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Quantity Competition in the Presence of Strategic Consumers

Andrei Bazhanov, Yuri Levin and Mikhail Nediak
Smith School of Business, Queen’s University, Kingston, ON, K7L3N6, Canada

Abstract: An arbitrary number of retailers compete in capacities of a homogeneous limited-lifetime
product offered to strategic consumers with heterogeneous valuations and a general discount factor.
The first-period price is fixed, whereas the second-period (clearance) price is determined by market
clearing. We provide a closed-form characterization of symmetric pure-strategy equilibria, which
may lead to no sales in the first or second period and sales in both periods with clearance price
above or at salvage value. In equilibrium, increasing competition may harm local economy. Retailers
reduce inventories when consumers’ discount factor increases. As a result, having more strategic
consumers can benefit competing retailers and insure them against sales at salvage value. Moreover,
an increase in consumers’ discount factor increases consumer inequality in terms of utility and may
even decrease the total consumer surplus.

Keywords: oligopoly, strategic consumers, limited-lifetime product, rational expectations equilib-
rium
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1 Introduction

In the current global economy, it is common for transnational manufacturers to introduce a new
version of a product in local markets. Characteristic examples include a December 23, 2013 launch
of Samsung Galaxy Grand 2 in India, an introduction of a new model of the Official Match Ball of
the FIFA World Cup by Adidas every four years, called “Brazuca” in 2014, and a 2013 introduction
of six new Ford models in China. The rapid pace of fashion, innovation, and technological progress
limits the lifetime of these versions, making them obsolete within a relatively short time.

When the product life cycle is at the growth or maturity stages1, demand is more predictable
than at the introduction stage. Moreover, retailers are more experienced and can use focal-point
pricing2 to avoid price wars and switch to non-price forms of competition. For example, at the time
of a new version entry, retailers can exploit the manufacturer suggested retail price (MSRP) as a
focal point when manufacturer uses resale price maintenance (RPM). Sooner or later, competing
innovation or fashion takes its course and reduces consumer willingness to pay for this version of
the product. A local market for such a product may have an arbitrary number of retailers that
initially sell it at MSRP, but eventually engage in clearance sales to liquidate remaining inventory.

When price competition is weak and demand is known, a major decision faced by retailers
is determining the quantity of the product that they are going to supply to the market. At the
strategic level, this decision involves more than just procuring a certain inventory of the product; it
can include choosing which retail outlets carry the product or even opening new outlets, allocating
the warehouse capacity, making shipping arrangements, sizing the sales staff, and making other
marketing and operational decisions. All these aspects contribute to product cost and supply
inflexibility. The same factors increase the importance of the product quantity decision which,
in isolation, is relatively easy to formalize. We assume that retailers promote their firms rather
than products. The latter effort usually belongs to the manufacturer implying that the changes in
retailer promotions may lead only to a redistribution of market shares and do not affect the total
demand of the product.3

On the consumer side of the market, we see a population that is accustomed to quick changes
in fashion, the emergence of new models of the products with their limited lifetime. Consumers
are familiar with typical price trajectories, which can result from intertemporal price discrimina-
tion by the sellers. Therefore, consumers can form relatively accurate expectations about future
markdowns and, using these expectations, may engage in strategic, forward-looking, or patient,
shopping behavior by delaying the purchase until the period of price reductions. In doing so, con-
sumers realize that delaying the purchase may reduce the sense of novelty and their enjoyment of
the product, but they still make this intertemporal trade-off. Sitting between a manufacturer with
near-monopoly power and strategic consumers, retailers must make their best of the situation while
aggressively competing for market shares.

Competition typically forces retailers to increase their supply to the market at the cost of
decrease in their profits. On the other hand, the literature shows that profit-maximizing retailers
shrink the inventory in response to increasing consumer’s intertemporal discount factor or the
“level”of strategic behavior, which we confirm in our setting. This intriguing interplay between
the opposing phenomena brings the following research questions. First and foremost, what are the
effects of strategic consumer behavior on retailer inventory decisions and profits? A common view
is that this behavior is detrimental for retailers, but is this necessarily true under competition?
Does the speed of reduction in product value play a substantial role in these effects? Better yet, do
consumers themselves necessarily benefit from being strategic? The answer is not obvious because
consumer behavior drives competitive responses from the retailers. Finally, do the increases in the
consumer’s strategic behavior and retailer competition benefit local economy?
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In addressing these questions, we consider a stylized two-period model where retailers compete
in quantities by making inflexible first-period supply decisions. To avoid technical complications
and non-essentials, the main analysis considers identical retailers.4 The major intention of retailer’s
first-period decisions, associated with the quantity decisions, is to promote the first-period sales.
Therefore, we assume that the corresponding first-period demand and the resulting sales are non-
decreasing in the initial order quantities. In the first period, regular consumers plan their purchases
according to their expectations of the second-period price. This price is not less than the salvage
value because there is usually a large number of bargain-hunter consumers who are ready to absorb
the excess supply at a sufficiently low price.

Because of the capacity commitments of the retailers, we describe the second-period (clearance)
sales by the Cournot-Nash model. Kreps and Scheinkman (1983) argued that the first-stage capacity
commitment by duopolistic firms selling an undifferentiated product yields a Cournot outcome even
if the equilibrium capacities and prices are determined by price competition in the second stage. In
addition to the focal-point argument above, there are studies confirming that Cournot assumption,
leading to the same price among retailers, is not implausible in cases of non-price competition,
see, e.g., Schmalensee (1976); Karnani (1984), and Perakis and Sun (2014). One of the arguments
is that retailers choose their promotional decisions, associated with inventories, independently,
whereas price cuts are easily observable and can be matched almost instantaneously. Flath (2012)
shows that the markets of music records, bicycles, and thermos bottles are appropriately described
by the Cournot model. For example, the Japanese market of music records is characterized, besides
plausibility of the Cournot model, by legal use of RPM system (saihan seido) and strategic consumer
behavior (Nippop (2005)).

We answer the research questions by analyzing a game among retailers where the information
set is determined by the manufacturer and consumer behavior characteristics. We derive a closed-
form solution for the rational expectations symmetric equilibrium (RESE) in pure strategies for
the proposed generalized Cournot-Nash model. This analytical tractability is a distinguishing
feature of our approach to an otherwise unwieldy problem. The equilibrium permits a complete
characterization and takes one of the following forms:

1. When the list price is sufficiently high relative to consumer valuations, all consumers delay
their purchases until the second period, effectively turning the market into a one-period
Cournot-Nash.

2. When the list price is relatively low and the relative decrease in valuations between the two
periods is large (the product is not very durable), the market reduces to the first period only
because retailers limit the amount of product they supply to the market. This is essentially
a tacit collusive outcome facilitated by the manufacturer.

3. For intermediate values of the first-period price and a sufficiently low salvage value, RESE
leads to sales in both periods as well as a second-period price higher than the salvage value.

4. In the same range of the first-period price as form 3, and with a sufficiently high salvage
value, RESE still results in sales in both periods. However, the second-period sales take place
at the salvage value. This “salvaging” outcome is not attractive to the retailers because they
incur a large loss in the second period due to product oversupply.

Thus, possible equilibria describe situations where retailers fully follow the suggested price
(RESE2), sell only part of inventory at MSRP (RESE3 or 4), and do not sell at MSRP (RESE1).
Within each type, the equilibrium is unique. Across all types, the unique equilibrium always exists
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under the conditions of RESE1 and 2, but it may not be unique in the complementary case. For
the latter, we provide a sufficient condition that guarantees that RESE3 exists and is unique. This
condition requires the unit cost to be high compared to the salvage value.

Besides intuitive monotonic properties, the equilibria reveal several novel insights. It is intuitive
that, when the number of retailers increases, the total supply of the product does not decrease, the
resulting second-period price falls, the total profit of retailers decreases, and the total surplus of
consumers increases. However, it is not always true that the aggregate welfare (the sum of the total
profit and consumer surplus) increases with the level of competition. For example, when a relative
decrease in consumer valuations of the product between two periods is small, the aggregate welfare
may increase, decrease, or even attain an internal maximum. From a regulator’s point of view,
the corresponding optimal market structure would involve, respectively, a monopolistic retailer, a
perfect competition, or an oligopoly. For the third form of RESE, the maximum of the aggregate
welfare with respect to the level of competition results in a clearance price above the unit cost.

The response of equilibrium to changes in the consumer’s discount factor is more complex. The
total quantity supplied to the market never increases in this factor. That is, at the aggregate level,
retailers always respond to increasing strategic behavior by reducing supply despite competitive
pressures. As a result, retailers may capitalize on strategic behavior because the total profit may
be non-monotonic. Typically, total profit decreases as consumers become more strategic, e.g., when
the relative decrease in valuations between the two periods is large or in a monopoly. However, there
are two distinct cases leading to profit gains resulting from the equilibrium response of retailers to
strategic consumer behavior:

• the “continuous gain” is characterized by continuously increasing profit in the consumer’s
discount factor; this gain may happen when the second-period sales are either profitable or
at loss, but only when the relative decrease in valuations is small and the discount factor is
high;

• the “discontinuous gain” occurs at various values of the consumer’s discount factor and the
relative decrease in valuations, but only when the difference between the unit cost and the sal-
vage value is relatively small; profit increases because retailers reduce inventories in response
to increased strategic behavior, which leads to the switch from RESE4 to RESE3.

The most pronounced form of these phenomena is the “boundary-value gain”, i.e., profit with
myopic consumers is less than with fully strategic consumers. This may occur only when a strong
first-period quantity competition leads to the second-period sales below cost.

As RESE4 is unfavorable for retailers, they would generally prefer to avoid it. It is then
particularly noteworthy that an increase in strategic behavior may prevent salvaging equilibrium
from taking place. We provide a sufficient condition to rule out RESE4 in the form of a lower
bound on the consumer’s discount factor. On the other hand, as shown in the appendix, the most
beneficial markets for the manufacturer are those where the first-period price is not too close to the
maximum consumer valuation or to the retailer’s unit cost and salvaging equilibrium is possible.

The total consumer surplus is not generally monotonic and may attain maximum at an interme-
diate consumer’s discount factor. Thus, the consumer population as a whole does not necessarily
benefit from becoming more strategic, and may, in fact, lose by being “too strategic.” Similarly,
the aggregate welfare is generally non-monotonic: it may attain a maximum that tends to arise for
high levels of retailer competition and a small relative decrease in valuations. Non-monotonicity of
the aggregate welfare is characterized in closed form for the salvaging equilibrium.

We present a review of related literature in §2, describe the model in §3, and state the char-
acterization of equilibrium as well as a sufficient condition for its existence and uniqueness in §4.
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We analyze equilibrium properties in §5 and the properties of consumer surplus and the aggregate
welfare in §6. Finally, §7 provides a summary of monotonic properties and outlines several possi-
bilities for extending and applying the proposed model. All mathematical proofs are provided in
the online appendix.5

2 Quantity decisions and strategic consumers

Coase (1972) has initiated a study of strategic buyer behavior in an intertemporal pricing problem
faced by a durable good monopolist. The essence of his famous conjecture is that “the competitive
outcome may be achieved even if there is but a single supplier.” As one of the possible solutions to
this problem, Coase proposes to restrict the quantity of the good supplied to the market through
contractual or other arrangements. Further studies, e.g., Stokey (1979), formally support these
conclusions. Stokey (1981) has also pointed to a tradeoff between decreasing capacity in response
to strategic consumer behavior and increasing capacity by a monopolist as a deterrent against
competing entrants as an area for further study. Lazear (1986) studies a monopoly pricing problem
with fixed inventory and strategic consumers. Among a variety of two-period settings, he considers
a given population of strategic buyers whose valuations for a fashion good decrease by a fixed factor
in the second period.

These early findings have led to further research in consumer behavior in the context of in-
tertemporal pricing. Shen and Su (2007) survey results involving strategic consumer models, and
Aviv, Levin, and Nediak (2009) review the research on the mitigation of strategic consumer be-
havior. We focus our attention on results where quantity-based decisions of sellers affect strategic
consumers. For a monopolistic retailer, Cachon and Swinney (2009) consider a two-period model
with uncertain demand and find that the optimal choice of the initial inventory and subsequent
markdown is better than committing to a price even in the presence of strategic consumers. More-
over, an opportunity to replenish the inventory at the beginning of the second period is much more
valuable for the retailer in the presence of strategic consumers than when all consumers are myopic.

Su (2007) considers a deterministic model of monopolistic pricing and rationing policy for a fixed
inventory of a limited-lifetime product. The market consists of four segments characterized by one
of the two fixed valuation levels (high- or low-valuation consumer types) and one of the two given
values of waiting costs (patient or impatient consumers). Su shows that market heterogeneity
may lead to profit gains from the increased strategic behavior of low-valuation consumers when
high-valuation consumers are myopic (impatient). In this case, the retailer sells the product at
a high price to the arriving high-valuation consumers, while the arriving low-valuation patient
(fully strategic) consumers are waiting for clearance. When the market of low-valuation consumers
becomes large enough, the monopolist drops the price, effectively exploiting a price discrimination
scheme. This effect relies on the threat of stockouts for high-valuation consumers, which increases
their willingness to pay, and on the proportional rationing rule used in the model.

Liu and Ryzin (2008) concur that “capacity decisions can be even more important than price
in terms of influencing strategic consumer behavior”; they study the effects of capacity decision
when prices are fixed while consumers have full information and can be risk-averse. The decision is
expressed in terms of consumer rationing risk. Liu and van Ryzin find that capacity rationing can
mitigate strategic consumer behavior, but it is not profitable for risk-neutral consumers. Under
competition, the effectiveness of capacity rationing is reduced, and there exists a critical number
of firms beyond which rationing never occurs in equilibrium. Further development of this work
by Huang and Liu (2015) showed that capacity rationing is also less effective under inaccurate
consumer expectations about the reduced-price product availability.
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These studies suggest that retailers are most challenged by strategic consumer behavior when
there is a large number of competitors, consumers are risk-neutral, and the market is homogeneous
with respect to the consumer’s discount factor. Moreover, when consumers do not know the total
supply of the product, it is impossible to use strategic rationing to control their behavior. Our
study fills the gap in the existing results for this challenging setting.

3 Model description

We consider a two-period market for a limited-lifetime product with an arbitrary number of identical
retailers. All the retailers have the same unit cost c and offer the product at the same first-period
price p1 > c. As argued in Liu and Ryzin (2008), this assumption is not unusual “in a competitive
retail market, where retailers frequently stock identical products, sell them at the same suggested
retail prices, and at nearly identical costs from manufacturers;” see also Huang and Liu (2015).6

The number of regular consumers who arrive at the start of the first period is normalized to one
and their first-period valuations v are uniformly distributed on the interval [0, 1]. Normalization
of valuations effectively expresses revenue and inventory as “unitless” quantities and MSRP as a
share of maximum valuation, i.e., p1 ≤ 1.

If there is some product remaining after the first period, retailers engage in clearance sales in
the second (clearance) period. As the product offerings are undifferentiated, the retailers lower
their prices until all remaining inventory is cleared, that is, second-period price p2 (identical for all
retailers) is sufficiently low for the total clearance demand to equal the total remaining inventory.
Similarly to Cachon and Swinney (2009), we assume that, in the second period, there is an infinite
number of bargain-hunting consumers who can buy any remaining product at per-unit salvage
value s < c. As a result, p2 never goes below s. The salvage value also allows for the possibility of
inventory buy-back contracts of retailers with the manufacturer, or the availability of alternative
sales channels for the retailers.

Each retailer maximizes its profit by selecting the initial inventory level. The resulting game
among the retailers is similar to the classical Cournot-Nash model, but with a substantially distinct
two-period structure.

We now describe the market dynamics. Let retailers be indexed by set I of size n = |I|, and
retailer i ∈ I product supply and sales in the first period be yi and qi. As the second-period market
is cleared, each retailer’s second-period supply and sales are equal to yi − qi. Denote the total
first-period product supply and sales as Y =

∑

i∈I y
i and Q =

∑

i∈I q
i respectively. Then the total

second-period supply is Y −Q and the retailer i profit is

ri = −cyi + p1q
i + p2(y

i − qi). (1)

First-period sales qi are determined based on a consumer decision model.

3.1 Consumer decision model

The consumer decision model describes two aspects: demand allocation between two periods and
among the retailers. We will start with the first one.

Demand allocation between two periods In order to capture a typical decrease in valuations
for seasonal and limited-lifetime products, we introduce factor β ∈ [0, 1]: if the consumer’s first-
period valuation is v, the second-period valuation becomes βv. Two logical restrictions ensure non-
trivial equilibrium results. First, inequality β > c guarantees that the highest-valuation consumer
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is prepared to pay more than the unit cost in the second period. If this restriction does not hold,
the clearance price can never be above the unit cost. We also suppose that p1 > s

β to ensure that
salvage value s is less than the highest second-period valuation βp1 of regular consumers who are
forced to delay their purchases by MSRP. Similarly to β > c, this restriction supports a non-trivial
second-period outcome in an equilibrium with a substantial role of regular consumers.

The availability of information about total supply of the product varies among the markets.
Some markets, such as land or real estate, have nearly perfect information, an assumption used, e.g.,
in Stokey (1981) and Liu and Ryzin (2008). In many other markets, total system-wide inventory
is unobservable, which reduces the ability of retailers to use rationing as a tool for stimulating
first-period demand from strategic consumers. When consumers do not observe total supply, they
cannot infer exact price p2 and product availability α ∈ {0, 1} in the second period.

Assumption 1. Consumers do not know the total product supply and form expectations: (a)
expected availability ᾱ ∈ {0, 1} of the product in the second period and (b) expected second-period
price p̄2.

Given these expectations, consumers decide whether a first or second-period purchase maximizes
their surplus, which is similar to Lazear (1986); Su (2007), and Cachon and Swinney (2009):

Assumption 2. In addition to their expectations, consumers know only their private valuations v,
list price p1, product durability β, and the second-period surplus discount factor ρ ∈ [0, 1). When the
product is available, a consumer with valuation v buys in the first period if the first-period surplus
σ1 , v − p1 is not less than the expected second-period surplus σ2 , ᾱρ(βv − p̄2)

+.

In our setting, consumers do not consider rationing risk in the first period because there are no
first-period stockouts, which is shown in Lemma 3 below. As σ2 ≥ 0, consumers with v < p1 never
buy in the first period because such a purchase would result in a negative surplus. The proposition
below describes the first-period demand.

Lemma 1. Given consumer expectations, surplus-maximizing behavior is to buy in the first period

if v ≥ vmin, where the unique valuation threshold is given by vmin = max
{

p1, min
{

p1−ᾱρp̄2
1−ᾱρβ , 1

}}

.

The resulting total first-period demand is D = 1− vmin.

Undervaluation of the surplus from delaying a purchase means that even for a product that
does not depreciate much by the second period, i.e., β is near one, consumers with any valuation
may myopically ignore the second period during the first-period deliberations, i.e., have ρ = 0. The
value of ρ may depend on the market targeted by the product, e.g., for age- or culture-oriented
products, and on the consumer confidence in the stability of the financial situation. As ρ increases,
consumers place more emphasis on the second period in their wait-or-buy decisions. Thus, unlike β,
which models an objective decrease in valuations, the consumer’s discount factor ρ is a subjective
parameter describing the level of strategic behavior. The essence of the distinct roles of β and ρ
has been succinctly captured by Pigou (1932): “Everybody prefers present [i.e., ρ < 1] pleasures or
satisfaction of given magnitude to future pleasures and satisfaction of equal magnitude [i.e., β = 1],
even when the latter are perfectly certain to occur.” Frederick, Loewenstein, and O’Donoghue (2002)
provide a review of empirical estimates of consumers’ discount rates.

Demand allocation among retailers Because consumers have no preferences among the re-
tailers, the marketing and distribution efforts are the only differentiating aspect. It is recognized
both in practice and in research (e.g., Balakrishnan, Pangburn, and Stavrulaki (2004)) that in many
markets typical consumer behavior results in larger sales of a particular retailer if the product is
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presented to consumers at a larger number of retail outlets, in larger quantities on store shelves, and
in more ads. A review of 60 theoretical and empirical papers supporting these findings in various
industries is provided in Urban (2005). Other studies consider markets where demand responds
positively to product scarcity; see, e.g., a review in Yang and Zhang (2014). On the other hand,
Lippman and McCardle (1997) introduce a stockout-penalty term in the retailer profit function,
which may reflect, e.g., the stockout losses in the healthcare industry or a systematic profit loss
due to outside options for disappointed consumers.

We consider attraction ai(yi) as a measure of retailer i efforts, which, depending on the product,
may include the use of the demand-promoting inventory display. To model typical retail practice,
we assume that ai is non-decreasing in the retailer’s inventory. Due to a general form of ai, this
function is also called promotion or advertisement, see, e.g., Schmalensee (1976).

Assumption 3. The function ai(yi) is continuous, non-decreasing in yi, and ai(0) = 0. Consumers
do not know the functional form of ai(yi) and react only to the resulting vector of attraction values.

Identical retailers operate under alike conditions and use similar recipes for creating the firm’s
attractions, i.e., ai(yi) = a(yi) for all i ∈ I. Moreover, any two identical retailers with the same
attraction have equal market shares, and the market share of any retailer decreases by the same
amount if the attraction of any other retailer is increased by a particular amount. These properties,
complemented by a simple assumption that zero attraction leads to zero market share, satisfy the
conditions of the market share theorem of Bell, Keeney, and Little (1975), which claims that the
functional form of the market share of retailer i, in this case, is a(yi)/

∑

j∈I a(y
j).

The first-period demand di of retailer i, determined by its market share, depends not only
on attraction a(yi) but also, inversely, on the vector of attractions (inventories) of the others
a−i(y−i) , (a(y1), . . . , a(yi−1), a(yi+1), . . . , a(yn)). Since attraction is monotonic in inventory, we
use the shortcut notation di = di(yi,y−i), which implicitly presumes that di depends on inventories
via the corresponding attractions. Recall that consumers do not know total supply and react only to
relative attractiveness of retailers. The resulting market shares are proportional to the attractions
regardless of the total attraction and total supply. Since retailers’ promotional technologies are the
same (ai(yi) = a(yi) for all i ∈ I), we formalize this property as the following assumption.

Assumption 4. Retailers’ market shares are homogeneous of degree zero in inventories.

This assumption means that any changes in the total supply cannot influence market shares
when the ratios yj/Y, j ∈ I remain the same. The following lemma specifies the functional form
of a(yi).

Lemma 2. If retailer i market share has functional form a(yi)/
∑

j∈I a(y
j), where a(y) is contin-

uous in y, and Assumption 4 holds, then a(y) has the unique functional form a(y) = a(1)yγ .

A review of studies using this form for inventory-dependent monopolistic demand is in Balakr-
ishnan, Pangburn, and Stavrulaki (2004). By choosing the scale of attraction so that a(1) = 1, we
obtain the functional form for di :

di(yi,y−i) , D

(

yi
)γ

∑

j∈I (y
j)γ

, i ∈ I, (2)

where γ ∈ [0, 1] is the inventory elasticity of attraction or inventory elasticity of demand, normalized
by the market share of other retailers. Function (2) is a symmetric form of the general attraction
model. This form is widely used both in theoretical and empirical studies, e.g., Schmalensee (1976),
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Karnani (1984), Monahan (1987), Gallego et al. (2006). Authors usually refer to Mills (1961)
or Friedman (1958), who introduced this form of competitive demand or market share by as-
sumption.7

An empirical study of Naert and Weverbergh (1981) concludes that the attraction model is
“more than just a theoretically interesting specification.” This model “may have a significantly
better prediction power than the more classic market share specifications.” This conclusion is
supported by later studies, e.g., Klapper and Herwartz (2000). The case γ = 0 means that a
retailer’s attraction does not depend on yi, and di ≡ D

n for any yi > 0 and i ∈ I.8 This case was
used in §4.4 of Liu and Ryzin (2008) to study the effect of rationing on strategic behavior of risk-
averse consumers. Cachon (2003), in §6.5, considers a newsvendor competition model where retail
demand is “divided between the n firms proportional to their stocking quantity,” which matches
the case of γ = 1 in our model. This case can be viewed as a fluid limit of the following simple
randomized allocation model. Suppose all retailers pool their (discrete) inventory into an urn
(one may think of different retailers’ inventory being identified by different colors). Each customer
randomly picks an item from the urn (without replacement), and the retailer to whom the item
belongs is credited for the sale. In such allocation model, the case of intermediate 0 < γ < 1
corresponds to pooling of attractions rather than inventories.

As product is undifferentiated and the retailers are identical, consumers buy from any retailer
with available product. If the combined supply of retailers is insufficient to satisfy the combined
demand, one of the rationing rules can be used. For example, according to the surplus-maximizing
rule (see Tirole (1988)), consumers buy in the order of their valuations. The following lemma shows
that retailers have no stockouts independently of the rationing rule.

Lemma 3. Consider any Ȳ ≥ 1 − vmin, symmetric inventory profile ( Ȳn , . . . ,
Ȳ
n ) ∈ R

n
+, and any

behavior of consumers under stockouts in the first period. For any i ∈ I, let y−i = ( Ȳn , . . . ,
Ȳ
n ) ∈

R
n−1
+ . The following claims hold: (I) any profit-maximizing response of retailer i to y−i must

satisfy yi ≥ y̆i, where y̆i is the unique positive solution to y̆i = di(y̆i,y−i); (II) for any yi ≥ y̆i, (a)
stockouts are impossible, (b) the total first-period sales are Q = 1− vmin, the individual first-period
sales are qi = di(yi,y−i), the resulting second-period inventories are yi − qi, i ∈ I, and (c) the
second-period price is

p2 = max {s, β(1− Y )} . (3)

The timing of main events in the market and the corresponding inputs are outlined in Figure 1.

3.2 Rational expectations equilibrium

Lemma 1 identifies rational consumer behavior for given expectations, list price p1, and behavioral
parameters ρ, β, which are the only inputs known to consumers according to Assumption 2. In
particular, it specifies valuation levels of consumers who purchase in the first period. However,
these results are insufficient to identify how consumer expectations form. Although it is possible
to look for equilibrium behavior of retailers for given expectations, our ultimate goal is to find
internally consistent market outcomes that can be sustained in the long run. Therefore, we close
the loop by identifying expectations that are rational. That is, the equilibrium inventory levels of
the retailers must lead to precisely the same observed product availability and clearance prices as
expected by the consumers.

Some studies assume that all players in the game form beliefs about the actions of the other
players including consumers’ beliefs about retailers’ inventories. For some products, however, con-
sumers may not form such beliefs even when new versions of the product repeatedly emerge in the
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market. For example, a buyer of a music or video record usually does not know the number of par-
ticular records in the market and the number of consumers interested in buying this record. This
buyer, however, may form beliefs about the availability of the product on sale and the clearance
price because this information is observable ex post over multiple realizations of the market.

In our setting, ex post consumers observe only the second-period availability α and price p2, not
the inventory levels or market size. Given all available information, consumers cannot even infer
the inventory levels. In such an environment, consumer expectations in terms of directly observable
quantities such as the second-period availability and price are a natural model.

At the introduction stage of the product life cycle, e.g., for the very first personal computer,
consumers may not be able to form rational expectations about the release of a new version of
the product and the resulting pricing policies. However, at later stages, manufacturers regularly
launch similar products, or new models of the same product, and consumers, getting accustomed to
price-drop patterns, adjust their expectations about future pricing policies to closely match their
observations. Adjustments are no longer needed if the expectations coincide with the eventual
observations. On the other hand, retailers regularly conduct market research to estimate current
consumer expectations. Thus, we assume that retailers operate under complete information.

Using this notion of rationality, the rational expectations symmetric Cournot-Nash equilibrium
(RESE) in pure strategies is defined as follows:

1. Given consumer expectations and y−i, let the best response of retailer i be BRi(y−i, p̄2, ᾱ) =
argmaxyi r

i(yi,y−i, p̄2, ᾱ).

2. For given consumer expectations, let ŷ = ŷ(p̄2, ᾱ) denote a symmetric Cournot-Nash equi-
librium inventory level in the retailer game, i.e., ŷ(p̄2, ᾱ) = BRi [(ŷ, . . . , ŷ), p̄2, ᾱ] , where
(ŷ, . . . , ŷ) ∈ R

n−1
+ , and Ŷ (p̄2, ᾱ) = nŷ(p̄2, ᾱ) be the corresponding total inventory.

3. The tuple (Y ∗, p∗2, α
∗) is a RESE if Y ∗ = Ŷ (p∗2, α

∗), p∗2 = max {s, β(1− Y ∗)} , and either
α∗ = 0, if Y ∗ = 1− v∗, or α∗ = 1, if Y ∗ > 1− v∗ where v∗ is the equilibrium value of vmin.

From now on, r∗ denotes the equilibrium profit of a retailer. Equilibrium values may be specified
for the type of RESE, e.g., r∗,3 or Y ∗,1 if necessary.

3.3 Discussion of model assumptions

We conclude this section with the discussion of specific implications of model assumptions. Some
of the assumptions are quite common and well understood. For example, consumers are modeled
as homogeneous in the discount factor ρ and relative valuation decrease β. This assumption is
applicable to any products targeting specific market segments. The value of ρ may also be tied to
the average time value of money (rate of return), which is relatively homogeneous for all consumers.
Some empirical studies, e.g., Hausman (1979), claim a dependence of the discount rate on income
(which serves sometimes as a proxy for product valuation). Other studies, however, show that the
discount rate does not vary significantly with income, see, e.g., Houston (1983). The assumption
of retailer symmetry is common for studying the effects of the level of competition, when retailers
do not differ in their cost structure or brand value. We relax this assumption in Supplementary
Document by showing that different costs provide additional interesting insights.

The information structure of the model is rather general. Indeed, it is relatively rare for the
total product supply in the market to be visible to consumers whereas the market share effort,
such as the number of outlets, does signal to consumers the relative market power of the retailers.
We assume that the total demand is predetermined by the manufacturer’s promotional efforts. As
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noted in Balakrishnan, Pangburn, and Stavrulaki (2004), larger quantities of the product on store
shelves may attract additional consumers. These additional consumers at a particular retailer may
generally come from the populations of consumers either with or without the original intention of
buying the product. By ignoring the latter part, we disregard the cases when a consumer comes
to a store to buy a different product and buys, in addition, the product under consideration only
because it is displayed in large quantities. If that happened, it would increase the demand of the
retailer, who may potentially deviate from an equilibrium by increasing inventory. Hence, the area
of the equilibrium with the first-period sales only (RESE2) would be slightly less, whereas the
areas of the equilibria with the sales in both periods (RESE3 and RESE4), which provide the main
insights of this study, would be slightly greater.

Generally, consumer expectations about the second-period price and rationing risk may or may
not be probabilistic in this context but, for pure strategy (deterministic) equilibria, deterministic
expectations are consistent with retailer behavior. As we show below, there is a considerable amount
of insight even from the pure-strategy case.

We focus on the case of γ = 1 in the first-period demand (2). This case serves as a useful
magnifying glass for examination of our research questions because most of the results hold for
any γ ∈ (0, 1], and the case of γ = 1 is more reader-friendly than the cases of intermediate γ.
An empirical evidence of sales proportional to inventory levels (γ = 1) in apparel industry was
first studied in Wolfe (1968). Some of the effects found in our paper weaken when γ goes to zero
and disappear for γ = 0. The robustness of the results with respect to changes in γ, including the
closed-form analysis for γ = 0, is provided in Supplementary Document.

Unlike the case of γ = 1, the Cournot model may lessen the effects of profit gains from in-
creasing consumer’s discount factor. These gains are more notable when retailers suffer more
from competition (greater n, γ, a higher-cost retailer). Meanwhile, Davidson and Deneckere (1986)
argue, using mixed-strategies equilibria and rationing rules different from the one in Kreps and
Scheinkman (1983), that the Cournot model underestimates the degree of competitiveness in mar-
kets with quantity precommitments.

We also assume, for simplicity, that retailers do not discount second-period profits. A usual
assumption is that retailers use a market interest rate, i.e., a 2% rate yields a discount factor
0.98, whereas we assume that it equals one. Meanwhile, empirical studies suggest that consumer
discount rates can be much higher (up to 300% or ρ = 0.25) even for relatively expensive items, see
a review in Frederick, Loewenstein, and O’Donoghue (2002). We show in Supplementary Document
that retailer’s discount factor insignificantly changes the structure of equilibria and does not lead
to additional insights.

4 Characterization of RESE

The rationality of consumer expectations immediately implies the following result.

Lemma 4. In any rational expectations equilibrium, (1) p2 < βp1 if there are sales in the second
period; (2) Y ≥ 1 − p1, which holds as an equality only if there are no sales in the second period;
(3) ρβY < 1 − p1 if there are sales in both periods and p2 > s; ρβY ≥ 1 − p1 and p2 ≥ c if there
are sales only in the second period; and (4) vmin = p1 if and only if ᾱ = 0 or ρ = 0.

Because vmin ≥ p1, part 2 of Lemma 4 justifies the assumption of Lemma 3 for a RESE.
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4.1 No-salvaging RESE

We start by providing closed-form expressions for three of the possible equilibrium cases. The values
of p1 close to the maximum valuation (i.e., p1 near 1) may seldom arise in practice. Nevertheless,
we consider the entire range of p1 for theoretical completeness.

Theorem 1. A unique RESE with the stated structure exists if and only if the respective conditions
hold:

RESE1 (No sales in the first period) v∗ = 1, α∗ = 1, p∗2 = c + β−c
n+1 , Y

∗ = n
n+1 (1− c/β) , and

r∗ = (β−c)2

(n+1)2β
under condition p1 ≥ 1− n

n+1ρ(β − c) , P1.

RESE2 (No sales in the second period) v∗ = p1, α
∗ = 0, Y ∗ = 1− p1, and r∗ = 1

n(p1− c)(1−
p1) under condition p1 ≤ nc

n−1+β , P2.

