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Abstract 

 

One of the earliest and most enduring questions of financial econometrics is the predictability of 

financial asset prices.  In this article, stock market data from Brazil, Russia, India, China and 

South Africa are used to assess the out-of-sample performance of the ARMA(1,1)-GARCH(1,1) 

and Non-parametric kernel (Epanechnikov) regression models.  The results reveal that the non-

parametric kernel regression model outperforms its parametric rival based on the predicted 

mean square error (PMSE), Diebold-Mariano criterion, Mean-Absolute Deviation (MAD) and 

Variance statistics.  These results confirm those found previously by other researchers 

whereby non-parametric forecasting models outperform parametric models in the short-term 

forecasting horizon.    
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Introduction 

For many years economic researchers have studied whether a level of predictability exists in 

financial markets.  The fundamental role of the economy is the allocation of capital as efficiently 

as possible (Wurgler, 1999).  An efficient allocation of capital would be where sectors are 

expected to have high returns while avoiding sectors with poor prospects.    

Being able to predict financial asset prices correctly would allow investors flexibility in the 

portions they choose to invest in when diversifying their portfolio(s), and thus enable them to 

create abnormal returns.  Although prices are observed in financial markets, the majority of the 

literature has focused on returns.  Returns have been used in research studies instead of the 

actual observed prices as they tend to be stationary, whilst prices are non-stationary.  Fama 

(1965), Bollerslev (1987), Mandelbrot (1963) and Pesaran and Timmermann (1995) are 

amongst those that have used various techniques in an attempt to predict the returns in 

financial markets.     

This argument, whether asset returns are predictable, is contradictory to the efficient market 

hypothesis (EMH).  The EMH, as developed by Eugene Fama (1965), is a theory which has 

dominated the economic profession since its inception and remains a fundamental pillar of 

Modern Economics.  The EMH is of the view that the prices for a financial asset incorporate all 

available information.  The EMH is founded on the assumption that all investor reactions are 

random and follow a normal distribution (Fama, 1965).  When new information is released into 

the market, some investors overreact and others under-react, creating a net effect on the 

financial asset prices.  In so doing, this creates the environment in which no consistent 

abnormal profits can be realised. 

When analysing the time-series of share prices, it is noted that they display no serial 

dependency or “patterns” which leads to the conclusion that a model best equipped to predict 
asset returns would be that of a Random Walk process (Fama and Schwert, 1977).  However, 

the time series of a Random Walk model are not random, but the differences from one period 

to the next are random.  It is only after careful analysis that a high degree of positive correlation 

between the degree of trending and the length of time studied exists, according to Granger and 

Morgenstern (2007).  As proven in Lo and Mackinlay (1999), the stock prices in the short-run 

exhibit some predictable momentum which leads to the conclusion, in practice, that stock 

prices do not always behave as true Random Walks and that a degree of predictability does 

exist. 

The different levels of information, public and private, impact financial asset returns with 

varying magnitude.  Events such as an oil shock, a large corporate bankruptcy or the political 

downfall of a sovereign are typical examples of events that could have a large impact on the 

financial asset returns.  The fat tails so typically found in financial asset returns distributions are 

where these extreme events tend to occur.  It is due to this that that the failure of the normality 

distribution is more the expectation than the exception when dealing with financial returns. 

There are at least four distinguishing features of emerging market economies, and their 

financial markets.  It has been shown by Harvey (1995) that the level of correlation between 

developed and emerging markets is low, with emerging markets often having higher returns 

and higher volatilities.  The average returns, volatility and the predictability of returns are all 

higher within emerging economies (Bekaert and Harvey, 1995).  It is because of these 

characteristics that emerging markets are more likely than developed markets to be influenced 

by local information.   
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Ultimately, emerging economies are best suited when exploiting financial markets to achieve 

“excess” returns.  The higher volatilities experienced in these markets create the ideal 

environment for a predictable element.  Conditional asset pricing models, on average, fail to 

accurately price emerging market assets and capture the time variation in expected returns 

(Harvey, 1995).  When specifically focusing on the applications of parametric and semi-

parametric methods to assess the predictability in stock returns, Bollerslev, Chou and Kroner 

(1992) provide more than a hundred references, all with differing levels of predictability.   

Nonparametric methods relax the linearity assumption made by so many parametric methods, 

such as the infamous Random Walk model.  Nonparametric methods apply no assumption to 

the functional form, i.e. allow the distributions to remain intact instead of forcing them into a 

Gaussian distribution.  The benefits of relaxing the distribution assumption, is ultimately 

allowing the data to follow its natural, or inherent, distribution.  Being able to model asset 

returns in this way, would theoretically only increase the predictive accuracy of the models. 

