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Abstract. The internal rate of return (IRR) is widely used in Private Finance Initiative (PFI) 

schemes in  the UK for measuring performance. However, it is well-known that the IRR may be 

a misleading indicator of economic profitability. Treasury Guidance (2004) recognises that the 

the IRR should not be used and net present value (NPV) should be calculated instead, unless the 

cash flow pattern is even. The distortion generated by the IRR can be quantified by the notion of 

scheduling effect, introduced in Cuthbert and Cuthbert (2012). We combine this notion with the 

notion of  average IRR (AIRR), introduced in Magni (2010, 2013) and show that a positive 

scheduling effect arises if the AIRR, relative to a flat payment stream, exceeds the project’s IRR. 

The scheduling component can be measured in two separate ways, in terms of specific AIRRs, 

one of which enables the scheduling component  to be decomposed into relative capital and 

relative rate components. We also highlight the role of average capital, whose quotation in the 

market, in association with IRRs or AIRRs, would deepen the economic analysis of the project. 
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Measuring the inadequacy of IRR in PFI schemes using 

profitability index and AIRR 

1. Introduction 

Economic profitability of projects is a major topic in production economics and engineering 

economy as well as corporate finance. In academia,  the net present value (NPV) is often 

credited as the most theoretically reliable measure: Rubinstein (2003) defines present value a 

“great moment” in financial economics, while Brealey et al. (2011) include NPV in a list of the 

seven greatest ideas in modern finance. However, empirical surveys show that, in many 

circumstances, decision makers use other tools for evaluating investments in real-life 

applications: internal rate of return (IRR), residual income (e.g., EVA), return on investment, 

payback period, profitability index (Remer et al., 1993; Remer and Nieto, 1995a, 1995b; 

Slagmulder et al., 1995; Lefley, 1996; Graham and Harvey, 2001; Lindblom and Sjögren, 

2009).2 While a general consistency among some metrics such as benefit-cost ratio, profitability 

index, net future value, residual income is confirmed (see Peasnell, 1982; Magni 2009; Pasqual 

et al. 2013), the IRR suffers from several difficulties, which have been recognised long since  

(see Magni, 2013, for an updated compendium of IRR’s flaws. See also Percoco and Borgonovo, 

2012, on the different ranking of key drivers provided by NPV and IRR).  

 

Such difficulties prevent the IRR from being a generally reliable alternative to NPV-based 

calculations for the measurement of an investment’s economic profitability. Yet, the IRR is still 

a favoured metric in several contexts. In particular, in assessing projects undertaken using the 

Private Finance Initiative (PFI), the IRR is often employed as a convenient measure of different 

aspects of the project – like the cost of capital formation for the public sector or the return to 

investors. In its guidance notes, the UK Treasury endorses the use of NPV in PFI projects and 

warns against the IRR, admitting its use only if the relevant payment profiles are of a flat, 

annuity, type (Treasury, 2004); there is a rationale for this,  because  in the latter case knowledge 

of the IRR enables unravelling the cash flows and, if the initial capital investment is known as 

well, the NPV can be computed. When the scheduling of payment streams departs from the flat, 

                                                
2Another widely used decision criterion is the Modified Internal Rate of Return (MIRR) (see Lin 1976, 
Biondi 2006, Kierulff 2008, Lefley 2015). However, unlike IRR, which aims at measuring the rate of 
return of the project, the MIRR measures the rate of return of a portfolio of the project and the 
reinvestment of interim cash flows, assuming a given external reinvestment rate: “it’s a rate of return on a 
modified set of cash flows, not the project’s actual cash flows” (Ross et al. 2011, p.250). As Brealey et al. 
(2011, p.141) put it: “The prospective return on another independent investment should never be allowed 
to influence the investment decision” 
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annuity, assumption, the use of IRR as an indicator may give a seriously misleading impression 

of actual PFI costs and returns.3  

 

In a recent paper, Cuthbert and Cuthbert (2012) both gave empirical evidence showing that the 

assumption of flat payment profiles was commonly violated in PFI schemes and developed an 

approach, based on the definition of what the authors called interest and scheduling effects, 

which allowed measuring the distortion caused by the IRR. Separately, Magni (2010, 2013), 

developed a generalisation of the concept of IRR, denoted as average internal rate of return 

(AIRR).4 This is based on the concept of the rate of return to an investor in a project, relative to 

any general stream of capital values which might be of particular relevance, rather than to the 

specific stream of outstanding capital values implied by a given IRR, which allows the distortion 

caused by the use of IRR to be measured. 

 

What the current paper shows is how there are close links between these two approaches, in that 

the scheduling effect as defined by Cuthbert and Cuthbert can be simply expressed in terms of 

specific AIRRs. In fact, the paper develops two such expressions, in terms of different choices of 

AIRR. What this paper represents, therefore, is a significant consolidation of what might at first 

sight appear to be quite separate strands of investment appraisal theory. 

 

More specifically, we start from a profitability index, and decompose it into a return component 

and a scheduling component, the latter describing the deviation of the net market value of the 

project with respect to the net market value the project would have if it were a flat, annuity type, 

investment. We find a significant relation between two versions of AIRR. In particular, the first 

version is tied to IRR-implied capital values and signals the existence of a scheduling effect if 

and only if the AIRR is greater or smaller than the IRR. The same result is reframed in terms of 

invested average capital. The second AIRR, called ‘blended economic AIRR’ (BEAIRR) is tied 

to market values and enables decomposing of the scheduling component into a relative capital 

component and relative return component. We also show that the scheduling component can also 

be described in terms of invested average capital. We then show a relation between the 

scheduling effect and a partial ordering on transaction vectors with the same IRR: if a scheduling 

effect arises, then the later the payments are scheduled the greater the AIRR. We also apply the 

results to three real-life PFI examples taken from hospital projects in Scotland and the North of 

England. 

                                                
3 Furthermore, even in the favourable case of flat payments, ranking schemes with the IRR is inconsistent 
with the NPV ranking, unless further conditions are met (see Section 2). 
4 Most recently, Magni (2015) presented a modification of the AIRR, which can also be used for project 
evaluation. 
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Note that the approach presented in this paper, while it has been illustrated in relation to PFI 

schemes, has much broader applicability. Similar problems occur widely in relation to general 

investment schemes: and the use of the notion of scheduling effect, combined with the AIRR 

approach, enables a sophisticated analysis of the economic profitability of any investment 

scheme. 

 

The structure of the paper is as follows. In section 2 we introduce the problem of IRR in relation 

with PFI schemes and summarise Cuthbert and Cuthbert’s (2012) results; in particular, we 

decompose the profitability index into interest component and scheduling component. In section 

3 we describe the AIRR approach and introduce the new notion of blended AIRR (BEAIRR).  

Section 4 shows that the scheduling effect can be captured by the comparison of AIRR and IRR 

as well as by the average invested capital which is directly drawn from the AIRR. Also, the 

scheduling effect is decomposed into a capital component and a return component. Section 5 

shows that the later the payments are scheduled the greater is the AIRR.  Section 6 is devoted to 

illustrating three real-life examples of PFI investments. Some concluding remarks end the paper. 

 

2. Problems with the use of IRR as an indicator in relation to PFI schemes 

The IRR is a commonly used indicator of the performance of PFI schemes in the UK. As 

guidance issued by the UK Treasury recognises, however, use of IRR is potentially misleading, 

unless the relevant payment streams are of a flat, annuity, type (Treasury, 2004). In Cuthbert and 

Cuthbert (2012) an appropriate indicator was developed for assessing how significant the 

departure from a flat payment stream might be in any particular case. In this section, we re-

capitulate on the approach developed in that paper. 

 

Public sector bodies which are commissioning PFI schemes have, of course, the problem of how 

they should assess the costs and benefits of the relevant projects. The advice given by the UK 

Treasury to such bodies is that they should basically rely on Net Present Values (NPVs). 

However, the Treasury recognises that measures based on IRR play an important part in PFI. 

The following quotation summarises the Treasury advice on the use of IRR: 

The widespread use of IRRs in PFI projects reflects the generally even pattern of year-

on-year operational cash flows in such projects. However, if a project has an uneven 

cash flow profile, the Authority should exercise great caution in using IRR as the basis 

of valuing investment in the project. (Treasury, 2004). 

 

As pointed out in Cuthbert and Cuthbert (2012), this Treasury advice makes sense. If there is 

indeed an even pattern of year on year cash flows in the particular payment stream being 



 5 

assessed (that is, if it is basically an annuity type payment stream), then knowledge of the initial 

capital investment and of the IRR (as well as of the investment’s length) enables the NPV of the 

payment stream to be calculated at any desired discount rate. So there is essentially the same 

information content in knowing the IRR as in knowing the NPV profile. And even without the 

bother of working back from the IRR to the NPV, ranking schemes on the basis of IRRs will 

correspond to a ranking on NPVs if the projects to be compared have the same length, the same 

initial investment and flat cash flows. 

 

If, however, the relevant payment profiles in PFI schemes are not of an annuity type, then the 

NPV of a given payment stream (at discount rates other than the IRR) is not determined by 

knowledge of the initial capital invested, the length and the IRR. Why does this matter? 

 

Consider, for example, a typical PFI project (like the building and running of a hospital) from 

the point of view of the public sector client. During the construction phase, the public sector 

client makes no payments to the private sector consortium which is undertaking the project: but 

when the facility becomes operational, the public sector starts making regular unitary charge 

payments, which will go on during the 30 or so year life of the project. These unitary charge 

payments can be separated into two elements. The first of these, denoted in Cuthbert and 

Cuthbert (2012) as the “service element”, covers the cost of ongoing activities relating to the 

operation and upkeep of the facility – like provision of contracted services, maintenance, and 

lifecycle costs. The second element, which Cuthbert and Cuthbert denoted the “non-service 

element” (NSE) covers loan charges, and pre-tax profits on equity. 