RESE3 (Sales in both periods, p∗2 > s) v∗ = p1−ρβ(1−Y ∗)
1−ρβ , α∗ = 1, p∗2 = β(1−Y ∗), where Y ∗ is

the larger root of a quadratic equation, and r∗ = 1
n [(p1 − c)(1− v∗) + (p∗2 − c)(Y ∗ − 1 + v∗)],

under condition P2 < p1 < P1 and one of the following:

(a) n−1
n (p1−s) (1− v∗)Y ∗ ≤ (c−s) (1− s/β)2, or (b) condition (a) does not hold, Y ∗ < 1− s

β ,

and r∗ ≥ r̃i ,
{

√

(p1 − s) (1− v∗)−
√

n−1
n Y ∗ (c− s)

}2

, where r̃i is the maximum profit of a

firm deviating from this RESE in such a way that p2 = s (total inventory exceeds 1− s/β).

The equilibrium characteristics Y ∗, v∗, and r∗ are continuous on the boundaries between these
forms of RESE. Moreover, in RESE3, Y ∗ ≥ n

n+1(1− c/β).

If the initial consumer expectations of the second-period price are such that p̄02 < p∗2, the game is
repeated, and expectations follow a linear adjustment process, then the sequence of games converges
to p̄2 = p∗2 for any sufficiently small speed of adjustment.

Remark 1. One can consider rational expectation equilibria in the case of asymmetric decisions
yi of otherwise symmetric firms. We show in the appendix that such equilibria are possible only
when there are no second-period sales. These equilibria are analogous to RESE2 with the same total
inventory Y ∗ = 1− p1. There are no analogous asymmetric equilibria for RESE1 and RESE3.

In practice, market outcomes corresponding to RESE1 can be identified by very small first-
period sales primarily arising, e.g., from slight heterogeneity in the consumer’s discount factor.
Therefore, RESE1 describes practical scenarios where overwhelming majority of consumers wait
for clearance sales. This scenario is common in retail because it describes, e.g., MSRP use solely to
make discounts seem more dramatic than they actually are because, effectively, p1 is not the actual
selling price. In this case, the actual time duration of the first period can be very small, which can
be captured by β close to one.

Inequality p1 ≥ P1 implies that RESE1 is possible only if consumers are strategic (ρ > 0),
except for a degenerate case p1 = 1. The area of RESE1 inputs increases in ρ because consumers
are more prone to delay the purchase and this outcome with no first-period sales happens at a
lower p1, in n because competition drives lower the second-period price, increasing the second-
period consumer surplus, in the difference β − c because retailer second-period profit increases in
β− c and consumer second-period valuations increase in β. This form of RESE completely matches
a one-period Cournot-Nash outcome.

RESE2 is the opposite to RESE1: p1 is low (high-valuation market), all consumers whose
valuations are higher than p1 buy in the first period, and there are no sales in the second period.
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Condition p1 ≤ P2 implies that the existence of this RESE does not depend on ρ because ᾱ = 0, i.e.,
consumers do not expect second-period sales and, by Lemma 1, the equilibrium valuation threshold
of the first-period buyers is v∗ = p1 regardless of ρ. The input area of RESE2 shrinks in β and
n, disappearing for β = 1 and n → ∞. The “β-effect” stems from increasing profitability of the
second-period market when retailers can gain from two-period price discrimination. The “n-effect”
results from increasing quantity competition for the market share, which may force retailers to
procure more inventory than just for the first period.

The input area of RESE2 increases in c because the second-period profit approaches zero in c
faster than the first-period profit, decreasing the relative attractiveness of the second-period sales.
Retailers divide the profit associated with the total supply that is just enough to cover the first-
period market. Because the supply is determined by an externally set MSRP, retailer competition
is reduced to market sharing and we can interpret this outcome as an MSRP-facilitated collusion.
In either of the first two equilibria, the intertemporal effect of competition is (locally) eliminated
and, consequently, Y ∗ and r∗ do not depend on ρ.

RESE3 describes scenarios with intermediate p1 leading to sales in both periods with price dis-
crimination between high and low valuation consumers. It provides a bridge between the opposites:
a competitive Cournot outcome of RESE1 and an MSRP-enabled collusion of RESE2. Conditions
(a) and (b) correspond to different attractiveness of salvage-value sales for a potential deviator
from RESE3 that increases inventory. Condition (a) means that the deviator profit monotonically
decreases, i.e., for the inputs that satisfy this condition, RESE3 is stable with respect to small pa-
rameter deviations given that p1 is sufficiently far from the boundary. Under condition (b), deviator
profit has a local maximum with p2 = s but this maximum does not exceed the profit under RESE3.
The inputs satisfying (b) are near the boundary of RESE3 existence where this equilibrium may
be unstable with respect to parameter misestimation.

In reality, consumer expectations may deviate from actual market outcome. The last paragraph
of Theorem 1 provides a simple sufficient condition of convergence for possibly misaligned second-
period price expectations when similar products (with the same β) are repeatedly introduced to
the market with the same parameters. This condition assumes that retailers can accurately iden-
tify consumer expectations. If consumers incorrectly assume no sales in the second period, the
equilibrium outcome, by Lemma 1, is the same as with myopic consumers (ρ = 0). If consumers
assume there are sales in the second period but make mistake about the second-period price, the
structure of RESE1 remains the same because it does not depend on expectations whenever v∗ = 1.
As to RESE3, the following result implies the upper bound on change in Ŷ (the total symmetric
equilibrium inventory with p̄2 6= p2) due to the effect of expectation errors.

Corollary 1. Under RESE3, ∂Ŷ
∂p̄2

≤ ρ
1−ρβ max

{

1, p1−c
β−c

}

.

A detailed study of the effects of misaligned second-period availability expectations on retailer
rationing policy is provided in Huang and Liu (2015).

For a monopolist, RESE3 takes a simpler form described in the following corollary. In particular,
condition P2 < p1 < P1, which becomes c

β < p1 < 1− ρ
2(β − c), is necessary and sufficient.

Corollary 2. For n = 1 and any c
β < p1 < 1− ρ

2(β− c), RESE is v∗ = 2p1−ρc
2−ρβ , α∗ = 1, p∗2 =

βv∗+c
2 ,

Y ∗ = 1− 1
2 (c/β + v∗).

Because price and quantity decisions are equivalent for a monopoly, this corollary provides a
characterization of the price-skimming policy when the first-period price is externally regulated.
Monopolistic second-period price always exceeds the unit cost in our model (because v∗ ≥ p1 > c/β
in RESE1 and 3). Increasing competition may drive the second-period price below cost, which

13



we demonstrate in a market for a durable good with myopic consumers and some n > 2. The
second-period price in this case remains above cost in a duopoly.

Corollary 3. For β = 1, ρ = 0, and c < p1 < 1, RESE1 and RESE2 cannot be realized and, in
RESE3, the second-period price is below cost if and only if n > 2 + p1−c

1−p1
.

Increasing competition not only decreases the second-period price below cost, but undermines
the very existence of RESE3. Indeed, condition (a) in RESE3 holds for any n ≥ 1 only if s is
sufficiently low. However, if there exists a liquidation channel with a salvage value s close to unit
cost c, condition (a) may not hold. Moreover, one can show that the condition r∗ > r̃i will then
be violated for all sufficiently large n (this case is presented below in Corollary 4). This means
that growing competition provides an incentive for a retailer to deviate from this form of RESE
by increasing supply beyond the point where p2 = s. Despite the resulting losses in the second
period, this deviation can be profitable because of the increasing first-period market share, which
compensates for the second-period loss. Hence, growing competition may result in the non-existence
of RESE3 even though condition P2 < p1 < P1 holds.

Corollary 4. If condition P2 < p1 < P1 holds and condition (a) of RESE3 existence is violated in
the limit of n → ∞, RESE3 does not exist for all sufficiently large n.

This result calls for refinement of our understanding of the equilibrium and conditions for its
existence. For monopoly (n = 1), Theorem 1 exhaustively covers all feasible parameter values.
Starting from duopoly, condition P2 < p1 < P1 may not guarantee the existence of RESE3. The
result presented below shows that, in the same p1-range, there may exist one more form of RESE
with sales in both periods and p∗2 = s.

4.2 Salvaging RESE

The best response in the retailer game depends on Y −i , Y −yi — total inventory less the inventory
of retailer i. If Y −i < 1 − s/β, retailer i can influence the second-period price. Namely, p2 > s if
yi < 1 − s/β − Y −i (no salvaging) or p2 = s if yi ≥ 1 − s/β − Y −i (salvaging). If Y −i ≥ 1 − s/β,
salvaging is forced on retailer i, i.e., p2 = s regardless of supply yi. Condition Y −i < 1−s/β is used
in a symmetric form with Y −i = n−1

n Y ∗ in the following characterization of the last equilibrium
form further referred to as RESE4.

Theorem 2 (“Salvaging” RESE4: sales in both periods, p∗2 = s). RESE with α∗ = 1, p∗2 = s, v∗ =
p1−ρs
1−ρβ , Y ∗ = n−1

n
p1−s
c−s (1− v∗), and r∗ = p1−s

n2 (1− v∗) exists if and only if one of the following holds:

(a) salvaging is forced on retailers, i.e., n−1
n Y ∗ ≥ 1− s

β ;

(b) condition (a) does not hold, and

(

β
(

1− s
β

)2
+ (p1 − β) (1− v∗)

)

n−1
n

Y ∗

c+βv∗−2s ≥
(

1− s
β

)2
;

(c) conditions (a) and (b) do not hold, Y ∗ > 1− s
β , and there are no real roots of the equation

2Y 3 −
(

2− v∗ − c/β +
n− 1

n
Y ∗

)

Y 2 + (1− p1/β) (1− v∗)
n− 1

n
Y ∗ = 0 (4)

in the interval (1 − v∗, 1 − s
β ), or there is only one real root of (4) Ỹ ∈

(

1 − v∗, 1 − s
β

)

and

r∗ ≥ r̃i(Ỹ ), where r̃i(Ỹ ) is the maximum profit of a firm deviating from this RESE in such a
way that p2 > s.
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If the initial consumer expectations of the second-period price are such that p̄02 > s, the game is
repeated, and expectations follow a linear adjustment process, then the sequence of games converges
to p̄2 = s for any sufficiently small speed of adjustment.

Remark 2. As we show in the appendix, there are no equilibria with asymmetric decisions yi for
otherwise symmetric firms with sales in both periods and p∗2 = s.

One practical realization of this equilibrium outcome is a retailer use of liquidation chan-
nels for excess inventory (such as www.salvagesale.com, liquidations.walmart.com, and www.

liquidationchannel.com). RESE4 provides an example of an overinvestment (in this case, in
inventory), which is a known phenomenon in real economies. Unlike RESE1-3, RESE4 cannot exist
for n = 1 because a monopolist would not have an incentive to overinvest in this setting. This can be
seen, e.g., from the expression for Y ∗. The larger n is, the easier retailers find themselves in RESE
with p∗2 = s. Similar to RESE3, conditions (b) and (c) correspond to different attractiveness of a
higher second-period price for a potential deviator from RESE4 that decreases inventory. Condition
(b) means that the deviator profit monotonically increases in inventory, i.e., for the inputs that
satisfy (b), RESE4 is stable with respect to small parameter changes when p1 is sufficiently far from

the boundary. The first part of condition (c) — no real roots of (4) in the interval
(

1− v∗, 1− s
β

)

— means that the deviator profit has no local maxima with p2 > s, whereas inequality r∗ ≥ r̃i(Ỹ )
requires that when such a maximum exists at yi = Ỹ − n−1

n Y ∗, it does not exceed the profit under
RESE4. The inputs where RESE4 exists only by the second part of (c) are close to the boundary of
RESE4 existence where this equilibrium may be unstable with respect to parameter misestimation.
Conditions (a)-(c) hold if c−s is sufficiently small, i.e., the cost is largely compensated by salvaging
any excess units, which makes this outcome attractive for the retailers.

The last paragraph of Theorem 2, similar to the one in Theorem 1, provides a sufficient conver-
gence condition for misaligned second-period price expectations when a new version of the product
(with the same β) is repeatedly introduced to the market with the same parameters, and retailers
do not make mistakes about consumer expectations. The effect of expectation error on the total
inventory is limited by the following result.

Corollary 5. Under RESE4, ∂Ŷ
∂p̄2

= ρ
1−ρβ

n−1
n

p1−s
c−s .

Theorem 2 implies a necessary condition v∗ < 1, which means that there is positive demand in
the first period. This condition is equivalent to the upper bound p1 < 1− ρ(β − s) , P4 signifying
that a relatively high MSRP precludes salvaging outcome. Alternatively, this condition represents
an upper bound on the consumer’s discount factor:

ρ < (1− p1)/(β − s). (5)

As long as the product is durable enough for 1− p1 < β − s to hold, highly strategic (with ρ near
one) consumers guarantee that the salvaging outcome is impossible. Because P4 < P1 (the bound
that separates RESE1 and 3), P4 separates RESE4 and 3.

We now turn to the question of equilibrium uniqueness. By Theorem 1, RESE1, 2, and 3 are
mutually exclusive because the corresponding p1-ranges do not intersect. The result below shows
that RESE1, 2, and 4 are also mutually exclusive. Moreover, part (b) guarantees that condition (a)
of Theorem 1 holds for p1-range of RESE3 and, at the same time, RESE4 cannot exist.

Proposition 1. A unique RESE exists and is of the form stated if any of the following conditions
hold: (a) RESE1 if p1 ≥ P1, or RESE2 if p1 ≤ P2, or RESE3 if (b.1) P2 < p1 < P1 and (b.2)
n−1
n (p1 − s)(1− p1) ≤ (c− s) (1− s/β).
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Condition (b.2) trivially holds for n = 1. In general, it has the form of a lower bound on c− s,
i.e., the unit cost is sufficiently high compared to the salvage value. The condition holds for any
p1 and n > 1 if it holds for n → ∞ and p1 = 1

2(1 + s) (p1 maximizing the left-hand side). The

resulting stronger inequality is c − s ≥ (1−s)2

4(1−s/β) , which holds, e.g., for c = 0.25 and s = 0. Thus,
when the unit cost is relatively high, retailers avoid the unfavorable “salvaging” outcome.

The analysis of this section leaves a possibility that RESE does not exist. This is indeed the
case, but the fraction of model inputs where this may occur is very small. Combining all conditions
in Theorems 1 and 2, we can determine which of the four types of equilibria exist (if any) for any
given set of inputs (n, ρ, β, c, s, p1) satisfying the feasibility conditions 0 ≤ ρ < 1, 0 ≤ s < c < β ≤ 1,
and max{s/β, c} < p1 ≤ 1. We have performed this analysis for 1,000,000 randomly (according
to uniform distribution) sampled feasible model inputs for different values of 1 ≤ n ≤ 1, 000. The
results are presented in Figure 2. Subgraph (a) is an area plot that shows the fractions of inputs
resulting in a particular equilibrium structure (RESE1, 2, or 3 only, both RESE3 and 4, RESE4
only) as the heights of the respective shaded areas for each n. As n increases, RESE2 disappears
and the prevalence of RESE1 and 4 grows with RESE4 reaching more than 50% of model inputs.
Subgraph (b) shows the fractions of inputs resulting in both RESE3 and 4 as well as non-existence
of equilibrium. The fraction of inputs where both RESE3 and 4 exist is 4% for a duopoly and
considerably less for other levels of competition. The fraction of inputs where no RESE exists is at
most 0.191% (reached for n = 5).

5 Properties of RESE

The results of previous sections can be used, e.g., by a manufacturer or retailer to estimate possible
outcomes of entering the market. These outcomes depend on the current levels of competition,
strategic behavior, and other parameters. For an existing market, the effects of changes in these
parameters can be more relevant in order to anticipate possible market alterations. As to changes
in consumer strategic behavior, one of their drivers is macroeconomic. When the economy is
expanding, more consumers prefer to buy now than wait, and vice versa – an average consumer is
more inclined to delay the purchase when the economy shrinks. For example, a study of a Fortune
500 retailer sales by Allenby, Jen, and Leone (1996) shows that even “fashion-forward consumers
who purchase apparel early in the season are more sensitive to economic conditions and expectations
than previously believed.”

Various forms of Consumer Confidence Indicators report on changes in consumer behavior. For
example, the Index of Consumer Confidence is defined by the Conference Board of Canada web site
as “a crucial indicator of near-term sales for companies in the consumer products sector... Data is
collected on each respondent’s age, sex, marital status, and geographic location of residence.” Using
these data and other macroeconomic variables, a retailer and/or manufacturer can estimate possible
changes in ρ and, respectively, in market outcomes given that the current situation is known.
Lemmens, Croux, and Dekimpe (2005), in an empirical study of the European markets, conclude
that “the Consumer Confidence Indicators become much more homogeneous as the planning horizon
is extended.” This homogeneity emerges inside of regions, and is determined by cultural, economic
and geographic differences.

A major macroeconomic driver of consumer intertemporal choice is the economy’s interest rate.
The “substitution effect” refers to an increase in interest rate that encourages consumers to save
more and defer some of their purchases (increasing ρ). A review of Thimme (2015) shows that
empirical estimates of the sensitivity of consumer intertemporal choice to the interest rate (the
elasticity of intertemporal substitution) essentially varies across markets and groups of consumers.

16



The study implies that a forecast of possible changes in market outcomes depending on the interest
rates should be market-specific.

This section partly supports previous studies showing that equilibrium total supply increases
in n and decreases in ρ. Both trends typically decrease retailers’ profits. On the other hand, we
specify two distinct cases where these opposing trends “compensate” each other leading to increasing
profit in ρ. It is also noteworthy, that increasing ρ has different effects on consumer second-period
surplus and total second-period sales depending on the consumer valuation and market situation,
respectively.

5.1 RESE1-3 (no salvaging)

The analysis below accounts for possible switches between different forms of RESE. The requirement
of a unique RESE existence can be guaranteed, e.g., by Proposition 1.

Switches between RESE forms When RESE is unique, p1-ranges indicated in Theorem 1
provide a unique mapping between input parameter values and different forms of RESE. Figure 3
illustrates how these ranges change with n and ρ:

(a) the bounds on p1 that separate RESE3 from RESE1 and 2 are decreasing in n;

(b) the upper bound on p1 in RESE3 is decreasing, and the lower bound is constant in ρ; and

(c) the lowest possible value of p1 that leads to RESE1 is strictly above the highest possible value
that leads to RESE2.

These observations are summarized as follows:

Proposition 2 (Changes in RESE structure). For RESE1-3, the following claims hold:

1. (From 2 to 3 in n) If p1 ≤ c
β , there exists n2 , p1(1−β)

p1−c ≥ 1 such that RESE can only be
realized with sales only in the first period (RESE2) for n ≤ n2, and with sales in both periods
and p∗2 > s (RESE3) for n > n2.

2. (From 3 to 1 in n) For any ρ ∈ (0, 1), if 1 − ρ(β − c) < p1 < 1 − 1
2ρ(β − c), there exists

n1 , 1−p1
p1−1+ρ(β−c) ≥ 1 such that RESE can only be realized with sales in both periods and

p∗2 > s (RESE3) for n < n1, and with sales only in the second period (RESE1) for n ≥ n1.

3. (From 3 to 1 in ρ) For any n ∈ [1,∞), if 1− n
n+1(β − c) < p1 < 1, there exists ρ1 , n+1

n
1−p1
β−c

such that RESE can only be realized with sales in both periods and p∗2 > s (RESE3) for ρ < ρ1
and with sales only in the second period (RESE1) for ρ ≥ ρ1.

4. (No switches) If c
β < p1 ≤ 1−β+ c, RESE can only be realized with sales in both periods and

p∗2 > s (RESE3) for n ≥ 1 and ρ ∈ [0, 1).

The changes in equilibrium structure generally lead to shifts in sales to the second period as the
levels of competition or strategic behavior increase. Next, we examine changes in the quantitative
characteristics of equilibrium.
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Monotonicity of Y ∗, v∗, and nr∗ We now examine the monotonicity of v∗, Y ∗, and nr∗ in n
and ρ within RESE1-3 and, by continuity, between these forms of RESE.

Proposition 3. For RESE described in Theorem 1, the following claims hold:

1. The equilibrium total supply Y ∗ is non-decreasing in n (constant for RESE2; increasing for
RESE1 and 3) and non-increasing in ρ (decreasing for RESE3; constant for RESE1 and 2).

2. v∗ is non-decreasing in n (constant for RESE1, 2, and RESE3 with ρ = 0; increasing for
RESE3 with ρ > 0) and non-decreasing in ρ (increasing for RESE3; constant for RESE1
and 2).

3. The total equilibrium profit of all retailers nr∗ is non-increasing in n (constant for RESE2;
decreasing for RESE1 and 3), decreasing in ρ for RESE3 with p1 ≥ β − n

2(n+1)(β − c) or
n = 1, and constant in ρ for RESE1 and 2.

Monotonicity of the total supply and the total profit in the level of competition agree with
the theory of oligopoly and can be viewed as a sanity test for the model. On the other hand,
monotonicity in the consumer’s discount factor ρ is a much finer result. The new insights of this
study are connected to the following non-trivial interaction between firms and consumers while ρ
is increasing. Part 2 of Proposition 3 states that v∗ is increasing in ρ when there are sales in both
periods (RESE3) and retailers effectively engage in intertemporal price discrimination. Increasing
v∗ means that more consumers delay their purchases, even though total supply Y ∗ is decreasing in
ρ (part 1), resulting in a decreasing total number of purchases and increasing second-period price.
The nature and consequences of this interaction are considered below in more detail. Part 3 of
Proposition 3 agrees with the existing literature that strategic consumer behavior reduces monopoly
profits. We generalize this effect to the case of oligopoly when the product is not very durable (i.e.,
β is sufficiently low), the level of competition is low, or the cost and MSRP are relatively high.

In RESE3, an increase in ρ leads to additional consumer delays in purchase and a response
of oligopolistic retailers by increasing the equilibrium second-period price p∗2 = β (1− Y ∗). As a
result, the expected surplus of waiting σ2 = ρ [βv − β (1− Y ∗)] may not be increasing in ρ. Indeed,
its derivative in ρ is ∂σ2

∂ρ = σ2

ρ + ρ∂Y ∗

∂ρ . The first term in the RHS is the realized second-period
surplus, which is non-negative for the consumers who buy in the second period. The second term
reflects the equilibrium response of the oligopolistic retailers. By part 1 of Proposition 3, this term
is negative for any ρ > 0. For RESE3, the following corollary shows that increasing ρ has a different
effect on σ2 depending on the consumer valuation.

Corollary 6. For RESE1 and 3, expected surplus σ2 of waiting is (1) increasing in n for any
v ∈ [0, 1], and (2) increasing in ρ for v0 < v ≤ 1, and decreasing in ρ for 0 ≤ v < v0, where

v0 = 1
β

(

p∗2 + ρ
∂p∗

2

∂ρ

)

= 1− Y ∗ − ρ∂Y ∗

∂ρ ∈
[

p∗
2

β , v∗
)

is such that ∂σ2

∂ρ

∣

∣

∣

v=v0
= 0.

For consumers with high valuations, σ2 is increasing in ρ. In particular, for the consumers with
v = v∗, the purchase in the second period is becoming more attractive than in the first period,
which means that v∗ is increasing in ρ (part 2 of Proposition 3). In contrast, σ2 is decreasing for
consumers with low valuations. For example, the second-period surplus of the second-period buyers

with the lowest valuation v =
p∗
2

β is becoming negative, leading to a decrease in the total number

of purchases. For myopic (ρ = 0) consumers, v0 =
p∗
2

β and ∂σ2

∂ρ > 0 for all second-period buyers.
Since income is often considered as a proxy for product valuation, we can interpret this result as an
increasing inequality in terms of utility facilitated by a homogeneous increase in strategic behavior.
This effect cannot be captured by utilitarian welfare function such as the total consumer surplus.
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An increase in ρ leads to either an increase or decrease in the total equilibrium second-period
sales Q∗

2 = Y ∗ − (1− v∗), depending on the parameters:

Corollary 7. For RESE3, (1)
∂Q∗

2

∂ρ > 0 when n = 1; and (2)
∂Q∗

2

∂ρ < 0 when n → ∞, ρ = 0, β < 1
and p1 is near 1.

Proposition 3 claims that nr∗,3 is decreasing in ρ for monopoly and oligopoly with a not very
durable good. However, by the same Proposition, the equilibrium inventory Y ∗,3 (the only retailer
decision determining the profit) is increasing in n and decreasing in ρ. Therefore, one may expect
that for some model inputs there may exist such ρ0 that a further increase in ρ, by decreasing Y ∗,3,
can “compensate” not only for losses in the first-period sales but also for profit losses due to a high
level of competition. By part 3 of Proposition 3, this effect can be expected only if the product is
durable (β is high) and the cost is low, which leads to a relatively high second-period profit, and
for high levels of competition when the loss from competition is significant.

To show that nr∗,3 may increase in ρ, we consider a limiting case of a durable (within the time
frame of the problem) product and consumers with the maximum discount factor. In this case, the
consumer choice of purchase time is determined only by price.

Proposition 4. Let n̄ , 1−p1
p1−c . For β = 1 and ρ → 1, RESE2 and 4 do not exist and the equilibrium

has the form

(1) RESE1 with v∗|ρ→1 = 1, Y ∗|ρ→1 = n
n+1(1 − c), p∗2|ρ→1 = nc+1

n+1 < p1, and nr∗|ρ→1 = n(1−c)2

(n+1)2

if n > n̄, and

(2) RESE3 with v∗|ρ→1 = p1 + n(p1 − c), Y ∗|ρ→1 = 1 − p1, p∗2|ρ→1 = p1, and nr∗|ρ→1 =

(p1 − c)(1− p1) <
n(1−c)2

(n+1)2
if n < n̄ and

n− 1

n

(p1 − s) (1− p1 − n(p1 − c)) (1− p1)

(c− s) (1− s)2
< 1. (6)

Moreover, when n = n̄,

(3) the limiting cases (1) and (2) coincide, and

(4) (boundary-value gain) for all p1 and c such that n̄ ≥ 3, we have nr∗,3
∣

∣

ρ→1
> nr∗,3

∣

∣

ρ=0
.

In both limiting scenarios, sales occur at a single price: the one-period Cournot-Nash price in
part 1 and p1 in both periods in part 2. In part 1, representing a high level of competition, no
sales occur at p1, i.e., v

∗ = 1, and price decreases to Cournot-Nash in the second period. The
Cournot-Nash supply level in this case exceeds the lower bound 1 − p1 of Lemma 4. In part 2,
representing a low level of competition, retailers counteract strategic behavior by reducing the total
supply all the way to 1− p1 which exceeds in this case the Cournot-Nash supply.

Thus, the maximum level of consumer strategic behavior forces retailers into a collusion-like
outcome. Part 3 shows that n = n̄ = 1−p1

p1−c plays a role of a parameter coordination condition
ensuring that the Cournot-Nash price coincides with p1. This condition is critical for understanding
part 4 that demonstrates the total profit increase as consumer behavior changes from myopic to
fully strategic.

Under Proposition 4, fully strategic behavior prevents the second-period sales at a loss. Indeed,
with fully strategic consumers, the total sales are equal to 1 − p1 and occur at p1. In the case
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of myopic consumers, the first-period sales are the same, whereas the second-period sales are at
loss for any n ≥ 3 by Corollary 3. Because the increase in profit is strict, the effect presented in
part 4 is quite robust. Indeed, for each n ≥ 3, there is a continuum of model instances satisfying
the parameter coordination condition. Moreover, by continuity in parameters, increased strategic
behavior leads to an increase in profit in a local neighborhood of these instances. The boundary-
value profit gain described in part 4 results from the continuous gain because the entire range
ρ ∈ [0, 1) belongs to the same equilibrium RESE3 (Figure 4).

The following example shows that input area of condition (6) is not empty.

Example 1. Condition (6) is a limiting version of condition (a) of RESE3 existence, which is
less restrictive than sufficient condition (b.2) of Proposition 1. Condition (6) holds for all p1 and
1 ≤ n < n̄ if c > 1+4s

5 , e.g., if s = 0 and c > 0.2.

The numerical example below illustrates the behavior of the total profit in ρ. For small ρ,
the profit decreases in ρ (see Figure 4 (a)). On the other hand, when β = 1, the profit increases
for ρ near one. For all values of n ≤ n̄ = 10 in this example, the total profit attains the limit
(p1 − c)(1 − p1) established in part 2 of Proposition 4. It is natural to expect that this effect of
“durable-good non-monotonicity” weakens for β < 1. Indeed, Figure 4 (b) illustrates that, for
β = 0.9, the profit decreases in ρ for n = 1, 2, 3, and 5, and an increase of nr∗ in ρ is small for
n = 10. This increase can no longer compensate for the losses in nr∗ resulting from increased
competition.

5.2 RESE4 (salvaging)

The following proposition establishes the monotonic properties of Y ∗, v∗, and nr∗ for RESE4. These
properties partially match those of RESE1-3.

Proposition 5. For RESE4, (1) v∗ is constant in n and increasing in ρ; (2) Y ∗ is increasing in
n and decreasing in ρ; and (3) nr∗ is decreasing in n and decreasing in ρ.

By part (a) of Proposition 1, RESE4 does not exist under the conditions of RESE1 and 2.
However, both RESE3 and 4 can exist for the same inputs. In that case, one needs to resort
to focal-point arguments to predict which of the two equilibria will be realized. The example of
Figure 5 illustrates this fact.

The inputs for Figure 5 are such that inequality P2 < p1 < P1 holds and condition (a) of
Theorem 1 for RESE3 existence holds for n = 1 but does not hold for n = ∞. By Corollary 4,
RESE3 does not exist for sufficiently large n. At the same time, by part (b) of Proposition 1
and by rationality, RESE4 does not exist and RESE3 is realized uniquely for n = 1. It is also
straightforward to check that RESE3 can be realized for n = 1, . . . , 11, whereas RESE4 can be
realized for n = 8, . . . ,∞. For n = 8, . . . , 11 either equilibrium is possible.

In line with the interpretation of rational expectations equilibrium as a structure that is self-
sustaining in the long run, a possible focal point is an equilibrium with a structure that is similar to
the past. Figure 5 (b) shows that RESE4 is considerably worse for the retailers than RESE3. How-
ever, RESE4 may be realized because a single retailer cannot unilaterally benefit from decreasing
its market share as long as others expect the RESE4 structure and act accordingly.

Now, what is the effect of changing ρ when there is an overlap in inputs leading to RESE3
and 4? For the data considered above, a minor increase in ρ from 0.5 to 0.6 qualitatively changes
the situation because, for ρ = 0.6, inequality P2 < p1 < P1 and condition (a) of RESE3 existence
hold for any n ≥ 1 and neither of subcases (a)-(c) of Theorem 2 hold. Therefore, RESE4 cannot
exist in the scenario considered above, and this increase in ρ leads to the discontinuous profit gain
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and serves as an insurance against salvaging. Such an increase in ρ works by decreasing capacity in
RESE3 at the cost of a slight decrease in profit (compare the solid and dashed lines in Figure 5 (b)).
The discontinuous profit gain can lead to the boundary-value gain even when β is small (Figure 6 b)
and can be combined with the continuous gain when β is near one. As a result, equilibrium profit
can have up to three local maxima in ρ (Figure 6 a).

An increase in ρ cannot always prevent retailers from RESE4, but it does reduce the fraction
of inputs leading to it. Figure 7 shows that for ρ = 0.999 the maximum fraction of model inputs
leading to RESE4 reduces to 37.2% compared to more than 50% in Figure 2, where ρ is unrestricted.
Moreover, the area of RESE3 and 4 coexistence shrinks to less than 1.25%.

6 Total consumer surplus and aggregate welfare

In this section, we examine the effects of strategic consumer behavior and retailer competition on
the consumers and the local economy. In a two-period problem, the total two-period (realized)
consumer surplus is Σ∗ , Σ1 + Σ2, where Σ1 and Σ2 are the total surpluses of consumers buying
in the first and second periods. Σ2 is not discounted by ρ because ρ is a subjective behavioral
parameter and such a discount would not reflect the actual surplus. In the extreme case of ρ = 0,
such discounting would completely disregard the second-period surplus of myopic consumers. The
expression for Σ∗ is given by the following:

Lemma 5. For a RESE with valuation threshold v∗ and second-period price p∗2, total consumer

surplus is Σ∗ = (1− v∗)
[

1+v∗

2 − p1
]

+
(βv∗−p∗

2)
2

2β , where the first term is Σ1 and the second is Σ2.

The effects on the local economy can be measured in terms of the aggregate welfare W ∗ ,
Σ∗ + nr∗. The main structural result for Σ∗ and W ∗ is

Proposition 6. Under the conditions of Theorems 1 and 2,

1. total consumer surplus Σ∗ is non-decreasing in n (constant for RESE2 and 4 and increasing
for RESE1 and 3), constant in ρ for RESE1 and 2, and increasing in ρ for RESE4;

2. aggregate welfare W ∗ is

(2.1) increasing in n for RESE1, constant for RESE2, and decreasing for RESE4;

(2.2) constant in ρ for RESE1 and 2, and, for RESE4, increasing in ρ for ρ < ρ+ and

decreasing for ρ > ρ+ where ρ+ ,
(

1− 1
n

p1−s
p1β−s

)/(

1− β
n

p1−s
p1β−s

)

if n > p1−s
p1β−s , and

ρ+ , 0 otherwise.

This proposition implies that the consumer population as a whole benefits from an increase
in competition. On the other hand, Σ∗ may not be globally monotonic in ρ for RESE3. The
non-monotonicity is established below for the case of β = 1:

Corollary 8. Under the conditions of RESE3, β = 1 implies: (1) for all n ≥ 1 and ρ sufficiently
close to one, ∂Σ∗

∂ρ < 0; and (2) for n = 1 or n → ∞ and ρ = 0, ∂Σ∗

∂ρ > 0.

Corollary 8 and continuity of Σ∗ in β imply that Σ∗ has a maximum in ρ if β is sufficiently
large (Figure 8 (a)). Non-monotonic behavior is less pronounced for smaller β (Figure 8 (b)).