For this reason, applying nonparametric regression techniques to emerging market economies, 

specifically the major trading partners, are expected to yield positive results. 

This article is structured as follows:  The second section presents the methodology while the 

data and estimation of the two models will be presented in the third section.  The estimation 

results will be in the fourth section.  Some concluding remarks are offered in the final section. 
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Methodology 

As stated earlier, this paper compares the forecasting ability of the ARMA(1,1)-GARCH(1,1) 

and non-parametric kernel regression models.  The specifications for each of the respective 

models are described below:   

1.1 ARMA(1,1)-GARCH(1,1) model 

It has been shown that South Africa doesn’t display evidence of long memory in the equity 

market (Jefferis and Thupayagale, 2008).  It is due to this fact, and to remain consistent across 

the countries in the BRICS trade union, that the ARMA(1,1) specification was selected.  Due to 

the low levels of skewness, indicating that asymmetry is perhaps not as prominent within the 

BRICS countries, a standard GARCH(1,1) model following a student-t distribution has been 

selected. 

The ARMA-GARCH model specification is as follows: 

                 (1) 

               (2) 

                    (3) 

where is the stock market return,  is the time-varying conditional variance with  and  

being the coefficient of the AR(1) and  risk premium parameters respectively in the mean 

equation.  The coefficients and are the intercept and the coefficient of the last period 

forecast variance respectively.  The error term,  is a Gaussian innovation with zero mean and 

time varying conditional variance ( ). 

1.2 Non-parametric kernel regression model 

The non-parametric kernel regression model has the benefit that the distribution of the function 

is not specified.  This benefit allows the data to keep the distribution which they already have, 

instead of forcing it to have a Gaussian form.  This means that extreme market events will be 

better captured and if the data are allowed to speak for themselves, the chances of better 

prediction are only increased. 

Similar to parametric regression, a weighted sum of the  observations is used to obtain the 

fitted values.  In this setting, equation 1 can be re-written in the form: 

                  (4) 

with  an unknown differentiable function of the independent variable of polynomial degree 

 with optimal bandwidth  while  represents the estimator of the volatility of the 
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independent variable of polynomial degree  with optimal bandwidth .  The kernel density 

estimator of the unknown distribution has the form: 

                  (5) 

where  has the bandwidth (neighbourhood) for a given data point, and is the sum of weights 

assigned to each data point which satisfies the following three criteria: 

              (a)  

             (b) 

            (c) 

The criteria above ensure that  is itself a density and symmetric about zero.  It is important 

to note that the bandwidth, , acts as a scaling factor in determining the spread of the kernel.  A 

list of popular kernel functions that are widely used today include the following; Gaussian 

kernel, Biweight kernel, uniform kernel.   

The function selected in this model is the Epanechnikov kernel with the following form: 

                  (6) 

However, as mentioned earlier the form of the kernel is not as important as the optimal 

bandwidth that is selected but the combination of the two should aim to reduce the integrated 

mean square error (IMSE) function.  From calculus variations in solving the minimising of the 

IMSE of the kernel estimator, the Epanechnikov kernel has been selected.  

The bandwidth of the kernel is known as the “free parameter” which allows for a strong 
influence on the resulting distribution (Nadaraya, 1964).  The most common optimality criterion 

used to select and estimate this parameter is the mean integrated squared error (MISE) and 

has the following functional form: 

                 (7) 

The above form can be broken down into the variance and bias (using the Taylor expansion 

formula) within the kernel density estimator, with the respective forms: 

             (8) 

              (9) 

The combination of these yield the following for the  function:  
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              (10)  

where   and    

The optimal bandwidth for the kernel can be obtained by minimizing the   function with 

respect to  as follows: 

                 (11) 

This optimal bandwidth corresponding to the optimal kernel density function was first suggested 

by Epanechnikov (1967) and is given in equation 6. 

Estimating the conditional mean and volatility of the nonparametric class of models differs from 

the parametric counterparts in two ways, namely:  

1. The classical Autoregressive (AR) model assumes that a linear dependence exists 

between the current and previous stock returns, whereas nonparametric models 

assume a non-linear relationship between stock returns. 

