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Abstract: For simple prospects of the kind routinely used for certainty equivalent 

elicitation, random expected utility preferences imply a conditional expectation function 

that can mimic deterministic rank dependent preferences. That is, an agent with random 

expected utility preferences can have mean certainty equivalents that look exactly like rank 

dependent probability weighting functions of the inverse-s shape discussed by Quiggin 

(1982) and later advocated by Tversky and Kahneman (1992) and other scholars. It seems 

that certainty equivalents cannot nonparametrically identify preferences, at least not in 

every relevant sense, since their conditional expectation depends on assumptions 

concerning the source and nature of their variability. 
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Elicitation of certainty equivalents has become routine in laboratory measurement of 

preferences under risk and uncertainty (Tversky and Kahneman 1992; Tversky and Fox 

1995; Wu and Gonzales 1999; Gonzales and Wu 1999; Abdellaoui 2000; Abdellaoui, 

Bleichrodt and Paraschiv 2007; Halevy 2007; Abdellaoui, Bleichrodt, and L'Haridon 2008; 

Bruhin, Fehr-Duda and Epper 2010; Vieider et al. 2015). While elicitation methods vary 

across such studies, the formal empirical interpretation of elicited certainty equivalents—

or computed quantities interpreted to be certainty equivalents—is  overwhelmingly the 

same: The subject is assumed to have a unique and fixed preference order, implying (under 

unchanged conditions of background wealth, risk and so forth) a unique and fixed certainty 

equivalent 𝐶𝐶𝐿𝐿 for each prospect 𝐿𝐿. One may then interpret an elicited certainty equivalent 𝑐𝑐 

as 𝐶𝐶𝐿𝐿 plus some error 𝜀𝜀 of harmless origin with standard properties. When elicitation is 

repeated for exactly the same prospect, elicited certainty equivalents are variable within 

subjects (e.g. Tversky and Kahneman 1992, p. 307; Gonzalez and Wu 1999, pp. 144-146) 

and other studies also suggest inherent variability of elicited certainty equivalents (Butler 

and Loomes 2007; Loomes and Pogrebna 2014). Empirical interpretation needs to take a 

position on this variability, and adding mean zero error to an otherwise deterministic 

model of certainty equivalents is one option.  I call this the standard model of an elicited 

certainty equivalent. 

Alternatively, one might assume that the individual subject’s preference order is a 

random variable, and that any one certainty equivalent elicited from that subject is fully 

determined by a single realization of that random variable. I call this a random (preference) 

model of an elicited certainty equivalent. Interest in random preference models is long-

standing (Becker, DeGroot and Marschak 1963; Eliashberg and Hauser 1985; Hilton 1989; 

Loomes and Sugden 1995, 1998; Gul and Pesendorfer 2006; Apesteguia and Ballester 

2016), particularly in the realm of discrete choice. Here, I examine implications of this 

model for elicited certainty equivalents 𝑐𝑐 and find a significant complication of their 

empirical interpretation.  

Specifically, random model expected utility preferences (or more simply random EU as 

termed by Gul and Pesendorfer 2006) imply a conditional expectation function for 𝑐𝑐 that 

can mimic standard model rank-dependent preferences (or more simply standard RDU). 

That is, a random EU agent can have mean certainty equivalents that appear to reveal rank 
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dependent probability weighting functions of the inverse-s shape discussed by Quiggin 

(1982) and advocated by Tversky and Kahneman (1992) and other scholars. I believe 

Hilton (1989) first showed that certainty equivalents have some unexpected properties 

under random EU; additionally, recent work by Navarro-Martinez et al. (2015) contains a 

strong suggestion of my direction here. In my conclusion I discuss implications of this 

finding more thoroughly, but it seems that elicited certainty equivalents cannot 

nonparametrically identify preferences, at least not in the mainstream econometric sense 

of the phrase “nonparametric identification,” since their conditional expectation depends 

on the source and nature of their variability.  

Years ago Karni and Safra (1987) observed that, from the perspective of rank-

dependent preference theory, incentive-compatible elicitation of certainty equivalents 

might not be possible; at the same time, many behavioral economists doubt that incentive 

compatibility matters much for preference elicitation (Camerer and Hogarth 1999; 

Loewenstein 1999), though for many kinds of value elicitation there is overwhelming 

evidence to the contrary (Harrison and Rutström 2008). Let me firmly distinguish my 

findings from the concerns of Karni and Safra, and also stipulate (for argument’s sake) 

what the behavioral mainstream believes about methods. My formal results require only 

general assumptions about elicitation methods, and say nothing about incentive 

compatibility. The results come first, followed by some intuition behind the results, and I 

close with some caveats and implications of the results. 