 

The NSE is essentially what the public sector is paying, over a thirty year period, for the 

provision of the original capital asset: it  may be, therefore, meaningful to work out the IRR of 

the payment stream which has, as initial negative terms, the original capital investment, and as 

subsequent positive terms (payments) the NSE element of the unitary charge. This is the project 

IRR, and is essentially the interest rate which the public sector is paying to fund the original 

capital investment under the assumption of a constant force of interest (see section 3). Since the 

private sector is taking on risk in undertaking the PFI project, and since the private sector in any 

event cannot borrow as cheaply as the public sector typically could, the project IRR will be 

higher than the cost of public sector borrowing. This is a well understood feature of PFI. (Note 

also that the project IRR in this case will be unique, because the payment stream is of the 

particular type which has negative terms preceding positive terms.) 

 

However, while the project IRR is  an interesting measure of cost, an even more important 

measure from the public sector viewpoint is the opportunity cost of the stream of payments 
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which they have contracted to make in the form of the NSE: that is, how much could have been 

borrowed, at public sector interest rates, for the same cost as implied by the stream of NSE 

payments. This opportunity cost is appropriately measured by working out the NPV of the 

stream of NSE payments, discounted at an interest rate equal to the public sector borrowing rate. 

The important point is that, if the stream of NSE payments is not of a flat, annuity type, then it is 

no longer possible to work out the NPV of the NSE payment stream simply from knowledge of 

the original capital invested and the project IRR. So judgements about the opportunity cost of 

the project to the public sector which are founded only on the IRR could be hugely misleading. 

 

The problem addressed in Cuthbert and Cuthbert’s paper is, therefore, as follows. For a given 

discount rate less than the IRR of the project, how much of the NPV of the payment stream is 

due to the difference between the IRR and the discount rate (under the assumption that the 

profile of payments was of a flat, annuity type) and how much is due to the deviation of the 

actual payment profile from an annuity type profile? 

 

The solution to this problem developed in Cuthbert and Cuthbert is as follows (see  Cuthbert and 

Cuthbert, 2012, Appendix 1). Suppose we are examining a particular payment stream, a =(𝑎0, 𝑎1,… , 𝑎𝑛), which has IRR 𝜎, so that NPV(a, 𝜎) = ∑ 𝑎𝑗(1 + 𝜎)−𝑗𝑛𝑗=0 = 0, and we are 

interested in the NPV of a at a different discount rate 𝑟, that is, 𝑟 ≠ 𝜎, NPV(a, 𝑟) =∑ 𝑎𝑗(1 + 𝑟)−𝑗𝑛𝑗=0 . Let 𝐚− denote the vector consisting of the initial negative terms of a (with 

zeros elsewhere) and let a+denote the vector consisting of the positive repayment terms in a 

(with zeros elsewhere). 

So 𝐚 = a− + a+ and 𝐚− ≤ 0  𝐚+ ≥ 0;  hence,  

NPV(𝐚) = NPV(𝐚−, 𝑟) + NPV(𝐚+, 𝑟) 
where  NPV(𝐚−, 𝑟) < 0 and NPV(𝐚+ , 𝑟) > 0. 

 

A ratio which is of particular interest is the ratio of the two component terms on the right hand 

side of equation (1) (adjusting the sign of NPV(𝐚−, 𝑟)  so that the ratio is positive), NPV(𝐚+ , 𝑟)|NPV(𝐚−, 𝑟)|.                                                                      (2) 
From the point of view of an investor incurring the outflow stream 𝐚−(costs) and receiving 𝐚+(benefits), equation (2) is a benefit-cost ratio. However, from the point of the public sector, 𝐚− is the vector that  represents the input of capital for initial construction made by the 

consortium, and the 𝐚+ vector represents the NSE payments by the public sector to the 

consortium; therefore, the ratio at (2) is a cost-benefit ratio and it is an appropriate measure of 
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the opportunity cost to the public sector of making the stream of repayments 𝐚+, rather than the 

payment stream it would have made if it had borrowed at rate 𝑟. 

 

Now suppose that, after the initial input of capital represented by 𝐚−, instead of paying out the 

actual repayment stream 𝐚+, an annual annuity style repayment, 𝑏, had been made, extending 

over the period from the year after the last capital input to the end of the contract: and also 

suppose that this annual payment, 𝑏, had been calculated so that the overall IRR is 𝜎 (that is the 

same as that of the original payment stream 𝐚). Let 𝐛 consists of the original drawdowns of 

capital as initial negative terms, followed by the annuity repayments 𝑏 as subsequent positive 

terms, that is, 𝐛 = 𝐛− + 𝐛+,where 𝐛− = 𝐚− and 𝐛+ = (0,0, … ,0, 𝑏, 𝑏, … , 𝑏) and IRR(𝐛) =IRR(𝐚) = 𝜎 .  (Note that we have departed slightly from the notation in Cuthbert and Cuthbert 

paper, for reasons which will become clear later.) 

 

Then the cost-benefit ratio at (2) can be expressed in terms of the following identity: 

 NPV(𝐚+, 𝑟)|NPV(𝐚−, 𝑟)| = NPV(𝐛+, 𝑟)|NPV(𝐚−, 𝑟)| ⋅ NPV(𝐚+, 𝑟)NPV(𝐛+, 𝑟).                                    (3) 
The first term on the right hand side in formula (3), namely, 

NPV(𝐛+,𝑟)|NPV(𝐚−,𝑟)|, shows how much more 

(or less) it would have cost to fund the initial capital input by borrowing on an annuity rate 

scheme at interest rate 𝜎, relative to borrowing on an annuity scheme at the chosen discount rate 𝑟: Cuthbert and Cuthbert called this the interest component.  

The second term on the right hand side in formula (3), namely, 
NPV(𝐚+,𝑟)NPV(𝐛+,𝑟), shows how much more 

(or less)  the NPV of the actual repayment scheme is, relative to the NPV of an annuity style 

repayment scheme with the same IRR 𝜎: Cuthbert and Cuthbert called this the scheduling 

component, and a scheduling component which is materially different from 1 is indicative of a 

payment stream for which the assumption of flat, annuity style payments is violated. 

 

In fact, the more the payments in the transaction vector a are shifted towards the later years in 

the life of the transaction, then the larger the scheduling effect: and, vice versa, the more the 

payments in the transaction vector a are shifted towards the earlier years in the life of the 

transaction, then the smaller the scheduling effect. We give a justification for these assertions in 

section 4, where we define a natural partial ordering on the space of transaction vectors, which 

corresponds to re-scheduling payments, and then show how the scheduling effect increases with 

this partial ordering. 
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The effect is that, when the scheduling component is less than 1, then this indicates that 

payments are, on average, advanced more towards the earlier years of the project than would 

occur with an annuity; while a scheduling component greater than 1 indicates payments which 

are deferred relative to annuity payments. 

 

While it is not our purpose here to repeat in detail the empirical findings in the Cuthbert and 

Cuthbert paper, it is worth noting that, when the authors applied these techniques to the financial 

projections for eight PFI schemes, they found consistent, and in some cases, marked, deviations 

from flat payment schemes. The payments associated with the overall NSE tended to be slightly 

deferred (i.e., scheduling components slightly greater than 1); payments associated with senior 

debt interest were somewhat advanced, (i.e., scheduling components less than 1); and the 

payments associated with the equity returns on projects were markedly deferred (i.e., scheduling 

components much greater than 1). 

 

An alternative decomposition into interest and scheduling effects can be defined as a 

profitability index: 

 NPV(𝐚, 𝑟)|NPV(𝐚−, 𝑟)| = NPV(𝐛, 𝑟)|NPV(𝐚−, 𝑟)| ⋅ NPV(𝐚, 𝑟)NPV(𝐛, 𝑟)                                    (4) 
This alternative decomposition, (4),  is essentially equivalent to the original decomposition, (3), 

used in the Cuthbert and Cuthbert paper. In particular: 

 The term on the left hand side of (4) is equal to the term on the left hand side of (3), less 

1: i.e. NPV(𝐚, 𝑟)|NPV(𝐚−, 𝑟)| = NPV(𝐚+, 𝑟)|NPV(𝐚−, 𝑟)| − 1. 
 

 The interest component in (4) is equal to the interest component in (3), less 1: i.e. NPV(𝐛, 𝑟)|NPV(𝐚−, 𝑟)| = NPV(𝐛+, 𝑟)|NPV(𝐚−, 𝑟)| − 1. 
 

 The scheduling component in (4) is greater than or less than 1 according as the 

scheduling component in (3) is greater or less than 1. 

 

The purpose of this paper is to expose the links between the decomposition into interest and 

scheduling components and the concept of AIRR, as developed by Magni (2010, 2013), and 

introduced in the next section. Since these links are more elegantly expressed using the 
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decomposition in equation (4) rather than the one in equation (3), for the remainder of this paper 

we will work with interest and scheduling components as defined in equation (4). 