2. The classical GARCH models, used to account for volatility, assume the volatility to be 

normally distributed and symmetrical. (Mwamba, 2011) 

 

From equation 4, the estimator of the conditional mean is given by: 

                (12) 

Determined by fitting the polynomial of degree  (equation 13) with the following form and using 

the least square cross validation technique to yield equation 14: 

            (13) 

          (14) 

Setting the polynomial to the 0th – degree, the resulting estimator is obtained: 

           (15) 

The above estimator is also known as the Nadaraya-Watson estimator (Watson, 1964) and 

occurs when the polynomial is assigned the 0th-degree polynomial.  When the polynomial is 

assigned the first degree, the estimator takes the following form, known as the local linear 

estimate: 

    (16) 
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Similarly, the conditional volatility from equation 4 can be determined by first computing the 

residuals from the conditional mean: 

             (17) 

Using equation 17, fitted with the polynomial function specified in equation 13 to obtain the 

following estimator of volatility: 

         (18) 

Setting the polynomial to the 0th-degree, the resulting estimator is as follows: 

             (19) 

Once again, if the polynomial is assigned the first degree the local linear estimate is obtained 

for the conditional volatility 

Data and Empirical Estimation 

The data used in the analysis of this paper makes use of the major indexes from the BRICS 

countries and are described in Table 1 below: 

Table 1 - BRICS countries with major financial index 

Country Index Abbreviation 

Brazil IBOV Sao Paulo Brazil Index IBOV 

Russia MSCI Russia Index MSCI 

India NSE CNXIT Index CNXIT 

China Shanghai Shenzhen CSI 300 Index CSI300 

South Africa JSE All Share Index ALSI 

The data collected for each index were the daily closing prices for the period from January 

2006 until July 2013. This specific time-series was selected as it includes the turmoil 

experienced in the financial markets, resulting from the Global Financial and Sovereign Debt 

crisis. Due to the prices of the financial time-series being non-stationary, the time-series of 

returns for each index was calculated based on the following approach: 

The first difference of the logarithm of each of the indexes is used to create a time series of 

returns for the respective indexes, as per the following formula: 

  

where  and  are the return and stock price respectively for period    

This article will make use of the following four criteria to assess the normality distribution, and 

the respective null hypotheses will be assessed at a 95% confidence level: 
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1.1.1 Shapiro-Wilk 

This test makes use of the null hypothesis that a sample came from a normally distributed 

population.  The test statistic is determined as follows: 

  

where  is the i-th order statistic and  is the sample mean.  The constants  are given by 

 where  are the expected values of the order statistics of 

 random variables sampled from the standard Gaussian distribution.  The W statistic is 

positive and less than or equal to one.  Small values of the W statistic lead to the rejection of 

normality while being close to one indicates normality of the data, but this statistic is sensitive 

to sample size. 

1.1.2 Kolmogorov-Smirnov (K-S) 

This is a nonparametric test for the equality of continuous, one dimensional probability 

distributions that can be used to compare a sample with a reference probability distribution.  It 

is a step function that takes a step of height 1/n at each observation.  The downfall of this test, 

in that it applies to continuous distributions, means that it appears more sensitive near the 

centre of the distribution than at the tails (Peng and Lilly, 2004).   The null hypothesis for this 

test is that the sample is normally distributed.  The empirical distribution function is as follows: 

   

where  is the indicator function, equal to 1 if  and equal to zero otherwise. 

1.1.3 Cramer-von Mises 

The Cramer-von Mises criterion is used for judging the goodness of fit of a cumulative 

distribution function to an empirical distribution function.  This test is an alternative to the 

Kolmogorov-Smirnov test and is defined as follows: 

  

where is the cumulative distribution and  is the empirical distribution function. 

For the purpose of this paper, the cumulative distribution function will be that of the respective 

index whilst the empirical distribution function will be parameterised according to a standard 

Gaussian distribution.  By deduction then, if the statistic value is large positive then the 

hypothesis that the data came from the normal distribution can be rejected. 

1.1.4 Anderson-Darling 

The Anderson-Darling and Cramer-von Mises criterion originate from the same family in 

statistics, the class of quadratic empirical distribution functions (EDF).  They are most powerful 

at detecting the departures from normality, and will be the main focus points of the four tests.  
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The test statistic, based on the squared difference, places greater emphasis on the tails than 

does the Kolmogorov-Smirnov (K-S).   

The test statistic is calculated as follows: 

  

where  and  with  

being the cumulative distribution function and  being the hypothesized function (in this case 

the normal distribution). 

These four tests were applied to all the indexes and their corresponding statistical and p-values 

are presented in Table 2 below respectively.   