Along with the monotonicity of Σ∗, Proposition 6 describes certain settings with monotonic
aggregate welfare. The direction of monotonicity in a particular parameter varies depending on the
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equilibrium structure and other inputs. For example, W ∗ is increasing in n for RESE1 (Cournot-
Nash outcome), which matches increasing welfare results for a standard one-period Cournot-Nash
equilibrium corresponding to our model. However, in other quantity competition settings, welfare
may not be increasing in the level of competition. For example, Bulow, Geanakoplos, and Klem-
perer (1985) (§VI, Example E) claim that welfare may decrease when a retailer with high marginal
costs enters a monopoly market. In our model, the aggregate welfare decreases in n for RESE4
(salvaging outcome) because the resulting increase in product oversupply does not benefit the con-
sumers and only decreases profits of the retailers. For RESE4, the discount factor ρ+ attains the
internal maximum of W ∗ as long as β < 1 and the level of competition is sufficiently high, i.e.,
n > p1−s

p1β−s . For n ≤ p1−s
p1β−s , W

∗ decreases for all ρ. The dependence of W ∗ on n was omitted in
Proposition 6 for RESE3 because this case warrants special attention:

Corollary 9 (Non-monotonicity of W ∗ in n). Treating n as a continuous variable and p∗2 as a
function of n under the conditions of RESE3, the following result holds:

∂W ∗

∂n
R 0 if and only if p∗2 R c

(1− ρβ)2

1− 2ρβ + ρ2β
+ p1

ρβ(1− β)

1− 2ρβ + ρ2β
. (7)

The right-hand side of (7) equals c when ρ = 0 or β = 1 and strictly greater than c otherwise.

If there exists nW that is strictly within the feasible interval for RESE3 and maximizes W ∗, it
satisfies (7) as equality. When ρ = 0 or β = 1, this means that the second-period price corresponding
to nW equals the unit cost. On the other hand, when ρ > 0 and β < 1, the corresponding second-
period price is strictly greater than the unit cost. By Proposition 3, Y ∗ and, therefore, p∗2 are
strictly monotonic for RESE3. Then nW is unique whenever it exists. From this unique value,
we obtain the maximum of the aggregate welfare (the candidates for the integer-valued point of
maximum are ⌊nW ⌋ and ⌈nW ⌉ because, generally, the solution to this equation is real-valued). We
illustrate the behavior of W ∗ in n and ρ in Figures 9 and 10, respectively, for the same set of inputs
as our earlier illustrations. For β = 1, Figure 9 (a) demonstrates that the aggregate welfare can
be monotonically increasing in n (for high levels of strategic behavior), and it can also attain the
maximum at intermediate values of n (for lower levels of strategic behavior). The latter illustrates
Corollary 9. For β = 0.9, Figure 9 (b) shows that the aggregate welfare may remain monotonically
decreasing in the whole range of ρ. In all cases presented in Figure 9 (b), the maximum value of
the aggregate welfare is attained by the monopoly. These findings may provide theoretical support
for a regulator introducing a policy that affects the number of independent retail chains. Figure 10
indicates that myopic consumer behavior or strategic behavior at an intermediate level may be
the best for the local economy in terms of the aggregate welfare. Myopic behavior is the best for
low levels of competition, and the welfare-maximizing ρ tends to increase in n. A smaller value of
β = 0.9 leads to the optimality of myopic behavior in a wider range of n.

7 Conclusions

Even when consumers are risk-neutral and have the same discount factor, retailers can gain from
increasingly strategic consumers for any level of competition. There are two distinct cases of this
effect: the continuous gain, when the equilibrium profit increases continuously in the consumer’s
discount factor, and the discontinuous gain, when the profit increases because of the switch from
the “salvaging” equilibrium to another two-period equilibrium with a higher second-period price.

The first type of gain occurs only for relatively high levels of strategic behavior and small
decreases in valuations. With this gain, retailers use strategic consumer behavior to approach an
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outcome that is equivalent, in terms of the profit value, to a tacit collusion. The discontinuous gain
occurs at various levels of strategic behavior and the relative decrease in valuations, but only when
salvage sales are attractive enough, i.e., the salvage value is relatively close to the unit cost. For
a manufacturer, increasing strategic behavior is always unfavorable because it decreases the total
equilibrium inventory procured by the retailers. Both types of retailer profit gains are reversible.
When consumer confidence increases, more consumers buy at the first-period price, becoming less
strategic. The incentive for quantity competition increases, and retailers may find themselves in
the unfavorable “salvaging” outcome.

We summarize the monotonic properties of equilibrium characteristics with respect to competi-
tion level n and strategic behavior level ρ in Table 1 using ր, ց, and ≡ to indicate a monotonically
increasing, decreasing, or constant property, respectively. The possibility of an internal maximum
or minimum is indicated by “max” or “min”, respectively. When multiple symbols are present,
it means that different behaviors are possible for different inputs. The direction of monotonicity
with respect to the level of competition can only vary for the aggregate welfare in RESE3. The
latter finding may be important for regulatory policies with respect to competition. For RESE4,
the increasing level of competition is always detrimental for the local economy.

Advantages of the presented model include its analytical tractability and natural connections
to established oligopoly results. Possible extensions cover a wide range of problems in the study of
competition in the presence of strategic consumers, for example: (1) analysis of policy decisions,
including taxes and subsidies for the manufacturer, retailers, and/or consumers; (2) study of supply-
chain coordination; (3) analysis of competition when advertisement and inventory decisions are
decoupled; and (4) study of price-matching contracts as a tool to counteract strategic consumer
behavior.

Notes

1E.g., 3D TVs are currently at the introduction stage, blueray discs/DVR – at the growth stage, DVD – at the
maturity stage, video cassette – at the decline stage (http://productlifecyclestages.com Accessed 15 February 2016).

2A brief review of studies, history, and empirical evidence of focal-point pricing including RPM is in Appendix.
3Some studies consider market share competitions of firms that produce and sell their products. E.g., Schmalensee (1976)

assumes that total demand increases in total promotions as a power function; Karnani (1984) assumes, for simplicity,
exogenously fixed constant total demand.

4This assumption is relaxed in Supplementary Document by considering retailers with different costs.
5Some extensions of the model are presented in Supplementary Document.
6A review of demand allocation models with the same fixed retailer price is in §6.5 of Cachon (2003). A relaxation

of the “same cost” assumption is provided in Supplementary Document.
7Market share in the form “us/(us+them)” can be obtained by assuming that firm’s market share is proportional

to the marketing effort. This form can also be derived from random utility models of individual consumer choice. The
latter approach requires an assumption of the double exponential distribution for the joint distribution of random
utilities of a customer from buying a product from different retailers, see a review in Cooper and Nakanishi (1988).
The formula “us/(us + them)” in the form of the MNL model results also from the assumption of customer ratio-
nal inattention, see Matĕjka and McKay (2015). The latter approach, which assumes that information about the
differences among retailers is costly, does not work in our setting because our firm attractions are easily observable.

8Even though attractions are not continuous at 0 in this case, we demonstrate in Supplementary Document that
the analysis is still possible.
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8 Tables and figures

Monotonicity in n Monotonicity in ρ
RESE 1 2 3 4 1 2 3 4

Y ∗ ր ≡ ր ր ≡ ≡ ց ց
v∗ ≡ ≡ ր ≡ ≡ ≡ ր ր
nr∗ ց ≡ ց ց ≡ ≡ ց,min ց
Σ∗ ր ≡ ր ≡ ≡ ≡ ր,ց,max ր
W ∗ ր ≡ ր,ց,max ց ≡ ≡ ր,ց,max ր,ց,max

Table 1: Summary of monotonic properties in n and ρ by equilibrium form
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Figure 1: Market timeline
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(a) Prevalence of RESE structures (b) Prevalence of multiple or no RESE

100 101 102 103

n

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
ve

 F
ra
ct
io
n
 o
f 
M
o
d
e
l 
In
p
u
ts

RESE1

RESE3

RESE4

RESE2

RESE3&4

100 101 102 103

n

0.00

0.01

0.02

0.03

0.04

0.05

F
ra
ct
io
n
 o
f 
M
o
d
e
l 
In
p
u
ts

Both RESE3&4 exist
RESE does not exist

Figure 2: Fractions of model inputs resulting in a particular RESE structure for given n
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Figure 4: The total profit for RESE3 with c = 0.45, s = 0.05, p1 = 0.5
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(a) The second-period price (b) The total profit

5 10 15 20

n

0.05

0.10

0.15

0.20

0.25

0.30

p ∗
2

RESE 3 ρ=0.5

RESE 4 ρ=0.5

RESE 3 ρ=0.6

5 10 15 20

n

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

nr ∗

RESE 3 ρ=0.5

RESE 4 ρ=0.5

RESE 3 ρ=0.6

Figure 5: Overlap and switches between RESE3 and 4 for c = 0.2, s = 0.1, p1 = 0.4, β = 0.9

(a) β = 1, n = 5, p1 = 0.4 (b) β = 0.5, n = 10, p1 = 0.8
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Figure 8: The total surplus Σ∗ in ρ with c = 0.45, s = 0.05, p1 = 0.5
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Figure 9: The aggregate welfare W ∗ in n with c = 0.45, s = 0.05, p1 = 0.5
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Figure 10: The aggregate welfare W ∗ in ρ with c = 0.45, s = 0.05, p1 = 0.5
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Appendix: Proofs and supplementary results

A Main text supplement

A.1 RPM and focal point pricing

The history of RPM traces back to the nineteenth century and “has been one of the most contro-
versial antitrust topics ever since” (Orbach (2008)). Available evidence indicates that the scale of
RPM use is essentially underestimated and the effects of this phenomenon on economy require close
attention. When RPM was illegal in the USA, Butz (1996) quoted antitrust authorities arguing
that RPM is “ubiquitous” and “endemic”, “but based upon ‘winks and nods’ rather than written
agreements that could be used in court.” Butz concludes that “manufacturers have many, many
instruments” to punish or reward retailers in order to control the retail price “and to some extent
will do so whether or not the law permits it.”

RPM is attracting growing attention after the USA Supreme Court declared in 2007 that all
manufacturer-imposed vertical price fixing should be evaluated using a rule of reason approach.
According to the Court, “Absent vertical price restraints, the retail services that enhance interbrand
competition might be underprovided. This is because discounting retailers can free ride on retailers
who furnish services and then capture some of the increased demand those services generate” (www.
ftc.gov, accessed 5 August, 2015). Using the data before and after the Court decision, MacKay
and Smith (2014) show that, after 2007, RPM became even more common. The explicit evidence
mentioned in the literature included “manufacturers and suppliers of childcare and maternity gear,
light fixtures and home accessories, pet food and supplies, and rental cars. Sony has publicly
used minimum RPM on electronics such as camcorders and video game consoles, and as of mid-
2012, Sony and Samsung began enforcing minimum RPM on their televisions. Other retailers do
not comment on whether or not they enter minimum RPM agreements, perhaps due to negative
consumer sentiment associated with higher prices.”

The growing importance of studying RPM-controlled markets provides a justification for assum-
ing exogenously fixed price, which facilitates model tractability. The assumption of the “same-for-
all-firms-price” is common for examining the effects of non-price competition, see, e.g., Schmalensee (1976);
Karnani (1984), and Kouvelis and Zhao (2011). According to Holland, Rossouw, and Staples (2015),
almost the same prices across retailers in local markets can result from focal points other than
MSRP, e.g., from market norms, conventions, culture, and even government lows and regulations.
Coordination mechanisms include price leadership (see a practical case in Andreoli-Versbach and
Franck (2015)), cost-plus pricing, price lining, and use of round numbers. Holland, Rossouw, and
Staples (2015) claim that some of these focal points and mechanisms can be “pervasive . . . not just
in highly concentrated markets” as was previously believed starting from the work of Chamberlain.
Proctor (2015) lists the factors that facilitate price uniformity, such as homogeneity of firms and
products, transparency of price, stability of demand, high entry barriers, past cartels or a history of
collusion, etc. In some cases, government can support exogenously fixed prices (e.g., Nippop (2005))
to improve social welfare. These cases are possible when price competition leads to inferior quality
of the product, which is shown both theoretically, see Spiegler (2006), and empirically, see Huck,
Lünser, and Tyran (2016). Practice-oriented article Maddah, Bish, and Munroe (2011) comple-
ments the above studies by pointing that “Exogenous pricing is somewhat justified for popular,
fast moving, competitive items, for which pricing is a complex matter.”

Given a variety of possible scenarios for the focal-point pricing, the range of feasible values for
the first-period price can be rather wide. For example, collusive retailers can force a manufacturer
to declare a desirable first-period price (Orbach (2008)). Retailers may also follow the suggested
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price under repeated interactions even when this price is non-binding because the manufacturer
uses it to communicate private information on marginal cost and consumer demand to the retailers
(Buehler and Gärtner (2013)). The main text of this study assumes a fixed first-period price and
focuses on the effects of strategic consumer behavior on markets with non-price competition. We
provide some mechanisms leading to the same price across retailers in Supplementary Document.

We consider all possible outcomes for any reasonable value of the first-period price and interac-
tion between oligopolistic retailers and strategic consumers in the corresponding regimes allowing,
e.g., to find a profit-maximizing list price for the manufacturer. If the manufacturer operates only
in a single market, this value of the list price in combination with other parameters, including the
number of retailers and consumer’s discount factor, will determine the structure of equilibrium. As
a rule, however, transnational manufacturers operate in multiple markets with notably different
valuations for the same product whereas, to maintain a consistent brand image, to combat cross-
border/market consumer diversion due to online sales, or, possibly, to comply with anti-dumping
regulations9, prices are often set to be comparable when converted to local currencies. As an exam-
ple, Table 2 indicates prices of Apple Watch (Sport, 38mm model) in GBP across different launch
regions. The average price without tax is £240.71 with a standard deviation of £4.71, which is
approximately 2% of the average. Consequently, comparable currency-denominated MSRP val-
ues may substantially vary across the markets when they are expressed in terms of the maximum
consumer valuation, leading to different outcomes.

Launch region Price (£) Tax rate Price without tax

UK 299 20% 249.17
US (California) 257 9% 235.78
US (Montana) 236 0% 236.00
Canada (Quebec) 280 15% 243.48
Canada (Alberta) 256 5% 243.81
Australia 258 10% 234.55
France 288 20% 240.00
Japan 262 8% 242.59
China 282 17% 241.03

Table 2: Official prices of Apple Watch (Sport, 38mm). Source: Griffiths and Woollaston (2015)

A.2 Proof of Lemma 2 (a(y) = yγ)

By the conditions of the lemma, equality a(kyi)/
∑n

j=1 a(ky
j) = a(yi)/

∑n
j=1 a(y

j) holds for any

yj > 0, j ∈ I, and k > 0. Therefore, it holds for yi = y > 0, yj = 1, j 6= i, and yl = y, yj = 1, l 6=
i, j 6= l. Namely,

a(ky)

a(ky) + (n− 1)a(k)
=

a(y)

a(y) + (n− 1)a(1)
and

a(k)

a(ky) + (n− 1)a(k)
=

a(1)

a(y) + (n− 1)a(1)
,

which implies a(ky)/a(y) = a(k)/a(1) ⇔ a(ky) = a(k)a(y)/a(1). Denoting k̃ , ln k, ỹ , ln y, and
ã(z) , ln(a(ez)) − ln a(1), the logarithm of the last equation is ln a[exp(k̃ + ỹ)] = ln a[exp(k̃)] +
ln a[exp(ỹ)]−ln a(1) or ã(k̃+ỹ)+ln a(1) = ã(k̃)+ln a(1)+ã(ỹ) ⇔ ã(k̃+ỹ) = ã(k̃)+ã(ỹ). Because any
continuous additive function of one variable is linear with zero intercept, we have ã(ỹ) = γỹ (note
that by the definition of ã(z), ã(0) is, indeed, zero), which implies a(y) = a(1) exp[γ ln y] = a(1)yγ .
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A.3 Profit function, its properties and inventory decisions for γ = 1

By Lemma 3, the first-period total sales are Q = 1 − vmin and retailer i sales are qi = di(yi,y−i),
which, for γ = 1, is yi QY . The second-period sales of retailer i are equal to its second-period

inventory yi
(

1− Q
Y

)

. Then the general expression for retailer i profit, using (1) and (3), takes the

form

ri = −cyi + p1
yi

Y
(1− vmin) + max {s, β (1− Y )}

{

yi − yi

Y
(1− vmin)

}

. (8)

Although this expression is continuous in all parameters and inventory yi, it is generally not
globally differentiable. Next, we consider all possible subintervals in terms of yi. Each subinterval
results in a differentiable expression for the profit function and a qualitatively distinct market
outcome.

No sales in the second period Formula (1) for profit becomes ri = (p1 − c)yi, which yields

a unique profit-maximizing inventory yi =
(

1− vmin − Y −i
)+

, where Y −i =
∑

j 6=i y
j , and the

maximum profit ri = (p1 − c)
(

1− vmin − Y −i
)+

, leading to the following lemma:

Lemma 6. For given model inputs and consumer expectations, retailer rationality implies that the
effective domain of the inventory decision is yi ≥ (1− vmin − Y −i)+ and (p1 − c)(1− vmin − Y −i)+

is the lower bound for the optimal profit.

Second-period sales with p2 > s If vmin > 1 − Y (or yi > 1 − vmin − Y −i), there are sales in
the second period. If this condition is combined with0 < yi < 1− s/β − Y −i, then p2 > s and the
profit is given by

ri = −cyi + p1
yi

Y

(

1− vmin
)

+ β (1− Y ) yi
(

1− 1− vmin

Y

)

= yi
[

β (1− Y )− c+ (p1 − β (1− Y ))
1− vmin

Y

]

(9)

= yi
[

β (1− Y )− c+ β
(

1− vmin
)

+
(p1 − β)(1− vmin)

Y

]

(10)

with the derivative ∂ri

∂yi
=

= yi
[

β

(

−1 +
1− vmin

Y

)

− (p1 − β (1− Y ))(1− vmin)

Y 2

]

+ β (1− Y )− c+
[p1 − β (1− Y )] (1− vmin)

Y

= β (1− Y )− c+ β(1− vmin)− βyi + (p1 − β)(1− vmin)(Y − yi)/Y 2, (11)

which, using equations Y = yi + Y −i and (10), can be rewritten as

∂ri

∂yi
= β

(

1− Y −i
)

− c+ β
(

1− vmin
)

− 2βyi + (p1 − β)(1− vmin)
Y −i

Y 2
. (12)

The second derivative is

∂2ri

∂ (yi)2
= −2

[

β + (p1 − β)(1− vmin)
Y −i

Y 3

]

. (13)
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Second-period sales with p2 = s This case is possible only under oligopoly, i.e., Y −i > 0
(for a monopolist, any p2 ≤ c is not rational) and only for vmin < 1 (there are first-period sales,

otherwise profit is negative). If there are sales in the second period and yi ≥
(

1− s/β − Y −i
)+

(or
Y ≥ 1− s/β), then p2 = s and (8) becomes

ri = −cyi + p1y
i
(

1− vmin
)

/Y + syi
[

1− (1− vmin)/Y
]

= −(c− s)yi + yi (p1 − s)
(

1− vmin
)

/Y (14)

with the derivative

∂ri

∂yi
= −(c− s) +

Y − yi

Y 2
(p1 − s)

(

1− vmin
)

= −(c− s) + Y −i (p1 − s)
(

1− vmin
)

/Y 2, (15)

which is monotonically strictly decreasing in yi when vmin < 1.

Properties of the profit function The following lemma provides the properties of retailer i
profit ri, using the continuity of ri in yi.

Lemma 7. The profit function ri is such that

1. If 1− s/β − Y −i > 0, then

(1.1) ∂ri

∂yi

∣

∣

∣

yi=1−s/β−Y −i−0
< ∂ri

∂yi

∣

∣

∣

yi=1−s/β−Y −i+0
;

(1.2) ri(1− s/β − Y −i ≤ 0 if and only if

(p1 − s)
(

1− vmin
)

(1− s/β)(c− s)
≤ 1; (16)

(1.3) ri is pseudoconcave in yi and strictly concave if p1 ≥ βvmin on the interval (1− vmin −
Y −i)+ ≤ yi ≤ 1− s/β − Y −i;

(1.4) ri is strictly concave on the interval leading to p2 = s, i.e. yi ≥ 1− s/β − Y −i; and

(1.5) ri is pseudoconcave on the interval yi ≥ (1− vmin − Y −i)+ if either

∂ri

∂yi

∣

∣

∣

∣

yi=1−s/β−Y −i+0

≤ 0 or
∂ri

∂yi

∣

∣

∣

∣

yi=1−s/β−Y −i−0

≥ 0.

2. If 1− s/β − Y −i ≤ 0, ri is strictly concave on its entire domain yi ≥ 0.

Possibility of asymmetric equilibria When there are no sales in the second period, profit-
maximizing inventory yi =

(

1− vmin − Y −i
)+

is determined up to a redistribution of inventory
among the retailers. In this case, the model allows for a continuum of combinations of profit-
maximizing yi, satisfying

∑n
i=1 y

i = Y = 1− vmin.

When there are sales in the second period (yi >
(

1− vmin − Y −i
)+

), parts 1.3 and 1.4 of Lemma

7 imply that in both cases p2 > s and p2 = s, profit-maximizing yi results from ∂ri

∂yi
= 0.

When p2 > s, using (11) for ∂ri

∂yi
, for any yi and yj (j 6= i) satisfying ∂ri

∂yi
= ∂rj

∂yj
= 0 we have

∂ri

∂yi
− ∂rj

∂yj
= 0 = (yj − yi)

[

β + (p1 − β)(1− vmin)/Y 2
]

, yielding yj = yi because the bracket [·] is
always positive. Indeed, [·] > 0 ⇔ p1(1− vmin) + β[Y 2 − (1− vmin)] > 0. As vmin ≥ p1, by part 2 of
Lemma˜4, Y 2 > (1−p1)(1−vmin). Then p1(1−vmin)+β[Y 2−(1−vmin)] > (1−vmin)[p1−βp1] ≥ 0.

When there are sales in both periods (vmin < 1) and p2 = s, the first equation in (15) implies

that any yi and yj (j 6= i), satisfying ∂ri

∂yi
= ∂rj

∂yj
= 0, are such that ∂ri

∂yi
− ∂rj

∂yj
= 0 = (yj − yi)(p1 −

s)(1− vmin)/Y 2, i.e., yj = yi because (p1 − s)(1− vmin)/Y 2 > 0.
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A.4 Proof of Lemma 1 (first-period demand)

Recall that, for a first-period buyer with valuation v ≥ p1, the surpluses of buying in the first
period and that of waiting are, respectively, σ1 = v − p1 and σ2 = ρᾱ(βv − p̄2)

+. Condition σ1 ≥ 0
is equivalent to v ≥ p1. Condition σ1 ≥ σ2 is equivalent to v − p1 ≥ ρᾱ(βv − p̄2) ⇔ v ≥ p1−ᾱρp̄2

1−ᾱρβ .

Combining these inequalities, we obtain the stated expression for vmin. Because all consumers with
v ≥ vmin would buy in the first period, the total demand is D = 1− vmin.

A.5 Proof of Lemma 3 (no stockouts)

Part I. The existence of the unique positive solution y̆i to equation y̆i = di(y̆i,y−i) is established in
§C.1. Moreover, the reasoning implies that yi ≤ di(yi,y−i) for any yi ≤ y̆i. Thus, if yi ≤ di(yi,y−i),
retailer i sells only in the first period and, by (1), its profit function is ri = (p1 − c)yi, which is
increasing in yi for any yi ∈ [0, y̆i]. Therefore, inventory yi of a profit-maximizing retailer is never
less than the first-period demand, i.e., yi ≥ y̆i holds.

Part II. Claim (a) is straightforward when yi ≥ y̆i holds and when retailer i sets the inventory
above the symmetric level Ȳ /n. In that case, the first-period demand of other retailers decreases
compared to Ȳ /n (constant for γ = 0), which cannot lead to stockouts.

Stockouts may potentially arise only when retailer i sets the inventory below Ȳ /n, increasing
the first-period market share of other retailers above the symmetric level. In this case, we show that
the first-period demand dj of any retailer j 6= i is not greater than inventory yj = Ȳ /n. Suppose
that yi = y̆i, which is the minimum possible inventory of a retailer rationally responding to a

symmetric profile, and that y̆i ≤ Ȳ
n . Then dj =

(1−vmin)(Ȳ /n)
γ

(n−1)(Ȳ /n)
γ
+(y̆i)γ

, and the no-stockout condition

dj ≤ Ȳ /n can be written as

(1− vmin)
(

Ȳ /n
)γ−1 ≤ (n− 1)

(

Ȳ /n
)γ

+
(

y̆i
)γ

.

As y̆i = di =
(1−vmin)(y̆i)

γ

(n−1)(Ȳ /n)
γ
+(y̆i)γ

, the RHS of the last inequality equals (1 − vmin)
(

y̆i
)γ−1

. Then

dj ≤ Ȳ /n trivially holds for γ = 1 and, for γ ∈ [0, 1), is equivalent to y̆i ≤ Ȳ /n (because γ < 1),
which holds by the assumption.

Part II (b) follows from part II (a).
Part II (c). The second-period total inventory is Y −Q = Y − (1− vmin). Suppose this number

is positive. The number of consumers remaining in the market is vmin, and the upper bound of
their second-period valuations is βvmin. Therefore, as long as p2 ≥ s, the market clearing condition

for the second period takes the form vmin βvmin−p2
βvmin = Y − 1 + vmin, or, equivalently, p2 = β(1− Y ).

If β(1− Y ) < s, bargain-hunters absorb any excess supply at price s. Combining these two cases,
we get the second-period price in the form p2 = max{s, β(1− Y )}, which is continuous in yi, i ∈ I.

A.6 Proof of Lemma 4 (p2 < βp1)

From Lemma 1, we have vmin = p1 if and only if p1−ᾱρp̄2
1−ᾱρβ ≤ p1, which can be equivalently rewritten

as ᾱρβp1 ≤ ᾱρp̄2. Within feasible parameter values, the later holds if and only if either ᾱ = 0,
ρ = 0, or βp1 ≤ p̄2. By Lemma (6), Y ≥ 1 − vmin. Thus, either of ρ = 0, ᾱ = 0 or βp1 ≤ p̄2
implies that Y ≥ 1 − p1. Moreover, Y = 1 − p1 means there are no sales in the second period,
whereas Y > 1−p1 means that these sales occur at price p2 < βp1 according to the market clearing
condition (3).

Part 1: We conclude that p̄2 ≥ βp1 would never be rational and, in any rational expectations
equilibrium, we must have p2 < βp1.
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Part 2: By the above reasoning, ᾱ = 0 implies vmin = p1 and Y ≥ 1−p1. However, Y > 1−p1
in combination with vmin = p1 means that there are sales in the second period and ᾱ = 0 is not
rational.

If ᾱ = 1, by part 1 and condition (3), we have β(1−Y ) ≤ max{s, β(1−Y )} = p2 < βp1. Thus,
Y > 1− p1 in any rational expectations equilibrium with ᾱ = 1.

Part 3: Because in any rational expectations equilibrium, p̄2 = p2 and ᾱ = 1 if there are sales
in the second period, Lemma 1 implies that, if there are sales in both periods, vmin < 1, which,
using (3), is equivalent to p1 − ρβ(1− Y ) < 1− ρβ or ρβY < 1− p1. If there are sales only in the
second period, p1−ρβ(1−Y ) ≥ 1−ρβ or ρβY ≥ 1−p1; p2 ≥ c because, in this case, ri = (p2−c)yi,
and retailers are profit-maximizing.

Part 4: As p̄2 ≥ βp1 would never be rational, vmin = p1 can occur in a rational expectations
equilibrium if and only if ᾱ = 0 or ρ = 0.

A.7 Proof of Theorem 1 (RESE with p∗2 > s)

The theorem exhaustively considers all possible market outcomes without salvaging: no sales in the
first period (RESE1), no sales in the second period (RESE2), and sales in both periods (RESE3).
Logically, these three outcomes are mutually exclusive but it is not obvious a priori that they cannot
exist under the same model inputs. In the course of the proof we establish that these outcomes
also do not overlap in the sense of their necessary and sufficient conditions on model parameters.
Parts 1 and 2 of the RESE definition (§3.2) rely on the notion of a symmetric equilibrium for
given consumer expectations. The structure of such an equilibrium is one of the major sources of
necessary and sufficient conditions. Another source is the rationality of consumer expectations. We
first classify the outcomes by the presence of second-period sales.

No second-period sales: RESE2 The absence of second-period sales along with retailer ra-
tionality, by Lemma 6, means that the best response in a symmetric equilibrium occurs with
Y = 1 − vmin. Consumer rationality in this case demands that ᾱ = 0 and vmin = p1 imply-
ing that the candidate RESE is described by v∗ = p1, Y

∗ = 1 − v∗, and, therefore, α∗ = 0 and
r∗ = 1

n(p1 − c)(1− p1). This implies that n−1
n Y ∗ = n−1

n (1− p1) < 1− p1 < 1− s
β and condition of

part 1 of Lemma 7 is satisfied.
Because, by part 1.3 of Lemma 7, ri is pseudoconcave on the interval (1− vmin − Y −i)+ ≤ yi <

1− s/β − Y −i, the candidate RESE exists if and only if

(i) there is a local maximum of ri at yi = 1− v∗ − n−1
n Y ∗ = Y ∗

n and

(ii) the profit ri at this maximum is greater than at a potential local maximum on the interval
yi > 1− s

β − n−1
n Y ∗.

Condition (i) is equivalent to ∂ri

∂yi

∣

∣

∣

yi=1−v∗−n−1

n
Y ∗+0

≤ 0. As yi = 1
n(1 − p1), the last inequality,

using (11), becomes βv∗−c+p1−βv∗+ 1
n(1−p1)

[

−(p1−βv∗) 1
1−v∗

]

≤ 0, which, after the substitution

for v∗ = p1 and multiplication by n, takes the form np1 − p1(1− β) ≤ nc or p1 ≤ nc
β+n−1 = P2. We

showed that this condition is necessary.
Condition (ii) is satisfied if ri is nonincreasing for yi > 1− s/β − n−1

n Y ∗. Because ri is concave

on this interval by part 1.4 of Lemma 7, it is nonincreasing if ∂ri

∂yi

∣

∣

∣

yi=1−s/β−n−1

n
Y ∗+0

≤ 0. The latter,
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using (15), can be written as

−c+ s+
n−1
n (1− p1)

(1− s/β)2
(p1 − s)(1− p1) ≤ 0 or

n− 1

n

(p1 − s)(1− p1)
2

(c− s)(1− s/β)2
≤ 1. (17)

As p1 > s/β, we have (1−p1)2

(1−s/β)2
< 1, and (17) is implied by (n − 1)(p1 − s) ≤ n(c − s). The latter

holds because, by (already proved as necessary) condition p1 ≤ P2, n(c− s) ≥ (n− 1+β)p1−ns =
(n− 1)(p1 − s)+ βp1 − s > (n− 1)(p1 − s). Therefore, condition p1 ≤ P2 is necessary and sufficient
for the existence of RESE2.

There are second-period sales: RESE1 or 3 When sales in the second period do occur, a
symmetric equilibrium Y = Ŷ > 1 − vmin, by Lemma 7, is an internal maximum of the profit
function for each retailer. For p2 > s, the first-order condition ∂ri

∂yi
= 0 is provided by setting (12)

to zero with substitutions yi = Y
n and Y −i = n−1

n Y :

β

(

1− n− 1

n
Y

)

− c+ β(1− vmin)− 2β
Y

n
+ (p1 − β)(1− vmin)

n− 1

n

Y

Y 2
= 0

or − β
n+ 1

n
Y − c+ β(2− vmin) + (p1 − β)(1− vmin)

n− 1

n

1

Y
= 0.

Multiplication of the last equation by − n
β(n+1)Y yields

Y 2 − Y
n

n+ 1

(

2− vmin − c

β

)

− n− 1

n+ 1

(

p1
β

− 1

)

(1− vmin) = 0. (18)

Equation (18) along with the relation between vmin and Y from Lemma 1 and inequality Y >
1 − p1 (from part 2 of Lemma 4) provide the necessary conditions for any equilibria with sales in
the second period and p2 = β(1− Y ) > s.

It is convenient to analyze RESE existence in terms of vmin as a function of Y . For rational
expectations ᾱ = 1 and p̄2 = p2 = β(1 − Y ), denote the mapping from Y to vmin resulting from
Lemma 1 as function

vmin
1 (Y ) , max

{

p1, min

{

p1 − ρβ(1− Y )

1− ρβ
, 1

}}

. (19)

When ρ > 0, this function is increasing and piecewise linear with two breakpoints. It is straight-
forward to check that the first break-point occurs exactly at Y = 1 − p1 whereas the second at
Y = 1−p1

ρβ . When ρ = 0, vmin
1 ≡ p1.

Equation (18) yields another mapping from Y to vmin:

vmin
2 (Y ) , 1−

Y 2 − Y n
n+1 (1− c/β)

Y n
n+1 + n−1

n+1 (p1/β − 1)
. (20)

When p1 6= β and n > 1, this function is a hyperbola with a vertical asymptote Y = n−1
n (1− p1/β)

and an asymptote with a negative slope −n+1
n . When Y = 0 or Y = n

n+1 (1− c/β), vmin
2 (Y ) = 1.

Implicit differentiation of (18) yields

2Y − n

n+ 1

(

2− vmin
2 − c

β

)

+ Y
n

n+ 1

∂vmin
2

∂Y
+

n− 1

n+ 1

(

p1
β

− 1

)

∂vmin
2

∂Y
= 0

7



(a) p1 > β (b) p1 < β

Figure 11: Possible appearance of vmin
2 (Y ) and the relevant range of vmin

resulting in (n− 1)(p1 − β)
∂vmin

2

∂Y

∣

∣

∣

Y=0
= n(β − c).

When p1 > β and n > 1, the vertical asymptote is located to the left of Y = 0 implying

that points (0, 1) and
(

n
n+1 [1− c/β] , 1

)

in the (Y, vmin)-plane belong to the same branch of the

hyperbola. In this case,
∂vmin

2

∂Y

∣

∣

∣

Y=0
> 0 and it must be true that

∂vmin
2

∂Y < 0 for all Y ≥ n
n+1 (1− c/β).

