This indicates that a similarity measure that does not separate out b and c cases but calculates 

distance regardless of the values is required. 

 Negative overlap. The question of how to approach negative overlap, the condition d in 

the binary measures should be answered before getting too deep into evaluating proposed 
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measures. In cases where the co-non-occurrence (negative overlap) of an attribute is important to 

the overall picture, then d must be accounted for. This situation is likely to occur when there are 

a small finite number of attributes. If two vectors each have ten attributes and four of them are 

negative overlaps it indicates that within those four descriptive areas the two vectors are the 

same. If two vectors have the potential to include infinite attributes but only ten are reported, 

those four negative overlaps are probably a very small percentage of total negative overlaps, and 

are much less likely to be indicative of an overall similarity. Going forward this decision rule 

will be applied; if the number of attributes is small and from a finite population, then d will be 

included, if the number of attributes is large and/or from an infinite (or very large) population, 

then d will be discounted. Most formulations throughout the remainder of this paper will 

specifically address d by removing it from the similarity (a) value (distance based measures often 

result in calculating a+d, so d needs to be subtracted when it adds no value). 

 Further testing of proposed measures. The second attempt at non-binary similarity 

involves a percentage similarity. A percentage similarity 
𝑋𝑗,𝑚𝑎𝑥−𝑋𝑗,𝑚𝑖𝑛𝑋𝑗,𝑚𝑎𝑥  𝑜𝑟 |𝑋1,𝑗−𝑋2,𝑗|𝑋1,𝑗  will vary 

depending upon where the values lie between 0 and 1. Previously it was discussed that the 

difference between 0.9 and 0.8 should be treated with equal weight to the difference between 0.1 

and 0.2. The closer to 1 the more weight the relationship will be given, as such this method can 

be eliminated from consideration (although in the case of this specific data it does come close to 

our target of 85% at 85.58%, however this is more a function of the data specification than the 

quality of the method). A distance measure does not weight differences at the 1 end of the 

spectrum more. At their most basic, a measure of distance is simply the difference between the 

two values. By applying some treatment to that value, either absolute value, or squaring, a 

positive value can be arrived at regardless of the larger value. This method (when the absolute 
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value is taken) would yield 0.1 in both of the scenarios above, thus treating them as the same 

difference. 

Advancing the absolute value method to calculate the arithmetic mean over n attributes 

yields: 𝐷′ = ∑ |𝑋1−𝑋2|𝑛  (with similarity being simply the complement, S=1-D′). This is the 

arithmetic average city-block or Manhattan distance between the two vectors and will be seen 

more in this paper. Other distance measures can also be used here as well. Euclidean Distance 

can be used as it treats the differences similarly (although squared instead of as an absolute 

value) giving: 𝐷 = √∑(𝑋1 − 𝑋2)2 the arithmetic average of which is: 𝐷′ = √∑(𝑋1−𝑋2)2𝑛 . 

Interestingly, the common formulation of 𝐷′ = √∑(𝑋1−𝑋2)2𝑛  represents the quadratic mean 

of the Euclidean distances (as opposed to the arithmetic mean used above) this value is the same 

for the quadratic mean of the city-block distance 𝐷′ = √∑ |𝑋1−𝑋2|2𝑛 . A choice to use the quadratic 

mean over the arithmetic mean eliminates the choice between city-block and Euclidean distance. 

Minkowsky distance is a generalization of Euclidean distance where 𝐷 = √∑ |𝑋1 − 𝑋2|𝑟𝑟
. 

Minkowsky distance forms the Euclidean distance for r=2, the city-block distance for r=1 and 

the Chebychev distance for r=∞ (for Chebychev distance, 𝐷 = ∑ max |𝑋1 − 𝑋2|). Additional 

distance measures, such as Chi-square, Mahalanobis, Quadratic, or Canberra can also be used. 

Mahalanobis distance (𝑑 = √(𝑋1,𝑗 − 𝑋2,𝑗)𝑆−1(𝑋1,𝑗 − 𝑋2,𝑗)𝑇tends to be very resource intensive 

to calculate for large data sets. Chord distance, which is a transformation of Cosine distance can 

overcome the problems in non-normalized Euclidean distance. Without percentage 
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normalization, Euclidean distance is sensitive to outliers (large values of attributes mask smaller 

values), and even with normalization, if attributes repeat they will be more heavily weighted. 