 

 

3. The Average Internal Rate of Return (AIRR) 

3.1  General definition of AIRR 

Some of the difficulties encountered by the IRR as a notion of rate of return are well-known in 

the literature, while some others have only recently unearthed (see Magni, 2013, for a list of 

eighteen flaws). To overcome the IRR’s difficulties, Magni (2010, 2013) developed a more 

general notion of rate of return, based on a capital-weighted mean of holding period rates, called 

Average Internal Rate of Return (AIRR). The AIRR approach consists in associating the capital 

amounts invested in each period with the corresponding period returns by means of a weighted 

arithmetic mean. Let 𝐯 = (v0 , v1, … , v𝑛−1) represent the capital invested in 𝐚 at time 𝑡 =0,1,2, … , 𝑛 − 1 with the initial condition v0 = −𝑎0, and let v𝑛 be the terminal capital (equal to 

zero after the last cash flows 𝑎𝑛 has been received by the investor).  The period rate of return in 

the interval [𝑗 − 1, 𝑗] is 𝑖𝑗 = (v𝑗 + 𝑎𝑗 − v𝑗−1)/v𝑗−1. The capital-weighted mean 

AIRR(𝐚, 𝐯, 𝑟) = 𝑖1v0 + 𝑖2v1(1 + 𝑟)−1 +⋯+ 𝑖𝑛v𝑛−1(1 + 𝑟)−(𝑛−1)v0 + v1(1 + 𝑟)−1 +⋯+ v𝑛−1(1 + 𝑟)−(𝑛−1)               (5) 
represents the overall rate of return associated with the capital stream 𝐯:taking time value of 

money into account, the numerator expresses the project’s overall return and the denominator 

expresses the project’s overall invested capital. 

For the sake of notational simplicity, we will henceforth drop the dependence on 𝑟 from the 

NPV symbols and the AIRR symbol, since 𝑟 is assumed given.  

Magni (2010, eq. (6)) showed that, for any vector 𝐯 such that the initial condition v0 = −𝑎0 is 

satisfied, the project NPV can be obtained as the product of the project  invested capital NPV(𝐯) = ∑ v𝑗(1 + 𝑟)−𝑗𝑛−1𝑗=0  and the project (excess) rate of return.  

Proposition 1. For any capital vector 𝐯, 

NPV1(𝐚) = NPV(𝐯) ⋅ (AIRR(𝐚, 𝐯) − 𝑟)                                       (6) 
where NPV1(𝐚) ≔ NPV(𝐚)(1 + 𝑟). 
(See also Magni 2010, Theorem 2). 
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In essence, investing in project 𝐚 boils down to investing the capital amount NPV(𝐯) at the rate AIRR(𝐚, 𝐯) while renouncing to investing the same capital at rate 𝑟.5 

The AIRR approach guarantees NPV-consistency in the sense that the sign of the NPV is 

captured by the comparison of AIRR and cost of capital 𝑟: from (6),  

NPV(𝐚) > 0 if and only if AIRR(𝐚, 𝐯) > 𝑟. 

The reformulation of the NPV obtained in (6) highlights the contributions of both the capital 

component (NPV(𝐯)) and the project’s return component (AIRR(𝐚, 𝐯), net of cost of capital) to 

overall economic profitability. A given NPV can be obtained either as a result of investing a 

large capital at a small AIRR or as a result of investing a small capital at a high AIRR. 

Therefore, the AIRR approach is a full substitute of NPV; but while NPV only supplies an 

overall measure economic value created, the AIRR approach decomposes it into the project 

investment scale and the project efficiency. This decomposition cannot be derived from a 

traditional NPV (or IRR) analysis. On the other hand, project ranking with NPV is more direct 

and simple: while it is possible to standardise AIRRs so as to rank projects correctly (Magni 

2010, 2013), this crucially depends on there being a suitable or natural choice of a common 

capital base which makes the computation of standardised AIRRs meaningful and insightful. 

Equation (5) enables the analyst to make explicit use of the capital amounts v𝑡  which are 

actually employed (i.e., those which represent the actual economic resources put in use by the 

investor). For example, consider a three-period project with holding period rates equal to 𝑖1 = 3%, 𝑖2 = 5% , 𝑖3 = 8% and let v0 = 100, v1 = 80, v2 = 45 be the capital values. 

Assuming 𝑟 = 4%, the project rate of return is 

AIRR(𝐚, 𝐯) = 0.03 ⋅ 100 + 0.05 ⋅ 80(1.04)−1 + 0.08 ⋅ 45(1.04)−2100 + 80(1.04)−1 + 45(1.04)−2 = 0.0466 

As the total invested capital is NPV(𝐯) = 218.53, the project consists of an overall investment 

of £218.53 at 4.66% return. As 4.66% > 4%, the project NPV is positive, so value is created. In 

particular, NPV(𝐚) = 218.53 ⋅ (0.0466 − 0.04)/1.04 = 1.38.6
 

                                                
5In (6), one may redefine invested capital as being at beginning of period, rather than as at end of period: v0 = 0, v1 = −𝑎0, v𝑛+1 = 0. This does not change the value of the AIRR and one gets NPV(𝐯) =∑ v𝑗(1 + 𝑟)−𝑗𝑛𝑗=1  so that NPV(𝐚) = NPV(𝐯) ⋅ (AIRR(𝐚, 𝐯) − 𝑟). This structure is rather intuitive:  it says 

that a project’s NPV is the product of the excess return and invested capital. We have not adopted this 
particular convention in the paper, however, because the usual convention in finance is to consider capital 
invested as being at the end of the relevant period. 
6 One can unravel the cash flows from the definition of period rate of return: 𝑎𝑡 = v𝑡−1(1 + 𝑖𝑡) − v𝑡 so 
that 𝑎1 = 23, 𝑎2 = 39, 𝑎3 = 48.6 and 𝑎0 = −v0 = 100. Discounting back, NPV(𝐚) = −100 +23(1.04)−1 + 39(1.04)−2 + 48.6(1.04)−3 = 1.38. 
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A computational shortcut for the AIRR is directly obtained by (6): 

AIRR(𝐚, 𝐯) = 𝑟 + NPV1(𝐚)NPV(𝐯)                                                              (7) 
(in the example, AIRR(𝐚, 𝐯) = 0.04 + 1.38(1.04)/218.53 = 0.0466). 

The author also showed that the IRR is but a particular case of (5) obtained when the interim 

values are derived from the IRR: let 𝐯𝐚 = (v0a, v1a, … , v𝑛−1a ) be such that v𝑗a = v𝑗−1a ⋅ (1 + 𝜎) −𝑎𝑗. In other words, this is the capital that would be employed at time 𝑗 if the capital grew at a 

constant force of interest 𝜎. Under this assumption, one gets AIRR(𝐚, 𝐯𝐚) = 𝜎 so that (6) 

becomes 

NPV1(𝐚) = NPV(𝐯𝐚) ⋅ (𝜎 − 𝑟)                                                      (8) 
 

An IRR is then an internal AIRR. 

 

3.2 The economic AIRR 

Particularly meaningful is the case of the economic AIRR, that is, the rate of return that is 

generated in an efficient market, where current market prices fully reflect available information. 

Consider an investor (e.g., a firm), willing to undertake project 𝐚; how does an efficient market 

evaluate this situation if the equilibrium market rate is 𝑟? Before announcement of the project, 

shareholders’ rate of return is 𝑟. When the firm announces the undertaking of investment 𝐚, there 

is a state of temporary disequilibrium and the stock price increases (or decreases) to arbitrage 

away the disequilibrium. This causes the firm’s equity value to instantaneously change by v0e − v0 where v0e = ∑ 𝑎𝑗(1 + 𝑟)−𝑗𝑛𝑗=1  is the economic (i.e., market) value of 𝐚, so v0e − v0 is an 

instantaneous return to shareholders. Once the equilibrium is re-established again, shareholders’ 

rate of return is, again, 𝑟, which implies that v𝑗e = ∑ 𝑎𝑘(1 + 𝑟)𝑗−𝑘𝑛𝑘=𝑗+1  is the economic value 

of 𝐚 at time 𝑡 ≥ 1 (see Magni, 2013). This means that the firm invests v0 = −𝑎0 at time 0, v1e at 

time 1, v2e at time 2 and so on. Therefore, 𝐕𝐞 = (v0, v1e, … , v𝑛−1e ) is the sequence of capital 

values invested in project 𝐚 in the various periods.7 

 

                                                
7Lindblom and Sjögren (2009)  endorse the use of this sequence (which they call “strict market-based 
depreciation schedule”) for increasing goal congruence in managerial performance evaluation. They show 
that  such a choice is superior to ordinary straight-line, annuity-based or IRR-based depreciation 
schedules. 
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Let 𝐚e = (−v0e, 𝑎1, … , 𝑎𝑛) be a modified cash-flow stream such that v0e replaces v0 and let 𝐯𝐞 = (v0e, v1e, … , v𝑛−1e ) be its corresponding stream of economic values. Also, consider the 

incremental vectors 𝚫𝐚e = (a0 + v0e, 0, … ,0) and its corresponding capital stream 𝚫𝐯e =(v0 − v0e, 0, … ,0). Project a can be viewed as a portfolio of 𝐚e and 𝚫𝐚e: that is, 𝐚 = 𝐚𝐞 + 𝚫𝐚e. 
Likewise, 𝐕𝐞 = 𝐯𝐞 + 𝚫𝐯𝐞(note that 𝚫𝐚e = −𝚫𝐯e). By NPV additivity, this implies 

NPV(𝐚) = NPV(𝐚𝐞) + NPV(𝚫𝐚𝐞). 
Definition 1. The economic AIRR (EAIRR) of project 𝐚 is the AIRR that obtains in an efficient 

market, that is, the AIRR that results by picking 𝐯 = 𝐕𝐞. 
 