 

1. Formal results. 

 

Consider simple prospects 𝐿𝐿 = (𝑊𝑊,𝑝𝑝) with money outcomes 𝑧𝑧 = 𝑊𝑊 > 0 with 

probability 𝑝𝑝 and 𝑧𝑧 = 0 with probability 1 − 𝑝𝑝. Simple prospects figure prominently in 

theoretical and empirical discussions of rank-dependent utility (RDU) and cumulative 

prospect theory (CPT) because their certainty equivalents are thought to reveal the 

probability weighting function of the rank-dependent family when the utility or value of 

outcomes is linear (Tversky and Kahneman 1992; Prelec 1998). To see this, let the utility or 

value of outcomes have the power form 𝑣𝑣(𝑧𝑧) = 𝑧𝑧1/𝑥𝑥, where I write the power as 1/𝑥𝑥 for 

convenience. Given any specific 𝑥𝑥 ∈ (0,∞), the rank-dependent utility or RDU of 𝐿𝐿 will be 
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𝑉𝑉𝐿𝐿 = 𝜋𝜋(𝑝𝑝|𝜔𝜔)𝑣𝑣(𝑊𝑊) + �1 − 𝜋𝜋(𝑝𝑝|𝜔𝜔)�𝑣𝑣(0) = 𝜋𝜋(𝑝𝑝,𝜔𝜔)𝑊𝑊1/𝑥𝑥, where 𝜋𝜋(𝑝𝑝|𝜔𝜔) is a probability 

weighting function depending on preference parameters 𝜔𝜔. The certainty equivalent of 𝐿𝐿 =

(𝑊𝑊, 𝑝𝑝), given 𝑥𝑥, is then 𝑊𝑊𝜋𝜋(𝑝𝑝|𝜔𝜔)𝑥𝑥, but divide these by 𝑊𝑊 to free them of dependence on 𝑊𝑊 

and let 𝐶𝐶𝑠𝑠𝑟𝑟𝑟𝑟(𝑝𝑝|𝑥𝑥,𝜔𝜔) ≡ 𝜋𝜋(𝑝𝑝|𝜔𝜔)𝑥𝑥 be the RDU normalized certainty equivalent of any simple 

prospect (given specific 𝑥𝑥 and 𝜔𝜔). Notice that when 𝑥𝑥 = 1 (that is for a linear value of 

outcomes), one has 𝐶𝐶𝑠𝑠𝑟𝑟𝑟𝑟(𝑝𝑝|1,𝜔𝜔) ≡ 𝜋𝜋(𝑝𝑝|𝜔𝜔) so that these normalized certainty equivalents of 

simple prospects are thought to reveal the RDU weighting function when 𝑥𝑥 = 1. Expected 

utility or EU is the special case where 𝜋𝜋(𝑝𝑝|𝜔𝜔) ≡ 𝑝𝑝, so also define 𝐶𝐶𝑠𝑠𝑒𝑒𝑒𝑒(𝑝𝑝|𝑥𝑥) ≡ 𝑝𝑝𝑥𝑥 as the EU 

normalized certainty equivalent of any simple prospect (given specific 𝑥𝑥).  

Let c be an observed certainty equivalent for 𝐿𝐿 = (𝑊𝑊,𝑝𝑝), elicited from some subject 

and divided by 𝑊𝑊 to normalize it. Very commonly, the empirical specification for these 

observed certainty equivalents is 𝑐𝑐 = 𝐸𝐸(𝑐𝑐|𝑝𝑝) + 𝜀𝜀. Here 𝐸𝐸(𝑐𝑐|𝑝𝑝) is the conditional expectation 

function or c.e.f. of 𝑐𝑐, usually derived from EU, RDU, CPT or another preference functional 

(as done above); and 𝜀𝜀 is an error term, usually thought to arise (for instance) from 

“carelessness, hurrying, or inattentiveness” (Bruhin, Fehr-Duda and Epper 2010) and 

assumed to satisfy conventional assumptions (𝐸𝐸(𝜀𝜀) = 𝐸𝐸(𝜀𝜀|𝑝𝑝) = 0). Estimation of 𝐸𝐸(𝑐𝑐|𝑝𝑝) 

can then proceed using nonlinear least squares or another estimator such as maximum 

likelihood. This is the essence of the standard model approach. 