For the purposes of this analysis, attribute values are percentage normalized, thus 

eliminating the outlier issue with Euclidean distance (the same issue arises in Minkowsky 

distance for all values of r). To normalize individual values: for attribute j the value attributed to 

X1 is equal to the raw value minus the minimum divided by the range for that attribute (the range 

being equal to the max possible value if the minimum is zero) thus giving: 𝑋̂1,𝑗 = 𝑋1,𝑗−𝑋1,𝑗,𝑚𝑖𝑛𝑋1,𝑗,𝑚𝑎𝑥−𝑋1,𝑗,𝑚𝑖𝑛. 

For situations where the minimum is zero, Xmin can obviously be removed. Alternately the value 

can be divided by the standard deviation of the attribute instead of its range to trim outliers, this 

may require mapping values that exceed either end (0,1) to the limits (Wilson & Martinez 1997) 

(this method will not be explored in this analysis). By treating all attributes as percentages, it 

eliminates the weight problem discussed, provides a standard reference for all attribute values 

(0,1), and allows for selective weighting of attributes down the road. 

k vector percentage normalized metric 

 To turn the above discussed distances into a metric measure that can be treated as the 

complement of similarity a decision point needs to be addressed first. Since the states of overlap 

(positive and negative) can still exist in a non-binary situation, they need to be addressed as 

either both cases of zero distance, or as something else. Building from the Heterogeneous 

Euclidean-Overlap Metric (HEOM) (Wilson & Martinez 1997) and replacing Euclidean distance 

with Minkowsy distance (allowing for adjustment in r to yield several various distance 

measures) provides a distance measure to start from. Since the distance between attributes is 
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important in all cases (and not just the case of complete positive overlap) the b and c measures 

are moot. Distance will yield 0 for both the previously defined a or d case.  

 Positive overlap (a) can be ignored as all cases that are not negative overlap are some 

form of dissimilarity that can be measured by the distance between vectors (a having zero 

distance). Cases of all vectors having some value are fundamentally no different from cases 

where one vector has a value and the remaining k-1 vectors are all zero; there is still a distance 

between them that can be measured and represents their dissimilarity.  

Negative Overlap can be ignored when a small finite number of attributes are in question. 

If the number of possible attributes is small and finite the situation of negative overlap indicates 

that the vectors are similar in the non-presence of that attribute. If the number of possible 

attributes is large (or infinite) negative overlap may not be important in understanding similarity 

(or dissimilarity) between the vectors. If for example the degree to which k vectors represent the 

attribute “Tastes like Chicken” is included and the vectors each represent a planet in the solar 

system, then the negative overlap tells us nothing and should be discarded. If a large number is in 

question then the decision to discard negative overlaps should be made. This case is the d 

measure from binary similarity which can be calculated in R by d=(Sum(Trunc((1-X1)*…*(1-

Xk)), na.rm=TRUE)) this returns the number of cases where all X=0. This value can be 

subtracted from the numerator in the distance measure utilized to discount those cases of 

negative overlap resulting in a=n-(D+d), using city-block distance (D). 

Conveniently this formulation works whether the variables are binary or percentage 

normalized. This reduces HEOM to a single decision from the two it started with. That decision, 

whether to specifically discount negative overlap, remains. 
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k-vector distance. City-block distance for a three vector formulation reduces to max 

minus min. Assuming that the first vector contains the max value, the second vector a value in 

the middle, and the third vector the minimum value the distance becomes the sum of the 

individual distances between 1 and 2 and 2 and 3, or: (X1-X2)+(X2-X3)=X1-X3. Since the city-

block formulation includes the absolute value of those differences, the location of the min, max, 

and middle values becomes irrelevant, and the three vector version reduces to |max-min|, or 

simply max-min. From there it is an easy leap to a k-vector formulation, since the end result is 

the same. City-block benefits from simplicity in this case, and for that reason alone should be 

considered when evaluating a best distance measure for any k-vector data set. 

The quadratic mean of city-block was previously shown to equal the quadratic mean of 

Euclidean distance, that holds true here as well. The arithmetic mean is equal to the quadratic 

mean times n0.5, so by multiplying the quadratic mean of the k-vector city block distance by n0.5 

the result is the arithmetic mean of the Euclidean distance for k-vectors. This is a round-about 

way of getting there, but a useful tool to understand the interrelation between the two distance 

measures and the two means. 