Table 2 - Comparison of Normality Tests 

Normality Test ALSI CNXIT CSI300 IBOV MSCI 

Shapiro-Wilk Test           

Statistic 0.959791 0.94719 0.963716 0.935452 0.868118 

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Kolmogorov-Smirnov Test           

Statistic 0.061288 0.074851 0.072058 0.070723 0.111064 

p-value <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 

Cramer-von Mises Test           

Statistic 2.700411 4.165858 3.113388 3.368277 8.529449 

p-value <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 

Anderson-Darling Test           

Statistic 16.35706 23.79491 17.52763 20.05924 47.79692 

p-value <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 

From the table above, all the p-values were rejected for all the indexes at a 95% confidence 

level and hence none of the distributions are Gaussian in nature.   

Having a stationary time-series, verified by the Augmented-Dickey-Fuller (ADF) test in Table 3 

below, the data were then further divided into in-sample and out-sample datasets.  The in-

sample dataset will be the training sample for the two models, whilst the remaining out-sample 

will be for the forecasting comparisons.  The out-sample dataset will cover the last ten (10) 

observations.  The data used within this paper were sourced from Bloomberg.  An important 

assumption was made with respect to public holidays occurring on trading days for the 

respective indexes. The assumption was that where a public holiday occurs, it was allocated 

the previous day’s stock price, equating to a zero return.    
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Table 3 - Augmented Dickey-Fuller Stationarity Test 

Stationarity Test MSCI IBOV CSI300 CNXIT ALSI 

ADF Statistic (Lag = 0) -41.192 -44.093 -41.999 -42.505 -42.925 

p-value <0.01 <0.01 <0.01 <0.01 <0.01 

From the table above, all the Augmented Dickey-Fuller (ADF) test statistics are more negative 

than -3.5 (the critical value at 95% Confidence).  This indicates that the null hypothesis, that 

there is a unit root present (Non-stationary), is rejected.  This is further supported by the p-

value being smaller than 0.05, indicating a rejection of the null hypothesis.  Ensuring that all the 

time-series are stationary at the level provide comfort that when the regressions are performed, 

spurious regressions will be minimized if not totally eliminated. 

1.2 Data Analysis 

Descriptive statistics provide a high-level summary of the data, with focus points being 

measures of central tendency as well as measures of spread.  These measures provide insight 

into possible patterns that could be present in the data, but do by no means allow us to make 

conclusions about the data.  Descriptive statistics are merely a form of representing the data, 

which make it more understandable. 

The analysis of data began with various descriptive statistics, as seen in Table 4 below: 

Table 4 - Descriptive Statistics per Index 

Index ALSI CNXIT CSI300 IBOV MSCI 

Mean 0.00044 0.00037 0.00046 0.00020 -0.00006 

Maximum 0.06834 0.11720 0.08931 0.13678 0.23976 

Minimum -0.07581 -0.12490 -0.09695 -0.12096 -0.25593 

Standard Deviation 0.01381 0.01901 0.01951 0.01892 0.02634 

Skewness -0.18203 -0.09109 -0.41396 -0.02233 -0.40583 

Kurtosis 3.25986 4.24898 2.48218 6.16043 14.50548 

Normality Test : Statistic 0.95979 0.94719 0.96372 0.93545 0.86812 

Normality Test : p-value 0.00000 0.00000 0.00000 0.00000 0.00000 

Observations 1920 1885 1838 1872 1978 

From Table 4 above, the mean return for all the indexes are approximately the same with the 

exception of the MSCI Index having a mean negative return.  Analysing the MSCI Index further, 

the standard deviation is also the largest when compared to the other indexes.  Furthermore, 

the kurtosis, which provides an indicator to how sensitive a variable will be to an infrequent 

extreme deviation, is also higher than the other indexes.  The range between the maximum and 

minimum, the negative mean return, the standard deviation and the high kurtosis provide the 

possibility that the MSCI Index tends to be more volatile when compared to the other indexes. 

When considering the kurtosis and skewness, the industry benchmark for a normal distribution 

is a kurtosis of three (3) and skewness of zero (0). The values from Table 4 above exceed 

these benchmarks alluding to the likelihood that the data may not be normally distributed. The 
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skewness statistic, although not equal to zero, is small for all the indexes and skewed towards 

positive returns.   