Standard model RDU assumes that 𝐸𝐸(𝑐𝑐|𝑝𝑝) = 𝐶𝐶𝑠𝑠𝑟𝑟𝑟𝑟(𝑝𝑝|𝑥𝑥,𝜔𝜔) ≡ 𝜋𝜋(𝑝𝑝|𝜔𝜔)𝑥𝑥, where 𝑥𝑥 is a 

nonrandom parameter to be estimated. Bruhin, Fehr-Duda and Epper (2010) use maximum 

likelihood this way, while Tversky and Kahneman (1992) use nonlinear least squares. In 

other words, the conditional expectation of 𝑐𝑐 is taken to be 𝜋𝜋(𝑝𝑝|𝜔𝜔)𝑥𝑥, and the data analyst’s 

job is to estimate unique and fixed parameters 𝑥𝑥 and 𝜔𝜔 from multiple observations of 𝑐𝑐 

observed under experimentally varied values of 𝑝𝑝. Obviously 𝑐𝑐 ∈ [0,1], so a few other 

modeling assumptions appropriate to limited dependent variables are needed: The 

distribution of 𝜀𝜀 cannot be wholly independent of 𝑝𝑝 unless it is degenerate. But this can be 

done while keeping 𝐸𝐸(𝜀𝜀|𝑝𝑝) = 0 in straightforward ways (see e.g. Gonzalez and Wu 1999; 

Bruhin, Fehr-Duda and Epper 2010). Frequently, estimations also involve some (or even 

wholesale) pooling across different subjects. Random preference models of individuals can 

also be models of the expected behavior of groups under suitable conditions (McFadden 
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1974), so my results may apply with added force to such pooled estimation. My appendix is  

a very brief illustrative Monte Carlo look at many such estimation techniques in the 

presence of random preference variation. 

For many common weighting functions 𝜋𝜋(𝑝𝑝|𝜔𝜔) it will not be possible to identify both 𝑥𝑥 

and all of 𝜔𝜔 solely from normalized certainty equivalents of simple prospects. For instance 

suppose 𝜋𝜋(𝑝𝑝|𝜔𝜔) is the well-known 2-parameter Prelec (1998) weighting function 

exp(−𝛽𝛽[− ln(𝑝𝑝)]𝛼𝛼) where 𝛼𝛼 and 𝛽𝛽 are strictly positive parameters. Then the normalized 

certainty equivalent will be 𝐶𝐶𝑠𝑠𝑟𝑟𝑟𝑟(𝑝𝑝|𝑥𝑥,𝛼𝛼,𝛽𝛽) = exp(−𝑥𝑥𝛽𝛽[− ln(𝑝𝑝)]𝛼𝛼), and only 𝛼𝛼 and the 

product 𝑥𝑥𝛽𝛽 will be estimable. This is very well-known, so experimental designs meant to 

separately estimate all three parameters always contain some prospects that are not 

simple prospects as defined here. I focus on simple prospects because of their tractability 

and their simple interpretation: Definitionally, 𝐶𝐶𝑠𝑠𝑟𝑟𝑟𝑟(𝑝𝑝|1,𝜔𝜔) ≡ 𝜋𝜋(𝑝𝑝|𝜔𝜔), so the normalized 

certainty equivalents of simple prospects are identical to weighting functions (under 

standard RDU) at linear 𝑣𝑣(𝑧𝑧) (Tversky and Kahneman 1992; Prelec 1998). 

 In general, a random (preference) model might take both 𝑥𝑥 and 𝜔𝜔 to be realizations of 

nondegenerate random variables 𝑋𝑋 and 𝛺𝛺 within an individual. However, as far as I am 

aware, existing random preference estimations treat any weighting function parameters 𝜔𝜔 

as fixed within any individual (e.g. Loomes, Moffatt and Sugden 2002; Wilcox 2008, 2011), 

and contemporary random preference theory seems to be confined to treatment of 𝑋𝑋 as 

random only (e.g. Gul and Pesendorfer 2006; Apesteguia and Ballester 2016). Therefore, all 

of my random preference analysis treats only 𝑥𝑥 as the realization of a random variable 𝑋𝑋, 

taking any weighting function parameters 𝜔𝜔 as fixed within the subject.  