Relevant equilibrium candidates can only be on the downward-sloping segment of vmin
2 (Y ) to the

right of Y = n
n+1 (1− c/β) and in the range p1 ≤ vmin ≤ 1. This case is depicted in Figure 11 (a),

where a solid curve is vmin
2 (Y ), dotted lines represent its asymptotes, and the dashed lines indicate

the lower and upper bounds on the relevant range of vmin.
When p1 < β and n > 1, the vertical asymptote is located to the right of Y = 0 implying

that points (0, 1) and
(

n
n+1

[

1− c
β

]

, 1
)

belong to different branches of the hyperbola. We have

∂vmin
2

∂Y < 0 for all Y , and the entire left branch is irrelevant because the vertical asymptote is to the

left of Y = 1− p1. Indeed,
n−1
n

(

1− p1
β

)

< 1− p1 is equivalent to np1− (n− 1)p1β < 1 which always

holds for p1 < β. All possible equilibrium candidates are again on the downward-sloping segment

of vmin
2 (Y ) to the right of Y = n

n+1

(

1− c
β

)

and in the range p1 ≤ vmin ≤ 1. This case is illustrated

in Figure 11 (b).
When p1 = β or n = 1, the relevant part of vmin

2 (Y ) is decreasing linear: vmin
2 (Y ) = 2− c

β− n+1
n Y,

which also satisfies vmin
2

(

n
n+1

[

1− c
β

])

= 1. Thus, regardless of n and the relation between p1 and

β, the geometric structure of potential equilibrium candidates is essentially the same.
RESE1: There are no sales in the first period at a RESE if and only if v∗ = 1. The geo-

metric structure described above implies that such an equilibrium can be realized only if vmin
1 (Y )

intersects with vmin
2 (Y ) at a point corresponding to Y ∗ = n

n+1

(

1− c
β

)

, i.e., vmin
1 (Y ∗) = 1 or

p1 − ρβ
[

1− n
n+1

(

1− c
β

)]

≥ 1 − ρβ, which is equivalent to p1 ≥ P1 = 1 − n
n+1ρ (β − c). This

necessary condition is also sufficient for RESE1. Indeed, given that vmin
1 (Y ∗) = 1, the equilibrium
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values are in the form of RESE1, p∗2 = β
[

1− n
n+1

(

1− c
β

)]

= nc+β
n+1 > c > s and yi = Y ∗

n indeed

delivers the best response of retailer i because Y ∗ = n
n+1 (1− c/β) < 1 − c/β < 1 − s/β and

∂ri

∂yi

∣

∣

∣

yi=1−s/β−n−1

n
Y ∗+0

= −c+ s < 0 implying, by part 1.5 of Lemma 7, that ri is pseudoconcave.

The description of RESE1 is completed by substituting p∗2, Y
∗ and v∗ into (10):

r∗ =
Y ∗

n

[

β + nc

n+ 1
− c

]

=
1

n+ 1

(

1− c

β

)[

β + nc

n+ 1
− c

]

=
(β − c)

(n+ 1)β

β + nc− nc− c

n+ 1
=

(β − c)2

(n+ 1)2β
.

The p1-ranges in RESE1 and 2 do not overlap because the minimal lower bound for p1 in
RESE1, which corresponds to n → ∞, exceeds the maximal upper bound in RESE2 (at n = 1):
1− ρ(β − c) > c/β ⇔ β(1− ρβ) > c(1− ρβ).

RESE3: This case is characterized by Y ∗ > 1− v∗ (there are sales in the second period) and
p1 ≤ v∗ < 1 (there are sales in the first period) with v∗ = p1 only if ρ = 0. Translating this into the

geometric structure described above, necessary conditions for RESE3 are vmin
1

(

n
n+1

(

1− c
β

))

< 1

and vmin
2 (1 − p1) > p1. The first condition is equivalent to the negation of p1 ≥ P1, i.e., the strict

upper limit of p1-range for RESE3. The second condition ensures that vmin
2 (Y ) intersects vmin

1 (Y )
for Y > 1− p1 and is equivalent to

1−
(1− p1)

2 − (1− p1)
n

n+1 (1− c/β)

(1− p1)
n

n+1 + n−1
n+1 (p1/β − 1)

> p1,

and, because (1− p1)
n

n+1 + n−1
n+1 (p1/β − 1) = 1−p1

n+1 + (n−1)p1(1−β)
(n+1)β > 0, to

(1− p1)

[

(1− p1)
n

n+ 1
+

n− 1

n+ 1
(p1/β − 1)− (1− p1) +

n

n+ 1
(1− c/β)

]

> 0.

Collecting like terms inside [·] yields (n− 1+ β)p1 > nc which is the negation of the necessary and
sufficient condition p1 ≤ P2 of RESE2, i.e., the strict lower limit of p1-range for RESE3.

Given that necessary condition P2 < p1 < P1 holds and there are sales in both periods, the
candidate point for the equilibrium, by Lemma 1, satisfies

v∗ =
p1 − ρβ(1− Y ∗)

1− ρβ
(21)

and v∗ ∈ [p1, 1). Substitution for vmin = v∗ into (18) results in the following equation for Y ∗:

Y 2 − Y
n

n+ 1

(

2− p1 − ρβ(1− Y )

1− ρβ
− c

β

)

− n− 1

n+ 1

(

p1
β

− 1

)(

1− p1 − ρβ(1− Y )

1− ρβ

)

= 0,

which, after collecting the terms with Y, becomes

Y 2

(

1 +
n

n+ 1

ρβ

1− ρβ

)

(22)

−Y

[

n

n+ 1

(

2− p1 − ρβ

1− ρβ
− c

β

)

− n− 1

n+ 1

(

p1
β

− 1

)

ρβ

1− ρβ

]

− n− 1

n+ 1

(

p1
β

− 1

)(

1− p1 − ρβ

1− ρβ

)

= 0.

The coefficient in front of Y 2 is

1 +
n

n+ 1

ρβ

1− ρβ
=

n+ 1− ρβ

(n+ 1)(1− ρβ)
,
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and the coefficient in front of Y is

− 1

(n+ 1)(1− ρβ)
{n [2− 2ρβ − p1 + ρβ − (1− ρβ)c/β]− (n− 1) (p1/β − 1) ρβ} ,

where the first term in the bracket {. . .} is

n[2− ρβ − p1 − (1− ρβ)c/β] = n(1− ρβ)(1− c/β) + n(1− p1).

Then multiplication of (22) by β(n+1)(1−ρβ)
β(n+1−ρβ) results in

Y 2 − (β − c)n(1− ρβ) + β(1− p1)n− (p1 − β)ρβ(n− 1)

β(n+ 1− ρβ)
Y − (p1 − β)(1− p1)(n− 1)

β(n+ 1− ρβ)
= 0. (23)

By geometric structure under condition P2 < p1 < P1, the larger root of this equation does belong
to the region Y > 1− p1 and the smaller root is irrelevant.

The conditions for RESE3 will become necessary and sufficient if (23), (21), and P2 < p1 < P1

are complemented with the conditions guaranteeing that the larger root Y ∗ of (23) is such that
Y ∗ < 1− s

β (implying p∗2 > s and included as a condition of the theorem) and either

(a) the profit ri of retailer i deviating from this RESE so that p2 = s (the total inventory is
greater than 1− s

β ) has no maximum for Y > 1− s
β , or

(b) if r̃i = max ri exists for Y > 1− s
β , then the inequality r̃i < r∗ holds.

Because, by part 1.4 of Lemma 7, ri is concave for yi ≥ 1 − s/β − n−1
n Y ∗ (or, equivalently,

Y ≥ 1−s/β), ri is nonincreasing for yi ≥ 1−s/β− n−1
n Y ∗ if and only if ∂ri

∂yi

∣

∣

∣

yi=1−s/β−n−1

n
Y ∗+0

≤ 0.

Thus, the latter condition is equivalent to (a). Using (15) with vmin = v∗, Y −i = n−1
n Y ∗ and

Y = 1 − s/β this condition can be written as −c + s + n−1
n

Y ∗

(1−s/β)2
(p1 − s) (1 − v∗) ≤ 0, yielding

condition (a).

If ∂ri

∂yi

∣

∣

∣

yi=1−s/β−Y −i+0
> 0, then, since ∂ri

∂yi
becomes negative for sufficiently large Y by (15),

r̃i = max ri exists for Y > 1− s/β. Therefore, RESE exists in this case if r∗ ≥ r̃i (condition (b)).
In order to provide the expression for r̃i, denote the maximized deviator’s inventory decision by

ỹi , argmax ri > 1
nY

∗. As a result of this deviation, the total inventory becomes Ỹ = ỹi + n−1
n Y ∗.

Then, using (15) with vmin = v∗, we obtain the following equation in Ỹ : ∂ri

∂yi

∣

∣

∣

yi=ỹi
= 0 = −(c −

s) + n−1
n

Y ∗

Ỹ 2
(p1 − s) (1− v∗) , which yields Ỹ =

√

n−1
n

Y ∗(p1−s)(1−v∗)
c−s . Substitution of Y = Ỹ and

yi = Ỹ − n−1
n Y ∗ into the equation for profit (14), results in

r̃i =

{

√

n− 1

n

Y ∗ (p1 − s) (1− v∗)

c− s
− n− 1

n
Y ∗

}

×







−(c− s) +
(p1 − s)(1− v∗)

√

n−1
n

Y ∗(p1−s)(1−v∗)
c−s







,

which, after factoring out n−1
n Y ∗ from the first curly bracket and c−s from the second one, becomes

r̃i =
n− 1

n
Y ∗ (c− s)

{
√

n

(n− 1)

(p1 − s)(1− v∗)

(c− s)Y ∗ − 1

}2

.
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(a) RESE 3 (b) RESE 1 (c) RESE 2

Figure 12: Changes in equilibrium structure from RESE 3 to RESE 1 and 2

This expression can be also written as follows: r̃i =
{

√

(p1 − s)(1− v∗)−
√

n−1
n Y ∗ (c− s)

}2

,

which coincides with the expression for r̃i in the theorem statement.
Expression for r∗ follows immediately from (1) and Lemma 1.
We complete the proof of the main part of the theorem by a simple observation that equilibrium

characteristics are continuous on the boundaries between RESE1 and 3 as well as RESE2 and 3.
Figure 12, in its subplot (a), depicts a typical configuration of vmin

1 (Y ) and vmin
2 (Y ) when RESE3

exists, whereas subplots (b) and (c) depict this configuration at the points of change to RESE1
and 2, respectively.

RESE3 continuously changes into RESE1 as the intersection point of vmin
1 (Y ) and vmin

2 (Y )

representing RESE3 moves toward the point
(

n
n+1

[

1− c
β

]

, 1
)

on vmin
2 (Y ) representing RESE1. The

latter point is to the left of all possible candidates for RESE3 located on vmin
2 (Y ) implying that, in

RESE3, Y ∗ ≥ n
n+1

[

1− c
β

]

. Similarly, RESE3 continuously changes into RESE2 as the intersection

point of vmin
1 (Y ) and vmin

2 (Y ) moves toward vmin
1 (Y )’s break-point (1−p1, p1) (representing RESE2).

The continuity of r∗ follows from the continuity of the expression for ri, given by (8), in all the
parameters and continuity of v∗ and Y ∗ (using yi = 1

nY
∗).

It remains to examine the convergence under deviations from rational expectations. The geo-
metric structure of candidates for RESE3 and 1 implies that the areas of inputs where these RESE
exist do not intersect. Suppose that (i) ᾱ = α∗ = 1, i.e., one and only one of RESE3 or 1 can be
realized for given inputs; and (ii) consumer expectations of the second-period price deviate from
rational ones with p̄02 < p∗2, and the game is repeated with the same inputs. As shown above,
∂vmin

2

∂Y < 0, implying ∂BR
∂vmin < 0, where BR = BR[vmin(p̄2)] is a symmetric best response, given

p̄2. By Lemma 1, ∂vmin

∂p̄2
≤ 0, which leads to ∂BR

∂p̄2
≥ 0. Then p̄02 < p∗2 ⇒ BR(p̄02) ≤ BR(p∗2) =

Y ∗ < 1 − s
β , implying that the realized price p02 = β[1 − BR(p̄02)] ≥ p∗2 > s. Moreover, for any

moment of time t ∈ [0,∞), the realized (pt2) and expected (p̄t2) second-period prices are such that
pt2 ≥ p∗2 > p̄t2 if consumer expectations follow a linear adjustment process p̄t+1

2 = µpt2 + (1 − µ)p̄t2
with a sufficiently small µ. This process, using (3), can be written as p̄t+1

2 = µβ(1 − Y t) + (1 −
µ)p̄t2, where Y t = BR(p̄t2). Then

∣

∣p∗2 − p̄t+1
2

∣

∣ =
∣

∣p∗2 − µ
[

β(1−BR(p̄t2)) + p∗2 − p∗2
]

− (1− µ)p̄t2
∣

∣ =
∣

∣(1− µ)(p∗2 − p̄t2)− µβ(Y ∗ −BR(p̄t2))
∣

∣ . By the mean value theorem, there exists p̃2 ∈ (p∗2, p̄
t
2) such

that Y ∗ −BR(p̄t2) =
∂BR(p̃2)

∂p̄2
(p∗2 − p̄t2). Then, if µβ

∂BR(p̃2)
∂p̄2

≤ 2(1− µ) ⇔ µ ≤ 2/(2 + β ∂BR(p̃2)
∂p̄2

) < 1,
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we have
∣

∣p∗2 − p̄t+1
2

∣

∣ ≤ (1 − µ)
∣

∣p∗2 − p̄t2
∣

∣ = (1 − µ)t
∣

∣p∗2 − p̄02
∣

∣ , which goes to zero with t → ∞ for

any p̄02 < p∗2. As
∂vmin

∂p̄2
is restricted for any ρ ∈ [0, 1) and, by (20), ∂BR

∂vmin is restricted in the relevant

region for Y, there exists a sufficiently small µ such that µ < 2/(2 + β ∂BR(p̃2)
∂p̄2

) leading to the
convergence of the adjustment process to p∗2.

The adjustment process can be specified using inequalities ∂vmin

∂p̄2
≤ 0 and p̄02 < p∗2, which imply

vmin(p̄02) ≥ v∗ = vmin(p∗2). This property leads to three cases. (a) v∗ < 1 and vmin(p̄02) < 1, which
corresponds to the adjustment process above; (b) v∗ = 1 (RESE1 is realized at p̄2 = p∗2). In
this case, all p̄t2 are such that vmin(p̄t2) = 1, i.e., retailers’ decisions do not depend on p̄t2 and the
adjustment becomes p̄t+1

2 = µp∗2+(1−µ)p̄t2. Then
∣

∣p∗2 − p̄t+1
2

∣

∣ ≤ |1− µ|t
∣

∣p∗2 − p̄02
∣

∣ , which converges
to p∗2 for any µ ∈ (0, 2) and p̄02 < p∗2. (c) v

∗ < 1 and vmin(p̄02) = 1. In this case, the initial adjustment
steps are p̄t+1

2 = µβ(1 − BR|vmin=1) + (1 − µ)p̄t2. As
∂BR
∂vmin < 0, p̄t2 in this process increases faster

than for BR|vmin<1 . Then, by continuity and monotonicity of vmin in p̄2 and monotonicity of p̄t2 in
t, there exists such t̃ that the adjustment process switches to case (a) and follows it for any t ≥ t̃.

A.8 Proof of Corollary 1 (irrational p̄2, RESE3)

The derivative ∂Ŷ
∂p̄2

can be written as ∂Ŷ
∂p̄2

= ∂Ŷ
∂vmin

∂vmin

∂p̄2
, which, by the implicit function theorem, is

∂vmin

∂p̄2
/∂vmin

∂Ŷ
. By Lemma 1, ∂vmin

∂p̄2
= − ᾱρ

1−ᾱρβ , which is − ρ
1−ρβ under RESE3. By (20), ∂vmin

∂Ŷ
=

∂vmin
2

∂Ŷ
=

[

2Ŷ − n
n+1(1− c/β)

][

Ŷ n
n+1 + n−1

n+1(p1/β − 1)
]

−
[

Ŷ 2 − Ŷ n
n+1(1− c/β)

]

n
n+1

[

Ŷ n
n+1 + n−1

n+1(p1/β − 1)
]2

=
Ŷ 2 n

n+1 + 2Ŷ n−1
n+1(p1/β − 1)− n(n−1)

(n+1)2
(1− c/β)(p1/β − 1)

[

Ŷ n
n+1 + n−1

n+1(p1/β − 1)
]2 . (24)

As both ∂vmin

∂p̄2
and

∂vmin
2

∂Ŷ
are negative (the latter – by the geometric argument in the proof of

Theorem 1 illustrated in Figure 11), the upper bound on ∂Ŷ
∂p̄2

corresponds to the upper bound on
∂vmin

2

∂Ŷ
, which, for p1 ≥ β, (see Figure 11 (a)) is provided by

∂vmin
2

∂Ŷ
≤ ∂vmin

2

∂Ŷ
|Ŷ= n

n+1
(1−c/β) =

= −
n

n+1(1− c/β)
[(

n
n+1

)2
(1− c/β) + n−1

n+1(p1/β − 1)
]

[(

n
n+1

)2
(1− c/β) + n−1

n+1(p1/β − 1)
]2 = − 1− c/β

n
n+1(1− c/β) + n−1

n (p1/β − 1)
,

where denominator is positive, increases in n with the limit (p1 − c)/β when n → ∞. Therefore,
∂Ŷ
∂p̄2

≤ ρ
1−ρβ

p1−c
β−c when p1 ≥ β.

When p1 < β, we have (see Figure 11 (b))
∂vmin

2

∂Ŷ
≤ ∂vmin

2

∂Ŷ
|Ŷ=1−p1

=

=
(1− p1)

2 n
n+1 + 2n−1

n+1(p1/β − 1)(1− p1)− n(n−1)
(n+1)2

(1− c/β)(p1/β − 1)
(

n
n+1

)2[
1− p1 +

n−1
n (p1/β − 1)

]2 .

The last term in the numerator can be written as −n(n−1)
(n+1)2

[1− p1/β + (p1 − c)/β] (p1/β − 1) =
n(n−1)
(n+1)2

(1− p1/β)
2 + n(n−1)

(n+1)2
(1− p1/β)(p1 − c)/β. Then the numerator is

n

n+ 1

{

(1− p1)
2 + 2

n− 1

n
(p1/β − 1)(1− p1) +

n− 1

n+ 1
(1− p1/β)

2 +
n− 1

n+ 1
(1− p1/β)(p1 − c)/β

}

.

12



By adding and subtracting
[

n−1
n (p1/β − 1)

]2
, we have {·} =

[

1− p1 +
n−1
n (p1/β − 1)

]2
+n−1

n (p1/β−
1)2

(

n
n+1 − n−1

n

)

+ n−1
n+1(1− p1/β)(p1 − c)/β, where n

n+1 − n−1
n = 1

n(n+1) . Then

∂vmin
2

∂Ŷ
|Ŷ=1−p1

= −n+ 1

n

[

1 +

n−1
n2(n+1)

(p1/β − 1)2 + n−1
n+1(1− p1/β)(p1 − c)/β

[

1− p1 +
n−1
n (p1/β − 1)

]2

]

≤ −n+ 1

n
< −1,

i.e., ∂Ŷ
∂p̄2

≤ ρ
1−ρβ when p1 < β.

A.9 Proof of Corollary 2 (RESE3, monopoly)

For n = 1, sufficient condition (a) always holds and (18) is
[

Y − 1 + 1
2

(

vmin + c
β

)]

Y = 0, yielding

Y ∗ = 1− 1
2

(

v∗+ c
β

)

. The equation for v∗ is v∗ =
p1− 1

2
ρβ
(

v∗+ c
β

)

1−ρβ which is equivalent to v∗(2−ρβ) =

2p1 − ρc, resulting in the equilibrium v∗. Substitution of Y ∗ into (3) leads to the expression for p∗2.

A.10 Proof of Corollary 3 (RESE3, ρ = 0, second-period sales at loss)

For β = 1 and ρ = 0, p1-range in RESE3 is c < p1 < 1. Thus, RESE1 and 2 cannot be realized.
By the proof of Theorem 1, Y ∗,3 ≤ 1 − c/β is equivalent to v∗ ≥ vmin

2 (1− c/β) because vmin
2 (Y ),

given by (20), is decreasing in the relevant range of Y . Using Y = 1− c and β = 1 in (20), we get

vmin
2 (1− c) = 1−

(1− c)2 − (1− c)2 n
n+1

(1− c) n
n+1 + n−1

n+1(p1 − 1)
= 1− (1− c)2

n(p1 − c) + 1− p1
.

Thus, under conditions of the corollary, p∗2 ≥ c if and only if v∗ = p1 ≥ 1− (1−c)2

n(p1−c)+1−p1
. Rearranging

this inequality we obtain (1−c)2

n(p1−c)+1−p1
≥ 1− p1, and solving for n we get

n ≤ 1

p1 − c

(

(1− c)2

1− p1
− (1− p1)

)

=
2− c− p1
1− p1

= 2 +
p1 − c

1− p1
.

A.11 Proof of Corollary 4 (RESE3, perfect competition)

If P2 < p1 < P1 for n → ∞, the limits v∗∞ and Y ∗
∞ of, respectively, v∗ = p1−ρβ(1−Y ∗)

1−ρβ and Y ∗

defined by (23) exist. This follows from the geometric structure of curves vmin
1 (Y ) and vmin

2 (Y ) in
the limiting case (see equations (19) and (20) and their analysis in the proof of Theorem 1).

The violation of condition (a) in the limit of n → ∞ means that, for some ǫ > 0,

(p1 − s)(1− v∗∞)Y ∗
∞

(c− s)(1− s/β)2
= 1 + 2ǫ.

There exists N such that condition (a) is violated for any n > N by at least ǫ:

n− 1

n

(p1 − s)(1− v∗)Y ∗

(c− s)(1− s/β)2
≥ 1 + ǫ. (25)

There are two cases: Y ∗
∞ > 1 − s/β and Y ∗

∞ ≤ 1 − s/β. If Y ∗
∞ > 1 − s/β, there exists N ′ such

that Y ∗ > 1 − s/β for any n > N ′ implying, by condition (b) of Theorem 1, that RESE3 does

13



not exist for these n, and the claim of the corollary is established. If Y ∗
∞ ≤ 1 − s/β, there exist

sufficiently small ǫ′ > 0 and N ′ such that

1− s/β

Y ∗ ≥ 1 + ǫ′√
1 + ǫ

(26)

for all n > N ′. Inequality (25) is equivalent to ∂ri

∂yi

∣

∣

∣

yi=1−s/β−Y −i+0
> 0 (see the analysis of RESE3

in the proof of Theorem 1) and implies that there exists r̃i, which is a unique maximum of ri for
yi > 1− s/β − Y −i. Using the proof of condition (b) in Theorem 1, we have

r̃i =
n− 1

n
Y ∗ (c− s)

{
√

n

n− 1

(p1 − s)(1− v∗)

(c− s)Y ∗ − 1

}2

.

Bounds (25) and (26) imply

n

n− 1

(p1 − s)(1− v∗)

(c− s)Y ∗ ≥
(

n

n− 1

1− s/β

Y ∗

)2

(1 + ǫ) ≥ (1 + ǫ′)2.

Then, using n−1
n ≥ 1

2 and Y ∗ ≥ 1− p1, r̃
i is bounded from below as follows:

r̃i ≥ n− 1

n
Y ∗ (c− s)

{

√

(1 + ǫ′)2 − 1
}2

≥ 1

2
(1− p1)(c− s)(ǫ′)2

for all n > max{N,N ′}. That is, r̃i is separated from zero by a positive constant for all sufficiently
large n. On the other hand, the following lemma immediately implies that limn→∞ r∗ = 0.

Lemma 8. The equilibrium profit in RESE 3 can be expressed as

r∗ =
β

n(1− ρβ)

{

− (Y ∗)2 + Y ∗
[

2− p1 −
c

β
− ρ (p1 − c)

]

+
(p1
β

− 1
)

(1− p1)
}

. (27)

Indeed, Y ∗ is bounded, implying that the expression inside {·} is also bounded, whereas the
coefficient in front of {·} tends to zero as n → ∞. Then there exists N ′′ ≥ max{N,N ′} such that
r̃i > r∗ for all n > N ′′ and RESE3 does not exist.

A.12 Proof of Theorem 2 (RESE with p∗2 = s)

We start by identifying candidate solutions for a symmetric equilibrium with given expectations.
When p2 = s, the equilibrium is possible only with sales in both periods, and rationality requires
that vmin < 1 and ᾱ = 1.

By parts 1.4 and 2 of Lemma 7, the profit function is strictly concave when yi ≥
(

1− s/β − Y −i
)+

and (by part 1.1) the optimum cannot occur at yi = 1 − s/β − Y −i. Then the candidate is found

by setting the derivative of the profit to zero. Using (15) for ∂ri

∂yi
and, by symmetry, Y −i = n−1

n Y ,

0 =
∂ri

∂yi
= −(c− s) +

Y −i

Y 2
(p1 − s)

(

1− vmin
)

= −(c− s) +
n− 1

nY
(p1 − s)

(

1− vmin
)

.

The unique solution is Ŷ = n−1
n

(p1−s)(1−vmin)
c−s . Rationality of expectations, by Lemma 1, leads to

vmin = v∗ = p1−ρs
1−ρβ , which gives us Y ∗ = n−1

n
(p1−s)(1−v∗)

c−s and the equilibrium profit

r∗ =
1

n
{−cY ∗ + p1(1− v∗) + s [Y ∗ − (1− v∗)]} =

1

n
{−(c− s)Y ∗ + (p1 − s)(1− v∗)} ,

14



which yields the expression for r∗ in the theorem.
We now analyze when the candidate point is indeed a RESE with p∗2 = s, and start by checking

that it is contained within the valid ranges p1 ≤ v∗ < 1 and Y ∗ ≥ 1− s/β, which provide necessary
conditions for RESE existence. The second condition is the domain restriction of §A.3. It is
equivalent to p∗2 = s and follows from either of the mutually exclusive cases (a), (b), and (c) in the
statement of the theorem. Because the equilibrium cannot result in Y ∗ = 1 − s/β, by part 1.1 of
Lemma 7, the second condition is strengthened to Y ∗ > 1− s/β under which cases (a), (b) and (c)
become exhaustive. As 1− s/β > 0 and Y ∗ is proportional to 1− v∗, the resulting strict positivity
of Y ∗ implies that v∗ < 1. Similarly to RESE3, v∗ = p1 if ρ = 0, and it can be shown that v∗ > p1
if ρ > 0. Indeed, inequality v∗ > p1 is equivalent to p1−ρs

1−ρβ > p1 ⇔ p1 − ρs > p1 − p1ρβ ⇔ −ρs >
−p1ρβ ⇔ p1 > s/β, which always holds in this problem.

It remains to establish that the exact conditions ensuring that Y ∗

n provides the global optimum
of the profit function are indeed provided by the mutually exclusive and exhaustive (under condition
Y ∗ > 1− s/β) cases (a), (b), and (c).

Condition (a), i.e., n−1
n Y ∗ ≥ 1 − s

β , means, by (3), that p2 = s independently of the inventory
decisions of individual retailers. By part 2 of Lemma 7, the profit function is globally strictly
concave in this case and Y ∗

n is indeed its unique global maximum.
In case (b) of the theorem, condition (a) does not hold, which means that p2 = s may or may

not hold depending on the decisions of individual retailers. Nevertheless, the maximum of the
profit function is unique and occurs when p2 = s as long as the profit function is strictly increasing

in the interval corresponding to p2 > s. This is ensured by the condition ∂ri

∂yi

∣

∣

∣

yi=1−s/β−Y −i−0
≥ 0

which, by part 1.5 of Lemma 7, implies pseudoconcavity of the profit function. Using (12), the last
condition takes the following form:

∂ri

∂yi

∣

∣

∣

∣

yi=1− s
β
−Y −i−0

= β
(

1− Y −i
)

−c+β
(

1− vmin
)

−2β

(

1− s

β
− Y −i

)

+
(p1 − β)(1− vmin)Y −i

(1− s/β)2
≥ 0,

which, after collecting the terms and substituting Y −i = n−1
n Y ∗ and vmin = v∗, can be rewritten as

(

β +
(p1 − β)(1− v∗)

(1− s/β)2

)

n− 1

n
Y ∗ ≥ c+ βv∗ − 2s, yielding condition (b).

In case (c) of the theorem, condition (b) does not hold, i.e. ∂ri

∂yi

∣

∣

∣

yi=1−s/β−Y −i−0
< 0. Then,

there exists a local maximum of ri without or with the sales in the second period and p2 > s. In
other words, there exists such an inventory decision ỹi of a deviating retailer that

ỹi , argmax

{

ri(yi) | yi ∈
[

max

{

0, 1− v∗ − n− 1

n
Y ∗

}

, 1− s/β − n− 1

n
Y ∗

)}

or, denoting Ỹ , ỹi + n−1
n Y ∗, Ỹ ∈

[

max
{

1− v∗, n−1
n Y ∗} , 1− s/β

)

. Then the equilibrium with
p∗2 = s exists only if

r̃i , ri(ỹi) ≤ r∗. (28)

Consider this condition at the left boundary of the range for yi. If ỹi = 0, then r̃i = 0 and (28)

holds trivially. If ỹi = 1−v∗− n−1
n Y ∗ = (1−v∗)

[

1−
(

n−1
n

)2 p1−s
c−s

]

, then, by §A.3, there are no sales

in the second period and r̃i = (1− v∗)
[

1−
(

n−1
n

)2 p1−s
c−s

]

(p1 − c). After substitutions for r̃i and r∗,

and multiplication of both sides by n2

(1−v∗)(p1−c) , condition (28) becomes n2 − (n− 1)2 p1−s
c−s ≤ p1−s

p1−c ,
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which always holds. Indeed, let g(n) , n2 − (n − 1)2 p1−s
c−s . Then g′(n) = 2n − 2(n − 1)p1−s

c−s =

2
[

−np1−c
c−s + p1−s

c−s

]

and g′′(n) = −2p1−c
c−s < 0. Therefore, the unique maximum of g, defined by the

condition g′(n) = 0, is nmax = p1−s
p1−c and

gmax = g(nmax) =

(

p1 − s

p1 − c

)2

−
(

p1 − s

p1 − c
− 1

)2 p1 − s

c− s
=

p1 − s

p1 − c

[

p1 − s

p1 − c
− (c− s)2

p1 − c

1

c− s

]

=
p1 − s

p1 − c
.

Finally, the RESE with p∗2 = s may also exist if there exists an internal local maximum ri(ỹi) ≤
r∗ with ỹi = Ỹ − n−1

n Y ∗ such that max
{

1− v∗, n−1
n Y ∗} < Ỹ < 1 − s

β and ∂ri

∂yi

∣

∣

∣

yi=ỹi
= 0. In this

case, formula (10) from §A.3 yields the expression for r̃i in condition (c):

r̃i =

(

Ỹ − n− 1

n
Y ∗

)[

β
(

1− Ỹ
)

− c+ β (1− v∗) +
(p1 − β)(1− v∗)

Ỹ

]

,

where Ỹ is a zero of the profit function derivative (12), which, in this case, is

0 =
∂ri

∂yi
= β

(

1− n− 1

n
Y ∗

)

− c+ β(1− v∗)− 2β

(

Y − n− 1

n
Y ∗

)

+ (p1 − β)(1− v∗)
n− 1

n

Y ∗

Y 2
.

After multiplication by −Y 2/β this equation becomes

2Y 3 + a2Y
2 + a0 = 0, (29)

which is equation (4) if one substitutes the coefficients

a2 , c/β − (1− v∗)−
(

1 +
n− 1

n
Y ∗

)

= −(1− v∗)− (1− c/β)− n− 1

n
Y ∗ < 0,

a0 , (1− p1/β)(1− v∗)
n− 1

n
Y ∗.

Because, by part 1.3 of Lemma 7, the profit function of the deviating retailer is pseudoconcave on
the interval (1− v∗ − n−1

n Y ∗)+ ≤ yi ≤ 1− s/β − n−1
n Y ∗, equation (29) may have at most one root

on this interval.
Any cubic equation with real coefficients has at least one and up to three real roots. If neither

of the roots is relevant, it means that there is no internal maximum and the boundary maximum
cannot exceed r∗ as shown above. If there is a relevant root, a direct comparison between r∗ and
r̃i determines the existence of RESE.

Suppose that consumer expectations of the second-period price deviate from rational ones with
the initial deviation p̄02 > s and the game is repeated with the same inputs. As shown above,

a symmetric best response is BR(p̄2) = n−1
n

(p1−s)(1−vmin(p̄2))
c−s , which is increasing in p̄2. For any

inputs where RESE4 exists, Y ∗ = BR(s) > 1 − s/β and, because p̄02 > s,BR(p̄02) > 1 − s/β.
Then, for any t ≥ 0, the realized second-period price pt2 equals s if consumer expectations follow
a linear adjustment process p̄t+1

2 = µs + (1 − µ)p̄t2 with µ < 1. Under this process,
∣

∣s− p̄t+1
2

∣

∣ =
∣

∣(1− µ)(s− p̄t2)
∣

∣ =
∣

∣(1− µ)t(s− p̄02)
∣

∣ , which goes to zero with t → ∞ for any µ ∈ (0, 1) and
p̄02 ∈ (s,∞).

A.13 Proof of Corollary 5 (irrational p̄2, RESE4)

The result follows from ∂Ŷ
∂p̄2

= ∂Ŷ
∂vmin

∂vmin

∂p̄2
, where, by Theorem 2, ∂Ŷ

∂vmin = −n−1
n

p1−s
c−s and, by

Lemma 1, ∂vmin

∂p̄2
= − ρ

1−ρβ .
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A.14 Proof of Proposition 1 (Uniqueness of RESE)

Part (a). We start by discussing model inputs satisfying conditions of RESE1 and 2. By Theorem 1,
these conditions rule out RESE3 and guarantee that, for the corresponding structure, one and only
one equilibrium exists. Thus, it remains to rule out RESE4.