These indexes will now be analysed individually: 

IBOV Sao Paulo Brazil Index (IBOV) 

The Ibovespa index is a gross total return index weighted by traded volume and is comprised of 

the most liquid stocks traded on the Sao Paulo Stock Exchange (www.bloomberg.com).  It is 

due to this liquidity that we anticipate a large volatility within the IBOV stock.  The volatility of 

returns for this index is in Figure 1 below: 

Figure 1 - Volatility of IBOV Returns 

 

From the figure above, it is evident that there were significant volatility spikes present in Brazil 

during mid-2008 to early 2009 as well as late 2011.  This is evident of the severity of the impact 

of the Global Financial and Sovereign Debt crisis.  It is also visible in the figure above that the 

volatility persisted and created volatility clusters.  In Figure A. 1 in the appendix, the frequency 

distribution indicates that volatility spikes are present in the tails and that the actual distribution 

of the IBOV index does not conform to that of a standard Gaussian distribution (red line) but 

rather a standard student-t distribution, based on a visual interpretation.  

 

 

 

MSCI Russia Index (MSCI) 

The MSCI Russia Index is a free-float adjusted market capitalization weighted index that is 

designed to track the equity market performance of Russian securities listed on the MICEX 

Stock Exchange (www.bloomberg.com).  The volatility of returns for this index is in Figure 2 

below: 

http://www.bloomberg.com/
http://www.bloomberg.com/
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Figure 2 - Volatility of MSCI Returns 

 

From the figure above, it is evident that large clusters of volatility spikes were experienced in 

Russia during mid-2008 and early 2009, synonymous with the Global Financial crisis.  From the 

figure above, the impact of the Sovereign Debt crisis in Greece in 2011 didn’t seem to have too 
great an impact on the Russian economy (small volatility spike).  In Figure A. 2 in the appendix, 

the frequency distribution indicates that volatility spikes are present in the tails and that the 

actual distribution of the MSCI index does not conform to that of a standard Gaussian 

distribution (red line), based on a visual interpretation. The MSCI index far exceeds the industry 

benchmark for kurtosis, with significant spikes in the tails of the distribution. 

 

NSE CNXIT Index (CNXIT) 

The CNX Nifty, a free float market capitalization index, is the leading index for large companies 

on the National Stock Exchange of India. It consists of 50 companies representing 24 sectors 

of the economy (www.bloomberg.com).  The volatility of returns for this index is in Figure 3 

below: 

 

Figure 3 - Volatility of CNXIT Returns 

http://www.bloomberg.com/
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From the figure above, there were large persistent volatility spikes experienced in India during 

2008 persisting into 2009 with a large significant spike occurring in May 2009.  What is 

significant though is the amount of volatility present in the Indian stock market just prior to 

2008, perhaps a leading indicator of the Global Financial Crisis.  In Figure A. 3 in the appendix, 

the frequency distribution indicates that volatility spikes are present in the tails of the 

distribution, while the kurtosis is slightly higher than the benchmark for normality.  The 

skewness for this distribution is also very small, indicating that the asymmetry present is almost 

negligible.  

 

Shanghai Shenzhen CSI 300 Index (CSI 300) 

The CSI 300 Index is a free float-weighted index that consists of 300 A-share stocks listed on 

the Shanghai or Shenzhen Stock Exchanges (www.bloomberg.com).  The volatility of returns 

for this index is in Figure 4 below: 

Figure 4 - Volatility of CSI300 Returns 

http://www.bloomberg.com/
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From the figure above, there were large persistent volatility spikes experienced in China just 

prior to 2008 and well into 2009 with the most significant spike occurring in August 2008 (peak 

of the Global Financial Crisis). It is also evident from the graph above that volatility is persistent 

as well as clustering, while still remaining mean-reverting. This is attributed to the global 

presence that China has with respect to the level of exports on a global scale.  In Figure A. 4 in 

the appendix, the frequency distribution indicates that volatility spikes are present in the tails 

with the kurtosis being lower than the benchmark for normality. A high kurtosis indicates that 

the variance results from infrequent extreme deviations, as opposed to frequently “normal” 
sized deviations. 

 

JSE All Share Index (ALSI) 

The FTSE/JSE Africa All Shares Index is a market capitalization weighted index. Companies 

included in this index make up the top 99% of the total pre-free float-market capitalization of all 

listed companies on the Johannesburg Stock Exchange (www.bloomberg.com).  The volatility 

of returns for this index is in Figure 5 below: 

http://www.bloomberg.com/
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Figure 5 - Volatility of ALSI Returns 

 

From the figure above, large spikes are evident through 2008 with persistence into much of 

2009.  It is also noticeable from the graph above that volatility clustering occurs with a relatively 

constant mean-reversion.  In Figure A. 5 in the appendix, the frequency distribution indicates 

that volatility spikes are present in the tails with the actual distribution only just exceeding the 

benchmarks for a normal distribution. 