To equate city block distance back to 2-vectors, the distance calculated is equal to n-

(a+d), where a and d are as defined before. Since city-block equals zero whenever the two 

vectors have the same value, it equals zero for both positive and negative overlap (positive and 

negative co-occurrence). Sokal-Michener in k-vector becomes (a+d)/n, and is the arithmetic 

mean of n-D when D is calculated via city-block distance, therefore the multi-vector percentage 

normalized version retains the same form with 𝑎 + 𝑑 = ∑(1 − (𝑚𝑎𝑥 − 𝑚𝑖𝑛)). The only need 

for a decision point in the modified HOEM is for the case of all X=0 (negative overlap), and that 
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is only required when n is large or in specific cases of small n where the co-non-occurrence 

(negative overlap) doesn’t yield valuable information. 

This max-min formulation does not account for variation (beside the difference between 

max and min) within each attribute j. The variation is hidden within the variation between the 

outliers on either end, as such, it is not an accurate way of measuring the distance among the 

vectors, instead acting as a distance between tails.  

By using standard deviation for a population within each attribute j we can account for all 

of the variance present between all Xs. Using population instead of sample because; although 

there may be more Xs in the universe, only the ones being evaluated are being evaluated, and 

thus are assumed to be the only ones in existence or at least the only ones that matter. Since this 

eliminates Bessel's correction it force normalizes the range to (0,1). This makes 𝑎 + 𝑑 = 𝑛 −
∑ 2 ∗ √∑ (𝑋𝑖,𝑗−𝑋𝑖)̅̅ ̅̅ 2𝑘𝑖=1 𝑘𝑛𝑗=1  using arithmetic average city block distance. The 2 normalizes to a max 

value of 1 since 𝑚𝑎𝑥√∑ (𝑋𝑖,𝑗−𝑋𝑖)̅̅ ̅̅ 2𝑘𝑖=1 𝑘 = .5 for X≤1 and d remains 𝑑 = ∑(𝑡𝑟𝑢𝑛𝑐(∏ (1 − 𝑋𝑖𝑘𝑖=1 )) 

just as before. Utilizing the Minkowsky formulation for distance as the method for averaging the 

standard deviation derived distance produces an equation that is customizable in results through 

modification of the exponent term (r), thus allowing a single equation to yield arithmetic, 

quadratic, and geometric (among other) averages.  

 𝑎′ + 𝑑′ = 1 − √(∑ 2∗√∑ (𝑋𝑖,𝑗−𝑋𝑖)̅̅ ̅̅ ̅2𝑘𝑖=1 𝑘𝑛𝑗=1 𝑛 )𝑟𝑟
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This Minkowsky version of the arithmetic average of the sum of standard deviations 

includes all of the variance between vectors over each attribute, is limited to (0,1), and meets the 

metric rules described by Zhang and Srihari (2003). In all, it appears to be the best approach to k-

vector percentage normalized similarity, as it solves the problems noted with the various other 

attempted similarity measures. Formulations for a, d, p1, p2, etc. can be found in Appendix C. 

 

Application 

The most readily apparent application for the above distance measure is in determining 

similarity between k non-binary vectors (through four steps). In the first step percentage 

normalize the data as described above. In the second step determine r (r=2 for Euclidean 

distance, r=1 for city-block distance, and r=∞ for Chebychev distance). In the third step 

determine if negative overlap (d) is significant for the similarity being evaluated. In the fourth 

step, for a generalized version of SRussell&Rao apply: 

 𝑆𝑅&𝑅 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙 = 𝑎′ = 1 − √(∑ 2∗√∑ (𝑋𝑖,𝑗−𝑋𝑖)̅̅ ̅̅ ̅2𝑘𝑖=1 𝑘𝑛𝑗=1 𝑛 )𝑟𝑟 − √(∑ (𝑡𝑟𝑢𝑛𝑐(∏ (1−𝑋𝑖𝑘𝑖=1 )))𝑛𝑗=1 𝑛 )𝑟𝑟
. 