Using (6), the EAIRR of a can be expressed as a weighted average of the constituents assets’ 

rates of return, AIRR(𝐚𝐞, 𝐯𝐞) and AIRR(𝚫𝐚e, 𝚫𝐯𝐞), respectively: 

 EAIRR = AIRR(𝐚, 𝐕𝐞) = AIRR(𝐚𝐞, 𝐯𝐞) ⋅ NPV(𝐯𝐞) + AIRR(𝚫𝐚e, 𝚫𝐯𝐞) ⋅ NPV(𝚫𝐯𝐞)NPV(𝐯𝐞) + NPV(𝚫𝐯𝐞) .   (9) 
However, by (7), 

AIRR(𝚫𝐚e, 𝚫𝐯𝐞) = 𝑟 + NPV(𝚫𝐚𝐞)NPV(𝚫𝐯𝐞) (1 + 𝑟) = 𝑟 + 𝑎0 + v0ev0 − v0e (1 + 𝑟) = −1. 
This is intuitive, because 𝚫𝐚𝐞consists of one single cash flow: this means that one borrows a0 + v0e and pays no interest nor reimburses the capital; in other words, the borrowing rate is −100% (which means that one is making money out of a borrowing: in financial jargon, it is an 

arbitrage). Further, by definition of economic value, the NPV of 𝐚e  is zero: NPV(𝐚𝐞) = 0, 

which implies, by (7), that its AIRR is AIRR(𝐚𝐞, 𝐯𝐞) = 𝑟. Hence, project 𝐚 is a portfolio of an 

equilibrium (i.e., zero NPV) asset yielding the equilibrium rate 𝑟 and an incremental 

instantaneous return 𝚫𝐚𝐞 which represents the investor’s arbitrage gain). This implies that the 

EAIRR is a weighted average of 𝑟 and 100%:  

EAIRR = 𝑟 ⋅ NPV(𝐯𝐞) + 1 ⋅ NPV(|𝚫𝐯𝐞|)NPV(𝐯𝐞) + NPV(𝚫𝐯𝐞) .                                        (10) 
Considering that NPV(𝚫𝐯𝐞) = v0 − v0e = −NPV(𝐚), (10) can be rewritten as 

EAIRR = 𝑟 ⋅ NPV(𝐯𝐞)NPV(𝐕𝐞) + NPV(𝐚)NPV(𝐕𝐞)                                            (11) 
which implies 
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NPV(𝐚) = EAIRR ⋅ NPV(𝐕𝐞) − 𝑟 ⋅ NPV(𝐯𝐞).                                      (12) 
Equation (12) says that the project’s NPV represents an above-normal return; that is, it is the 

difference between the project’s return8 and the equilibrium return that investors obtain from the 

equilibrium asset 𝐚𝐞. 
 

Note that the period returns associated with the economic rate of return, AIRR(𝐕𝐞), are equal to 

the equilibrium rate, 𝑟, except in the first period, where the equilibrium asset’s return is 𝑟 ⋅ v0e =v1e + 𝑎1 − v0e and the project’s return is 𝑖1v0 = v1e + 𝑎1 − v0. Hence,  

𝑖1v0 = (v0e − v0) + 𝑟v0e.                                                         (13) 
Equation (13) states that the return in the first period can be decomposed into two shares: the 

incremental amount v0e − v0 and the first-period return of 𝐚𝐞. This means that the first-period 

return is decomposed into an instantaneous return, NPV(𝐚), due to an immediate price increase, 

and an equilibrium return equal to 𝑟 ⋅ v0e, generated at time 1. Equation (13) summarises then the 

pricing behaviour of the efficient market: the first step is the instantaneous passage from v0 to v0e, due to the efficient pricing process of the market which sweeps away the state of 

disequilibrium; the return gained in this step (‘windfall gain’) is just due to the price increase 

and so is equal to the NPV of 𝐚. The second step is the passage from v0e to v1e, which warrants a 

return equal to v1e − v0e + 𝑎1 = 𝑟 ⋅ v0e. In the subsequent periods, the period rates of return of 𝐚 

and 𝐚𝐞 are equal: 𝑖𝑡 = 𝑟.This implies that the EAIRR can also be seen as a weighted average of 

the disequilibrium rate of return, 𝑖1, and the equilibrium rate, 𝑟: 

EAIRR = 𝑖1 ⋅ v0NPV(𝐕𝐞) + 𝑟 ⋅ NPV(𝐕𝐞) − v0NPV(𝐕𝐞)                                              (14) 
 

To sum up, AIRR(𝐚𝐞, 𝐯𝐞) = 𝑟 is the rate of return of an equilibrium asset 𝐚𝐞 whereas the 

economic AIRR, represents the rate of return of a project 𝐚 as determined by the pricing process 

of an efficient market. 

 

4. Relationships between the scheduling effect and AIRR. 

This section develops the links between the concepts introduced in the previous sections. In 

particular, we show how the scheduling effect defined in section 2 can be expressed, in two 

different ways, in terms of particular AIRRs. 

 

 

                                                
8Note that EAIRR ⋅ NPV(𝐯) = 𝑖1v0 +∑ 𝑟 ⋅ v𝑡−1(1 + 𝑟)−(𝑡−1)𝑛𝑡=2 . 
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4.1. The first expression 

As in section 2, let 𝐚 be a payment stream, where 𝐚 consists of initial investment terms (negative 

terms), followed by succeeding repayments (non-negative terms): and let 𝐚 have IRR equal to 𝜎. 

Again as in section 1, let 𝐛 be the vector with initial investment terms identical to those of 𝐚, 

followed by a stream of constant, i.e., annuity style, repayments b, where b is chosen so that the 

IRR of 𝐛 is equal to 𝜎. 

 

Now, let 𝐯𝐛 be defined, in relation to the payment stream 𝐛 as the capital that would be invested 

if capital grew at the constant force of interest 𝜎, so that 

   v0b = −𝑏0  

  and v𝑗b = v𝑗−1k ⋅ (1 + 𝜎) − 𝑏𝑗,     𝑗 = 1,… , 𝑛.                                                  (15) 
 

Then,9 as equation (6) holds for any 𝐯,  

(1 + 𝑟)NPV(𝐚) = NPV(𝐯𝐛) ⋅ (AIRR(𝐚, 𝐯𝐛) − 𝑟))                         (16) 
where NPVs are calculated at discount rate 𝑟, and where AIRR(𝐚, 𝐯𝐛) denotes the AIRR of 𝐚 

calculated relative to  𝐯𝐛 and discount rate 𝑟. 

 

Further, from equation (8), applied to b rather than a, it follows that 

(1 + 𝑟)NPV(𝐛) = NPV(𝐯𝐛) ⋅ (𝜎 − 𝑟)                                                  (17) 
It follows immediately from (16) and (17) that, when 𝜎 ≠ 𝑟 (as will always be the case in the 

situations in which we are interested), 

NPV(𝐚)NPV(𝐛) = AIRR(𝐚, 𝐯𝐛) − 𝑟σ − 𝑟 .                                                      (18) 
 

But the term on the left of this equation is just the scheduling effect in the decomposition into 

interest and scheduling effects given in equation (4). Equation (18), therefore, provides our first 

expression for the scheduling effect in terms of a particular AIRR: in this expression the relevant 

AIRR is the AIRR of 𝐚 calculated relative to 𝐯b (and discount rate 𝑟), where 𝐯𝐛 is, as seen, the 

vector of invested capital implied by the “annuity” payment vector 𝐛 under the assumption of 

constant force of interest 𝜎. 

                                                
9 Note that, if 𝑚 is the date of the last outflow and 𝑗 ≤ 𝑚 , then v𝑗a = v𝑗b, since 𝑎𝑗 = 𝑏𝑗. 
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Note that equation (18) implies the following: 

 the scheduling component is greater than 1 if, and only if, AIRR(𝐯𝐛) > 𝜎 

 the scheduling component increases, (or decreases), the larger (or smaller) AIRR(𝐚, 𝐯𝐛) 
is relative to 𝜎 

 the interest component in eq. (4) decomposition is independent of AIRR(𝐚, 𝐯𝐛) 
 the NPV of 𝐚 is greater than the NPV of 𝐛 if, and only if, AIRR(𝐚, 𝐯𝐛) > 𝜎. 

 

 

Owing to (6) and (8), and considering that AIRR(𝐚, 𝐯𝐚) = 𝜎, scheduling effect becomes 

NPV(𝐚)NPV(𝐛) = NPV(𝐯𝐚)/𝑛NPV(𝐯𝐛)/𝑛.                                                          (19) 
 

Therefore, (19) indicates that a statistics based on average invested capital  is a reliable indicator 

of the extent of departures of the relevant payment profiles from annuity type. That is, the 

scheduling effect can be alternatively captured by the ratio of the relative return component (eq. 

(18)) or the ratio of the relative capital component (eq. (19)).10 

 

4.2. The second expression 

In project finance transactions (and, in particular, in PFI schemes) the initial investment takes 

place over, typically, three or four years. The construction phase is where a lot of the risk 

associated with the project is located: and no income is received until construction is completed, 

and the unit becomes operational. During this phase, the project is not usually an attractive sale 

prospect in the secondary PFI market. It is usually only when construction is safely completed 

that the project becomes attractive to secondary investors, like pension funds, and is very often, 

at this stage, sold in the secondary PFI market, with a valuation indicating an implicit discount 

rate usually much lower than the project IRR. Hence, the idea of economic values just becomes 

compelling at the end of the construction phase, rather than at year 1. So, we now blend the 

capital stream 𝐯𝐚 (which will be used for the construction phase), and the capital stream 𝐕𝐞(which will be used for the payment phase) and show that this brings about an interesting 

decomposition of the scheduling component. To this end, let 𝑚 the date at which the last outflow 

is incurred (end of the construction phase), and consider that 𝐚 may be seen as a portfolio of two 

investments: the first one is the construction project 𝐜 = (𝑎0−, 𝑎1− , … , 𝑎𝑚− + v𝑚a , 0, … ,0) 
consisting of all the outflows 𝑎𝑡− and the constructive sale  of 𝐜 at a price v𝑚a ; the second one is 

                                                
10 Obviously, 𝑛 is irrelevant in eq. (19): to use total invested capital or average invested capital is the 
same: both measure the project investment scale. 
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the payment project 𝐩 = (0,… ,0, −v𝑚a , 𝑎𝑚+1+ , 𝑎𝑚+2+ , … , 𝑎𝑛+), consisting of the constructive 

purchase of 𝐩 at  v𝑚a  and the payments 𝑎𝑡+ made by the public investor. Summing, 𝐚 = 𝐜 + 𝐩. 