In conclusion, from the graphs in this section, it is clear that there is volatility in all the indexes 

and that this volatility is persistent, clustering and mean-reverting.  Other conclusions reached 

from this section include: 

 The frequency distributions of the indexes indicate a deviation from a normal 

distribution, in some cases a very slight deviation; 

 The skewness statistic is small for all the frequency distributions, indicating that the 

leverage effect (bad news impacts the market worse than good news, i.e. asymmetry) 

is almost negligible; 

 The kurtosis for the frequency distributions varies from 2.5 to 6, with an extreme outlier 

being the Russian MSCI Index at approximately 14.  This indicates that the indexes are 

moderately affected by infrequent deviations, with the exception of the MSCI Index 

being more severely impacted. 

 

1.3 Estimation 

The univariate time-series of asset returns was estimated using the models specified in the 

Methodology.  The models were fitted to the respective in-sample datasets, and then used to 

forecast the out-sample dataset observations using a 1-day ahead forecast approach.   

ARMA(1,1) - GARCH(1,1) Model 

The model estimates for the respective indexes, according to the ARMA (1,1) – GARCH (1,1) 

model specification, are in Table 5 below:   
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Table 5 - Parameter Estimate for ARMA(1,1)-GARCH(1,1) 

Parameter Estimates MSCI IBOV CSI300 CNXIT ALSI 

 

7.42E-04 5.93E-04 1.21E-03 1.42E-03 1.58E-03 

 

2.34E-02 -1.25E-02 1.25E-02 3.65E-02 -1.91E-03 

 

1.00E+05 1.00E+00 9.99E-01 9.99E-01 9.99E-01 

 

5.96E-06 5.94E-06 2.48E-06 1.27E-05 1.91E-06 

 

9.19E-02 7.98E-02 4.80E-02 1.62E-01 9.68E-02 

 

9.01E-01 9.01E-01 9.48E-01 8.17E-01 8.96E-01 

Following from the table above, the t-statistics for the respective indexes and their 

corresponding parameters are listed in the table below, all of which were statistically significant 

at a 90% confidence level: 

Table 6 - t-Statistics 

t-Statistic MSCI IBOV CSI300 CNXIT ALSI 
 

4.56E-02 1.11E-02 2.40E-04 1.61E-02 2.90E-04 
 

3.00E-02 5.98E-02 5.75E-02 1.24E-02 9.35E-02 
 

< 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 
 

3.52E-03 2.17E-03 4.84E-02 1.93E-04 7.26E-03 
 

1.21E-09 1.28E-08 1.48E-06 1.26E-08 2.25E-10 

  < 2e-16 < 2e-16 1.48E-06 1.26E-08 < 2e-16 

These estimates were then applied to the out-sample dataset in order to perform the forecasts 

which will be discussed under the Empirical Results section.   

Non-parametric Kernel Regression Model 

As mentioned earlier, the model has the benefit that the distribution of the function is not 

specified which allows the data to keep their original distribution instead of forcing a Gaussian 

distribution.  Similarly to the base model used in this paper, the non-parametric model is fitted 

to the in-sample dataset and then applied to the out-sample dataset to forecast.  The 

bandwidth of the kernel is a free parameter, i.e. unlike constants or other parameters, a free 

parameter can be adjusted randomly.  The bandwidth exhibits a strong influence on the 

resulting estimate.  Table 7 below provides the bandwidth value for each respective index 

based on the cross validation technique described in the methodology:   

Table 7 - Bandwidth Estimates 

 
MSCI IBOV CSI300 CNXIT ALSI 

Bandwidth 0.0003 0.0008 0.0043 0.0007 0.0009 

A large bandwidth will result in a smooth estimator, with a large bias but small variability in the 

curve.  Conversely, a small bandwidth will result in a reduction in the bias but will cause high 

variability in the curve.  The optimal bandwidth point will be a balance between these two 

drawbacks. 
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Empirical Results 

The criteria used to assess the performance of each model’s forecasting ability are the 
Predicted Mean Square Error (PMSE), the Diebold-Mariano Test (Diebold and Mariano (1995)), 

the Mean-Absolute Deviation test and the Variance.  This paper makes use of the one-day 

ahead out-of-sample forecast performance for each model.  The four criteria on which the 

model performance will be assessed, will be discussed in detail: 

1.1 Predicted Mean Square Error (PMSE) 

The predicted mean square error, calculated from the difference of the actual values from the 

forecast values generated from the respective models, has the following statistical form: 

  

where  and  are the actual and predicted values respectively with  being the total number 

of observations.  Intuitively, the smaller this value is; the more accurate the model at predicting 

asset returns. 