Alternately, for traditional measures, calculate 

𝑎 = 𝑛 − ∑ 2 ∗ √∑ (𝑋𝑖,𝑗−𝑋𝑖)̅̅ ̅̅ 2𝑘𝑖=1 𝑘𝑛𝑗=1 − ∑ (𝑡𝑟𝑢𝑛𝑐(∏ (1 − 𝑋𝑖𝑘𝑖=1 )))𝑛𝑗=1  and all k values for 𝑝𝑖 =∑ 1 − (𝑡𝑟𝑢𝑛𝑐(1 − 𝑋𝑖,𝑗)𝑛𝑗=1 , using those values Dice, Jaccard, etc. can be readily calculated. 

Some measures use a+b+c as the denominator, in those cases either use n-d or (∑ 𝑝𝑖) −𝑘𝑖=1𝑎(𝑘 − 1) with the first method producing Jaccard values closer to Dice and the later closer to 

Sorgenfrei.   
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Egghe (2010) suggests that a good test of the quality of a similarity measure is whether 

the addition of a constant attribute value to both vectors results in an increase in similarity. This 

test was applied to the SR&R Universal measure calculated with the data in Appendix B (two vector) 

by adding an additional attribute with a value of 0.5 to each vector. This addition cause the 

resultant similarity value to increase from 0.93067 to 0.93136, passing the Egghe test.  

For prediction; utilizing S as a probability of inclusion from X1 to X2 for items or 

attributes exhibited by X1 but not X2 may prove useful. Used in this manner S becomes the slope 

for the new attribute in what amounts to a Probit model (DeSarbo, et al. 1987), such that the 

strength of the attribute in X1 times S yields a value for the predicted strength of the same 

attribute in X2.  

Similarity measures are typically used to measure a percentage relationship between two 

or more vectors, however these results do not yield a significance component and are left up to 

the researcher to decide whether a relationship exists beyond chance and whether that 

relationship is of value. Since traditional similarity measures are nonparametric in nature, there 

are no distinct criteria for significance and no accepted statistical tests. Establishing arbitrary 

cutoffs (50%) allow for some form of hypothesis testing, however care must be taken to define 

the rejection criteria before the test is performed so as not to influence the results (p hacking). 

 

Conclusion 

 The nomenclature utilized for binary similarity measures has been largely accepted 

within the field, however there has still remained some aspects that were not clear. The use of a′ 

to indicate the average of a over n resolves the problem of ambiguity. Although some authors 
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use set or Boolean notation to indicate the different agreement conditions, a standardized 

arithmetic notation eliminates confusion across disciplines. 

 Generalizing binary measures of similarity from 2 vectors to k vectors has proven to be of 

relative ease once the conditions of b and c are addressed. By ignoring them and treating them as 

the remainder once a and d are determined, or by utilizing measures that do not use them 

specifically but rather rely on p1 through pk instead, the problem of their definitions becomes 

moot. 

 Non-binary attribute values present several problems, most of which are addressed 

through percentage normalization. Once normalized there are several distance measures to 

choose from. The most universal and flexible method involves Minkowsky distance, allowing for 

determination of r as a method of moving between city-block and Euclidean distances. This 

formulation is further expandable in the means of averaging over n. An extension of the 

Minkowsky distance formula allows for the average over n to be arithmetic, quadratic, etc. 

proving useful when evaluating amongst the options. 

 Expanding the non-binary measures to k vectors results in the decision to abandon max-

min in favor of standard deviation, which has been shown to be equivalent to the arithmetic 

average of the Euclidean distance between each vector i within each attribute j and the average of 

same. For a two vector model this reduces to a max-min formulation, but for k vectors it includes 

the variability within the attribute (which is not included in max-min), providing a better picture 

of overall within-attribute distance. 