For the construction project, 𝐜, consider the sequence of internal values  𝐯𝐜 = (v0a, v1a, … , v𝑚−1a , 0, … ,0), which implies that the AIRR of 𝐜 is 𝜎; for the payment project, 𝐩, consider the sequence 𝐯𝐩 = (0,… ,0, v𝑚a , v𝑚+1 e , v𝑚+1e  , … , v𝑛−1 e ),11 which implies that the 

AIRR of 𝐩 is an EAIRR. Then, the sequence of capital values for 𝐚 is 

 𝐕𝒎𝐞 = 𝐯𝐜 + 𝐯𝐩 = (v0a, v1a, … , v𝑚a , v𝑚+1 e , v𝑚+2e  , … , v𝑛−1 e ) 
 

and the AIRR of 𝐚, relative to 𝐕𝒎𝐞 , is a weighted average of the two rates of return: 

AIRR(𝐚,𝐕𝒎𝐞 ) = 𝜎 ⋅ NPV(𝐯𝐜)NPV(𝐕𝒎𝐞 ) + EAIRRp ⋅ NPV(𝐯𝐩)NPV(𝐕𝒎𝐞 )                                 (20) 
where EAIRRp now refers to 𝐩 rather than 𝐚. 

Formally, the EAIRR of 𝐚 is a particular case of (20), obtained by picking 𝑚 = 0: AIRR(𝐚, 𝐕𝟎𝐞) = AIRR(𝐚,𝐕𝐞) = EAIRR. Analogously, the IRR of 𝐚 is a particular case of (20), 

obtained by picking 𝑚 = 𝑛 − 1: AIRR(𝐚,𝐕𝒏−𝟏𝐞 ) = AIRR(𝐚, 𝐯𝐚) = IRR. We call (20) blended 

economic AIRR (BEAIRR). 

Obviously, using (7), the BEAIRR can also be computed with the shortcut 

BEAIRR = 𝑟 + NPV1(𝐚)NPV(𝐕𝒎𝐞 ).                                                           (21) 
Using the BEAIRR, the scheduling component is clearly affected by both rate and capital. More 

precisely, from (6), 

 NPV(𝐚, 𝑟)|NPV(𝐚−, 𝑟)| = NPV(𝐛, 𝑟)|NPV(𝐚−, 𝑟)| ⋅ NPV(𝐕𝒎𝐞 ) ⋅ (BEAIRR − 𝑟)NPV(𝐯𝐛) ⋅ (𝜎 − 𝑟) . 
 

Therefore, we obtain a decomposition of  the scheduling component into a (relative) capital 

component and a (relative) return component: 

 

                                                
11 Note that 𝐯𝐩 fulfils the equality condition between the first capital and the investment cost (−v𝑚b ) 
changed in sign. 
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NPV(𝐚, 𝑟)NPV(𝐛, 𝑟) = NPV(𝐕𝒎𝐞 )NPV(𝐯𝐛)⏞      capital component ⋅ BEAIRR − 𝑟𝜎 − 𝑟⏞        .return component                                          (22) 
 

The interaction between capital and rate determines whether a scheduling effect arises or not and 

the magnitude of it. In particular, letting 𝐾 ≔ NPV(𝐕𝒎𝐞 )NPV(𝐯𝐛) be the (relative) capital component and 𝑅 ≔ BEAIRR−𝑟𝜎−𝑟  be the (relative) return component, (22) can be written as  
NPV(𝐚,𝑟)NPV(𝐛,𝑟) = 𝐾 ⋅ 𝑅. While 𝐾 tells us by how much the capital component of a exceeds the capital component of b, 𝑅 tells 

how by how much the return component of a exceeds the return component of b. Evidently, the 

scheduling effect arises if and only if  𝐾 ⋅ 𝑅 ≠ 1.  

 

To sum up, one may conveniently decompose the scheduling component into a relative capital 

component and a relative return component. This enables the evaluator to understand not only 

the magnitude of the scheduling effect, but also how the individual components 𝐾 and 𝑅 interact  

in producing it: 

 

 

 

Profitability index NPV(𝐚)|NPV(𝐚−)| 
 

 

 

 Interest component  Scheduling component 

  
NPV(𝐛)|NPV(𝐚−)|    

NPV(𝐚)NPV(𝐛) 
 

 

 

    Capital component   Return component 

           𝐾 = NPV(𝐕𝒎𝐞 )NPV(𝐯𝐛)        𝑅 = BEAIRR−𝑟𝜎−𝑟  
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Note that,  in equation (18), the relative capital component is nullified, as we have used 𝐯𝐛 as the 

capital stream for 𝐚, so the scheduling effect is entirely captured by the relative return 

component. Analogously, in equation (19), the relative return component is nullified, as we have 

used 𝐯𝐚 as the capital stream for 𝐚, so the scheduling effect is entirely captured by the relative 

capital component. Unlike (18) and (19), the use of BEAIRR in (22) recognises both effects. 

5. A partial ordering on the set of transaction vectors which has a simple relationship with 

the scheduling effect and the AIRR. 

In section 1, we defined the scheduling component as 
NPV(𝐚)NPV(𝐛), and showed how it has a simple 

expression in terms of a particular AIRR. What we did not do in detail, however, was to justify 

the claim we had made there, that the more the repayment terms in the transaction vector a were 

shifted towards the later years in the life of the transaction, then the larger the scheduling effect. 

In this section, we repair this gap, by defining a natural partial ordering on the space of 

transaction vectors, which corresponds to re-scheduling payments, and then showing how the 

scheduling effect increases with this partial ordering.  

 

Let x and y be transaction vectors, with the same IRR  , and let 𝐳 = 𝐱 − 𝐲. 
 

Definition 2.  𝐱 ≻≻ 𝐲  if, and only if, there exists an integer 𝑘 such that z𝑗 ≤ 0 for all 𝑗 ≤ 𝑘 and z𝑗 ≥ 0 for all 𝑗 > 𝑘. 

 

Conversely, the relationship ≺≺ is defined by 𝐱 ≺≺ 𝐲  if and only if  𝐲 ≻≻ 𝐱. 

 

Now define the relationship 𝐱 ≻ 𝐲 between two transaction vectors (again with the same IRR 𝜎) 

as follows. 

 

Definition 3.  𝐱 ≻ 𝐲 if, and only if, there exist transaction vectors 𝛂1, 𝛂2 , … , 𝛂𝑚, for some 𝑚, 

where each of the 𝛂𝒋 has IRR 𝜎, such that  𝐱 ≻≻ 𝛂1 ≻≻ 𝛂2 ≻≻ ⋯ ≻≻ 𝛂𝑚 ≻≻ 𝐲. 

 

The relationship    is a partial ordering on the set of transaction vectors with IRR  : that is, it 

satisfies the relationships 

 𝐱 ≻ 𝐲 and 𝐲 ≻ 𝐳 ⟹ 𝐱 ≻ 𝐳, 

 𝐱 ≻ 𝐱, 

 if  𝐱 ≻ 𝐲 and 𝐲 ≻ 𝐱, then 𝐱 = 𝐲. 
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The converse relationship ≺ is defined by 𝐱 ≺ 𝐲  if and only if  𝐲 ≻ 𝐱. 

 

If 𝐱 ≻ 𝐲, therefore, the payments in transaction 𝐱 are scheduled to be later than those in y, in the 

sense defined in Definition 3. 

 

Given the way the relationship ≻ has been defined, it is not immediately obvious, for any 

specific pair of transaction vectors 𝐱 and 𝐲, whether the relationship ≻ holds between them. The 

following theorem gives a necessary and sufficient condition for the relationship ≻ to hold. 

 

It is necessary to introduce some notation first. If 𝐳 is a transaction vector with IRR 𝜎, let the 

vector 𝐯𝐳 be defined, in relation to the transaction vector 𝐳, as the capital that would be invested 

if capital grew at the constant force of interest 𝜎, so that 

 v0z = −𝑧0, 

 v𝑗z = (1 + 𝜎)vj−1z − 𝑧𝑗                 𝑗 = 1,2, … , 𝑛                                                                       (23) 
If v𝑗z ≥ 0 for all 𝑗, then we denote 𝐳 as a Soper transaction, since this type of transaction was 

considered in Soper (1959).12 

 

We state, without proof, the following standard facts about Soper transactions, which are not 

difficult to establish: 

i. If 𝐳 is a transaction where initial non-positive terms are followed by subsequent non-

negative terms, then it is Soper. 

ii. The IRR of a Soper transaction is unique. 

iii. If 𝐳 is a Soper transaction with IRR 𝜎, then NPV(𝐳, 𝑟) > 0 for all discount rates 𝑟 < 𝜎. 

 

We characterise the relationship ≻ by the following theorem. 

 

Proposition 2. If 𝐱 and 𝐲 are transaction vectors with the same IRR, and if 𝐳 = 𝐱 − 𝐲, then 𝐱 ≻ 𝐲 if, and only if, 𝐳 is a Soper transaction. 