RESE4 cannot exist under the same conditions as RESE1 because p1-lower bound P1 in RESE1
exceeds the upper bound P4 in RESE4: 1− n

n+1ρ(β − c) > 1− ρ(β − c) > 1− ρ(β − s) ⇔ c > s.
Moreover, RESE4 cannot exist under the necessary and sufficient condition p1 ≤ P2 for RESE2

because the latter is incompatible with necessary condition Y ∗ > 1 − s/β for RESE4. Indeed,
consider Y ∗ = n−1

n
p1−s
c−s (1−v∗) for RESE4. Condition p1 ≤ P2 implies n(c−s) ≥ (n−1+β)p1−ns =

(n− 1)(p1 − s) + βp1 − s > (n− 1)(p1 − s). As 1− v∗ ≤ 1− p1 < 1− s/β, we get Y ∗ < 1− s/β.
Part (b). It remains to show that, when conditions of RESE1 or 2 do not hold, condition (b.2)

guarantees the existence of RESE3 and non-existence of RESE4. Indeed, (b.2) implies that RESE4
total equilibrium supply violates a necessary condition Y ∗ > 1 − s/β for RESE4 because v∗ ≥ p1
and we have Y ∗ = n−1

n · p1−s
c−s (1− v∗) ≤ 1− s/β.

Finally, for the existence of RESE3, we show that (b.2) implies Y ∗ < 1− s/β and condition (a)
of Theorem 1. Indeed, as long as Y ∗ < 1− s/β and because v∗ ≥ p1, the LHS of (a) is smaller than
the LHS of (b.2). We show that Y ∗ < 1 − s/β by demonstrating that 1 − s/β exceeds the larger
root of (23) under condition (b.2). Recall, from the proof of Theorem 1, that (23) is obtained as
a characterization of the intersection point (Y ∗, v∗) of functions vmin

1 (Y ) and vmin
2 (Y ) in the range

of Y ≥ n
n+1(1− c/β) where vmin

2 (Y ) is decreasing (see Figure 12(a)). Because the smallest possible

value of vmin
1 (Y ) is p1, Y

∗ < 1− s/β holds as long as vmin
2 (1− s/β) < p1, i.e.,

1−
(1− s/β)2 − (1− s/β) n

n+1(1− c/β)
n

n+1(1− s/β) + n−1
n+1(p1/β − 1)

= 1−
1

n+1(1− s/β)2 + (1− s/β) n
n+1(c− s)/β

1
n+1(1− s/β) + n−1

n+1(p1 − s)/β
< p1, or

(n− 1)(1− p1)(p1 − s)/β + (1− p1)(1− s/β)− (1− s/β)2 < n(1− s/β)(c− s)/β.

The latter is implied by (b.2) because 1− p1 < 1− s/β.

A.15 Proof of Proposition 2 (Switches between RESE)

The p1-bounds in the claim of the proposition satisfy the following chain of inequalities for all valid
model inputs: c/β ≤ 1 − β + c < 1 − ρ(β − c) < 1 − n

n+1ρ(β − c) ≤ 1 − 1
2ρ(β − c). The value

1− β + c provides the exact lower bound on p1-values corresponding to RESE1 over all n ≥ 1 and
ρ ∈ [0, 1), whereas c/β provides the exact upper bound on p1 corresponding to RESE2. Thus, p1
corresponding to RESE1 for some model inputs cannot result in RESE2 under any other inputs
and vice versa. Consider each of the possible p1-ranges.

Part 1: By Theorem 1, if p1 ≤ c/β and n = 1, the RESE is realized in the form 2 and not
form 3. The necessary and sufficient condition for RESE2 can be rewritten as p1n− p1(1−β) ≤ nc

or, equivalently, n ≤ n2 = p1(1−β)
p1−c . For n > n2, RESE2 cannot exist and p1 falls into the range

of RESE3 (and, as argued above, cannot fall into the range of RESE1). That is, as the level
of competition increases, the equilibrium with no sales in the second period (RESE2) becomes
impossible and is replaced by the equilibrium with sales in both periods (RESE3).

Part 4: When p1 > c
β , we have n2 < 1, i.e. even a monopolist cannot realize RESE2. If, in

addition to this condition, p1 < 1− β + c, only RESE3 is possible.
Part 2: Because the RESE3 upper bound on p1 is decreasing in n, RESE3 may exist only if
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p1 < 1− 1
2ρ(β − c) (P1 for n = 1). RESE3 p1-bounds imply the following bounds on n :

n2 < n <

{

n1 =
1−p1

p1−1+ρ(β−c) if p1 > 1− ρ(β − c),

∞ otherwise.

That is, as n increases, RESE3 becomes impossible if p1 > 1− ρ(β − c) and is replaced by RESE1.
Part 3 of this proposition can be shown in the same way, using the boundary on p1 between

RESE1 and 3 as a function of ρ.

A.16 Proof of Proposition 3 (Monotonicity of Y ∗, v∗, and nr∗)

Monotonicity of v∗ and Y ∗. By Theorem 1, v∗ is constant in n and ρ for RESE1 and 2; Y ∗ is
increasing in n and constant in ρ for RESE1 and constant in n and ρ for RESE2. By continuity of
v∗ and Y ∗, it remains to show the correspondent monotonicity of these values for RESE3.

Monotonicity of v∗ and Y ∗ in ρ. Recall that, for RESE3, Y ∗ and v∗ satisfy (18) for Y ∗. The
derivative of this equation in ρ is

2Y ∗∂Y
∗

∂ρ
− ∂Y ∗

∂ρ

n

n+ 1

(

2− v∗ − c

β

)

+
n

n+ 1
Y ∗∂v

∗

∂ρ
+

n− 1

n+ 1

(

p1
β

− 1

)

∂v∗

∂ρ
= 0,

which can be written as

∂Y ∗

∂ρ

[

2Y ∗ − n

n+ 1

(

2− v∗ − c

β

)]

= −∂v∗

∂ρ

1

n+ 1

[

nY ∗ + (n− 1)

(

p1
β

− 1

)]

. (30)

As Y ∗ > 1− p1 (by Lemma 4), and p1
β ≥ p1, the lower bound for the square bracket in the RHS is

n(1− p1) + (n− 1) (p1 − 1) = 1− p1 > 0. The square bracket in the LHS of (30) is also positive:

2Y ∗ − n

n+ 1
(2− v∗ − c/β) > 0 (31)

because Y ∗ > 1− p1 ≥ 1− v∗ ≥ n
n+1(1− v∗) and n

n+1 (1− c/β) is a lower bound for Y ∗ in RESE3
(by Theorem 1).

For RESE3, Y ∗ and v∗ satisfy (21), which can be written as (1− ρβ)v∗ − ρβY ∗ = p1 − ρβ with
the following derivative in ρ : (1 − ρβ)∂v

∗

∂ρ − ρβ ∂Y ∗

∂ρ = β(v∗ + Y ∗ − 1), where the RHS is positive
because v∗ ≥ p1 and Y ∗ > 1 − p1. The combination of the last equation with (30) results in the
linear system in ∂v∗

∂ρ and ∂Y ∗

∂ρ with positive ai and bi :

a2
∂v∗

∂ρ
= −a1

∂Y ∗

∂ρ
,

b2
∂v∗

∂ρ
= b1

∂Y ∗

∂ρ
+ b0.

The first equation describes a straight line with zero intercept and negative slope. The second

straight line goes through the points
(

∂Y ∗

∂ρ , ∂v
∗

∂ρ

)

= (0, b0) and
(

∂Y ∗

∂ρ , ∂v
∗

∂ρ

)

= (− b0
b1
, 0) with a positive

slope. A unique intersection of these lines belongs to the area where ∂v∗

∂ρ > 0 and ∂Y ∗

∂ρ < 0.

Monotonicity of v∗ and Y ∗ in n. Denote z , n
n+1 , which implies n−1

n+1 = 2z − 1. As z increases
in n, monotonicity of v∗ and Y ∗ in z is equivalent to monotonicity in n. Equation (18) for Y ∗ can

be written as (Y ∗)2 − Y ∗z
(

2− v∗ − c
β

)

− (2z − 1)
(

p1
β − 1

)

(1− v∗) = 0 with the derivative in z

2Y ∗∂Y
∗

∂z
− ∂Y ∗

∂z
z
(

2− v∗ − c

β

)

− Y ∗
(

2− v∗ − c

β

)

+ Y ∗z
∂v∗

∂z

− 2
(p1
β

− 1
)

(1− v∗) + (2z − 1)
(p1
β

− 1
)∂v∗

∂z
= 0.

18



After collecting the terms with ∂v∗

∂z and ∂Y ∗

∂z , this equation becomes

∂Y ∗

∂z

[

2Y ∗ − z
(

2− v∗ − c

β

)]

+
∂v∗

∂z

[

Y ∗z + (2z − 1)
(p1
β

− 1
)]

= Y ∗
(

2− v∗ − c

β

)

+ 2
(p1
β

− 1
)

(1− v∗). (32)

The first square bracket in the LHS is positive by (31). The second square bracket in the LHS is
also positive because it is positive for p1 ≥ β, and, for p1 < β, it is bounded from below as follows:

Y ∗ n

n+ 1
+

n− 1

n+ 1

(p1
β

− 1
)

>
n
[

Y ∗ −
(

1− p1
β

)]

n+ 1
>

n[Y ∗ − (1− p1)]

n+ 1
> 0.

The RHS of (32) is positive because it is linear in v∗, positive at v∗ = 1, and positive at v∗ = p1 :

Y ∗
(

2− p1 −
c

β

)

+ 2

(

p1
β

− 1

)

(1− p1)

≥ (1− p1)

[

2− p1 −
c

β
+ 2

p1
β

− 2

]

= (1− p1)

[

p1
β

− p1 +
p1 − c

β

]

> 0.

The derivative of (21) in z is
∂v∗

∂z
=

ρβ

1− ρβ

∂Y ∗

∂z
. (33)

If ρ > 0, then ∂v∗

∂z and ∂Y ∗

∂z satisfy the following system with positive ai and bi :

a1
∂Y ∗

∂z
= a2

∂v∗

∂z
,

b1
∂Y ∗

∂z
+ b2

∂v∗

∂z
= b0.

The first equation describes a straight line with zero intercept and positive slope. The second
straight line goes through the points on the axes

(

∂Y ∗

∂z , ∂v
∗

∂z

)

= ( b0b1 , 0) and
(

∂Y ∗

∂z , ∂v
∗

∂z

)

= (0, b0b2)

with a negative slope. A unique intersection of these lines belongs to the area where ∂v∗

∂z > 0 and
∂Y ∗

∂z > 0.

If ρ = 0, (33) becomes ∂v∗

∂z = 0 yielding the solution
(

∂Y ∗

∂z , ∂v
∗

∂z

)

= ( b0b1 , 0).
Monotonicity of nr∗ in n. By Theorem 1, nr∗ is constant in n for RESE2 and monotoni-

cally decreasing for RESE1. By global continuity of nr∗, it remains to show the correspondent
monotonicity of nr∗ for RESE3.

By the alternative expression (27) for RESE3 profit (Lemma 8),

nr∗ =
β

1− ρβ

{

− (Y ∗)2 + Y ∗
[

2− p1 −
c

β
− ρ (p1 − c)

]

+

(

p1
β

− 1

)

(1− p1)

}

.

Denote F , 1−ρβ
β nr∗. Then

∂F

∂n
= −2Y ∗∂Y

∗

∂n
+

∂Y ∗

∂n

[

2− p1 −
c

β
− ρ (p1 − c)

]

=
∂Y ∗

∂n

[

2− p1 −
c

β
− ρ (p1 − c)− 2Y ∗

]

. (34)

As shown above, Y ∗ is monotonically increasing in n for RESE3. Therefore, nr∗ is monotonically
decreasing if and only if the square bracket in the last expression is negative. Consider two cases:
p1 ≤ c

β and p1 >
c
β .
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Suppose p1 ≤ c
β . By Lemma 4, Y ∗ > 1−p1 in RESE3, and, therefore, 2−p1− c

β−ρ(p1−c)−2Y ∗ <
p1 − c

β − ρ(p1 − c) ≤ 0.
For p1 > c

β (p1-lower bound for RESE3 in a monopoly), by monotonicity of Y ∗ in n, the
RESE3 value of Y ∗ for any n is bounded from below by the RESE3 total supply in a monopoly:

Y ∗ ≥ 1− 1
2

(

c
β + 2p1−ρc

2−ρβ

)

. Therefore,

2− p1 −
c

β
− ρ(p1 − c)− 2Y ∗ ≤ −p1 − ρ(p1 − c) +

2p1 − ρc

2− ρβ
=

p1ρβ − ρ(p1 − c)(2− ρβ)− ρc

2− ρβ

=
ρ(p1β − p1(2− ρβ) + c(1− ρβ))

2− ρβ
<

ρ(p1β − p1(2− ρβ) + p1β(1− ρβ))

2− ρβ
= ρp1(β − 1) ≤ 0.

Thus, the square bracket in (34) is always negative and nr∗ is monotonically decreasing in n.
Monotonicity of nr∗ in ρ. By Theorem 1, nr∗ does not depend on ρ for RESE1 and 2 because

there is no intertemporal effect in these cases.

By (10) with yi = Y ∗

n , total profit is nr∗ = β
[

Y ∗ − (Y ∗)2
]

−cY ∗+βY ∗(1−v∗)+(p1−β)(1−v∗)

with the derivative

∂[nr∗]

∂ρ
= β(1− 2Y ∗)

∂Y ∗

∂ρ
− c

∂Y ∗

∂ρ
+ β(1− v∗)

∂Y ∗

∂ρ
− βY ∗∂v

∗

∂ρ
− (p1 − β)

∂v∗

∂ρ

= −β
∂Y ∗

∂ρ

[

2Y ∗ − 2 +
c

β
+ v∗

]

− ∂v∗

∂ρ
[p1 − β(1− Y ∗)] . (35)

For n = 1, the first square bracket is zero (by Corollary 2), implying ∂[nr∗]
∂ρ < 0 because p1 > p∗2

and ∂v∗

∂ρ > 0 (by part 2 of this proposition).

For n > 1, let R = [2Y ∗ − 2 + c/β + v∗] /
[

2Y ∗ − n
n+1 (2− v∗ − c/β)

]

∈ [0, 1). Then (30)

can be written as −∂Y ∗

∂ρ [2Y ∗ − 2 + c/β + v∗] = ∂v∗

∂ρ
R

n+1 [nY
∗ + (n− 1) (p1/β − 1)] when multiplied

through by [2Y ∗ − 2 + c/β + v∗] . As nY ∗+(n−1) (p1/β − 1) ≥ 0 (because Y ∗ ≥ 1−p1 by Lemma 4)
and 0 ≤ R < 1, we can upper-bound the first term in (35) to obtain

∂[nr∗]

∂ρ
< β

∂v∗

∂ρ

[

n

n+ 1
Y ∗ +

n− 1

n+ 1

(

p1
β

− 1

)

− Y ∗ −
(

p1
β

− 1

)]

=
β

n+ 1

∂v∗

∂ρ

[

−Y ∗ − 2

(

p1
β

− 1

)]

=
2

n+ 1

∂v∗

∂ρ

[

p∗2 + β

2
− p1

]

.

As p∗2 = β(1 − Y ∗) and Y ∗ ≥ n
n+1 (1− c/β) in RESE3 by Theorem 1, ∂[nr∗]

∂ρ < 0 holds when
β − n

2(n+1)(β − c) ≤ p1 which yields the condition of the proposition.

A.17 Proof of Corollary 6 (σ2 in ρ)

The second-period surplus σ2 = ρ(βv − p∗2) is monotonically non-decreasing in n because p∗2 =
β(1− Y ∗) is non-increasing in n by part 1 or Proposition 3.

The derivative ∂σ2

∂ρ = βv−p∗2−ρ
∂p∗

2

∂ρ linearly increases in v and equals zero at v0 = 1
β

(

p∗2 + ρ
∂p∗

2

∂ρ

)

.

For RESE1, v0 < v∗ = 1 because p∗2 < βp1 < 1, by part 1 of Lemma 4, and
∂p∗

2

∂ρ = 0.

Minimum valuation of a second-period buyer is vmin
2 , p∗2/β = max {s/β, 1− Y } . For this

consumer, ∂σ2

∂ρ

∣

∣

∣

v=vmin
2

= −ρ
∂p∗

2

∂ρ , which is nonpositive for RESE3. Thus, v0 ≥ vmin
2 . Similarly, we

show that v0 < v∗ because, when ρ = 0, we have ∂σ2

∂ρ

∣

∣

∣

v=v∗
= βp1 − p∗2 > 0, and, when ρ > 0, we

know, by Proposition 3, that ∂v∗

∂ρ > 0 implying ∂σ2

∂ρ

∣

∣

∣

v=v∗
> 0.
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A.18 Proof of Corollary 7 (Q2 increases with ρ)

Recall that for a RESE, Q2 = Y ∗ − (1− v∗), yielding ∂Q2

∂ρ = ∂Y ∗

∂ρ + ∂v∗

∂ρ , which, using (30), is

∂Q2

∂ρ
=

[

−
n

n+1Y
∗ + n−1

n+1 (p1/β − 1)

2Y ∗ − n
n+1 (2− v∗ − c/β)

+ 1

]

∂v∗

∂ρ
or

∂Q2

∂ρ
=

n+2
n+1Y

∗ − n
n+1 (2− v∗ − c/β)− n−1

n+1 (p1/β − 1)

2Y ∗ − n
n+1 (2− v∗ − c/β)

· ∂v
∗

∂ρ
. (36)

Because, by Proposition 3, ∂v∗

∂ρ > 0 and, by (31), the denominator of the fraction in the RHS of (36)

is positive, the sign of ∂Q2

∂ρ coincides with the sign of the numerator.

For part 1, use n = 1 and the corresponding Y ∗ = 1− 1
2 (v

∗ + c/β) (Corollary 2) in the numerator
to get 3

2Y
∗ −

[

1− 1
2 (v

∗ + c/β)
]

= 1
2Y

∗ > 0.
For part 2, ρ = 0 implies v∗ = p1, and the numerator becomes Y ∗ − 1 + p1 + c/β − p1/ β

as n → ∞. In this case, p1-range for RESE3 is c < p1 < 1, and as p1 → 1, the total supply,
given by the larger root of (23), approaches Y ∗ = 1−c/β implying that the numerator approaches
1− 1/β < 0.

A.19 Proof of Proposition 4 (boundary-value gain in RESE3)

For β = 1, necessary condition (5) of RESE4 becomes ρ < 1−p1
1−s and cannot hold as ρ → 1 because

p1 > s. Thus, RESE4 does not exist. RESE2 does not exist because its p1-range is empty.
Part 1 is immediate by part 3 of Proposition 2, because, as ρ increases from 0 to 1, the switch

to RESE1 occurs at ρ1 = n+1
n

1−p1
1−c < 1 if 1−p1

1−c < n
n+1 or, equivalently, if n > n̄. The resulting

equilibrium characteristics are obtained by substituting β = 1 in the description of RESE1. It is
immediate to check that the resulting limit of p∗2 is below p1.

Part 2. When n < n̄, the switch from RESE3 to RESE1 does not occur for any ρ < 1. Total
supply Y ∗, which is given by a larger root of (23), is continuous in ρ near ρ = 1. We can write (23)
for β = ρ = 1 as

Y 2 −
(

(1− p1) +
(1− p1)(n− 1)

n

)

Y + (1− p1)×
(1− p1)(n− 1)

n

=

(

Y − (1− p1)(n− 1)

n

)

(Y − (1− p1)) = 0,

resulting in roots (1−p1)(n−1)
n and 1− p1. Thus, Y ∗|ρ→1 = 1− p1 and p∗2|ρ→1 = (1− Y ∗)|ρ→1 = p1.

The necessary condition Y ∗ < 1− s
β = 1−s of RESE3 in Theorem 1 is satisfied for all ρ sufficiently

close to 1 because p1 > s.
The limit of v∗ is found using

Lemma 9. In RESE 3 with β = 1, we have limρ→1
∂Y ∗

∂ρ

∣

∣

∣

β=1
= n(c− p1).

By (21) with β = 1, we have v∗ = p1−ρ(1−Y ∗)
1−ρ for all ρ ∈ [0, 1). Then

lim
ρ→1

v∗ =
p1 − p1
1− 1

=
0

0
= lim

ρ→1

∂ [p1 − ρ(1− Y ∗)] /∂ρ

∂(1− ρ)/∂ρ
= − lim

ρ→1

[

−(1− Y ∗) + ρ
∂Y ∗

∂ρ

]

= lim
ρ→1

[

1− Y ∗ − ρ
∂Y ∗

∂ρ

]

= p1 + n(p1 − c) (from Lemma 9 and Y ∗|ρ→1 = 1− p1).
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Using the limiting values of Y ∗ and v∗ in a strict version of condition (a) for RESE3 existence,
we obtain the sufficient existence condition of the form (6). Indeed, by continuity, condition (a) is
satisfied for all ρ sufficiently close to one.

Using the expression for r∗, the limit of the total profit is

nr∗|ρ→1 = lim
ρ→1

[(p1 − c)(1− v∗) + (p∗2 − c)(Y ∗ − 1 + v∗)] = lim
ρ→1

[(p1 − p∗2)(1− v∗) + (p∗2 − c)Y ∗]

= (p1 − p1)(1− v∗|ρ→1) + (p1 − c)(1− p1) = (p1 − c)(1− p1).

To complete the proof of part 2, consider when (p1 − c)(1 − p1) ≥ n(1−c)2

(n+1)2
. With a change of

variables x = 1−p1
1−c , this relation can be represented as (1− c)2(1− x)x ≥ n(1−c)2

(n+1)2
, or, equivalently,

as (1 − x)x ≥ n
(n+1)2

resulting in 1
n+1 ≤ x ≤ n

n+1 . This range does not intersect with a feasible

range of x for part 2 which is given by n
n+1 < x < 1 (resulting from n < n̄). Thus, for part 2,

(p1 − c)(1− p1) <
n(1−c)2

(n+1)2
.

Part 3 is immediate because n = n̄ implies that the limits in parts 1 and 2 are equal.
Part 4 follows from Corollary 3 for n = n̄ = 1−p1

p1−c . In this case, the condition of the corollary

becomes 1
n + 2 < n, which, after solving for positive integer n, yields n ≥ 3. Moreover, when

n = n̄ = 1−p1
p1−c and ρ = 0, the RESE is of the form 3 because RESE2 is impossible with β = 1 and

the switch to RESE1 occurs only in the limit of ρ → 1. We also have Y ∗|ρ=0 > Y ∗|ρ→1 = 1 − p1
because the total supply is (strictly) decreasing in ρ, and p∗2|ρ=0 < c by Corollary 3. Thus, for ρ = 0,
the total first period profit is (p1 − c)(1− v∗|ρ=0) = (p1 − c)(1− p1), which is exactly the same as
the total profit for ρ → 1, whereas the second-period total profit is (p∗2 − c)(Y ∗ − 1 + v∗|ρ=0) < 0.

A.20 Analysis of Example 1

Observing that (p1−s)(1−p1) ≤ 1
4(1−s)2 and using relation 1−p1 = n̄(p1−c), we can strengthen (6)

to (n−1)(n̄−n)
n

p1−c
4(c−s) < 1. For RESE3, the range of n is [1, n̄). As a function of n, fraction (n−1)(n̄−n)

n

attains its maximum of (
√
n̄ − 1)2 in this range at n =

√
n̄ leading to an even stronger version of

the condition, i.e., (
√
n̄− 1)2 (p1−c)

4(c−s) =
(
√
1−p1−

√
p1−c)

2

4(c−s) < 1. The LHS of this inequality decreases in

p1 > c and it surely holds if it holds at p1 = c, i.e., if 1−c
4(c−s) < 1 or c > 1+4s

5 . Thus, (6) holds for

all p1 and 1 ≤ n < n̄ if c > 1+4s
5 , e.g., if s = 0 and c > 0.2.

A.21 Proof of Proposition 5 (monotonicity in RESE4)

Part 1. v∗,4 = p1−ρs
1−ρβ , which is constant in n and increasing in ρ because ∂v∗

∂ρ = −s(1−ρβ)+β(p1−ρs)
(1−ρβ)2

=
βp1−s
(1−ρβ)2

> 0.

Parts 2 and 3 follow directly from part 1 and the formulas for Y ∗ and r∗, given by Theorem 2.

A.22 Proof of Lemma 5 (total surplus)

By the definition of vmin, the total consumer surplus in the first period is

Σ1 =

∫ 1

vmin

(v − p1)dv =

(

v2

2
− p1v

)∣

∣

∣

∣

1

vmin

=
1

2
− p1 −

(

vmin
)2

2
+ p1v

min

=
1

2

[

1−
(

vmin
)2
]

− p1(1− vmin) = (1− vmin)

[

1

2
(1 + vmin)− p1

]

.
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The total surplus in the second period is

Σ2 =

∫ βvmin

p2

(ṽ−p2)
dṽ

β
=

1

β

(

ṽ2

2
− p2ṽ

)∣

∣

∣

∣

βvmin

p2

=
1

β

(

βvmin − p2
)

(

βvmin + p2
2

− p2

)

=

(

βvmin − p2
)2

2β
.

Hence, Σ∗ = Σ1 +Σ2 = (1− vmin)
[

1
2(1 + vmin)− p1

]

+
(βvmin−p2)

2

2β , with vmin = v∗ for a RESE.

A.23 Proof of Proposition 6 (Monotonicity of surplus and welfare)

1. Monotonicity of Σ∗ in n. By Lemma 5, the derivatives ∂Σ1

∂n and ∂Σ2

∂n are

∂Σ1

∂n
=

1

2

∂v∗

∂n
(1− v∗)− ∂v∗

∂n

(

1

2
(1 + v∗)− p1

)

= −∂v∗

∂n
(v∗ − p1);

∂Σ2

∂n
=

1

β
(βv∗ − p∗2)

(

β
∂v∗

∂n
− ∂p∗2

∂n

)

=
∂v∗

∂n
(βv∗ − p∗2)−

∂p∗2
∂n

(

v∗ − p∗2
β

)

.

For a RESE, ∂Σ1

∂n ≤ 0 because ∂v∗

∂n ≥ 0 (Proposition 3) and v∗ ≥ p1; and
∂Σ2

∂n ≥ 0 because, by Lemma

4, βv∗ ≥ βp1 > p∗2 and
∂p∗

2

∂n ≤ 0 because, by (3), p∗2 = max{s, β(1 − Y ∗)} and, by Propositions 3

and 5, ∂Y ∗

∂n ≥ 0.

Using the expressions for ∂Σ1

∂n and ∂Σ2

∂n , we can write

∂Σ∗

∂n
=

∂v∗

∂n
[βv∗ − p∗2 − (v∗ − p1)]−

∂p∗2
∂n

(

v∗ − p∗2
β

)

. (37)

By the definition of v∗, the surpluses of a consumer with valuation v = v∗ are equal in both periods:
σ1|v=v∗ = v∗ − p1 = σ2|v=v∗ = ρ(βv∗ − p∗2). Therefore, because ρ < 1, the square bracket in (37)

is positive. Then, because ∂v∗

∂n ≥ 0 and
∂p∗

2

∂n ≤ 0, equation (37) yields ∂Σ∗

∂n ≥ 0 for a RESE. By

Theorems 1, 2, and Proposition 3, Σ∗ is constant in n for RESE2 and 4 (∂v
∗

∂n =
∂p∗

2

∂n = 0) and

monotonically increasing for RESE1 (∂v
∗

∂n = 0,
∂p∗

2

∂n < 0 ) and 3 (∂v
∗

∂n > 0,
∂p∗

2

∂n < 0).
Monotonicity of Σ∗ in ρ. By Theorem 1, Σ∗ does not depend on ρ for RESE1 and 2 (no

intertemporal effects). In general, using the same approach as for ∂Σ∗

∂n , we can write for a RESE
∂Σ1

∂ρ = −∂v∗

∂ρ (v
∗−p1) ≤ 0, ∂Σ2

∂ρ = ∂v∗

∂ρ (βv
∗−p∗2)−

∂p∗
2

∂ρ

(

v∗ − p∗
2

β

)

. Due to the side effect of increasing

ρ (
∂p∗

2

∂ρ ≥ 0), it is not obvious that ∂Σ2

∂ρ ≥ 0. The derivative of total surplus is

∂Σ∗

∂ρ
=

∂v∗

∂ρ
[βv∗ − p∗2 − (v∗ − p1)]−

∂p∗2
∂ρ

(

v∗ − p∗2
β

)

. (38)

For RESE4, we have
∂p∗

2

∂ρ = 0 and, by Proposition 5, ∂v∗

∂ρ > 0 yielding ∂Σ∗

∂ρ > 0.

2. Monotonicity of W ∗. Recall that for RESE1, v∗ = 1 and p∗2 = 1
n+1(β + nc), yielding, by

Lemma 5, Σ∗ = 1
2β

(

β − 1
n+1(β + nc)

)2
= 1

2β

(

n
n+1(β − c)

)2
and

W ∗ = Σ∗ + nr∗ =

(

n2

(n+ 1)2
+

2n

(n+ 1)2

)

(β − c)2

2β
=

(n+ 1)2 − 1

(n+ 1)2
(β − c)2

2β
,

which is increasing in n and constant in ρ.
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For RESE2, v∗ = p1,Σ2 = 0 (no second period), Σ∗ = 1
2(1− p1)

2, and

W ∗ = Σ∗ + nr∗ =
1

2
(1− p1)

2 + (p1 − c)(1− p1) =
1

2
(1− p1)(1 + p1 − 2c),

which is constant in both n and ρ.
For RESE4, v∗ = p1−ρs

1−ρβ , p∗2 = s, yielding Σ∗ that is constant in n. Then, W ∗ = Σ∗ + nr∗ =

Σ∗ + p1−s
n (1− v∗) is monotonically decreasing in n.

By Lemma 5, ∂Σ∗

∂ρ can be written as follows:

∂Σ∗

∂ρ
=

∂Σ∗

∂v∗
∂v∗

∂ρ
=

∂

∂v∗

[

1

2
(1− (v∗)2)− p1(1− v∗) +

(βv∗ − s)2

2β

]

∂v∗

∂ρ
= [−v∗ + p1 + βv∗ − s]

∂v∗

∂ρ
.

Then ∂W ∗

∂ρ = ∂v∗

∂ρ

[

−v∗ + p1 + βv∗ − s− p1−s
n

]

. As ∂v∗,4

∂ρ > 0, the sign of ∂W ∗

∂ρ coincides with the

sign of [·], which can be written as [·] = v∗(β−1)+ n−1
n (p1−s). Hence, using v∗ = p1−ρs

1−ρβ , inequality
∂W ∗

∂ρ R 0 is equivalent to (p1 − ρs)(β − 1) + n−1
n (p1 − s)(1 − ρβ) R 0. After collecting the terms

with ρ, the latter inequality becomes n−1
n (p1 − s)− p1(1− β) R ρ

(

n−1
n (p1 − s)β − (1− β)s

)

or as

p1β − s− 1
n(p1 − s) R

(

p1β − s− β
n(p1 − s)

)

ρ, which, because p1β > s, can be written as

1− 1

n

p1 − s

p1β − s
R

(

1− β

n

p1 − s

p1β − s

)

ρ. (39)

Consider two cases. If 1 > 1
n

p1−s
p1β−s , then 1 > β

n
p1−s
p1β−s and (39) is equivalent to ρ+ R ρ, where ρ+ is

defined in part 2.2. If 1 ≤ 1
n

p1−s
p1β−s , then “>” in (39) cannot hold for any ρ ∈ (0, 1), but “≤” holds

for all ρ ∈ [0, 1). Thus, in the latter case, we can define ρ+ as 0.

A.24 Proof of Corollary 8 (RESE3, non-monotonicity of the total surplus in ρ)

Proof is immediate from the following lemma:

Lemma 10. If β = 1, given that RESE is unique,

1. for ρ → 1 and n < n̄ = 1−p1
p1−c ,

∂Σ∗

∂ρ = −n2(p1 − c)2 < 0;

2. for ρ = 0,

(2.1) ∂Σ∗

∂ρ = 1
8(p1 − c) > 0 for n = 1; and

(2.2) ∂Σ∗

∂ρ = Y ∗−(1−p1)
Y ∗+(1−p1)

Y ∗ [Y ∗ − (1− c)] > 0 for n = ∞, where Y ∗ is the larger root of the
equation

Y 2 − Y (1− p1 + 1− c) + (1− p1)
2 = 0. (40)

Proof: By (38) with β = 1, the derivative ∂Σ∗

∂ρ is

∂Σ∗

∂ρ

∣

∣

∣

∣

β=1

=
∂v∗

∂ρ
[p1 − p∗2]−

∂p∗2
∂ρ

(v∗ − p∗2) . (41)

Part 1: By part 2 of Proposition 4, RESE3 is realized if ρ → 1 and n < n̄. Then p∗2 → p1 and,
if we show that ∂v∗

∂ρ < ∞, equation (41) will become

∂Σ∗

∂ρ

∣

∣

∣

∣

β=1

= −∂p∗2
∂ρ

(v∗ − p1) , (42)
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requiring the expressions for limρ→1 v
∗|β=1 and limρ→1

∂p∗
2

∂ρ

∣

∣

∣

β=1
. By (30),

∂v∗

∂ρ
= −∂Y ∗

∂ρ
·

2Y ∗ − n
n+1

(

2− v∗ − c
β

)

1
n+1

[

nY ∗ + (n− 1)
(

p1
β − 1

)] , (43)

which, after substituting β = 1, limρ→1
∂Y ∗

∂ρ

∣

∣

∣

β=1
= −n(p1 − c) (by Lemma 9), canceling 1

n+1 , and

considering the limit as ρ → 1, becomes limρ→1
∂v∗

∂ρ

∣

∣

∣

β=1
= n(p1−c)·limρ→1

2Y ∗(n+1)−n(2−v∗−c)
nY ∗−(n−1)(1−p1)

∣

∣

∣

β=1
.