1.2 Diebold-Mariano (DM) 

The DM test evaluates the significance of the difference between the predicted mean square 

errors for two models being compared, i.e. this test compares the forecast accuracy of two 

forecast methods, and is defined as follows: 

  

where  is the forecast error obtained for each model, 1 and 2, with  referring to a 

respective loss function.  When many observations are available, the DM test statistic can be 

adjusted as follows: (Bonga-Bonga and Mwamba (2011)) 

  

where  and  

The Diebold-Mariano test will be performed with three (3) respective hypotheses if no definite 

conclusion is reached, namely: 

The null hypothesis will be that the two models have the same forecasting accuracy.  There will 

also be two alternatives, namely a “less” and “greater” hypothesis.  For the “less” alternative, 
the hypothesis will be that model two is less accurate than model 1.  For the “greater” 
alternative, the hypothesis is the converse of the “less” alternative i.e. that model two is more 
accurate than model 1. 

1.3 Mean-Absolute Deviation test (MAD) 

The mean-absolute deviation is defined as the average absolute difference between the 

forecast and average actual values.  This allows the impact of negative and positive differences 
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to be irrelevant, taking into account only magnitude instead of direction.  The formula to 

determine this metric is as follows: 

  

where  is the total number of forecasts,  is the forecast value at the kth position and  is the 

average of the actual values for the forecast period. 

This metric provides an insight into the deviation from the mean of the actual values.  

Therefore, the smaller the mean-absolute deviation, the more accurate the forecasts will be to 

the actual values. 

1.4 Variance ( ) 

Is a measure of dispersion of a set of data points from their mean, and is the second moment 

of any probability distribution.  The rationale behind this measure is that, the lower the variance, 

the lower the dispersion of the data points around the mean.  Intuitively, with respect to 

forecasts, if the variance of the forecasts is closer to the mean of the actual values, then they 

are more accurate.  Variance of the forecasts is defined as the average difference between the 

squared forecast value and actual value.  The formula to determine this metric is as follows: 

   

where  is the total number of forecasts,  is the forecast value at the kth position and  is the 

average of the actual values for the forecast period. 

As mentioned earlier, the predicted mean square error (PMSE) will provide insight into which 

model more accurately forecasts the asset return values for each index.  The closer the value 

of the PMSE is to zero, the more accurate it is.  Table 8 below provides the PMSE value for 

each respective index for each of the two models. 

Table 8 - PMSE Statistics Comparison 

PMSE MSCI IBOV CSI300 CNXIT ALSI 

ARMA(1,1)-GARCH(1,1) 0.00059 0.00038 0.00074 0.00035 0.00018 

NP Kernel Regression 0.00060 0.00006 0.00033 0.00009 0.00006 

From the table above, we can conclude that the non-parametric kernel regression technique 

proves to be more successful at predicting the asset returns for each index with the exception 

of the MSCI index.  Possible solutions to this under prediction could be the bandwidth 

specification.  As mentioned earlier, if the bandwidth is inadequately specified then the model 

would not be as accurate.   

The Diebold-Mariano test compares the forecasting ability of two models, but the interpretation 

is subjective if a definitive result is not available.  Table 9 below provides the p-value statistics 

for the respective hypotheses for each index. 

Table 9 - Diebold-Mariano p-value Comparison 

Diebold-Mariano Test (p-values) MSCI IBOV CSI300 CNXIT ALSI 
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Hypothesis 

The models have equal predictability 0.3466 0.5439 0.4175 0.9306 0.7918 

The ARMA(1,1)-GARCH(1,1) model is 

less predictive 
0.8267 0.2719 0.7913 0.5347 0.3959 

The ARMA(1,1)-GARCH(1,1) model is 

more predictive 
0.1733 0.7281 0.2087 0.4653 0.6041 

From the table above, if we consider the first hypothesis we notice that none of the p-value 

statistics can be rejected at the 95% confidence level.  The first hypothesis is inconclusive 

surrounding the forecasting ability of the two models, and hence the second hypothesis is 

considered.   