 

Proof. 

(i) Suppose 𝐱 ≻ 𝐲. Let 𝛂1 , 𝛂2, … , 𝛂𝑚 be the transaction vectors whose existence is 

implied by Definition 3. Then, 𝐳 = 𝐱 − 𝐲 = (𝐱 − 𝛂1) + (𝛂1 − 𝛂2) + ⋯+ (𝛂𝑚 −𝐲). Now, each of the bracketed terms in this sum has initial non-positive terms 

followed by subsequent non-negative terms, and is therefore a Soper transaction. 

                                                
12More precisely, Soper (1959) considered the condition v𝑗z > 0. The extension to the general case v𝑗z ≥ 0 

can be found in Gronchi (1986). 
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Since it is easily established that a sum of Soper transactions with the same IRRs is 

also Soper, it follows that 𝐳 is Soper. 

(ii) Suppose  𝐳 is Soper, with IRR 𝜎. Then, 𝐯𝐳 ≥ 𝟎 .Now let 𝛽𝑗, for 𝑗 = 0,1, … , 𝑛 − 1 be 

defined as the transaction vector which has 𝑗-th term equal to −v𝑗z, (𝑗 + 1)-th term 

equal to (1 + 𝜎)v𝑗z, and all other terms zero. Now since, from equation (23), 𝑧𝑗 = (1 + 𝜎)v𝑗−1z − v𝑗z, it follows that 𝐳 = ∑ 𝛽𝑗𝑛−1𝑗=0 .Hence, 𝐲 ≺≺ 𝐲 + 𝛃𝟎 ≺≺ 𝐲 +𝛃0 + 𝛃1 ≺≺ . . . ≺≺ 𝐲 + 𝛃0 + 𝛃1 +⋯+ 𝛃𝑛−1 = 𝐲 + 𝐳 = 𝐱, which implies 𝐱 ≻ 𝐲. 

This completes the proof. 

 

Corollary. If 𝐱 and 𝐲 are transaction vectors, with the same IRR 𝜎, and if  𝐱 ≻ 𝐲, then NPV(𝐱, 𝑟) ≥ NPV(𝐲, 𝑟) for all 𝑟 < 𝜎, and the inequality is strict unless 𝐱 = 𝐲. 

 

Proof.  It follows from Proposition 2 that 𝐱 = 𝐲 + 𝐳, where 𝐳 is Soper. The corollary then 

follows since, for 𝐳 Soper, NPV(𝐱, 𝑟) > 0 for all discount rates 𝑟 < 𝜎. 

 

We now return to the situation considered in section 1 of this paper, and show how the 

scheduling effect defined there relates to the partial ordering ≺.  

More specifically, let 𝐚1 and 𝐚2 be transaction vectors of the type considered in section 1: that is, 

having initial investment (non-positive) terms followed by non-negative terms. Suppose that 

both vectors have the same IRR 𝜎, and that the initial non-positive terms in both vectors are the 

same. Again as in section 1, let 𝐛 be the vector with initial investment terms identical to those of 𝐚1 (and 𝐚2), followed by a stream of constant, i.e., annuity style, repayments 𝑏, where 𝑏 is 

chosen so that IRR of 𝐛 is equal to 𝜎. 

 

Then we have the following: 

 

Proposition 3. (Relationship between the scheduling effect and the partial ordering). 

If 𝐛 ≺ 𝐚1 ≺ 𝐚2, then 1 ≤ NPV(𝐚1,𝑟)NPV(𝐛,𝑟) ≤ NPV(𝐚2,𝑟)NPV(𝐛,𝑟)   for all 𝑟 < 𝜎 , and the inequalities are strict 

unless the relevant transactions are identical. 

If 𝐚1 ≺ 𝐚2 ≺ 𝐛, then 
NPV(𝐚1,𝑟)NPV(𝐛,𝑟) ≤ NPV(𝐚2,𝑟)NPV(𝐛,𝑟) ≤ 1  for all 𝑟 < 𝜎, and the inequalities are strict 

unless the relevant transactions are identical. 

 

Proof. It follows immediately from the corollary to Proposition 2, on noting that, since 𝐛 is 

Soper, NPV(𝐛, 𝑟) > 0 for all 𝑟 < 𝜎. 
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In other words, the scheduling effect defined in section 1 increases monotonically with the 

partial ordering ≺. 

 

Because of equation (18) in section 3, it also follows that there is a relationship between the 

partial ordering and the AIRR, in the following sense. If we denote, in an obvious notation, AIRR(𝐚, 𝐯𝐛, 𝑟) as being the AIRR of a relative to the capital invested in b (at constant force of 

interest 𝜎), and relative to discount rate 𝑟, then the following result holds. 

 

Proposition 4. (Relationship between AIRR and the partial ordering). 

If 𝐛 ≺ 𝐚1 ≺ 𝐚2, then 𝜎 ≤ AIRR(𝐚1, 𝐯𝐛, 𝑟) ≤ AIRR(𝐚2, 𝐯𝐛, 𝑟)  for all 𝑟 < 𝜎 , and the inequalities 

are strict unless the relevant transactions are identical. 

If   𝐚1 ≺ 𝐚2 ≺ 𝐛, then AIRR(𝐚1, 𝐯𝐛, 𝑟) ≤ AIRR(𝐚2, 𝐯𝐛, 𝑟) ≤ 𝜎 for all 𝑟 < 𝜎 , and the 

inequalities are strict unless the relevant transactions are identical. 

 

Proof. It follows immediately from applying equation (18) to the previous result. 

 

Of course, the relationship ≻ which we have considered here is only a partial ordering on the set 

of transaction vectors: so it will not necessarily hold in practice that either 𝐚 ≺ 𝐛  or 𝐛 ≺ 𝐚. 

Nevertheless, the partial ordering is interesting, because it does illustrate how the scheduling 

effect and the corresponding AIRR increase monotonically with the kind of rescheduling of 

payments which increases the partial order. This gives a good intuitive justification for our use 

of the term ‘scheduling component’ in section 1. 

 

6. Some numerical examples 

In this section, we illustrate the application of the above theory by means of three numerical 

examples. The data in these examples have been taken from the financial projections for actual 

PFI schemes. In each case, the projects considered are PFI hospital schemes in Scotland and the 

North of England on which construction commenced in the late 1990s, and the relevant data 

were obtained using requests under United Kingdom Freedom of Information Acts. 

 

The three examples have been chosen to illustrate different aspects of the PFI process.  

 

Examples 1-3 represent the perspective of investors in different aspects of the financing of the 

project. Examples 1 and 2 represent cases of investors incurring costs, and then receiving 

benefits. In the first example, the negative terms of 𝐚 represent investment of senior debt in a 

project, and the positive terms represent the returns to the investor by way of repayments of 
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capital and of interest. The second example represents the perspective of an equity investor in a 

project: in this case, the negative terms of 𝐚 are the inputs of subordinate debt and equity to the 

project, and the positive terms are the outputs of this investment distributed as dividends. 

 

Example 3 illustrates the perspective of the public sector client of a PFI project. The negative 

terms in the payment stream in this case represent the initial investment of capital by the private 

sector consortium in building and equipping the hospital: and the positive terms represent the 

non-service  element (NSE) of the unitary charge paid each year to the consortium during the 

operational years of the project, where the NSE is as defined in section 1. From this perspective, 

the negative terms represent the benefits received by the public sector, in terms of the provision 

of the hospital facility, and the positive terms the subsequent costs incurred in paying for these 

benefits. 

 

In examples 1 and 3, the choice of reference interest rate (cost of capital) for calculating NPVs is 

5%. In example 2, a discount rate of 9% was taken: this is appropriate, because it is close to the 

return investors would have assumed at the time when investing in PFI equity in the secondary 

PFI market. 

 

The first example is illustrated in Table 1,where 𝐛 contains the cash flows debtholders would 

receive if they invested in an annuity-repayment loan with IRR equal to the IRR of 𝐚. Looking 

first of all at the first expression of the scheduling effect in terms of AIRR, as developed in 

Section 3.1, the AIRR of 𝐚 (relative to 𝐯𝐛) is AIRR(𝐚, 𝐯𝐛) = 6.72%, whereas the IRR signals a 

greater rate of return of 7.18%. Since the AIRR is less than the IRR, equation (18) implies that 

there will be a scheduling effect which is less than 1: in fact, from (18), the magnitude of the 

scheduling effect is 0.789. The same result can be obtained from the ratio of the (average or 

total) invested capital of 𝐚 and 𝐛: 21,007.19/26,636.14 = 0.789 (see equation (19)). It is easy 

to see that the interest component is 0.317, which means that the profitability index is 0.317 ⋅0.789 = 0.25, i.e., debtholders of the project company increase their wealth by £0.25 per pound 

invested. It is worth noting that  AIRR(𝐚, 𝐯𝐛), while smaller than the IRR, is greater than the 

required return to debt (𝑟 = 5%). This implies that the project financing transaction is a value-

creation project for debtholders, but the latter would be better off by investing their funds in 𝐛 (if 

feasible), that is, in a level-payment investment with the same IRR, 𝜎.  

 

Turning now to the second expression for the scheduling effect, as developed in Section 3.2, 

which involves estimating the interim values according to market values (after completion of the 

hospital), then the rate of return to debtholders is measured by BEAIRR = 6.97%. The 



 23 

scheduling component can then be decomposed in relative capital component and relative return 

component: 𝐾 = 0.871, 𝑅 = 0.905 so that 𝐾 ⋅ 𝑅 = 0.789.  