Using limρ→1 Y
∗|β=1 = 1− p1, we see that the denominator tends to 1− p1. Thus, limρ→1

∂v∗

∂ρ

∣

∣

∣

β=1

is finite for any n < n̄. Using (42) and limρ→1 v
∗ = p1 + n(p1 − c) (Proposition 4), we get

lim
ρ→1

∂Σ∗

∂ρ

∣

∣

∣

∣

β=1

= lim
ρ→1

[

−∂p∗2
∂ρ

(p1 + n(p1 − c)− p1)

]

= lim
ρ→1

[

−∂p∗2
∂ρ

n(p1 − c)

]

= n(p1 − c) lim
ρ→1

∂Y ∗

∂ρ
= −n2(p1 − c)2.

Part 2: Equation (41) with ρ = 0 (implying v∗ = p1) is

∂Σ∗

∂ρ

∣

∣

∣

∣

β=1

= (p1 − p∗2)

[

∂v∗

∂ρ
− ∂p∗2

∂ρ

]

= [Y ∗ − (1− p1)]

[

∂v∗

∂ρ
+

∂Y ∗

∂ρ

]

. (44)

The derivative of (21) in ρ (with β = 1) results in

∂v∗

∂ρ
=

1

(1− ρ)2

[

−
(

p∗2 + ρ
∂p∗2
∂ρ

)

(1− ρ) + (p1 − ρp∗2)

]

=
1

(1− ρ)2

[

p1 − p∗2 + ρ(1− ρ)
∂p∗2
∂ρ

]

,

which, for ρ = 0, given p∗2 = 1− Y ∗, is ∂v∗

∂ρ

∣

∣

∣

ρ=0
= Y ∗ − (1− p1). By (43) with β = 1 and ρ = 0,

∂Y ∗

∂ρ
= −∂v∗

∂ρ
· nY ∗ − (n− 1) (1− p1)

2Y ∗(n+ 1)− n (1− p1 + 1− c)
,

and (44) becomes

∂Σ∗

∂ρ

∣

∣

∣

∣

β=1

= [Y ∗ − (1− p1)]
2

[

1− nY ∗ − (n− 1) (1− p1)

2Y ∗(n+ 1)− n (1− p1 + 1− c)

]

. (45)

Part 2.1: For n = 1, Corollary 2 with β = 1 and ρ = 0 yields Y ∗ = 1− 1
2 (c+ p1) and (45) is

∂Σ∗

∂ρ
=

[

1

2
(p1 − c)

]2 [

1− Y ∗

2Y ∗ − [2− (p1 + c)] + 2Y ∗

]

=
1

8
(p1 − c)2.

Part 2.2: After collecting the terms with n and passing to the limit as n → ∞, (45) becomes

lim
n→∞

∂Σ∗

∂ρ

∣

∣

∣

∣

β=1

= [Y ∗ − (1− p1)]
2

[

1− Y ∗ − (1− p1)

2Y ∗ − (1− p1 + 1− c)

]

=
[Y ∗ − (1− p1)]

2 [Y ∗ − (1− c)]

2Y ∗ − (1− p1 + 1− c)
,

where (by (23) with β = 1, ρ = 0, and n → ∞) Y ∗ is the larger root of (40), which implies that

Y ∗ − (1− p1 + 1− c) = − (1−p1)2

Y ∗
and

lim
n→∞

∂Σ∗

∂ρ

∣

∣

∣

∣

β=1

= [Y ∗ − (1− p1)]
2 Y ∗ − (1− c)

Y ∗ − (1−p1)2

Y ∗

yielding the result of part 2.2. Note also, that by Corollary 3, for n = ∞, the second period is

never profitable (Y ∗ > 1− c
β ⇔ p∗2 < c) implying that for ρ = 0, limn→∞

∂Σ∗

∂ρ

∣

∣

∣

β=1
> 0.
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A.25 Proof of Corollary 9 (Non-monotonicity of W ∗ in n)

By the definition of W ∗, ∂W ∗

∂n = ∂Σ∗

∂n + ∂[nr∗]
∂n . Then, using (37) for ∂Σ∗

∂n , (34) for ∂[nr∗]
∂n , and equalities

∂v∗

∂n = ρβ
1−ρβ

∂Y ∗

∂n (by (21)) and
∂p∗

2

∂n = −β ∂Y ∗

∂n , we get

∂W ∗

∂n
=

∂Y ∗

∂n

β

1− ρβ

{

ρ [βv∗ − p∗2 − (v∗ − p1)]+(βv∗−p∗2)

(

1

β
− ρ

)

+2−p1−
c

β
−ρ(p1−c)−2Y ∗

}

.

Because, by Proposition 3, ∂Y ∗

∂n > 0 for RESE3, the sign of ∂W ∗

∂n coincides with the sign of the curly

bracket in the RHS, i.e., ∂W ∗

∂n R 0 is equivalent to

ρ [βv∗ − p∗2 − (v∗ − p1)] + (βv∗ − p∗2) (1/β − ρ) + 2− p1 − c/β − ρ(p1 − c)− 2Y ∗ R 0,

which, after substitution of Y ∗ = 1 − p∗
2

β , by (3), becomes
p∗
2
−c
β + [v∗ − p1 − ρ(v∗ − c)] R 0. Then,

using v∗ =
p1−ρp∗

2

1−ρβ , the inequality for nW (dependence of p∗2 on nW is omitted) becomes p∗2 R

c+ β
{

p1−ρp∗
2

1−ρβ (ρ− 1)− ρc+ p1

}

. Collecting the terms with p∗2, we obtain

p∗2

[

1− (1− ρ)ρβ

1− ρβ

]

R c(1− ρβ) + p1β

[

1− 1− ρ

1− ρβ

]

⇔ p∗2 R c
(1− ρβ)2

1− 2ρβ + ρ2β
+ p1

ρβ(1− β)

1− 2ρβ + ρ2β
,

which yields the main claim (7). The RHS of (7) equals c if ρ = 0 or β = 1. For other values of ρ

and β, the comparison of the RHS with c yields c (1−ρβ)2

1−2ρβ+ρ2β
+ p1

ρβ(1−β)
1−2ρβ+ρ2β

> c ⇔ p1ρβ(1 − β) >

c
[

1− 2ρβ + ρ2β − (1− 2ρβ + ρ2β2)
]

⇔ p1ρβ(1−β) > cρ2β(1−β) ⇔ p1 > ρc, which always holds.

A.26 Proofs of auxiliary statements

Proof of Lemma 7 (properties of the profit) Part 1.1 can be shown by direct substitution
of yi = 1− s/β− Y −i (which is strictly positive by the condition of part 1) into the expressions for
∂ri

∂yi
defined by (12) and (15): ∂ri

∂yi

∣

∣

∣

yi=1−s/β−Y −i−0
=

= β
(

1− Y −i
)

− c+ β
(

1− vmin
)

− 2β
(

1− s

β
− Y −i

)

+
Y −i(p1 − β)(1− vmin)

(1− s/β)2

= −c− βvmin + 2s+ Y −i

(

β +
(p1 − β)(1− vmin)

(1− s/β)2

)

,

∂ri

∂yi

∣

∣

∣

∣

yi=1−s/β−Y −i+0

= −c+ s+ Y −i (p1 − s)
(

1− vmin
)

(1− s/β)2
.

These expressions imply that part 1.1 holds if and only if

s− βvmin + Y −i

(

β +
(p1 − β)(1− vmin)

(1− s/β)2

)

< Y −i (p1 − s)
(

1− vmin
)

(1− s/β)2
,

which is equivalent to

s− βvmin < Y −i

[

(β − s)
(

1− vmin
)

(1− s/β)2
− β

]

= Y −i

[

β(1− vmin)

1− s/β
− β

]

=
Y −i(s− βvmin)

1− s/β
,

which holds because s < βvmin and, by condition of part 1, Y −i < 1− s/β.
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As ri is continuous, i.e. ri(1− s/β − Y −i − 0) = ri(1− s/β − Y −i + 0), and we can show part
1.2 using either (10) or (14). From (14), ri(1− s/β − Y −i) is

(

1− s

β
− Y −i

)

[

s− c+
(p1 − s)

(

1− vmin
)

1− s/β

]

=
(

1− s

β
− Y −i

)

(c− s)

[

(p1 − s)
(

1− vmin
)

(1− s/β)(c− s)
− 1

]

,

which yields the result of part 1.2.
For part 1.3, rewrite (13) as ∂2ri

∂(yi)2
= − 2

Y 3

[

βY 3 + (p1 − β)(1− vmin)Y −i
]

. As Y ≥ 0, the RHS

of this equation is negative (ri is strictly concave) if and only if βY 3 + (p1 − β)(1 − vmin)Y > 0.
Equality Y = 1− vmin holds only at the left boundary of the domain of the profit function. For all
other points in the domain Y > 1− vmin ≥ 0 and we have

βY 3 + (p1 − β)(1− vmin)Y > β(1− vmin)2Y + (p1 − β)(1− vmin)Y

= [β(1− vmin) + p1 − β](1− vmin)Y = [p1 − βvmin](1− vmin)Y ≥ 0

if p1 ≥ βvmin (a sufficient condition for strict concavity of ri).

Suppose p1 < βvmin. Although ri may be non-concave in this case, ∂2ri

∂(yi)2
= −2β

[

1 + (p1β −

1)(1 − vmin)Y
−i

Y 3

]

is monotonically decreasing in yi. Therefore, if ri has an inflection point, this

point is unique and corresponds to the total supply level Ỹ such that Ỹ 3 = (1− p1
β )(1− vmin)Y −i.

Consider an extension r̃i of ri in the form (10) to the domain yi ≥ (1− vmin − Y −i)+. In terms
of the total supply, this domain is equivalent to Y ≥ max{(1− vmin), Y −i}. We will prove that r̃i

is pseudoconcave implying the claim of part 1.3 for the case of p1 < βvmin.
Equation (10), divided through by yi, implies that r̃i = 0 if and only if yi = 0 or β (1− Y ) −

c+ β
(

1− vmin
)

+ (p1−β)(1−vmin)
Y = 0. After multiplying by −Y/β, this equation becomes

Y 2 − (2− c/β − vmin)Y + (1− p1/β)(1− vmin) = 0. (46)

Its properties are explored in the following lemma.

Lemma 11. For any feasible values of c, s, vmin, and p1 < β, the real roots Y1,2 of equation (46)
exist and satisfy the conditions: 0 ≤ Y1 ≤ 1− vmin < Y2 ≤ 2−

(

c/β + vmin
)

with Y1 = 1− vmin only
if vmin = 1.

By Lemma 11, the roots Y1,2 of (46) always exist and 0 ≤ Y1 ≤ 1 − vmin < Y2, where Y1 <
1 − vmin unless vmin = 1. Using these roots, we can express r̃i as the following function of Y :
r̃i = − β

Y (Y − Y −i)(Y − Y1)(Y − Y2). Moreover, by (46), Y1Y2 = (1 − p1/β)(1 − vmin), and the

inflection point has the form Ỹ 3 = Y1Y2Y
−i, i.e., Ỹ is the geometric mean of Y1, Y2, and Y −i.

Because the second derivative is decreasing, r̃i is strictly concave to the right of Ỹ − Y −i.
There are three possible locations of Y −i relative to Y1 < Y2. First, if Y

−i ≥ Y2, then 1−vmin <
Y −i, Ỹ < Y −i, and r̃i is nonpositive and strictly concave for all yi ≥ (1 − vmin − Y −i)+. In this
case, the claim of part 1.3 holds.

Second, if Y −i ≤ Y1, then Y −i ≤ 1 − vmin, Ỹ < Y2, r̃
i is nonnegative for (1 − vmin − Y −i)+ ≤

yi ≤ Y2 − Y −i and nonpositive for yi ≥ Y2 − Y −i. Because r̃i is concave for yi ≥ Ỹ − Y −i and
changes its sign from positive to negative at Y2 − Y −i ≥ Ỹ − Y −i, it is also decreasing for all
yi ≥ Y2 − Y −i. However, when 1− vmin < Ỹ , r̃i is convex in the interval [1− vmin − Y −i, Ỹ − Y −i].

Third, if Y1 < Y −i < Y2, it is still true that Ỹ < Y2, r̃
i is nonnegative for (1− vmin − Y −i)+ ≤

yi ≤ Y2 − Y −i, and nonpositive, decreasing and strictly concave for yi ≥ Y2 − Y −i. It is also true
that, when max{(1− vmin), Y −i} < Ỹ , r̃i is convex in the interval [(1− vmin − Y −i)+, Ỹ − Y −i].
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We combine the cases two and three by observing that in both of them r̃i is nonnegative for
[(1− vmin − Y −i)+, Y2 − Y −i] and decreasing as well as concave for yi ≥ Y2 − Y −i. Thus, there is
no local minimum for yi ≥ Y2−Y −i. We complete the proof of part 1.3 using the following lemma.

Lemma 12. If r̃i has an internal (local) minimum (yi)min, then r̃i((yi)min) < 0.

Lemma 12 implies that r̃i has no local minimum in the interval ((1− vmin − Y −i)+, Y2 − Y −i).
Thus, r̃i has no internal minima in its entire domain, is strictly increasing when it is convex and,
therefore, is pseudoconcave.

Parts 1.4 and 2 follow directly from (15).

Part 1.5 immediately follows from parts 1.3 and 1.4. Indeed, condition ∂ri

∂yi

∣

∣

∣

yi=1− s
β
−Y −i+0

≤ 0

implies that ri is decreasing for yi ≥ 1− s
β − Y −i (by concavity on this interval). Combining this

observation with pseudoconcavity for yi ≤ 1 − s
β − Y −i, we obtain pseudoconcavity for the entire

domain. Similarly, ∂ri

∂yi

∣

∣

∣

yi=1− s
β
−Y −i−0

≥ 0 implies that ri is strictly increasing for yi ≤ 1− s
β −Y −i,

again, leading to pseudoconcavity for the entire domain.

Proof of Lemma 8 The equilibrium profit, using (10) with yi = Y ∗

n and the expression for

vmin = v∗, is r∗ = Y ∗

n

[

β (1− Y ∗)− c+
(

β + p1−β
Y ∗

)(

1− p1−ρβ(1−Y ∗)
1−ρβ

) ]

. After factoring out β
n(1−ρβ)

and collecting the terms with different powers of Y ∗, we obtain (27).

Proof of Lemma 9 The expression for limρ→1
∂Y ∗

∂ρ at β = 1 can be found by the implicit
differentiation in (23). For brevity, we omit explicit notation indicating β = 1 throughout the

proof. Denote b1(ρ) , (1−c)n(1−ρ)+(1−p1)n−(p1−1)ρ(n−1)
n+1−ρ and differentiate (23) with respect to ρ to

obtain 2Y ∗ ∂Y ∗

∂ρ − ∂Y ∗

∂ρ b1(ρ)− Y ∗ ∂b1(ρ)
∂ρ + ∂

∂ρ

[

(1−p1)2(n−1)
n+1−ρ

]

= 0 and

∂Y ∗

∂ρ
[2Y ∗ − b1(ρ)] = Y ∗∂b1(ρ)

∂ρ
− (1− p1)

2(n− 1)

(n+ 1− ρ)2
, (47)

The limits are limρ→1 b1(ρ) = (1−p1)n+(1−p1)(n−1)
n = 2(1 − p1) − 1−p1

n , resulting in limρ→1[2Y
∗ −

b1(ρ)] = 1−p1
n , and for ∂b1(ρ)

∂ρ = [−(1−c)n+(1−p1)(n−1)](n+1−ρ)+(1−c)n(1−ρ)+(1−p1)n+(1−p1)ρ(n−1)

(n+1−ρ)2
, it is

limρ→1
∂b1(ρ)
∂ρ = 1

n2 {[−(1− c)n+ (1− p1)(n− 1)]n+ (1− p1)n+ (1− p1)(n− 1)} , where {·} =

(1− p1)(n− 1)− (p1 − c)n2. The limit of the RHS of (47) is 1−p1
n2

{

(1− p1)(n− 1)− (p1 − c)n2
}

−
(1−p1)2(n−1)

n2 = −(1− p1)(p1 − c). Then, from (47), we obtain the claim of the lemma.

Proof of Lemma 11 (the roots of ri(Y ) = 0) The discriminant of (46) is D = (2 − c/β −
vmin)2−4(1−p1/β)(1−vmin) ≥ (2− c/β−vmin)2−4(1− c/β)(1−vmin) = (vmin− c/β)2 ≥ 0, where
the first inequality is strict unless vmin = 1 because p1 > c, whereas the second inequality is strict
unless vmin = c/β. Therefore, D > 0, the real roots given by Y1,2 =

1
2(2− c/β− vmin±

√
D) always

exist, and Y1 < Y2. As p1 < β, we have 4 (1− p1/β) (1− vmin) ≥ 0 and Y1,2 ∈
(

0, 2− c/β − vmin
)

.
If vmin = 1, the roots are Y1 = 0, Y2 = 1− c/β, and the claim of the lemma holds.

If vmin < 1, then D >
(

vmin − c/β
)2
, and an upper bound on Y1 is Y1 < 1 − 1

2(c/β + vmin) −
1
2

∣

∣vmin − c/β
∣

∣ = 1 − max
{

c/β, vmin
}

≤ 1 − vmin, which, in turn, is a lower bound on Y2 : Y2 >
1− 1

2(c/β + vmin) + 1
2

∣

∣vmin − c/β
∣

∣ = 1−min
{

c/β, vmin
}

≥ 1− vmin.
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Proof of Lemma 12 Function r̃i, its first and second derivatives are given, respectively, by (9),
(11) and (13). If an internal local minimum of r̃i exists, it must satisfy the necessary second-order
optimality conditions

∂r̃i

∂yi

∣

∣

∣

∣

yi=(yi)
min

= 0, and (48)

∂2r̃i

∂ (yi)2

∣

∣

∣

∣

∣

yi=(yi)
min

≥ 0. (49)

Using condition (48) and the expression for the first derivative of r̃i, we obtain

β (1− Y )− c+ [p1 − β (1− Y )]
1− vmin

Y
= −

(

yi
)

min
β

[

−1 +
1− vmin

Y
−
(

p1
β

− (1− Y )

)

1− vmin

Y 2

]

=
(

yi
)

min
β

[

1 +

(

p1
β

− 1

)

1− vmin

Y 2

]

(50)

Because the LHS of (50) multiplied by yi matches the expression for r̃i, it follows that

r̃i
∣

∣

yi=(yi)min
=

(

yi
)2

min
β

[

1 +

(

p1
β

− 1

)

1− vmin

Y 2

]

. (51)

Condition (49) and the expression for the second derivative of r̃i imply that, at yi =
(

yi
)

min
,

(

p1
β − 1

)

(1 − vmin) ≤ − Y 3

Y −i . Combining this inequality with (51), we obtain r̃i
∣

∣

yi=(yi)min
≤

(

yi
)2

min
β
[

1− Y
Y −i

]

< 0, which is strict because, here, we consider only yi > 0.
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B Supplementary Document: Model Extensions

B.1 First-period demand: general case

This section provides the derivation of the functional form of the first-period demand (2) and
examines the robustness of the main results, obtained for γ = 1, with respect to variations in γ.

Model specification Retailer i demand can be expressed as di(yi,y−i) = Dmi(yi,y−i), where
D is the total demand, mi(yi,y−i) is the market share of retailer i, and y−i is the vector of
inventories of the others. Because, by the assumptions of §3, attractions ai(yi) are identical:
ai(yi) = a(yi), i ∈ I, and for a non-trivial problem some of yi are positive, attraction vector a
of all ai, i ∈ I satisfies four conditions required for the market share theorem (Bell, Keeney, and
Little (1975)):

(A1) a is nonnegative and nonzero: aj ≥ 0, j ∈ I, and there exists ai > 0;
(A2) zero attraction leads to zero market share;
(A3) any two retailers with equal attraction have equal market share: ai(yi) = aj(yj) ⇒

mi(yi,y−i) = mj(yj ,y−j); and
(A4) the market share mi of any retailer decreases on the same amount ∆i if the attraction aj

of any other retailer j is increased by a fixed amount (∆i does not depend on j 6= i).
The last assumption holds only if market shares are continuous in attractions, i.e., it does not

hold for Bertrand-like competition. This property reflects, e.g., that real consumers have different
implicit preferences (loyalties) to different firms due, e.g., to geographical proximity, store decor
styles, etc. For studying the effects of symmetric firms we must assume that these preferences are
uniformly distributed among consumers. Bell, Keeney, and Little (1975) note also that (A4) do
not hold “if adding an increment to a small attraction produces a different effect (on others) from
adding the same amount to a large attraction” (nonlinearity) or “if changes in attraction of one
seller were differentially effective on the customers of another” (asymmetry).

If (A1)-(A4) hold, then, by the market share theorem applied to this symmetric case, mi has
the following functional form:

mi(yi,y−i) =
a(yi)

∑

j∈I a(y
j)
. (52)

Using (52), the homogeneity of mi (follows, by Assumption 1, from the homogeneity of di and D),
and the continuity of a(y) (Assumption 3), Lemma 2 specifies the functional form of attraction:
a(y) = a(1)(y)γ . By choosing the scale of attraction so that a(1) = 1, we obtain functional form
(2) for demand di.

A feasible range for γ results from the observation that retailer i can choose yi either not to
enter the market: yi = 0 = a(0) = di(0,y−i), to sell only in the first period: yi = y̆i , di(y̆i,y−i),
or in both: yi > di(yi,y−i) ≥ y̆i (the last inequality is strict when di is strictly increasing in yi).
These properties hold if di is concave in yi. In extreme cases, di, as a function of yi, can be a
straight line (γ = 1) with a slope less than one if yi ≥ y̆i or, as an opposite case, a constant if all
yi are positive and any changes in yi are not supported by the correspondent changes in market
efforts or consumers completely ignore these efforts (γ = 0).

In this model, γ is the inventory elasticity of attraction: Ey(a) , ∂a
∂y

y
a = γ(y)γ−1 y

(y)γ = γ, or the
inventory elasticity of the first-period demand, normalized by the market share of other retailers:

Eyi(d
i) ,

∂di

∂yi
yi

di
= D







γ
(

yi
)γ−1

∑

j∈I (y
j)γ

−
(

yi
)γ

γ
(

yi
)γ−1

(

∑

j∈I (y
j)γ

)2







yi
∑

j∈I
(

yj
)γ

(yi)γ D
= γ

[

1−mi
]

= γ

∑

j 6=i

(

yj
)γ

∑

j∈I (y
j)γ

,
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where
∑

j 6=i

(

yj
)γ

/
∑

j∈I
(

yj
)γ

is the market share of other retailers.
The following results use some supplementary material, provided in §C.

Changes in RESE structure with γ This section shows the effect of changing γ on the main
results of this paper. For γ = 1, the structure of RESE coincides with the one described in
Theorems 1 and 2. This structure continuously changes with γ by continuity of demand (2). In
particular, changes in γ lead to the following effects.

I. RESE1 does not depend on γ because this RESE, by the same argument as in the proof of
Theorem 1, exists only when the first-period demand is zero (vmin = 1) due to a combination of
relatively high p1, the difference β − c, the level of competition n, and the consumer’s discount
factor ρ; namely, when p1 ≥ P1 = 1− n

n+1ρ(β − c).
II. The area of RESE2 is decreasing in γ, which follows from a necessary condition of existence

of RESE2 that requires the profit of a deviator from Y ∗,2 = 1 − p1 be not increasing in yi :
∂ri

∂yi

∣

∣

∣

yi=
1−p1

n
+0

≤ 0. This inequality (§C.1) is equivalent to p1 ≤ nc
γ(n−1)+β[n(1−γ)+γ] , P2(γ). This

bound decreases in γ from P2(0) =
c
β to P2(1) =

nc
n−1+β coinciding with P2 given in Theorem 1.

III. The area of RESE3 is (a) increasing in γ along the boundary with RESE2 and (b) decreasing
along the boundary with RESE4. Part (a) follows from the p1-range for RESE3: P2(γ) < p1 < P1,
which results from the same geometric argument as in the proof of Theorem 1 because Y ∗,3(γ) is
still a larger root of a quadratic equation with coefficients depending on γ (equation (59)). Part
(b), for γ = 0, follows from the lack of incentive for the retailers to deviate to salvage, which is

expressed in ∂ri

∂yi

∣

∣

∣

Y≥1− s
β

= s − c < 0 (§C.1), i.e., a sufficient condition, corresponding to condition

(a) in part RESE3 of Theorem 1 always holds. The intuition is that, for γ = 0, retailers share
evenly the first-period demand regardless of the inventories. Therefore, any increase in inventory
does not increase the first-period market share, and possible second-period sales below cost only
reduce total two-period profit. For 0 < γ < 1, part (b) is checked numerically and illustrated in
Figure 13 for γ ∈ {0, 0.4, 1}.

IV. The area of RESE4 is increasing in γ. §C.1 provides a unique

Y ∗,4(γ) =
n− 1

n

p1 − s

c− s
γ(1− v∗,4), (53)

where v∗,4 = p1−ρs
1−ρβ . This expression for Y ∗,4(γ) implies a sufficient condition of RESE4 existence,

namely, n−1
n Y ∗,4(γ) ≥ 1− s

β (salvaging is forced on retailers), which is

γ ≥ γ̄ ,
(

1− s

β

)(

n

n− 1

)2 c− s

p1 − s

1− ρβ

1− p1 − ρ(β − s)
,

where γ̄ can be sufficiently small for any feasible p1, ρ, β, and s if c is sufficiently close to s, i.e.,
RESE4 can exist for small γ but does not exist for γ = 0 (Figure 13). On the other hand, inequality
Y ∗,4 < 1 − s

β , combined with (53), gives a sufficient condition of RESE4 non-existence. As Y ∗,4

is increasing in n and decreasing in ρ (v∗,4 is increasing in ρ), RESE4 does not exist for given
γ and any n and ρ if Y ∗,4 < 1 − s

β for ρ = 0 and n → ∞, which is p1−s
c−s γ(1 − p1) < 1 − s

β or

γ < γ , (1−s/β)(c−s)
(p1−s)(1−p1)

.
The scatterplots in Figure 13 were constructed by checking p1-boundaries for RESE1 and 2, and,

for RESE3 and 4, using the direct comparison of equilibrium profits with the profit of a potential
deviator, according to the definition of RESE.
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Figure 13: The (ρ, p1)-scatterplots of the areas where a particular RESE exists for n = 10, c =
0.1, s = 0.05, and given γ and β
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Because the first-period demand (2) is continuous and monotonic in γ, the case γ = 0 for
RESE3 is of a special interest as opposing to γ = 1. Although, a complete independence of market
share from inventory may be an idealization for many practical settings, this case illustrates the
robustness of the results of this study and shows the direction and amplitude of the changes with
respect to variations in the demand patterns. This assumption about first-period market share was
used, e.g., in Liu and Ryzin (2008), §4.4.

Proposition 7. For γ = 0, a unique RESE 3 with v∗ = p1+n(p1−ρc)
1+n(1−ρβ) , p∗2 = c + βp1−c

1+n(1−ρβ) , Y
∗ =

1−p1+n
(

1− c
β

)

(1−ρβ)

1+n(1−ρβ) , and r∗ = 1
n [(p1 − c)(1 − v∗) + (p∗2 − c) (Y ∗ − 1 + v∗)] exists if and only if

c
β < p1 < P1; no other equilibria exist in this area. Moreover,

1. p∗2 → c+ 0 with n → ∞ for any p1 ∈
(

c
β , P1

)

or with p1 → c
β + 0 for any n ≥ 1;

2. v∗, p∗2, Y
∗, and r∗ are continuous at the boundaries; monotonicity of v∗, Y ∗ in n and ρ, and

nr∗ in n, stated in Proposition 3 for γ = 1 hold;

3. nr∗ is decreasing in ρ if and only if either n = 1 or p1 ≥ c+ 2n(β−c)
(n+1)2

for any n > 1;

4. nr∗ attains minimum in ρ at ρ0 , (n+1)2(p1−c)−2n(βp1−c)
βn(n+1)(p1−c) for any n ∈ (1, n0), where n0 ,

β−p1+
√

(β−c)(β+c−2p1)

p1−c > 2, if and only if p1 <
5c+4β

9 ;

5. when β = 1, nr∗|ρ→1 < nr∗|ρ=0 for any RESE 3 inputs; the minimum possible value of

ρ0 = n2+1
n(n+1) is ρ̄0 = ρ0

∣

∣

n=2
= ρ0

∣

∣

n=3
= 5

6 .

Proposition 7 shows that, for γ = 0,
(i) RESE exists for all feasible model inputs because RESE3 boundaries ( cβ < p1 < P1) com-

plement the boundaries of RESE1 and 2;
(ii) the second-period price is always above the cost for n < ∞;
(iii) a closed-form necessary and sufficient condition shows when nr∗ is decreasing in ρ;
(iv) there exist closed-form expressions for ρ0, the unique minimum of nr∗ in ρ (part 4), and

for n0, the upper boundary of n-range where nr∗ is non-monotonic in ρ;
(v) there is no effect of “boundary-value gain” (part 5); this result supports the conclusion,

formulated in the discussion of Proposition 4, that under this effect, the maximum consumer’s
discount factor prevents the second-period sales at loss under competitive pressure (n ≥ 3). As
shown in part 1, the second-period sales are always profitable for γ = 0 because retailers have no
incentive to compete for the first-period market by increasing inventories.

Thus, when the inventory elasticity of attraction γ decreases, the “boundary-value gain” in ρ
becomes weaker (Figures 4 and 14 a) and disappears at γ = 0 (Figure 14 b); the “discontinuous
gain” in ρ caused by the switch from RESE4 to RESE3 emerges at lower ρ (Figures 5 b and 13)
and disappears at γ = 0 due to non-existence of RESE4; the “continuous gain” in ρ (Figure 4)
exists even for γ = 0. The last effect becomes less pronounced because decreasing γ weakens the
first-period inventory competition and decreases the correspondent second-period losses. The point
of minimum profit, ρ0, decreases in γ (Figures 4 and 14).

B.2 Some incentives for the same price across retailers

Market-share competing retailers may have incentives to deviate from MSRP but, according to
Federal Trade Commission (www.ftc.gov, accessed 5 August, 2015), “[a] manufacturer ... may
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Figure 14: The total profit for RESE 3 with c = 0.45, s = 0.05, p1 = 0.5, β = 1

stop dealing with a retailer that does not follow its resale price policy.” In some states and coun-
tries vertical price fixing is illegal and manufacturers can indirectly influence the price by offering
to the retailers who follow MSRP various cost-reducing benefits (e.g., Butz (1996), Buehler and
Gärtner (2013)). Proposition below provides an upper bound on the profit of a deviating retailer
assuming that this retailer obtains the entire first-period demand by setting the first-period price
below MSRP. This retailer has an additional fixed cost K and its unit cost is cH > c.

Proposition 8. The profit ri of retailer i with the first-period price below p1 is upper-bounded by

UBi = −K + 1
4(1 − cH)2 if β(1−2Y −i)

2−β < cH ≤ 2p1 − 1 or UBi = −K + (p1 − cH)(1 − p1) if

cH > max{2p1 − 1, β(p1 − Y −i)}.

The proof shows, in particular, that when the cH -range in the first case is not empty, the cH -
range in the second case is cH > 2p1 − 1. The following corollary provides conditions on K and
cH guaranteeing that retailers do not deviate from MSRP under RESE1 where p1 is the greatest
among RESE and the incentive for retailers to decrease the first-period price is quite strong.

Corollary 10. Under RESE1, the first-period price below MSRP is unprofitable for a retailer if
(3−n)β+2(n−1)c

(2−β)(n+1) < cH ≤ 2p1−1, and K ≥ 1
4(1−cH)2− (β−c)2

(n+1)2β
or cH > max{2p1−1, βp1− n−1

n+1(β−c)}
and K ≥ (p1 − cH)(1− p1)− (β−c)2

(n+1)2β
.

For example, if n = 2, β = 1, and 1+2c
3 < cH ≤ 2p1 − 1, where p1 ≥ 1 − 2

3ρ(1 − c) (RESE1
exists) retailers have no incentive to decrease price below p1 because, by Corollary 10, the sufficient

“no-deviation” condition becomes K ≥ 1
4(1 − cH)2 − (1−c)2

9 =
[

1−cH

2 − 1−c
3

] [

1−cH

2 + 1−c
3

]

, which

holds for any K ≥ 0 because 1−cH

2 − 1−c
3 = 1

2

[

1− cH − 2(1−c)
3

]

< 0 for cH > 1+2c
3 .

B.3 Equilibrium inventory and p1

As mentioned in the introduction, this study primarily focuses on exogenous p1, e.g., when p1 is
specified by the manufacturer-retailer agreement (Orbach (2008)). Manufacturers often operate in
multiple markets with notably different valuations for the same product, but MSRP may have to
be comparable when converted to local currencies for strategic reasons (e.g., maintaining brand
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Figure 15: Fractions of RESE3 and 4 inputs resulting in Y ∗ > 1− c for given n

image). In this case, the ratio of MSRP to the highest valuation on a specific market can take any
value from the range (c, 1] and lead to any type of RESE considered above.

However, a product may target only one specific market, or valuations on several markets might
almost be the same. In this case, the manufacturer can try to negotiate p1 to improve its profit.
When all other parameters are constant, the manufacturer profit in the local market is directly
proportional to the total sales Y ∗ in this market. Thus, we consider p1 maximizing the total
equilibrium retailer inventory Y ∗.

The simplest “benchmark” case is RESE2 where p1 is relatively low and Y ∗ = 1 − p1. The
supremum of the manufacturer’s sales in RESE2 is obtained as p1 tends to c. In practice, this
supremum cannot be achieved because retailer profits must be positive and consumer valuations
are bounded from above. Therefore, the difference between MSRP and the unit cost, normalized
by the highest valuation, is separated from zero. The following results show that, depending on
the product (β) and the market situation (n, ρ, c, s), the values of p1 leading either to RESE3
or 4 can be more profitable for the manufacturer than p1 → c (i.e., ceteris paribus, improve the
manufacturer sales beyond 1− c.)