For the MSCI Index, the p-value is high (>50%) indicating that the probability of rejecting the 

hypothesis that the parametric model (ARMA(1,1)-GARCH(1,1)) is less predictive is only 

approximately 17.33%.  If we then consider the third hypothesis, that the parametric model is 

more predictive, we observe that the probability of rejecting is 82.67%.  No clear conclusion 

can be drawn from the results for the MSCI Index but the probability that the non-parametric 

model is more predictive is higher.  A similar conclusion is determined for the CSI300 index as 

well.  For the IBOV and ALSI Indexes, the p-value is low (<50%) for the second hypothesis.  

Following the rationale from the previous indexes above, this indicates that the parametric 

model has the higher probability of more accurately predicting the out-sample values.  The 

CNXIT index is the only index where the probability that both models forecast with equal 

accuracy, is high.  Therefore, no clear distinction can be made about the forecast accuracy.    

The mean-absolute deviation (MAD) measures the spread of the forecasts around the mean of 

the actual values.  Since it uses the absolute value, it is not directional but driven by magnitude, 

and therefore the smaller of the two values indicates a higher level of accuracy.  Table 10 

below provides the MAD statistics for the respective models for each index.   

Table 10 - Mean-Absolute Deviation (MAD) comparison 

MAD MSCI IBOV CSI300 CNXIT ALSI 

ARMA(1,1)-GARCH(1,1) 0.0092 0.0019 0.0058 0.0050 0.0035 

NP Kernel Regression 0.0075 0.0022 0.0050 0.0066 0.0015 

From the table above, the non-parametric model proves to be more accurate at forecasting the 

out-sample values with the exception of the IBOV and CNXIT indexes which are slightly better 

forecasted by the parametric model.  Due to only three (3) of the five (5) indexes yielding 

positive results, this method will not be considered as strong evidence in favour of the non-

parametric technique.   

The variance is a measure of dispersion around the mean.  A value of zero for the variance 

indicates that all values are identical (perfect forecast).  Table 11 below provides the variance 

comparison for the respective models for each index. 

Table 11 - Variance Comparison 

Variance MSCI IBOV CSI300 CNXIT ALSI 

ARMA(1,1)-GARCH(1,1) 0.000125 0.000009 0.000036 0.000026 0.000017 

NP Kernel Regression 0.000107 0.000006 0.000030 0.000049 0.000003 

From the table above, the non-parametric model has the lowest variance for all the indexes 

with the exception of the CNXIT index.   

The section to follow concludes this research article. 
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Conclusion 

This paper has attempted to compare the out-sample one day ahead forecasting performance 

of the parametric ARMA(1,1)-GARCH(1,1) model and the non-parametric kernel regression 

model with the Epanechnikov kernel density.  These models were compared using data from 

January 2006 until July 2013, with the last ten observations being used for the out-sample 

forecast comparison.   

The empirical results provide mixed results in the determination of a more accurate model.  

Unfortunately, there is no exact methodology to determine which comparative technique is the 

best at distinguishing between various model forecasts.  For this paper however, the PMSE 

was selected as the primary tool for comparison followed by the Diebold-Mariano test, mean-

absolute deviation and then lastly the variance.  According to the PMSE, the non-parametric 

kernel regression technique is more accurate than the parametric model for all the indexes with 

the exception of the MSCI index.  Upon closer analysis, the other three comparative techniques 

show evidence that the non-parametric model outperforms the parametric base model for the 

MSCI index.  This evidence, combined with the very small difference between the PMSE 

values, leads to the possible conclusion that the non-parametric technique would yield more 

consistent results for the MSCI index.  

Limitations to the family of non-parametric models are however being discovered, as in Bonga-

Bonga and Mwamba (2011) where the forecasting accuracy of the non-parametric models 

seem to decay as the h-step ahead horizon increases. 

For further research topics I suggest other specifications of the GARCH model, such as 

EGARCH, be considered due to their ability to better capture volatility clustering within asset 

return distributions.  In addition, different types of kernel densities are suggested, when 

comparing the forecasting of stock returns from non-parametric regression techniques. 
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2 Appendices 

Figure A. 1 - IBOV Frequency Distribution 

 

 

Figure A. 2 - MSCI Frequency Distribution 
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Figure A. 3 - CNXIT Frequency Distribution 

 

 

Figure A. 4 - CSI300 Frequency Distribution 
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Figure A. 5 - ALSI Frequency Distribution 
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