 

It is of interest to note that, in this particular example, 𝐳 = 𝐛 − 𝐚 is a Soper project (𝐯𝐛 − 𝐯𝐚 ≥ 0 

for all 𝑡), so, by Proposition 2, the partial ordering 𝐚 ≺ 𝐛 holds, which means AIRR(𝐚, 𝐯𝐛) < 𝜎, 

as seen. Indeed, the stronger relationship 𝐚 ≺≺ 𝐛 also holds. 

 

In the equity example (Table 2),  AIRR(𝐚, 𝐯𝐛) = 35.6% is considerably greater than the IRR,  σ = 23.2%, which, by formula (18), implies a scheduling component much greater than 1: in 

fact, formula (18) gives an actual value for the scheduling component of 1.88, and is just equal 

to the ratio of the average (or total) capital values: NPV(𝐯𝐚)/NPV(𝐯𝐛) = 1.876. Decomposition 

of the scheduling component is possible if BEAIRR if used. In this case, the BEAIRR is equal to 

the EAIRR, for all cash flows are positive after the initial equity contribution: BEAIRR =EAIRR = 14.64%. Decomposing the scheduling component, it is clear that the capital 

component 𝐾 = 4.72 plays an important role in the high value of the scheduling component. 

 

In this example, 𝐳 = 𝐚 − 𝐛 is a Soper project (𝐯𝐚 − 𝐯𝐛 ≥ 0 for all 𝑡), so the relation 𝐚 ≻ 𝐛 

holds. Indeed, the stronger relationship 𝐚 ≻≻ 𝐛 also holds. 

 

As for the third example, one should bear in mind that negative (positive) cash flows are benefits 

(costs) for the public sector, so the AIRRs and the IRR are borrowing rates and the profitability 

index is not a profitability measure but a cost measure. As can be seen from Table 3, AIRR(𝐚, 𝐯𝐛) = 7.75% is smaller than the IRR, 𝜎 = 7.93%, suggesting that the public sector 

benefits from turning to the project financing transaction instead of borrowing with a level-

payment annuity-like financing, even though the IRR is the same. The cost index is 0.35, which 

means that the public sector pays  £0.35 pounds for each pound borrowed and there is a slight 

scheduling effect. 

 

Note that, for this last example, 𝐳 = 𝐛 − 𝐚 is a Soper project, so the relations 𝐚 ≺ 𝐛 holds. In 

this case, the stronger relation 𝐚 ≺≺ 𝐛 holds. 

 

 

7. Concluding remarks 

This paper illustrates the danger in relying on IRR as an indicator to assess the performance of 

financial projects. The use of IRRs should be discouraged, as other metrics are available that 

more properly adhere to the underlying  economic referents.,. So to avoid the danger of being 
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seriously misled, the analyst should not rely on IRR, but should base conclusions on appropriate 

deeper analyses. This paper shows that a possible way of coping with this issue is to  rest on the 

notion of scheduling effect as developed in Cuthbert and Cuthbert (2012) and make appropriate 

use of Magni (2010, 2013)’s AIRR approach, following the equivalences developed in this 

paper. An appropriate analysis  should also require quoting average outstanding capital values in 

association with IRRs or AIRRs. 

While the original paper by Cuthbert and Cuthbert was concerned with a particular class 

of financial project (namely, PFI schemes), the techniques developed there, and the extension of 

these techniques in this paper using AIRRs, are actually of much more general applicability. In 

the case of PFI schemes, the UK Treasury identified the inadequacy of IRR alone as an indicator 

if payment streams were not of the flat, annuity, type: so once it was established empirically that 

payment streams are commonly not flat in PFI schemes, there was a clear need to develop 

further indicators – which was the impetus behind the Cuthbert and Cuthbert paper. But it is also 

clear that, in general investment problems, there will often be similar requirements. And it will 

also commonly be the case that payment profiles will not be of an annuity type (or cannot be 

assumed to be of this type). 

 

Acknowledgements. We wish to thank two anonymous reviewers for their helpful comments in 

revising the paper. 

 

References 

Biondi, Y. (2006) The double emergence of the modified internal rate of return: The neglected 

financial work of Duvillard (1755–1832) in a comparative perspective. The European Journal of 

the History of Economic Thought, 13(3), 311–335. 
 

Brealey, R. A., Myers, S., Allen, F. 2011. Principles of corporate  finance (Global Ed.). 

Singapore: McGraw-Hill Irwin. 
 

Cuthbert, J.R., Cuthbert, M. 2012. Why IRR is an inadequate indicator of costs and returns in 

relation to PFI schemes. Critical Perspectives on Accounting, 23(6) (September), 420‒433. 

 

Graham, J.R., Harvey, C.H. 2001. The theory and practice of corporate finance: evidence from 

the field. Journal of Financial Economics, 60, 187‒243. 

 

Gronchi, S. 1986. On investment criteria based on the internal rate of return. Oxford Economic 

Papers, 38(1) (March), 174‒180. 

 

Kierulff, H. (2008) MIRR: A better measure. Business Horizons, 51, 321–329. 



 25 

 

Lefley, F. 1996. The payback method of investment appraisal: A review and synthesis. 

International Journal of Production Economics, 44(3) (July), 207‒224]. 

 

Lefley, F. 2015. The FAP Model and its application in the appraisal of ICT projects. London: 

Palgrave Macmillan. 

Lin, S.A.Y. 1976, The modified internal rate of return and investment criterion, The Engineering 

Economist, 21 (4), Summer, 237‒247. 

Lindblom, T., Sjӧgren, S. 2009. Increasing goal congruence in project evaluation by introducing 

a strict market depreciation schedule. International Journal of Production Economics, 121, 519‒
532. 

Magni, C.A. 2009. Splitting up value: A critical review of residual income theories. European 

Journal of Operational Research, 198(1) (October), 1–22. 

 

Magni, C.A. 2010. Average Internal Rate of Return and Investment Decisions: A new 

perspective. The Engineering Economist, 55(2), 150‒181. 

 

Magni, C.A. 2013. The Internal-Rate-of-Return approach and the AIRR paradigm: A refutation 

and a corroboration. The Engineering Economist, 58(2), 73‒111. 

 

Magni, C.A. 2015. Aggregate Return On Investment for Investments under Uncertainty. 

International Journal of Production Economics, 165 (July), 29–37. 

 

Pasqual, J., Padilla, E., Jadotte, E. (2013). Technical note: Equivalence of different profitability 

criteria with the net present value. International Journal of Production Economics,  142, 205‒
210. 

 
Peasnell, K.V. 1982. Some formal connections between economic values and yields and 

accounting numbers. Journal of Business Finance & Accounting, 9(3), 361–381. 

 

Percoco, M., Borgonovo, E., 2012. A note on the sensitivity analysis of the internal rate of 

return. International Journal of Production Economics, 135, 526–529. 

 

Remer, D.S., Nieto, A.P., 1995a. A compendium and comparison of 25 project evaluation 

techniques. Part 1: Net present value and rate of return methods. International Journal of 

Production Economics, 42, 79–96. 

 

Remer, D.S., Nieto, A.P., 1995b. A compendium and comparison of 25 project evaluation 

techniques. Part 2: Ratio, payback, and accounting methods. International Journal of Production 

Economics, 42, 101–129. 

 

Remer, D.S., Stokdyk, S.B., Van Driel, M., 1993. Survey of project evaluation techniques 

currently used in industry. International Journal of Production Economics, 32, 103–115. 
 



 26 

Ross, S.A., Westerfield, R.W., and Jordan, B.D. 2011. Essentials of corporate finance (7th ed.). 

NewYork: McGraw-Hill/Irwin. 

 

Rubinstein, M.E. 2003. Great moments in financial economics: I. Present value. Journal of 

Investment Management. 1(1) (First Quarter), 45–54. 
 

Slagmulder, R., Bruggeman, W., van Wassenhove , L., 1995. An empirical study of capital 
budgeting practices for strategic investments in CIM technologies. International Journal of 

Production Economics, 2-3 (August), 121–152. 
 
Soper, C.S. (1959). The Marginal Efficiency of Capital: A Further Note. The Economic Journal,  

69(273), 174‒177. 

 

Treasury, H. M. 2004.  Guidance Note: The use of internal rates of return in PFI projects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 27 