Proposition 9. When the corresponding RESE exists, (1) Y ∗,1 < 1− c; (2) the unique maximum

of Y ∗,4 in p1 is Ȳ ∗,4 = (n−1)(p̄1−s)2

n(1−ρβ)(c−s) at p1 = p̄1 , 1
2(P4 + s); Y ∗,4 ≥ 1 − c if and only if c − s ≤

n−1
n

p1−s
1−c

1−p1−ρ(β−s)
1−ρβ ; (3) Y ∗,3 < 1− c for n = 1; for n → ∞ and p1 → P2 = c, Y ∗,3 → 1− c and, if

ρ = 0, ∂Y ∗,3

∂p1

∣

∣

∣

p1=P2+0
> 0.

The proposition implies that RESE2 is the best for the manufacturer in a market with a single
retailer and β < 1 (RESE2 must exist). However, using simulation we find that for most feasible
combinations of ρ, β, c, s and n > 1 (by volume in the space of all feasible combinations of these
parameters) the manufacturer, who varies p1 while other parameters are fixed, would prefer a
value that achieves RESE4, which is the worst for the retailers. Consistently with Proposition 3,
Figure 15 shows that the fractions of RESE3 and 4 instances, where Y ∗,3 and Y ∗,4 are greater than
1 − c, are increasing in n. For RESE3, this fraction is zero at n = 1 and remains below 40% for
n > 1, whereas Y ∗,4 > 1 − c for at least 95% instances of RESE4 (recall that Y ∗,4 > 1 − s/β and
Y ∗,4 can be less than 1 − c only when c < s/β). Therefore, the manufacturer may prefer markets
with many retailers, where the ratio of MSRP to the highest valuation takes intermediate values
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Figure 16: Y ∗ in p1 for ρ = 0.4, c = 0.3, s = 0.2, and

and RESE4 can be realized. For Figure 15, we used the same simulation approach as for Figure 2.
Typical qualitative behavior of Y ∗ in p1 is illustrated in Figure 16.

Maximization of manufacturer sales with respect to p1 does not invalidate the claim of Propo-
sition 4 about the possibility of profit gains when consumers shift from myopic to fully strategic
behavior. In practice, there is a minimum first-period price pmin

1 > c that separates retailer margins
from zero. By Proposition 4, Y ∗,3|ρ→1 = 1 − p1 so the maximum of Y ∗,3|ρ→1 is attained at pmin

1 .
For any pmin

1 = p1 ∈
(

c, 1+3c
4

]

, the value n̄ from Proposition 4 is greater or equal to 3. Thus, part
4 still holds for n = n̄ implying the boundary value gain nr∗,3

∣

∣

ρ→1
> nr∗,3

∣

∣

ρ→0
. This profit gain

disappears only with pmin
1 = c leading to nr∗,3

∣

∣

ρ→1
= nr∗,3

∣

∣

ρ→0
= 0. However, the case pmin

1 = c is
infeasible and implausible in this problem.

This subsection illustrates a non-trivial nature of manufacturer-retailer interactions under oligopoly
with strategic consumers. The properties of possible outcomes described in the above sections can
be used to study these interactions in a two-tier supply chain framework. Such analysis includes a
distinct set of research questions, e.g., the comparison of supply chain efficiency under centralized
and decentralized settings with various types of contracts (see Su and Zhang (2008) for monopoly),
and deserves a separate consideration.

B.4 Retailer’s discount

Lazear (1986) (p. 25) showed that the discounted second-period profit leads to decreasing prices,
which typically corresponds to increasing sales. Our setting leads to a similar result in terms of
inventory. The proposition below shows that when retailers solve a non-degenerate two-period
profit-maximization problem, the equilibrium inventory increases if a discount factor becomes less
than one. We call a two-period problem degenerate if it reduces to one period, which happens for
RESE1, 2, and for a monopolist in RESE3 because, for n = 1, the first-period demand does not
depend on inventory.

Proposition 10. If retailer i’s profit is ri = (p1 − c)qi + λ(p2 − c)(yi − qi), λ ∈ (0, 1], equilibrium
total inventory Y ∗ decreases in λ for RESE4, RESE3 with n > 1 and constant for RESE1, 2, and 3
with n = 1. If λ = (1 + δ)−1, where δ is the interest rate between two periods, the relative increase

in Y ∗,4 from introducing λ < 1 is
(

Y ∗,4
λ − Y ∗,4

)

/Y ∗,4 = p1−c
p1−sδ < δ.
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For example, if λ = 1, p1 = 0.5, n = 10, β = 0.75, c = 0.1, s = 0.05, and ρ = 0, then by condition
(a) of Theorem 2, RESE4 is realized with Y ∗,4 = 4.05. If, for the same data, retailers consider a
2% interest rate between periods, Y ∗,4

λ = 4.122, which is around 1.8% greater than Y ∗,4. For the
same data, but ρ = 0.7, RESE3 is realized by condition (a) of Theorem 1 with Y ∗,3 = 0.85276. The
same 2% interest rate yields Y ∗,3

λ = 0.85346, which is only about 0.08% greater than Y ∗,3.

B.5 RESE stability

An equilibrium is more likely to emerge in practice if it is (a) asymptotically locally stable, i.e.,
when the initial retailers’ inventories are close to an equilibrium, they converge to the equilibrium
values, or (b) globally stable, i.e., when any initial inventories converge to an equilibrium when it
is unique. In our setting, by Theorem 1 and Proposition 1, RESE is unique for any inputs except
for a small fraction where both RESE3 and 4 may exist (Figure 2). In the latter case, however, the
feasible inventory ranges for RESE3 and 4 are separated by a non-empty interval (Figure 16).

RESE1, 3, and 4, for n ≥ 2, represent a non-degenerate game between retailers that can be
reformulated as a one-period game with retailer i’s payoff function πi(yi, Y −i) = yiP (yi, Y −i) −
Ci(y

i). Then using, e.g., Theorem 3 in Nowaihi and Levine (1985), the following result holds.

Proposition 11. For any inputs where RESE1, 3, or 4 exist in an open neighborhood of Y ∗ , a
RESE is locally asymptotically stable.

As to global stability, Theocharis (1960) showed that for a linear demand and constant per unit
cost, the best-response discrete adjustment process yit+1 = BRi(Y −i

t ), t = 0, 1, . . . , i ∈ I, converges
for n = 2 and any y10, y

2
0. This process means that each retailer observes rivals’ inventories at some

time t and makes a payoff-maximizing inventory decision for t+1. Further studies refined this result
for slower adjustment processes yit = yit−1 + ki

[

BRi(Y −i
t−1)− yit−1

]

or yit = yit−1 + ki∂π
i/∂yi where

ki ∈ (0, 1] is the speed of adjustment. In particular, according to Fisher (1961), “given the number
of sellers, it is always possible to find [slow enough] speeds of adjustment such that the system is
stable.”

B.6 Different costs

In this section, we relax the assumption of identical retailers for the case of duopoly. In particular,
we examine the impact of the difference in retailer costs on the gains in retailer profits (both
continuous and discontinuous), which may happen when consumers are becoming more strategic.
We also provide two additional qualitative effects of strategic consumers on competing retailers.
Namely, high consumer’s discount factors in combination with a high first-period price can push
a high-cost retailer out of the market. At the same time, equilibrium inventory of the low-cost
retailer may increase in ρ.

The latter two effects can be easily illustrated in the equilibrium with second-period sales only.
Similar to the symmetric case, this equilibrium (denote it as REE1) exists in a non-trivial form
only when consumers are strategic, i.e., when ρ ≥ ρ1 = 3

2
1−p1
β−c̄ , where c̄ , 1

2(c
L + cH) is the

average cost and indices L and H denote a low-cost and a high-cost retailers respectively (the
effects of different costs on the conditions of equilibria existence are shown in §C.8). The high-cost

equilibrium inventory is yH,∗ = 1
3

[

1− (2cH − cL)/β
]+

, which is zero whenever cH ≥ 1
2(c

L + β).
For the example presented in Figure 17, only REE3 exists at ρ = 0 with yH,∗ = 0.1156

and yL,∗ = 0.3318. Only REE1 exists at ρ ≥ 0.5, ceteris paribus, with yH,∗ = 0 and yL,∗ =
1
3

[

1− (2cL − cH)/β
]

= 1
3 . The example shows that yL,∗ can be increasing in ρ and even “boundary-

value” increasing, i.e., yL,∗|ρ=0 < yL,∗|ρ=0.5 = yL,∗|ρ→1. This finding refines the results in the ex-
isting literature, including Proposition 3 in this paper, that the equilibrium inventory decreases in
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Figure 17: REE3 for high and low cost retailers at cL = 0.1, cH = 0.2, p1 = 0.95, β = 0.3, s = 0

the consumer’s discount factor. In this example, the total equilibrium inventory, indeed, decreases
in ρ. The increase in yL,∗ is a side-effect of market monopolization: the high-cost retailer inventory
goes to zero much faster than the total inventory decreases in ρ. Inequality yL,∗|ρ=0 < yL,∗|ρ→1 can
be expressed in terms of the model inputs as follows.

Proposition 12. For any 1 − 2
3(β − c̄) < p1 < 1, inequality yL,∗|ρ=0 < yL,∗|ρ→1 is equivalent to

β(2Y ∗−2+p1)+cH

β(2Y ∗−2+p1)+c̄ < 2(β+cH−2cL)
3βY ∗

, where Y ∗ = Y ∗,3|ρ=0 =
1
3 [2−p1− c̄

β+
√

(2− p1 − c̄
β )

2 + 3(p1β − 1)(1− p1)].

The p1-range in this proposition includes the example above because it guarantees, similarly to
part 3 of Proposition 2, that there exists such ρ1 that if REE3 exists, it exists for ρ < ρ1 whereas
REE1 exists for ρ ≥ ρ1.

The aggregate welfare (Figure 17 (b)) decreases from W |ρ=0 = 0.08 to W |ρ=0.5 = 0.05, when the
high-cost retailer is pushed out of the market. This example contrasts with the above-mentioned
example in Bulow, Geanakoplos, and Klemperer (1985), where the entry of a high-cost retailer to
a monopoly market decreases the aggregate welfare. This decrease happens if the (homogeneous)
products of both firms (competing in quantities) with constant marginal costs are considered as

strategic substitutes by a low-cost retailer, i.e., ∂2rL

∂yL∂yH
< 0. In our example, this derivative is

also negative for both ρ. The direction of change in welfare is different in our example because
the switch from duopoly to monopoly is endogenously determined by increased strategic behavior
whereas in the example of Bulow, Geanakoplos, and Klemperer (1985) the high-cost retailer entry
is exogenous. As shown in Figure 17 (b), W decreases in ρ because both retailer profits rL and rH

as well as the total consumer surplus Σ∗ are decreasing when ρ increases from zero to 0.5. This
contrast with Bulow, Geanakoplos, and Klemperer (1985) underscores the importance of including
strategic consumer behavior in the models of capacity competition.

In REE4, the low-cost retailer always considers the products of both firms as strategic com-

plements: ∂2rL,4

∂yL∂yH
= (p1−s)(1−v∗,4)(yL−yH)

(yL+yH)3
> 0, whereas for the high-cost retailer the products are

strategic substitutes: ∂2rH,4

∂yH∂yL
= (p1−s)(1−v∗,4)(yH−yL)

(yL+yH)3
< 0. In REE1, both retailers consider their

products as strategic substitutes: ∂2rL,1

∂yL∂yH
= ∂2rH,1

∂yH∂yL
= −β. Because an increase in the consumer’s

discount factor can result in a switch from REE4 to REE3 and from REE3 to REE1 (given other
parameters fixed), it obviously affects whether products are strategic complements or substitutes.
Thus, the conclusions of Bulow, Geanakoplos, and Klemperer (1985) potentially depend on the
consumer’s discount factor.

Finally, we show how the difference in costs affects two types of profit gain due to increased
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(a) cL = 0.45, cH = 0.5, p1 = 0.65, β = 1, s = 0 (b) cL = 0.15, cH = 0.2, p1 = 0.5, β = 0.5, s = 0.1
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Figure 18: Profit gains of asymmetric retailers in ρ

strategic behavior, described in §5. The continuous gain (Figures 4 and 18 (a)) is possible under
RESE3 and REE3 for high levels of strategic behavior and product durability. This form of gain
is less pronounced for a low-cost retailer than for a high-cost one, whose increase in profit may
result even in the boundary-value gain, i.e., rH,∗|ρ=0 < rH,∗|ρ→1 (Figure 18 (a)). When the costs
are the same, the continuous boundary value gain is possible only for n ≥ 3 (Proposition 4).
The discontinuous gain occurring under switches from REE4 to REE3 (Figure 18 (b)) is also more
pronounced for the high-cost retailer. In the example shown, the high-cost retailer even experiences
the boundary-value gain.

Hence, in case of duopoly, a refinement of the model to asymmetric costs shows that, in addition
to the main insights, increasing strategic behavior may also push a high-cost retailer out of the
market, lead to increasing inventory of a low-cost retailer, as well as increase retailer profits.

C Proofs and technical results of Supplementary Document

C.1 Profit function for γ ∈ [0, 1], its properties and inventory decisions

Retailer i has no sales in the second period. In this case, the general formula (1) for profit becomes
ri = (p1 − c)yi, which yields a unique profit-maximizing inventory yi = y̆i = di. Unlike γ = 1,
other retailers may have sales in the second period, implying that, in general, ᾱ 6= 0 and vmin ≥ p1.
Using (2) with yj = Y ∗

n , j 6= i and D = 1 − vmin, y̆i is a root of a non-linear equation: yi =
(1−vmin)(yi)

γ

(n−1)(Y ∗/n)γ+(yi)γ
. After dividing by yi, which eliminates the extraneous root yi = 0, this equation

can be written as (n−1)
(

Y ∗

n

)γ
+
(

yi
)γ

= (1−vmin)
(

yi
)γ−1

or (n−1)
(

Y ∗

n

)γ
=

(

yi
)γ−1

(1−vmin−yi),
which, for n = 1, yields y̆i = 1− vmin for any γ ∈ [0, 1]. If n > 1, this equation can be written as

(

yi
)1−γ

=
1

n− 1

( n

Y ∗

)γ
(1− vmin − yi), (54)

which, for γ = 1, yields y̆i = 1− vmin − n−1
n Y ∗. For γ < 1, this equation has a unique positive root

because the LHS is zero at yi = 0 and increasing in yi, and the RHS is a decreasing linear function
in yi, which is positive at yi = 0. For γ = 0, equation (54) results in y̆i = 1−vmin

n , which is the
maximum y̆i in γ by the following lemma.
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Lemma 13. The solution of (54), y̆i, is decreasing in γ if y̆i < Y ∗

n .

Proof Equation (54) can be written as exp
[

(1− γ) ln(y̆i)
]

= exp
[

γ ln
(

n
Y ∗

)] 1−vmin−y̆i

n−1 . The

derivative of this equation in γ is
(

y̆i
)1−γ

[

1−γ
y̆i

∂y̆i

∂γ − ln(y̆i)
]

= ln
(

n
Y ∗

)

1
n−1

(

n
Y ∗

)γ
(1 − vmin − y̆i) −

1
n−1

(

n
Y ∗

)γ ∂y̆i

∂γ , which can be written as ∂y̆i

∂γ

[

1
n−1

(

n
Y ∗

)γ
+ (1− γ)

(

y̆i
)−γ

]

= ln
(

n
Y ∗

)

1
n−1

(

n
Y ∗

)γ
(1−

vmin − y̆i) + ln(y̆i)
(

y̆i
)1−γ

, where the bracket [·] in the LHS is positive and the RHS, by (54),

becomes
(

y̆i
)1−γ [

ln(y̆i)− ln
(

Y ∗

n

)]

, which is negative, leading to ∂y̆i

∂γ < 0�
Retailer i has sales in the second period, p2 > s. Profit (1) with qi, given by Lemma 3, becomes

ri = p1d
i + p2(y

i − di)− cyi, which, with yj = Y ∗

n , j 6= i, vmin = v∗, and di from (2), can be written
as

ri =
[

p1 − p2(y
i)
] (1− v∗)

(

yi
)γ

(n− 1)
(

Y ∗

n

)γ
+ (yi)γ

+
[

p2(y
i)− c

]

yi (55)

where, by (3), p2(y
i) = β

[

1− n−1
n Y ∗ − yi

]

. The derivative, after simplifications, is

∂ri

∂yi
=

β(1− v∗)
(

yi
)γ

(n− 1)
(

Y ∗

n

)γ
+ (yi)γ

+ [p1 − p2]
(1− v∗)γ

(

yi
)γ−1

(n− 1)
(

Y ∗

n

)γ

[

(n− 1)
(

Y ∗

n

)γ
+ (yi)γ

]2

−2βyi + β

(

1− n− 1

n
Y ∗

)

− c. (56)

When v∗ = 1, RESE takes the same form of RESE1 as for γ = 1 (Theorem 1) because the
first-period demand is zero.

When ᾱ = 0 and v∗ = p1 (no second-period sales), the necessary condition of RESE2 existence,

namely, ∂ri

∂yi

∣

∣

∣

yi=
1−p1

n
+0

≤ 0, using formula (56) with v∗ = p1, becomes β 1−p1
n + p1(1 − β)γ n−1

n −

2β 1−p1
n +β−c−β n−1

n (1−p1) ≤ 0, which, multiplied by n, can be written as p1 [(1− β)γ(n− 1) + nβ] ≤
nc or p1 ≤ nc

γ(n−1)+β[n(1−γ)+γ] = P2(γ).

When ᾱ = 1 and p1 ≤ v∗ < 1, a candidate for RESE3 results from two conditions: v∗ = v∗(Y ∗)

and ∂ri

∂yi

∣

∣

∣

yi=Y ∗

n

= 0, which, using Lemma 1 and (56), are v∗ = p1−ρβ(1−Y ∗)
1−ρβ and

β
1− v∗

n
+ [p1 − β(1− Y ∗)]

(1− v∗)γ(n− 1)

nY ∗ + β

(

1− n+ 1

n
Y ∗

)

− c = 0. (57)

After multiplication by − nY ∗

β(n+1) and collection of terms with Y ∗, this equation becomes

(Y ∗)2 − Y ∗ n

n+ 1

[

1− v∗

n
(1 + γ(n− 1)) + 1− c

β

]

− n− 1

n+ 1
γ

(

p1
β

− 1

)

(1− v∗) = 0, (58)

which, for γ = 1, coincides with (18). Substitution for 1− v∗ = 1−p1−ρβY ∗

1−ρβ and collection of terms

with Y ∗ leads to (Y ∗)2 a2 + Y ∗a1 + a0 = 0, where a2 =
nρβ(γ−1)+n+1−γρβ

(n+1)(1−ρβ) > 0,

a1 = −
[1 + γ(n− 1)](1− p1) + n

(

1− c
β

)

(1− ρβ)− (n− 1)γ
(

p1
β − 1

)

ρβ

(n+ 1)(1− ρβ)
, and

a0 = −n− 1

n+ 1
γ

(

p1
β

− 1

)

1− p1
1− ρβ

.
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After division by a2, the last quadratic equation becomes

(Y ∗)2 − (β − c)n(1− ρβ) + β[1 + γ(n− 1)](1− p1)− γ (p1 − β) ρβ(n− 1)

β [nρβ(γ − 1) + n+ 1− γρβ]
Y ∗

− γ (p1 − β) (1− p1)(n− 1)

β [nρβ(γ − 1) + n+ 1− γρβ]
= 0, (59)

which, for γ = 1, coincides with (23). The equilibrium inventory is the larger root of this equation

because, multiplying (59) by −a2
β(n+1)

n < 0, we obtain the original equation (57) with substituted
v∗(Y ∗) and multiplied by Y ∗ > 0. The LHS of this resulting equation is a quadratic function with
a negative coefficient in front of (Y ∗)2 , i.e., the LHS decreases in Y ∗ at the larger root, which
corresponds to the maximum of profit.

Retailer i has sales in the second period, p2 = s. By (55) with p2 = s,

ri = (p1 − s)
(1− v∗)

(

yi
)γ

(n− 1)
(

Y ∗

n

)γ
+ (yi)γ

+ (s− c)yi and (60)

∂ri

∂yi
= (p1 − s)

(1− v∗)γ
(

yi
)γ−1

(n− 1)
(

Y ∗

n

)γ

[

(n− 1)
(

Y ∗

n

)γ
+ (yi)γ

]2 + s− c. (61)

Profit (60) is concave in yi because
(

yi
)γ

is concave, function Az
B+z is concave in z for any positive

z,A, and B (first term of ri) and (s− c)yi is concave.

A candidate for RESE4 results from conditions: ∂ri

∂yi

∣

∣

∣

yi=Y ∗

n

= 0 and v∗,4 = p1−ρs
1−ρβ . The latter

implies the same p1-upper bound as for γ = 1. Namely, v∗,4 < 1 (there are sales in the first period) is

equivalent to p1 < P4 , 1−ρ(β−s). The former yields Y ∗,4 : (p1−s) (1−v∗)γ(n−1)(Y ∗/n)2γ−1

n2(Y ∗/n)2γ
+s−c = 0,

which, multiplied by Y ∗n
p1−s , gives

c−s
p1−sY

∗n = (1− v∗)γ(n− 1) or Y ∗,4(γ) in the form of (53).

C.2 Proof of Proposition 7 (equally shared demand)

For γ = 0, equation (59) becomes Y ∗
[

Y ∗ − β(1−p1)+(β−c)n(1−ρβ)
β[1+n(1−ρβ)]

]

= 0 yielding a unique Y ∗ > 0.

Substitution of 1 − Y ∗ = p1+n(1−ρβ)c/β
1+n(1−ρβ) into p∗2 = β(1 − Y ∗) and v∗ =

p1−ρp∗
2

1−ρβ results in the
corresponding expressions.

Condition v∗ < 1 (there are sales in the first period) is p1 + n(p1 − ρc) < 1 + n(1 − ρβ) or
p1(n+ 1) < 1 + n[1− ρ(β − c)] yielding p1 < P1 — the boundary with RESE1. Condition v∗ ≥ p1
is p1 + n(p1 − ρc) ≥ p1 + np1(1 − ρβ) or ρc ≤ p1ρβ, which holds for ρ = 0. For ρ > 0, it becomes
p1 ≥ c

β .
RESE3 exists if and only if any retailer i has no incentive to deviate neither to (i) sales in

both periods with p2 = s nor to (ii) sales only in the first period. Part (i) holds because, by (61),
∂ri

∂yi

∣

∣

∣

γ=0
= s − c < 0 for any yi leading to p2 = s. Part (ii) is equivalent to ∂ri

∂yi

∣

∣

∣

yi= 1−v∗

n

> 0,

which, by (56) with γ = 0, is −2β 1−v∗

n + β 1−v∗

n + β
(

1− n−1
n Y ∗) > c. Multiplication by n

β leads to
n (1− c/β)− (n− 1)Y ∗ > 1− v∗, and, after the substitutions of Y ∗ and

1− v∗ =
1− p1 + n[1− p1 − ρ(β − c)]

1 + n(1− ρβ)
, (62)

the last inequality, multiplied by 1+n(1−ρβ) > 0, becomes n(1−c/β)+n2(1−c/β)(1−ρβ)− (n−
1)(1−p1)−n(n−1)(1−c/β)(1−ρβ) > 1−p1+n[1−p1−ρ(β−c)] or n(1−c/β)+n(1−c/β)(1−ρβ) >
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2n(1−p1)−nρβ(1−c/β), which, after simplifications, yields p1 >
c
β = P2(0). This inequality implies

that v∗ = p1 only if ρ = 0. Because the p1-boundaries of RESE3 are the negations of the boundaries
of RESE1 and RESE2, and, for γ = 0, RESE4 does not exist, no other equilibria exist in the area
c
β < p1 < P1.

Continuity of Y ∗, v∗, p∗2, and r∗ can be shown directly by substitution of the boundaries to the

correspondent formulas. For example, Y ∗,3∣
∣

p1=c/β
= 1−c/β+n(1−c/β)(1−ρβ)

1+n(1−ρβ) = 1−c/β = 1−p1 = Y ∗,2.

Monotonicity of v∗, Y ∗, and p∗2.
∂v∗

∂n = (p1−ρc)[1+n(1−ρβ)]−(1−ρβ)[p1+n(p1−ρc)]
[1+n(1−ρβ)]2

where the numerator

is ρ(p1β − c) ≥ 0, so ∂v∗

∂n = 0 only if ρ = 0.
∂v∗

∂ρ = 1
[1+n(1−ρβ)]2

{−nc[1 + n(1− ρβ)] + nβ[p1 + n(p1 − ρc)]} , where {·} = (βp1−c)(n+1) > 0

for any RESE3 inputs.
∂Y ∗

∂n = 1
[1+n(1−ρβ)]2

{(1− c/β) (1− ρβ)[1 + n(1− ρβ)]− (1− ρβ)[1− p1 + n (1− c/β) (1− ρβ)]} ,
where {·} = p1 − c/β > 0.

∂Y ∗

∂ρ = 1
[1+n(1−ρβ)]2

{n (1− c/β) (−β)[1 + n(1− ρβ)] + nβ[1− p1 + n (1− c/β) (1− ρβ)]} , where
1
nβ{·} = −(p1 − c/β) < 0.

The results for Y ∗ imply that p∗2 = β(1− Y ∗) is decreasing in n and increasing in ρ.
Monotonicity of nr∗ in n. By (55) with γ = 0,

nr∗ = (p1 − p∗2)(1− v∗) + (p∗2 − c)Y ∗. (63)

Then ∂(nr∗)
∂n = −∂p∗

2

∂n (1− v∗)− ∂v∗

∂n (p1 − p∗2) +
∂Y ∗

∂n (p∗2 − c) +
∂p∗

2

∂n Y ∗. Substitutions for
∂p∗

2

∂n = −β ∂Y ∗

∂n

and ∂v∗

∂n = ρβ
1−ρβ

∂Y ∗

∂n lead to ∂(nr∗)
∂n = ∂Y ∗

∂n

{

β(1− v∗)− ρβ
1−ρβ (p1 − p∗2) + p∗2 − c− βY ∗

}

. Using (62)

and

p1 − p∗2 =
p1(1− β) + n(1− ρβ)(p1 − c)

1 + n(1− ρβ)
, (64)

p∗2 − c =
βp1 − c

1 + n(1− ρβ)
, (65)

the bracket {·}, multiplied by [1 + n(1− ρβ)], becomes

β(1− p1) + nβ

[

1− p1 − ρβ

(

1− c

β

)]

− ρβ

1− ρβ
[p1(1− β) + n(1− ρβ)(p1 − c)]

+βp1 − c− β(1− p1)− βn

(

1− c

β

)

(1− ρβ)

= nβ

[

c

β
− p1 − ρ(p1 − c)

]

+ βp1 − c− ρβp1(1− β)

1− ρβ
,

which is decreasing in n. For n = 1, this expression is −ρβ(p1 − c)− ρβp1(1−β)
1−ρβ ≤ 0. Therefore, nr∗

is decreasing in n for any n ≥ 1 because ∂(nr∗)
∂n = 0 only for n = 1 and ρ = 0.

The conditions of monotonicity of nr∗ in ρ. Using (63), ∂(nr∗)
∂ρ = −∂p∗

2

∂ρ (1− v∗)− ∂v∗

∂ρ (p1− p∗2)+

∂Y ∗

∂ρ (p∗2−c)+
∂p∗

2

∂ρ Y
∗, which, using

∂p∗
2

∂ρ = −β ∂Y ∗

∂ρ , can be written as ∂(nr∗)
∂ρ =

∂p∗
2

∂ρ

[

2Y ∗ + c
β − 2 + v∗

]

−
∂v∗

∂ρ [p1 − β(1− Y ∗)] . The first bracket [·] is zero for n = 1 because, by (58) for γ = 0 and n = 1,

Y ∗ = 1
2

(

2− v∗ − c
β

)

, whereas the second bracket [·] > 0. Therefore, for n = 1, ∂(nr∗)
∂ρ < 0.

For n > 1 and γ = 0, equation (58) yields Y ∗ = 1−v∗

n+1 + n
n+1

(

1− c
β

)

, which can be written as

1− Y ∗ =
1

n+ 1

(

v∗ + n
c

β

)

or p∗2 =
βv∗ + nc

n+ 1
. (66)
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As
∂p∗

2

∂ρ = β
n+1

∂v∗

∂ρ ,
∂(nr∗)
∂ρ = ∂v∗

∂ρ
1

n+1

{

β
[

2Y ∗ + c
β − 2 + v∗

]

− (n+ 1) [p1 − β(1− Y ∗)]
}

, which means

that ∂(nr∗)
∂ρ ≤ 0 is equivalent to {·} ≤ 0 or p1 ≥ β(1 − Y ∗) + 1

n+1 [c+ βv∗ − 2β(1− Y ∗)] =

p∗2 +
c+βv∗−2p∗

2

n+1 or, using (66),

p1 ≥ c+ 2
βv∗ − p∗2
n+ 1

⇔ p1 ≥ c+
2n

n+ 1
(p∗2 − c). (67)

The last inequality always holds for n = 1 and never holds when ρβ → 1 (leading to p∗2 → p1) and
n > 1 because (n+ 1)(p1 − c) < 2n(p1 − c) for any n > 1.

Condition (67) is only sufficient for monotonicity of nr∗,3 under RESE3 because violation of
this condition may take place outside the area of RESE3 inputs, and inside this area, nr∗,3 can
be monotonic. Namely, by part 3 of Proposition 2, which holds for γ = 0, RESE3 exists only for
ρ < ρ1 = n+1

n
1−p1
β−c , where ρ1 can be less than one for large n. In order to take into account this

bound, condition (67) can be written in terms of inputs using (65):

p1 ≥ c+
2n

n+ 1

βp1 − c

1 + n(1− ρβ)
. (68)

The RHS of this inequality is increasing in ρ; therefore, given other inputs fixed, ∂(nr∗)
∂ρ < 0 for all

ρ under RESE3 if and only if (68) holds for ρ = ρ1. With this ρ, condition (68) becomes

p1 ≥ c+
2n

n+ 1

(βp1 − c)(β − c)

(1 + n)[β − c− β(1− p1)]
⇔ p1 ≥ c+

2n

(n+ 1)2
(β − c). (69)

The RHS of (69) decreases in n to c with n → ∞. Therefore, there exists n0 such that ∂(nr∗)
∂ρ < 0

for any n ≥ n0. On the other hand, because ∂(nr∗)
∂ρ < 0 for n = 1 and (69) is necessary and sufficient

for ∂(nr∗)
∂ρ < 0, nr∗ attains minimum (because the RHS of 68 increases in ρ) for any n ∈ (1, n0),

where n0 > 2 if and only if (69) does not hold at least for n = 2, i.e., p1 < c+ 4
9(β − c) = 5c+4β

9 .
n0 can be found, e.g., from the negation of (69) bearing in mind that non-monotonicity holds for

n < n0, where n0 is the larger root of the equation, corresponding to (p1−c)(n2+2n+1) < 2n(β−c).
The equation is n2 − 2nβ−p1

p1−c + 1 = 0, where β−p1
p1−c > 0 because p1 ∈ (c, β). The discriminant

D = 4

[

(

β−p1
p1−c

)2
− 1

]

> 0 because β − p1 > p1 − c is equivalent to p1 < β+c
2 , where the RHS is

greater than 5c+4β
9 . Then the larger root is n0 =

β−p1+
√

(β−p1)2−(p1−c)2

p1−c =
β−p1+

√
(β−c)(β+c−2p1)

p1−c .

The expression for ρ0 can be found from (68) when it holds as an equality: (p1−c)[1+n(1−ρβ)] =
2n
n+1(βp1 − c) ⇔ 1− ρβ = 2

n+1
βp1−c
p1−c − 1

n ⇔ ρ0 = 1
β

[

1 + 1
n − 2

n+1
βp1−c
p1−c

]

, yielding

ρ0 =
(n+ 1)2(p1 − c)− 2n(βp1 − c)

βn(n+ 1)(p1 − c)
. (70)

When β = 1, nr∗,3, using (63) and the expressions (64), (62), and (65), is

nr∗,3
∣

∣

β=1
=

1

[1 + n(1− ρ)]2
{

n(1− ρ)(p1 − c)(1− p1) + n2(1− ρ)(p1 − c)[1− p1 − ρ(1− c)]

+(1− p1)(p1 − c) + n(1− ρ)(p1 − c)(1− c)} ,

lim
ρ→1

nr∗,3
∣

∣

β=1
= (1− p1)(p1 − c) < nr∗,3

∣

∣

β=1
ρ=0

=
1

(1 + n)2
{

n(p1 − c)(1− p1) + n2(p1 − c)(1− p1)

+(1− p1)(p1 − c) + n(p1 − c)(1− c)± n(p1 − c)(1− p1)}

= (1− p1)(p1 − c) +
n(p1 − c)2

(1 + n)2
.
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Formula ρ0
∣

∣

β=1
= n2+1

n(n+1) results from (70) with β = 1. Minimum of ρ0 in n can be found from

∂ρ0

∂n = 0 = 2n2(n+1)−(2n+1)(n2+1)
n2(n+1)2

, which is equivalent to n2−2n−1 = 0 with the roots n1,2 = 1±
√
2.

The relevant root is n2 = 1 +
√
2; direct calculation yields ρ0

∣

∣

n=2
= 5

6 = 10
12 = ρ0

∣

∣

n=3
.