 Using the standard deviation model a test for significance has been developed and shown 

to produce results consistent with expectations for randomly generated data and for modified 
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randomly generated data. When treated as a Probit model as suggested by DeSarbo, et al. (1987), 

this new model can help improve understanding with regard to how individuals and groups are 

interrelated in numerous fields. 
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Appendix A: Common Similarity Measures 

Measure 2-

variable 

k-variable % Attribute, k-variable 

𝑆𝑅𝑢𝑠𝑠𝑒𝑙𝑙&𝑅𝑎𝑜 

(r=1) 

𝑎𝑛 
𝑎𝑛 

1 − √(∑ 2 ∗ √∑ (𝑋𝑖,𝑗 − 𝑋𝑖)̅̅ ̅̅ 2𝑘𝑖=1 𝑘𝑛𝑗=1 𝑛 )𝑟
𝑟

− √(∑ (𝑡𝑟𝑢𝑛𝑐(∏ (1 − 𝑋𝑖𝑘𝑖=1 )))𝑛𝑗=1 𝑛 )𝑟𝑟
 𝑆𝑆𝑀 =𝑆𝑐𝑖𝑡𝑦−𝑏𝑙𝑜𝑐𝑘 

(r=1) 

𝑎 + 𝑑𝑛  
𝑎 + 𝑑𝑛  

1 − √(∑ 2 ∗ √∑ (𝑋𝑖,𝑗 − 𝑋𝑖)̅̅ ̅̅ 2𝑘𝑖=1 𝑘𝑛𝑗=1 𝑛 )𝑟
𝑟

 

𝑆𝐷𝑖𝑐𝑒 2𝑎𝑝1 + 𝑝2 
𝑘𝑎𝑝1 + 𝑝2 + ⋯ + 𝑝𝑘 𝑘(𝑛 − ∑ 2 ∗ √∑ (𝑋𝑖,𝑗 − 𝑋𝑖)̅̅ ̅̅ 2𝑘𝑖=1 𝑘𝑛𝑗=1 − ∑ (𝑡𝑟𝑢𝑛𝑐(∏ (1 − 𝑋𝑖𝑘𝑖=1 )))𝑛𝑗=1 )∑ 𝑝𝑖𝑘𝑖=1  𝑆𝑆𝑜𝑟𝑔𝑒𝑛𝑓𝑟𝑒𝑖 𝑎2𝑝1 ∗ 𝑝2 
𝑎𝑘𝑝1 ∗ 𝑝2 ∗ … ∗ 𝑝𝑘 (𝑛 − ∑ 2 ∗ √∑ (𝑋𝑖,𝑗 − 𝑋𝑖)̅̅ ̅̅ 2𝑘𝑖=1 𝑘𝑛𝑗=1 − ∑ (𝑡𝑟𝑢𝑛𝑐(∏ (1 − 𝑋𝑖𝑘𝑖=1 )))𝑛𝑗=1 )𝑘∏ 𝑝𝑖𝑘𝑖=1  𝑆𝐽𝑎𝑐𝑐𝑎𝑟𝑑 

𝑎𝑎 + 𝑏 + 𝑐 𝑎𝑛 − 𝑑  𝑜𝑟 𝑎(∏ 𝑝𝑖) − 𝑎(𝑘 − 1)𝑘𝑖=1  (𝑛 − ∑ 2 ∗ √∑ (𝑋𝑖,𝑗 − 𝑋𝑖)̅̅ ̅̅ 2𝑘𝑖=1 𝑘𝑛𝑗=1 − ∑ (𝑡𝑟𝑢𝑛𝑐(∏ (1 − 𝑋𝑖𝑘𝑖=1 )))𝑛𝑗=1 )𝑛 − ∑ (𝑡𝑟𝑢𝑛𝑐(∏ (1 − 𝑋𝑖𝑘𝑖=1 )))𝑛𝑗=1  
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Appendix B: Development Data 

X1 X2 

 

X1 X2 

 

X1 X2 

0.340602 0.275888 

 

0.306361 0.242026 

 

0.147197 0.108926 

0.68802 0.639858 

 

0.994146 0.845024 

 

0.915749 0.714284 

0.821848 0.821848 

 

0.208921 0.200564 

 

0.158594 0.120531 

0.397286 0.345639 

 

0.985705 0.887134 

 

0.195504 0.138808 

0.263364 0.229127 

 

0.370664 0.329891 

 

0.89086 0.739414 

0.035587 0.035587 

 

0.173636 0.145854 

 

0.714764 0.557516 

0.157219 0.119486 

 

0.435506 0.309209 

 

0.569555 0.438558 

0.213186 0.153494 

 

0.367051 0.308323 

 

0.624775 0.449838 

0.12093 0.111255 

 

0.555638 0.488961 

 

0.025385 0.0231 

0.284669 0.216349 

 