Table 1a. Senior debt – cash flows and capital values 

year cash flows capital values 

  𝐚 𝐛 𝐯𝐚 𝐯𝐛 𝐕𝟒𝐞   

0 −3,497.46 −3,497.46 3,497.46 3,497.46 3,497.46 

1 −18,602.57 −18,602.57 22,351.07 22,351.07 22,351.07 

2 −23,780.31 −23,780.31 47,735.69 47,735.69 47,735.69 

3 −17,360.83 −17,360.83 68,522.89 68,522.89 68,522.89 

4 −1,739.38 −1,739.38 75,180.69 75,180.69 75,180.69 

5 6,865.12 6,167.10 73,711.87 74,409.89 87,612.29 

6 6,952.52 6,167.10 72,050.22 73,583.77 85,040.38 

7 7,016.40 6,167.10 70,205.42 72,698.36 82,276.00 

8 7,056.94 6,167.10 68,187.67 71,749.38 79,332.86 

9 7,158.24 6,167.10 65,923.79 70,732.30 76,141.26 

10 7,289.95 6,167.10 63,365.70 69,642.21 72,658.37 

11 7,356.37 6,167.10 60,557.58 68,473.88 68,934.93 

12 7,450.75 6,167.10 57,453.52 67,221.68 64,930.92 

13 7,610.31 6,167.10 53,967.10 65,879.61 60,567.16 

14 7,752.05 6,167.10 50,088.69 64,441.20 55,843.47 

15 7,937.77 6,167.10 45,746.17 62,899.55 50,697.88 

16 8,123.28 6,167.10 40,906.45 61,247.25 45,109.49 

17 6,902.18 6,167.10 36,940.45 59,476.34 40,462.79 

18 6,889.27 6,167.10 32,702.69 57,578.33 35,596.66 

19 6,938.59 6,167.10 28,111.43 55,544.07 30,437.91 

20 6,984.53 6,167.10 23,144.67 53,363.81 24,975.27 

21 7,029.10 6,167.10 17,776.84 51,027.05 19,194.93 

22 7,065.24 6,167.10 11,987.59 48,522.56 13,089.44 

23 7,097.52 6,167.10 5,750.51 45,838.30 6,646.40 

24 1,206.63 6,167.10 4,956.64 42,961.38 5,772.08 

25 377.50 6,167.10 4,934.91 39,877.95 5,683.19 

26 377.50 6,167.10 4,911.63 36,573.21 5,589.84 

27 377.50 6,167.10 4,886.67 33,031.26 5,491.84 

28 377.50 6,167.10 4,859.93 29,235.07 5,388.93 

29 377.50 6,167.10 4,831.26 25,166.40 5,280.88 

30 377.50 6,167.10 4,800.54 20,805.69 5,167.42 

31 377.50 6,167.10 4,767.61 16,131.99 5,048.29 

32 377.50 6,167.10 4,732.32 11,122.81 4,923.20 

33 377.50 6,167.10 4,694.50 5,754.08 4,791.86  

34 5,031.46 6,167.10 0.00 0.00 0.00  

  

    

  NPV 14,813.95 18,783.4 714,244.4 905,628.9 788,864.6 
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Table 1b. Senior debt – scheduling component 

AIRR    

IRR (𝜎) 7.18% |NPV(𝐚−)| 59,211.613 

COC (𝑟) 5% NPV(𝐛) 18,783.4 AIRR(𝐚, 𝐯𝐛) 6.72% interest component 0.317 

scheduling component 

eq. (18) 0.789 

  

Average capital    NPV(𝐯𝐚)/34 21,007.19 Profitability index  NPV(𝐯𝐛)/34 26,636.14 NPV(𝐚)/|NPV(𝐚−)| 0.25 

scheduling component 

eq. (19) 0.789 

  

    

BEAIRR    AIRR(𝐚,𝐕𝟒𝐞) 6.97%   

capital component 0.871   

return component 0.905   

scheduling component 

eq. (22) 0.789 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                
13 We remind that NPV(𝐚−) is defined as the present value, computed at 𝑟, of the project’s negative cash 
flows. 
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Table 2a. Equity – cash flows and capital values 

year cash flows capital values 

  𝐚 𝐛 𝐯𝐚 𝐯𝐛 𝐕𝟎𝐞   

0 −8400.1 −8400.1 8400.1 8400.1 8400.10 

1 1560.8 1951.9 8,788.2 8,397.1 31,541.37 

2 1584.6 1951.9 9,242.5 8,393.3 32,795.46 

3 1584.6 1951.9 9,802.2 8,388.7 34,162.41 

4 1584.6 1951.9 10,491.7 8,383.1 35,652.39 

5 1584.6 1951.9 11,341.2 8,376.1 37,276.46 

6 1987.7 1951.9 11,984.8 8,367.5 38,643.66 

7 2192.4 1951.9 12,572.9 8,356.9 39,929.17 

8 2280.1 1951.9 13,209.8 8,343.8 41,242.67 

9 2351.1 1951.9 13,923.5 8,327.8 42,603.38 

10 2407.0 1951.9 14,746.9 8,307.9 44,030.69 

11 2460.9 1951.9 15,707.4 8,283.5 45,532.57 

12 3180.8 1951.9 16,170.8 8,253.5 46,449.66 

13 2246.1 1951.9 17,676.4 8,216.4 48,384.03 

14 2183.3 1951.9 19,594.1 8,170.8 50,555.25 

15 2206.9 1951.9 21,933.2 8,114.5 52,898.32 

16 2216.8 1951.9 24,805.1 8,045.2 55,442.34 

17 2230.6 1951.9 28,329.5 7,959.9 58,201.53 

18 2237.1 1951.9 32,665.0 7,854.7 61,202.52 

19 4819.0 1951.9 35,424.5 7,725.1 61,891.71 

20 8860.8 1951.9 34,782.5 7,565.5 58,601.13 

21 9089.3 1951.9 33,763.0 7,368.9 54,785.96 

22 9478.6 1951.9 32,117.7 7,126.6 50,238.08 

23 9323.3 1951.9 30,245.9 6,828.1 45,436.17 

24 9516.5 1951.9 27,746.7 6,460.3 40,008.90 

25 9668.1 1951.9 24,516.0 6,007.3 33,941.57 

26 8937.4 1951.9 21,266.5 5,449.1 28,058.90 

27 5422.2 1951.9 20,778.3 4,761.4 25,161.99 

28 7371.0 1951.9 18,228.0 3,914.1 20,055.55 

29 14742.3 1951.9 7,714.8 2,870.3 7,118.26 

30 7758.9 1951.9 1,745.7 1,584.3 8,928.52 

31 2150.8 1951.9 0.0 0.0 0.00 

      NPV 22,117.6 11,788.2 169,766.1 90,482.0 427,337.7 
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Table 2b. Equity – scheduling component 

AIRR    

IRR (𝜎) 23.2% |NPV(𝐚−)| 8,400.10 

COC (𝑟) 9% NPV(𝐛) 11,788.2 AIRR(𝐚, 𝐯𝐛) 35.64% interest component 1.403 

scheduling component 

eq. (18) 1.876 

  

Average capital    NPV(𝐯𝐚)/31 5,476.33 Profitability index  NPV(𝐯𝐛)/31 2,918.77 NPV(𝐚)/|NPV(𝐚−)| 2.63 

scheduling component 

eq. (19) 1.876 

  

    

BEAIRR    AIRR(𝐚,𝐕𝟎𝐞) 14.64%   

capital component 4.723   

return component 0.397   

scheduling component 

eq. (22) 1.876 
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Table 3a. NSE – cash flows and capital values 

year cash flows capital values 

  𝐚 𝐛 𝐯𝐚 𝐯𝐛 𝐕𝟐𝐞   

0 −4,272.26 −4,272.3 4,272.3 4,272.3 4,272.26 

1 −25,700.88 −25,700.9 30,311.7 30,311.7 30,311.73 

2 −14,106.40 −14,106.4 46,820.5 46,820.5 46,820.46 

3 4,642.37 4,208.01 45,888.8 46,323.2 59,087.19 

4 4,603.76 4,208.01 44,921.9 45,786.5 57,437.79 

5 4,522.02 4,208.01 43,960.2 45,207.2 55,787.66 

6 4,494.08 4,208.01 42,950.1 44,582.1 54,082.97 

7 4,518.76 4,208.01 41,835.3 43,907.4 52,268.36 

8 4,557.57 4,208.01 40,593.4 43,179.2 50,324.20 

9 4,487.25 4,208.01 39,323.3 42,393.3 48,353.16 

10 4,411.66 4,208.01 38,028.2 41,545.2 46,359.15 

11 4,075.50 4,208.01 36,966.6 40,629.8 44,601.61 

12 3,813.28 4,208.01 36,083.1 39,641.9 43,018.41 

13 3,931.72 4,208.01 35,011.1 38,575.6 41,237.61 

14 4,035.33 4,208.01 33,750.6 37,424.9 39,264.16 

15 4,175.15 4,208.01 32,250.3 36,183.0 37,052.22 

16 3,943.92 4,208.01 30,862.3 34,842.6 34,960.90 

17 3,875.68 4,208.01 29,432.6 33,396.0 32,833.27 

18 3,908.19 4,208.01 27,857.1 31,834.8 30,566.75 

19 3,553.04 4,208.01 26,511.9 30,149.8 28,542.05 

20 3,387.88 4,208.01 25,225.2 28,331.3 26,581.27 

21 3,500.78 4,208.01 23,723.6 26,368.7 24,409.56 

22 3,819.73 4,208.01 21,784.0 24,250.5 21,810.31 

23 3,740.16 4,208.01 19,770.4 21,964.5 19,160.66 

24 3,713.92 4,208.01 17,623.3 19,497.2 16,404.78 

25 4,002.97 4,208.01 15,017.1 16,834.4 13,222.05 

26 3,869.13 4,208.01 12,338.1 13,960.6 10,014.02 

27 3,717.91 4,208.01 9,598.1 10,859.1 6,796.81 

28 3,618.82 4,208.01 6,739.9 7,511.7 3,517.84 

29 3,693.73 4,208.01 3,580.4 3,899.0 7,022.71 

30 3,864.12 4,208.01 0.0 0.0 0.00 

      NPV 14,401.86 15,318.8 516,915.0 549,827.3 601,407.1 
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Table 3b. NSE – scheduling component 

AIRR    

IRR (𝜎) 7.93% |NPV(𝐚−)| 41,544.2 

COC (𝑟) 5% NPV(𝐛) 15,318.8 AIRR(𝐚, 𝐯𝐛) 7.75% interest component 0.369 

scheduling component 

eq. (18) 0.94 

  

Average capital    NPV(𝐯𝐚)/30 17,230.50 Profitability index  NPV(𝐯𝐛)/30 18,327.58 NPV(𝐚)/|NPV(𝐚−)| 0.347 

scheduling component 

eq. (19) 0.94 

  

    

BEAIRR    AIRR(𝐚,𝐕𝟐𝐞) 7.51%   

capital component 1.094   

return component 0.860   

scheduling component 

eq. (22) 0.94 

  

 

 

 

 

 

 