C.3 Proof of Proposition 8 (profit of a deviator from MSRP)

Assume (too optimistically) that retailer i obtain the entire first-period demand if its first-period
price is p′1 < p1. This assumption overestimates retailer i’s profit because in reality consumers
buy at different prices due to their search costs. Moreover, the assumption treats consumers as
myopic, which, by Lemma 1, maximizes the first-period demand and, as a result, the profit of
a retailer who sells only in the first period. Using the general expression for profit (8) with an
additional cost K ≥ 0 and unit cost cH > c, the profit upper bound, for p2 > s, is UBi =
−K− cHyi+ p′1(1− p′1)+β (1− Y ) [yi− (1− p′1)]. Consider the problem of maximizing UBi(yi, p′1)
s.t. 1 − p′1 ≤ yi (by retailer rationality) and p′1 ≤ p1 (we consider a non-strict inequality, which
also overestimates ri). The Lagrangian of this problem is Li = ri − λ(1 − p′1 − yi) − µ(p′1 − p1)
(which is concave because the Hessian is negative definite and the feasible region is convex) and
the first-order conditions are

∂Li

∂p′1
= 1− 2p′1 + β (1− Y ) + λ− µ = 0, (71)

∂Li

∂yi
= −cH + β(2− Y − p′1 − yi) + λ = 0, (72)

λ, µ ≥ 0, λ(1− p′1 − yi) = 0, µ(p′1 − p1) = 0, (73)

where Y = yi+Y −i. Profit upper bound UBi can be written as UBi = −K+(1−p′1)[p
′
1−β (1− Y )]+

yi
{

β (1− Y )− cH
}

, where, by (71), [·] = 1 − p′1 + λ − µ and, by (72), {·} = β(yi + p′1 − 1) − λ.
Then UBi = −K + (1− p′1)(1− p′1 + λ− µ) + yi[β(yi + p′1 − 1)− λ].

When λ > 0, retailer i has sales only in the first period (yi = 1 − p′1). Consider two cases:
p′1 < p1 (µ = 0) and p′1 = p1 (in the latter case system (71), (72) yields the first-period price
greater than p1 and µ > 0).

When µ = 0, the subtraction of doubled (71) from (72) leads to (4 − β)p′1 = 2 + λ +
cH − βY −i or p′1 = (2 + λ + cH − βY −i)/(4 − β), which, substituted into (71), yields yi =
1
β

[

1 + β(1− Y −i) + λ− 2(2 + λ+ cH − βY −i)/(4− β)
]

= 1
β(4−β) [(2− β)λ+ 3β − 2cH − 2βY −i −

β2(1 − Y −i)]. Then condition 1 − p′1 − yi ≤ 0 is equivalent to β(4 − β)(1 − p′1 − yi) = 4β −
β2 − [2β + βλ + βcH − β2Y −i] − [(2 − β)λ + 3β − 2cH − 2βY −i − β2(1 − Y −i)] = −β − βcH −
2λ + 2cH + 2βY −i ≤ 0, which, by (73), holds either if −β − βcH + 2cH + 2βY −i ≤ 0 leading to
λ = 0 or λ = 1

2(2c
H + 2βY −i − β − βcH) = 1

2 [c
H(2 − β) + β(2Y −i − 1)] > 0. The latter implies

cH > β(1− 2Y −i)/(2− β) and holds, e.g., if cH > β/(2− β). Substitution of λ into the expressions
for p′1 and yi = 1 − p′1 yields p′1 = 1

2(1 + cH) (implying cH ≤ 2p1 − 1) and yi = 1
2(1 − cH). Then

UBi = −K − cH 1
2(1− cH) + 1

4(1− cH)(1 + cH) = −K + 1
4(1− cH)2.

When µ > 0, we have p′1 = p1 and yi = 1 − p1. Then UBi = −K + (p1 − cH)(1 − p1) and, by
(72), λ = cH +β(Y −i−p1), which, substituted into (71), yields µ = 1−2p1+cH . Inequalities µ > 0
and λ > 0 are equivalent to cH > 2p1 − 1 and cH > β(p1 − Y −i) respectively.

When, for µ = 0, the cH -range (β(1 − 2Y −i)/(2 − β), 2p1 − 1] is not empty, the cH -range for
µ > 0 is cH > 2p1− 1. Indeed, 2p1− 1 > β(1− 2Y −i)/(2− β) ⇔ Y −i > 1

2 [1− (2− β)(2p1− 1)/β] =
[1− (2− β)p1]/β leading to β(p1 − Y −i) < βp1 − [1− (2− β)p1] = 2p1 − 1.
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C.4 Proof of Corollary 10 (no deviation from MSRP under RESE1)

By part RESE1 of Theorem 1, Y −i = n−1
n+1(1 − c/β) and r∗ = (β−c)2

(n+1)2β
. The deviation from MSRP

is unprofitable iff r∗ ≥ ri. By Proposition 8, this inequality holds if (β−c)2

(n+1)2β
≥ −K + 1

4(1− cH)2 if

β(1 − 2Y −i)/(2 − β) < cH ≤ 2p1 − 1 and (β−c)2

(n+1)2β
≥ −K + (p1 − cH)(1 − p1) if cH > max{2p1 −

1, β(p1 − Y −i)} yielding the result.

C.5 Proof of Proposition 9 (Y ∗ > 1− c)

Part 1. By Theorem 1, Y ∗,1 = n
n+1

(

1− c
β

)

, which is maximal at β = 1, and Y ∗,1∣
∣

β=1
=

n
n+1 (1− c) < 1− c. Hence, Y ∗,1 < 1− c for any parameters where RESE1 exists.

Part 2. By Theorem 2, Y ∗,4 = n−1
n

p1−s
c−s (1 − v∗), which, given other parameters fixed, goes

to infinity when c approaches s. The condition Y ∗,4 ≥ 1 − c, using 1 − v∗ = 1−p1−ρ(β−s)
1−ρβ , can be

written as c− s ≤ n−1
n

p1−s
1−c

1−p1−ρ(β−s)
1−ρβ . As Y ∗,4 is a concave quadratic function in p1, its maximum

in p1, Ȳ
∗,4, can be found from the condition ∂Y ∗,4

∂p1
= 0 = n−1

n(1−ρβ)(c−s) [1− p1 − ρ(β − s)− (p1 − s)] ,

yielding p̄1 =
1
2 [1−ρ(β−s)+s] = P4+s

2 . Because P4 = 1−ρ(β−s) = 2p̄1−s, we have 1− v∗|p1=p̄1
=

p̄1−s
1−ρβ and Ȳ ∗,4 = (n−1)(p̄1−s)2

n(1−ρβ)(c−s) . Price p̄1 can be in the p1-range of RESE4 because p̄1 is always below

P4 — the p1-upper bound (P4 > s), and p̄1 can be greater than P2, which, by Proposition 1, is
p1-lower bound in RESE4. Indeed, p̄1 > P2 holds for any n ≥ 2 if it holds for n = 2 because P2

decreases in n. For n = 2, inequality p̄1 > P2 can be written as (P4 + s)(1 + β) > 4c, which holds
for sufficiently small c.

Part 3. By Corollary 2, Y ∗,3 = 1 − 1
2

(

v∗ + c
β

)

if n = 1. Then Y ∗,3 < 1 − c is equivalent to

c < 1
2(v

∗ + c/β), which holds for any β ∈ (c, 1] because v∗ ≥ p1 > c.
By Proposition 3, Y ∗,3 is maximized at n → ∞. By continuity of Y ∗ at the boundaries, Y ∗,3 →

1− c when p1 → P2|n→∞ = c. We will show that there are feasible inputs such that ∂Y ∗,3

∂p1
> 0. For

example, for n → ∞ and ρ = 0, equation (23) for Y is Y 2−
[

1− c
β + 1− p1

]

Y −
(

p1
β − 1

)

(1−p1) =

0. Derivative w.r.t. p1 results in 2Y ∂Y
∂p1

+Y −
[

1− c
β + 1− p1

]

∂Y
∂p1

− 1
β (1−p1)+

(

p1
β − 1

)

= 0, which,

for p1 → c, becomes ∂Y
∂p1

[2(1− c)− 1 + c
β − (1− c)] = 1

β [1− c− c(1− β)] yielding ∂Y
∂p1

= 1−c
c(1−β) − 1.

The RHS is positive because 1− c > c(1− β).

C.6 Proof of Proposition 10 (discount)

The proof is similar to the corresponding parts of the proofs of Theorems 1 and 2. The expressions
for Y ∗ result from the symmetric best responses with ri = (p1 − c)qi + λ(p2 − c)(yi − qi), yi = Y

n ,
and Y −i = n−1

n Y.

For RESE1, qi = 0 and, using p2 = β(1 − Y ), ∂r
i

∂yi
= 0 = λ

[

β(1− Y )− c− β Y
n

]

, yielding

Y = n
n+1

(

1− c
β

)

that does not depend on λ. For RESE2, the result is obvious because ri =

(p1 − c)yi does not depend on λ. For RESE4 with v∗ = p1−ρs
1−ρβ and ri = (p1 − c)(1− v∗)y

i

Y − λ(c−
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s)yi
(

1− 1−v∗

Y

)

= yi
{

1−v∗

Y [p1 − c+ λ(c− s)]− λ(c− s)
}

, the equation for Y is

∂ri

∂yi
= 0 =

1− v∗

Y
[p1 − c+ λ(c− s)]− λ(c− s)− yi

1− v∗

Y 2
[p1 − c+ λ(c− s)]

=
n− 1

n

1− v∗

Y
[p1 − c+ λ(c− s)]− λ(c− s).

This equation yields a unique Y ∗,4
λ = n−1

n (1 − v∗)
[

p1−c
λ(c−s) + 1

]

, which decreases in λ and ∂2ri

∂(yi)2
=

−2n−1
n

1−v∗

Y 2 [p1 − c+ λ(c− s)] < 0. If λ = (1 + δ)−1, the relative change in Y ∗ is

Y ∗,4
λ − Y ∗,4

Y ∗,4 =

[

p1 − c

λ(c− s)
+ 1− p1 − s

c− s

]

c− s

p1 − s
=

p1 − c+ λ(c− p1)

λ(p1 − s)
=

(p1 − c)(1− λ)

(p1 − s)λ
=

p1 − c

p1 − s
δ.

For RESE3, we have

ri = (p1 − c)(1− v∗)
yi

Y
+ λ(p2 − c)yi

(

1− 1− v∗

Y

)

= yi
{

λ[β(1− Y )− c] + λβ(1− v∗) +
1− v∗

Y
[p1 − c(1− λ)− λβ]

}

,

and Y ∗ results from the first-order optimality condition

∂ri

∂yi
= 0 = λβ(1− Y )− λc+ λβ(1− v∗)

+
(1− v∗)

Y
[p1 − c(1− λ)− λβ] +

Y

n

{

−λβ − (1− v∗)

Y 2
[p1 − c(1− λ)− λβ]

}

= −Y λβ

(

1 +
1

n

)

− λc+ λβ(2− v∗) +
n− 1

n

1− v∗

Y
[p1 − c− λ(β − c)] (74)

as well as the equation v∗ = p1−ρβ(1−Y )
1−ρβ that links valuation threshold to the rational second-period

expectations. The remainder of the proof will formally show that Y ∗ is decreasing in λ. The
geometric idea behind the proof is provided by a generalized version of the curve vmin

2 (Y ) in (20)
that gives valuation threshold for the corresponding stationary point of the profit. Solving (74) for
v∗, we obtain

v∗ = 1−
Y 2 − Y n

n+1

(

1− c
β

)

Y n
n+1 + n−1

n+1

(

p1−c
λβ − 1 + c

β

) . (75)

The generalized vmin
2 (Y ) given by the right-hand side shifts down as λ increases. Thus, the inter-

section point of vmin
2 (Y ) and vmin

1 (Y ) (illustrated in Figure 12(a)) shifts to the left as λ increases.
Because the abscissa of the intersection point is Y ∗, the claim holds in RESE3 based on this
geometric structure.

Formally, (74) multiplied by −Y n
λβ(n+1) , becomes

Y 2 − Y
n

n+ 1

(

2− v∗ − c

β

)

− n− 1

n+ 1
(1− v∗)

[

p1 − c

λβ
−
(

1− c

β

)]

= 0,

implying that, for n = 1, Y does not depend on λ. Substitution for 1− v∗ = 1−p1−ρβY
1−ρβ yields

Y 2 − Y
n

n+ 1

(

1− p1 − ρβY

1− ρβ
+ 1− c

β

)

− n− 1

n+ 1

1− p1 − ρβY

1− ρβ

[

p1 − c

λβ
−

(

1− c

β

)]

= 0.
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The coefficient in front of Y 2 is 1 + n
n+1

ρβ
1−ρβ = n+1−ρβ

(n+1)(1−ρβ) , and the one in front of Y is

− 1

(n+ 1)(1− ρβ)

{

n[1− p1 +

(

1− c

β

)

(1− ρβ)]− (n− 1)ρβ

[

p1 − c

λβ
−
(

1− c

β

)]}

.

Multiplying the last equation by (n+1)(1−ρβ)
n+1−ρβ > 0 and denoting λ̃ , p1−c

λ − (β − c) , we obtain

Y 2 − (β − c)n(1− ρβ) + β(1− p1)n− ρβ(n− 1)λ̃

β(n+ 1− ρβ)
Y − (1− p1)(n− 1)

β(n+ 1− ρβ)
λ̃ = 0. (76)

The derivative of (76) w.r.t. λ̃ is

2Y
∂Y

∂λ̃
+Y

ρβ(n− 1)

β(n+ 1− ρβ)
− (β − c)n(1− ρβ) + β(1− p1)n− ρβ(n− 1)λ̃

β(n+ 1− ρβ)

∂Y

∂λ̃
− (1− p1)(n− 1)

β(n+ 1− ρβ)
= 0.

Multiplication by β(n+ 1− ρβ) yields

∂Y

∂λ̃

{

2Y β(n+ 1− ρβ)− (β − c)n(1− ρβ)− β(1− p1)n+ ρβ(n− 1)λ̃
}

= (n− 1)(1− p1 − ρβY ).

The RHS is zero for n = 1 and, by part 3 of Lemma 4, positive for n > 1. It remains to show that
{·} > 0 for any n ≥ 1, implying ∂Y

∂λ ≡ 0 for n = 1, and ∂Y
∂λ < 0 for n > 1 because λ̃ decreases in λ.

Since λ̃ is minimal at λ = 1, it can be shown that, for any λ ∈ (0, 1], Y increases in n. Proof is iden-
tical to the corresponding part of the proof of Proposition 3 with λ̃/β substituting for (p1/β − 1) .

Then {·} ≥ β
{

2(n+ 1− ρβ) Y |n=1 − (1− c
β )n(1− ρβ)− (1− p1)n+ ρ(n− 1)(p1 − β)

}

, which is

β {n[2 Y |n=1 − (1− c/β)(1− ρβ)− (1− p1) + ρ(p1 − β)] + 2(1− ρβ) Y |n=1 − ρ(p1 − β)} , where the
square bracket [·] = 2 Y |n=1 − (1 − c/β) − (1 − p1) + ρ(p1 − c). As Y |n=1 does not depend on λ,
we can rewrite, by Corollary 2, the bracket [·] as follows: [·] = 2 − c

β − 2p1−ρc
2−ρβ − 1 + c

β − 1 + p1 +

ρ(p1 − c) = 1
2−ρβ

[

ρc− p1ρβ + 2ρ(p1 − c)− ρ2β(p1 − c)
]

= ρ
2−ρβ [(p1 − c)(1− ρβ) + p1(1− β)] ≥

0 with strict inequality for ρ > 0. Therefore, the bracket {·} is positive if it is positive for

n = 1. {·}|n=1 = ρ
2−ρβ [(p1 − c)(1− ρβ) + p1(1− β)] + (1 − ρβ)

[

2− c
β − 2p1−ρc

2−ρβ

]

− ρ(p1 − β) =

ρ
2−ρβ [p1(2− ρβ)− p1β]+(1−ρβ)

[

2− c
β − 2p1

2−ρβ

]

−ρ(p1−β) = (1−ρβ)
[

2− c
β − 2p1

2−ρβ

]

− ρp1β
2−ρβ +ρβ,

where ρβ − ρβp1
2−ρβ > ρβ 1−ρβ

2−ρβ , which leads to {·}|n=1 > 1−ρβ
2−ρβ

{

ρβ + 2
(

2− c
β − p1

)

− 2ρβ + ρc
}

=

1−ρβ
2−ρβ

{

2
(

2− c
β − p1

)

− ρ(β − c)
}

. Because for n = 1, p1 < 1 − 1
2ρ(β − c), the last bracket {·} >

2
[

1− c
β + 1

2ρ(β − c)
]

− ρ(β − c) = 2
(

1− c
β

)

> 0.

C.7 Proof of Proposition 11 (RESE stability)

RESE1, 3, and 4, for n ≥ 2, represent a non-degenerate game between retailers that can be
reformulated as a one-period game with retailer i’s payoff πi(yi, Y −i) = yiP (yi, Y −i) − Ci(y

i),

where Ci(y
i) = cyi. For RESE1 and 3, by (10), P (yi, Y −i) = β(1 − Y ) + β(1 − v∗) + (p1−β)(1−v∗)

Y ,

and for RESE4, by (14), P (yi, Y −i) = s+ (p1−s)(1−v∗)
Y . By Theorem 3 in Nowaihi and Levine (1985),

a Cournot equilibrium Y ∗ is locally asymptotically stable if the following assumptions hold:
(A1) The equilibrium point Y ∗ exists and unique in an open neighborhood of Y ∗ and

(

yi
)∗

>
0, i ∈ I — holds by the condition of the proposition and part 2 of Lemma 4.

(A2) P and Ci, i ∈ I are twice continuously differentiable functions in an open neighborhood of
Y ∗ — holds for RESE1,3, and 4.
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(A3) ∂2πi/∂
(

yi
)2

< 0 at Y ∗ for each i ∈ I — holds for RESE1,3, and 4 by Lemma 7.
(H1) P ′ < C ′′

i at Y ∗ for each i ∈ I — holds because C ′′
i ≡ 0 and P ′ < 0 for RESE1,3, and 4.

(H2) P ′ + yiP ′′ ≤ 0 at Y ∗ for each i ∈ I — holds strictly for RESE1,3, and 4. Namely, for

RESE1 and 3, this inequality is −β − (p1−β)(1−v∗)
Y 2 + 2yi (p1−β)(1−v∗)

Y 3 ≤ 0, where the LHS at Y ∗ is

−β − (p1−β)(1−v∗)

(Y ∗)2
+ 2Y ∗

n
(p1−β)(1−v∗)

(Y ∗)3
= −β − (p1−β)(1−v∗)

(Y ∗)2

(

1− 2
n

)

< 0 for any n ≥ 2. For RESE4,

the proof is similar.

C.8 Formal argument for the case of different costs

The structure and conditions of REE existence We assume β > cH , i.e., the high-cost firm
may have second-period consumers with v > cH .

REE1: In this case, vmin = 1 and, using formula (8) for profit with c = cH and yi = yH , the
profit of the high-cost retailer is rH = −cHyH + β(1 − yH − yL)yH and, similarly, rL = −cLyL +

β(1− yL − yH)yL. The first-order optimality conditions yield ∂rH

∂yH
= −cH + β(1− yH − yL − yH) =

0 ⇔ yH = 1
2(1 − cH/β − yL) and, in the same way, yL = 1

2(1 − cL/β − yH). When yH ≥ 0, these
two equations give us yH,∗ = 1

3

[

1− (2cH − cL)/β
]

and yL,∗ = 1
3

[

1− (2cL − cH)/β
]

. Inequality
yH ≤ 0 is equivalent to 2cH − cL ≥ β or cH ≥ 1

2(c
L + β). In this case, yH,∗ = 0 and retailer L is a

monopolist with yL,∗ = 1
2(1− cL/β).

The expressions for yL,∗ and yH,∗ lead to Y ∗,1 = yL,∗+yH,∗ = 2
3(1− c̄/β), where c̄ = 1

2(c
L+cH),

and p∗,12 = β(1 − Y ∗,1) = 1
3(β + cH + cL) = c̄ + 1

3(β − c̄). Then rH,1 = yH,∗(p∗,12 − cH) = 1
3β (β −

2cH + cL)13(β + cH + cL − 3cH) = β(yH,∗)2 and rL,1 = β(yL,∗)2. By Lemma 5, Σ∗,1 = (βv∗ −
p∗2)/(2β) =

1
2

[

1− (β + cH + cL)/(3β)
]

. The existence condition v∗ = 1 is equivalent, by Lemma 1,
to p1 − ρβ(1− Y ∗,1) ≥ 1− ρβ ⇔ p1 ≥ 1− 2

3ρ(β − c̄) = P1.
REE2: ᾱ = α∗ = 0, by Lemma 1, leads to v∗ = p1. Similarly to the symmetric case, retailers’

profits, by their rationality, are rH = (p1− cH)yH and rL = (p1− cL)yL and, by part 1.3 of Lemma
7, rH (rL) is pseudoconcave on the interval (1 − p1 − yL)+ ≤ yH ≤ 1 − s

β − yL (respectively,

(1 − p1 − yH)+ ≤ yL ≤ 1 − s
β − yH). Then, any yL, yH ≥ 0, satisfying Y = yL + yH = 1 − p1 are

the candidates for REE2, which exists iff (i) there are local maxima of rH and rL at Y = 1 − p1;
(ii) this maxima are not less than possible maxima on the interval Y > 1− s/β.

Condition (i) for rH is equivalent to ∂rH

∂yH
|yH=1−p1−yL+0 ≤ 0, which, by (11) with vmin = p1, is

p1 − cH − yHp1(1−β)
1−p1

≤ 0 ⇔ yH ≥ (p1−cH)(1−p1)
p1(1−β) > 0, i.e., under REE2, the inventory of the high-

cost retailer is separated from zero for any cH < p1 (there are no REE2 equilibria with yH = 0,
i.e. high-cost retailer is pushed out of the market). Substitution for yH = 1 − p1 − yL yields

yL ≤ (1 − p1)
[

1− p1−cH

p1(1−β)

]

. In the same way, ∂rL

∂yL
|yL=1−p1−yH+0 ≤ 0 ⇔ yL ≥ (p1−cL)(1−p1)

p1(1−β) and,

using both conditions, yL + yH = 1− p1 ≥ (2p1−cL−cH)(1−p1)
p1(1−β) ⇔ p1 ≤ 2c̄

1+β = P2. Summarizing, yH

1−p1

and yL

1−p1
under REE2 belong to the ranges p1−cH

p1(1−β) ≤
yH

1−p1
≤ cL−βp1

p1(1−β) and
p1−cL

p1(1−β) ≤
yL

1−p1
≤ cH−βp1

p1(1−β) ,

and equality yL + yH = 1− p1 holds. The upper bound for yH implies that duopoly REE2 exists
only if cL > βp1.

Condition (ii) follows from ∂rL

∂yL
|yL=1−s/β−yH+0 ≤ 0 because both rH and rL are concave for

Y ≥ 1−s/β and ∂rH

∂yH
|yH=1−s/β−yL+0 ≤ ∂rL

∂yL
|yL=1−s/β−yH+0, which follows from (15) with vmin = p1:

∂rH

∂yH
|yH=1−s/β−yL+0 = −(cH−s)+ yL(p1−s)(1−p1)

(1−s/β)2
≤ ∂rL

∂yL
|yL=1−s/β−yH+0 = −(cL−s)+ yH(p1−s)(1−p1)

(1−s/β)2
.

By yH -upper bound, ∂rL

∂yL
|yL=1−s/β−yH+0 ≤ −(cL − s) + (p1−s)(1−p1)2

(1−s/β)2
cL−βp1
p1(1−β) , where (1−p1)2

(1−s/β)2
<

1. Then ∂rL

∂yL
|yL=1−s/β−yH+0 < −(cL − s) + (p1 − s) c

L−βp1
p1(1−β) where the RHS is non-positive iff
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p1−s
cL−s

cL−βp1
p1−βp1

≤ 1, which holds because βp1 > s and cL−βp1
p1−βp1

< cL−s
p1−s ( c

L−x
p1−x decreases in x). Hence,

REE2 exists if and only if p1 ≤ 2c̄
1+β = P2. Moreover, it can be shown that the lower p1-bound for

REE1 in the case of monopoly (yH,1 = 0 and c̄ = cL) always exceeds P2 with c̄ = 1
2(c

L + cH).

REE3: In this case, vmin = p1−ρβ(1−yH−yL)
1−ρβ and formula (9) for profit with c = cH and yi = yH

becomes rH = −cHyH + p1
yH

yH+yL

(

1− vmin
)

+ β
(

1− yH − yL
)

yH
(

1− 1−vmin

yH+yL

)

. The first-order

conditions, by (12), are

∂rH

∂yH
= β

(

1− yL
)

− cH + β
(

1− vmin
)

− 2βyH + (p1 − β)(1− vmin)
yL

Y 2
= 0 and (77)

∂rL

∂yL
= β

(

1− yH
)

− cL + β
(

1− vmin
)

− 2βyL + (p1 − β)(1− vmin)
yH

Y 2
= 0. (78)

Summing up these equations and multiplying by −Y/(3β), we obtain Y 2 − Y 2
3

(

2− vmin − c̄/β
)

−
1
3 (p1/β − 1) (1− vmin) = 0, which is equation (18) with n = 2 and c = c̄. Using the same argument
as in the symmetric case, the total equilibrium inventory Y ∗ is the larger root of this equation
where vmin = vmin(Y ∗) = v∗ (the same as in the symmetric case). Given Y ∗, the expressions

for yL, yH follow from subtraction of (78) from (77), which yields yL − yH = (cH−cL)(Y ∗)2

(p1−β)(1−v∗)+β(Y ∗)2
.

As yL − yH + Y ∗ = 2yL and yH = Y ∗ − yL, we have yL = 1
2Y

∗
[

1 + (cH−cL)Y ∗

(p1−β)(1−v∗)+β(Y ∗)2

]

and

yH = 1
2Y

∗
[

1− (cH−cL)Y ∗

(p1−β)(1−v∗)+β(Y ∗)2

]

. The equation for Y ∗ yields (p1 − β)(1 − v∗) = 3β[(Y ∗)2 −
Y ∗ 2

3 (2− v∗ − c̄/β)], which leads to equilibrium inventories

yH =
1

2
Y ∗

[

1− cH − cL

2β(2Y ∗ − 2 + v∗) + 2c̄

]

≤ yL =
1

2
Y ∗

[

1 +
cH − cL

2β(2Y ∗ − 2 + v∗) + 2c̄

]

. (79)

Because the denominator of the fraction in the expression for yH decreases in ρ (it increases in
Y ∗ and ∂Y ∗

∂ρ < 0 similarly to the symmetric case, shown in Proposition 3), there may exist such

ρ0 ∈ (0, 1) that yH |ρ=ρ0 = 0 whereas yH |ρ=0 > 0 given other inputs fixed. Condition yH > 0 is
equivalent to [·] > 0 ⇔ cL > β(2Y ∗ − 2 + v∗) = βv∗ − 2p∗2, where βv∗ is the highest consumer
valuation in the second period.

Considering the case of yH > 0 and following the proof of Theorem 1, REE3 exists iff 2c̄
1+β <

p1 < 1 − 2
3ρ(β − c̄) and, for both retailers, one of the conditions holds: for the high-cost retailer:

(a.H) ∂rH

∂yH
|yH=1−s/β−yL+0 ≤ 0, which is equivalent to yL ≤ (cH−s)(1−s/β)2

(p1−s)(1−v∗) , or (b.H) condition (a.H)

does not hold, Y ∗ < 1− s/β, and the equilibrium profit rH is not less than the profit r̃H resulting
from the deviation of this retailer from REE3 in such a way that Ỹ H = ỹH + yL > 1 − s/β,

where ỹH = argmaxyH>1−s/β−yL rH . By (15), condition ∂rH

∂yH
|yH=ỹH = 0 is −(cH − s) + yL(p1 −

s)(1 − v∗)/(Ỹ H)2 yielding Ỹ H =
√

yL(p1−s)(1−v∗)
cH−s

. Substitution of Ỹ H and ỹH = Ỹ H − yL into

(14) leads to r̃H = ỹH
[

(p1 − s)(1− v∗)/Ỹ H − (cH − s)
]

. Similarly, for the low-cost retailer, the

conditions are (a.L) yH ≤ (cL−s)(1−s/β)2

(p1−s)(1−v∗) , or (b.L) condition (a.L) does not hold, Y ∗ < 1− s/β, and

rL ≥ ỹL
[

(p1 − s)(1− v∗)/Ỹ L − (cL − s)
]

, where ỹL = Ỹ L − yH and Ỹ L =
√

yH(p1−s)(1−v∗)
cL−s

.

Under REE3, the high-cost retailer does not supply inventory to the market (yH = 0) nei-

ther resulting in p2 > s nor in p2 = s if both conditions hold: (i) ∂rH

∂yH
|yH=+0 ≤ 0 and (ii)

∂rH

∂yH
|yH=1−s/β−yL+0 ≤ 0. By Corollary (2), yL = 1− 1

2(v
∗,L + cL/β), where v∗,L = 2p1−ρcL

2−ρβ , yielding
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yL = 1− 1
2
2cL−ρβcL+2βp1−ρβcL

β(2−ρβ) = 1− cL/β+p1−ρcL

2−ρβ = 2−cL/β−p1−ρ(β−cL)
2−ρβ . Then, by (12) with Y −i = yL,

condition (i) is ∂rH

∂yH
|yH=+0 = β(1−yL)−cH+β(1−v∗,L)+(p1−β)(1−v∗,L)/yL ≤ 0 ⇔ cH ≥ β(2−yL−

v∗,L)+(p1−β)(1−v∗,L)/yL. Condition (ii) follows from (i) because (i) implies rH(1−s/β−yL) ≤ 0,
which, by part 1.2 of Lemma 7, is equivalent to (p1 − s)(1− v∗,L) ≤ (1− s/β)(cH − s). Then, using

(15), ∂rH

∂yH
|yH=1−s/β−yL+0 = −(cH − s) + yL(p1−s)(1−v∗,L)

(1−s/β)2
≤ (cH − s)

(

yL

1−s/β − 1
)

< 0.

REE4: By (15), the first-order conditions are ∂rH

∂yH
= −(cH − s) + yL(p1 − s)(1− v∗)/(Y )2 = 0

and ∂rL

∂yL
= −(cL − s) + yH(p1 − s)(1 − v∗)/(Y )2 = 0. By summing up these equations we get

Y ∗ = 1
2
(p1−s)(1−v∗)

c̄−s , where, by Lemma 1, v∗ = p1−ρs
1−ρβ . Then yL = (cH−s)

(p1−s)(1−v∗)(Y
∗)2 = cH−s

2(c̄−s)Y
∗

and yH = cL−s
2(c̄−s)Y

∗, i.e., yL > yH > 0 whenever cH > cL > s. By (14), the equilibrium profits

are rH = yH [−(cH − s) + (p1 − s)(1 − v∗)/Y ∗] = (cL−s)2

2(c̄−s) Y
∗ and rL = (cH−s)2

2(c̄−s) Y ∗. Similarly to the

symmetric case, REE4 exists iff one of the conditions hold: (A) yH ≥ 1− s/β (neither retailer can
deviate from REE4).

(B) yH < 1− s/β, yL ≥ 1− s/β (only retailer L can potentially deviate from REE4), and one

of the conditions that prevent retailer L from deviating holds: (B.1) ∂rL

∂yL
|yL=1−s/β−yH−0 ≥ 0 ⇔

β
(

1− yH
)

− cL + β (1− v∗) − 2β
(

1− s
β − yH

)

+ (p1−β)(1−v∗)yH

(1−s/β)2
≥ 0, which, after simplification,

becomes
[

β + (p1−β)(1−v∗)
(1−s/β)2

]

yH ≥ cL+βv∗−2s; or (B.2) condition (B.1) does not hold, Y ∗ > 1−s/β,

and one of the following conditions hold: (i) internal maximizer ỹL of retailer L profit is such that
Ỹ (which equals ỹL + yH) is not in the range (1− v∗, 1− s/β), which is equivalent to nonexistence
of real roots of the equation 2Y 3− (2− v∗− cL/β+ yH)Y 2+(1− p1/β)(1− v∗)yH = 0 in this range
(in this case, the deviator profit never exceeds the equilibrium one); or (ii) Ỹ ∈ (1 − v∗, 1 − s/β)
and rL ≥ r̃L(Ỹ ) = (Ỹ − yH)[β(1− Ỹ )− cL + β(1− v∗) + (p1 − β)(1− v∗)/Ỹ ].

(C) yH < 1 − s/β, yL < 1 − s/β (both retailers can potentially deviate from REE4), and,
for both retailers, one of the conditions of case (B) holds. For retailer H, these conditions are:

(C.1)
[

β + (p1−β)(1−v∗)
(1−s/β)2

]

yL ≥ cH+βv∗−2s; or (C.2) condition (C.1) does not hold, Y ∗ > 1−s/β, and

one of the following conditions hold: (i) there are no real roots of the equation 2Y 3−(2−v∗−cH/β+
yL)Y 2+(1−p1/β)(1−v∗)yL = 0 in the range (1−v∗, 1−s/β); or (ii) Ỹ = ỹH+yL ∈ (1−v∗, 1−s/β)
and rL ≥ r̃H(Ỹ ) = (Ỹ − yL)[β(1− Ỹ )− cH + β(1− v∗) + (p1 − β)(1− v∗)/Ỹ ].

C.9 Proof of Proposition 12 (low-cost inventory increasing in ρ)

If p1 > 1 − 2
3(β − c̄), then, similarly to part 3 of Proposition 2, there exists such ρ1 = 3

2
1−p1
β−c̄

that if REE3 exists, it exists for ρ < ρ1 (yL,∗|ρ=0 = yL,3|ρ=0) whereas REE1 exists for ρ ≥ ρ1

(yL,∗|ρ→1 = yL,1). By (79), yL,3|ρ=0 = 1
2Y

∗
[

1 + cH−cL

2β(2Y ∗−2+p1)+2c̄

]

, where Y ∗ is the larger root of

Y 2 − Y 2
3 (2− p1 − c̄/β) − 1

3 (p1/β − 1) (1 − p1) = 0, and, by part REE1 of previous subsection,

yL,1 = 1
3

[

1− (2cL − cH)/β
]

. Then yL,∗|ρ=0 < yL,∗|ρ→1 ⇔ 1 + cH−cL

2β(2Y ∗−2+p1)+2c̄ < 2(β+cH−2cL)
3βY ∗

yielding the result.
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