0.785819 0.565789 

 

0.343074 0.298474 

0.288161 0.247818 

 

0.112036 0.110916 

 

0.58016 0.551152 

0.05854 0.057369 

 

0.832574 0.632756 

 

0.249354 0.249354 

0.093149 0.081971 

 

0.12971 0.123225 

 

0.823335 0.691601 

0.071666 0.063066 

 

0.697062 0.648267 

 

0.77277 0.57185 

0.525647 0.37321 

 

0.068136 0.067455 

 

0.706323 0.614501 

0.738247 0.671805 

 

0.785189 0.565336 

 

0.427081 0.345936 

0.208882 0.154573 

 

0.863307 0.699279 

 

0.525702 0.473132 

0.942096 0.923254 

 

0.929838 0.855451 

 

0.94578 0.784997 

0.183399 0.172395 

 

0.400129 0.288093 

 

0.316947 0.250388 

0.548421 0.449705 

 

0.957891 0.919576 

 

0.178148 0.142518 

0.280547 0.238465 

 

0.690108 0.593493 

 

0.244469 0.232245 

0.67324 0.498198 

 

0.450693 0.324499 

 

0.965336 0.888109 

0.597845 0.478276 

 

0.981283 0.922406 

 

0.080829 0.063855 

0.602816 0.548562 

 

0.42387 0.38996 

 

0.060583 0.052102 

0.711556 0.661747 

 

0.044073 0.034377 

   0.968161 0.958479 

 

0.059858 0.051478 

   0.564296 0.49658 

 

0.748699 0.658855 

   0.779835 0.701852 

 

0.61662 0.591955 

   0.296534 0.278742 

 

0.660463 0.647253 

   0.25166 0.186229 

 

0.231882 0.176231 

   0.945287 0.860211 

 

0.788843 0.733624 

   0.71601 0.529848 

 

0.208004 0.158083 

   0.597892 0.538103 

 

0.277543 0.269216 

   0.544292 0.386447 

 

0.082125 0.073091 

   0.182031 0.147445 

 

0.676292 0.64924 

   0.417878 0.338481 

 

0.922073 0.857528 

   0.916226 0.659683 

 

0.936786 0.843107 

   0.715954 0.701635 

 

0.433612 0.403259 
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Pearson r=0.983238 

Percentage Similarity D’=0.1442,  S=0.8558 

Quadratic Average Euclidean Distance D’=0.0918, S=0.9082 

SR&R Universal  S=0.9307 

SJaccard  S=0.9307 

Modifying the data to replace the last set with 0,0 (negative overlap) affects R&R and Jaccard as 

follows: 

SR&R Universal  S=0.9208 

SJaccard  S=0.9301  

Jaccard does not decrease as much, because, although in both cases the numerator decreases, in 

the case of Jaccard, so does the denominator. 
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Appendix C: k-vector Percentage Normalized Values 

(𝑎 + 𝑑) = 𝑛 − ∑ 2 ∗ √∑ (𝑋𝑖,𝑗 − 𝑋𝑖)̅̅ ̅̅ 2𝑘𝑖=1 𝑘𝑛
𝑗=1  

𝑑 = ∑(𝑡𝑟𝑢𝑛𝑐 (∏(1 − 𝑋𝑖𝑘
𝑖=1 )))𝑛

𝑗=1  

𝑎 = 𝑛 − ∑ 2 ∗ √∑ (𝑋𝑖,𝑗 − 𝑋𝑖)̅̅ ̅̅ 2𝑘𝑖=1 𝑘𝑛
𝑗=1 − ∑(𝑡𝑟𝑢𝑛𝑐 (∏(1 − 𝑋𝑖𝑘

𝑖=1 )))𝑛
𝑗=1  

𝑝𝑖 = ∑ 1 − 𝑡𝑟𝑢𝑛𝑐(1 − 𝑋𝑖,𝑗)𝑛
𝑗=1  

𝑎 + 𝑏 + 𝑐 = (∑ 𝑝𝑖) − 𝑎(𝑘 − 1)𝑘𝑖=1  or 𝑛 − ∑ (𝑡𝑟𝑢𝑛𝑐(∏ (1 − 𝑋𝑖𝑘𝑖=1 )))𝑛𝑗=1  
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