I confine my analysis of the random model to the random EU special case. In any given 

trial of any elicitation, an ordinary random EU assumes that a new realization 𝑥𝑥 of 𝑋𝑋 occurs 

and determines the normalized certainty equivalent 𝐶𝐶𝑠𝑠𝑒𝑒𝑒𝑒(𝑝𝑝|𝑥𝑥) =  𝑝𝑝𝑥𝑥 . Assume that a 

probability density function 𝑓𝑓(𝑥𝑥|𝜓𝜓) of 𝑋𝑋 with support (0,∞) lies within an individual, 

depending on parameters 𝜓𝜓. Then define 𝐶𝐶𝑟𝑟𝑒𝑒𝑒𝑒(𝑝𝑝|𝜓𝜓) as 

 

(1)  𝐶𝐶𝑟𝑟𝑒𝑒𝑒𝑒(𝑝𝑝|𝜓𝜓) ≡ 𝐸𝐸𝑋𝑋[𝐶𝐶𝑠𝑠𝑒𝑒𝑒𝑒(𝑝𝑝|𝑥𝑥)] = ∫ 𝑝𝑝𝑥𝑥𝑓𝑓(𝑥𝑥|𝜓𝜓)𝑑𝑑𝑥𝑥∞0 = ∫ exp(−𝑥𝑥𝑥𝑥)𝑓𝑓(𝑥𝑥|𝜓𝜓)𝑑𝑑𝑥𝑥∞0 ,  
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where the final integral (which becomes useful shortly) lets 𝑥𝑥 = −ln(𝑝𝑝) and rewrites 𝑝𝑝𝑥𝑥 as 

exp(−𝑥𝑥𝑥𝑥). The function 𝐶𝐶𝑟𝑟𝑒𝑒𝑒𝑒(𝑝𝑝|𝜓𝜓) is the mean normalized certainty equivalent of a random 

EU agent for simple prospects (𝑊𝑊,𝑝𝑝), given her underlying p.d.f. 𝑓𝑓(𝑥𝑥|𝜓𝜓).  

 Allow a brief digression on elicitation methods. There is another way of thinking about 

this p.d.f. 𝑓𝑓(𝑥𝑥|𝜓𝜓) of 𝑋𝑋. Suppose an experimenter uses some method 𝑀𝑀 to elicit a normalized 

certainty equivalent 𝑐𝑐 from a subject, and suppose that 𝑥𝑥(𝑐𝑐,𝑝𝑝) solves 𝑝𝑝𝑥𝑥 = 𝑐𝑐; that is, let 𝑥𝑥(𝑐𝑐,𝑝𝑝) ≡ ln(𝑐𝑐)/ln(𝑝𝑝). Suppose that in repeated elicitations using method M, the empirical 

c.d.f. of 𝑥𝑥(𝑐𝑐,𝑝𝑝) is observed to be 𝐹𝐹�𝑀𝑀(𝑥𝑥); and suppose that 𝐹𝐹�𝑀𝑀(𝑥𝑥) converges to 𝐹𝐹𝑀𝑀(𝑥𝑥) as the 

sample of observations grows. If 𝐹𝐹𝑀𝑀(𝑥𝑥) is independent of 𝑝𝑝, the variability of the 

normalized certainty equivalents observed by the experimenter could be interpreted as 

arising from a random EU model of the kind assumed here, where the p.d.f. 𝑓𝑓(𝑥𝑥|𝜓𝜓) is 

derived from 𝐹𝐹𝑀𝑀(𝑥𝑥). This suggests ways in which one might test a random EU model (or a 

random RDU model, and later I will return to this), but additionally indicates that the 

results below do not depend much on the specific laboratory method used to elicit a 

certainty equivalent. The two key assumptions about any elicitation method are (1) that 

repeated trials using the method yield variability in elicited certainty equivalents, and (2) 

this variability is consistent with the assumptions of a random EU model—namely, that 𝐹𝐹𝑀𝑀(𝑥𝑥) is independent of 𝑝𝑝. Note that neither of those assumptions rule out any dependence 

of 𝑓𝑓(𝑥𝑥|𝜓𝜓) on the elicitation method 𝑀𝑀. 

Under random EU, we again have an empirical model of the form 𝑐𝑐 = 𝐸𝐸(𝑐𝑐|𝑝𝑝) + 𝜉𝜉, but 

the c.e.f. is now 𝐸𝐸(𝑐𝑐|𝑝𝑝) =  𝐶𝐶𝑟𝑟𝑒𝑒𝑒𝑒(𝑝𝑝|𝜓𝜓) as given by eq. (1) and errors 𝜉𝜉 are 𝑝𝑝𝑥𝑥 − 𝐶𝐶𝑟𝑟𝑒𝑒𝑒𝑒(𝑝𝑝|𝜓𝜓). By 

the eq. 1 definition, the new errors 𝜉𝜉 also satisfy the usual properties (𝐸𝐸(𝜉𝜉) = 𝐸𝐸(𝜉𝜉|𝑝𝑝) = 0), 

so one may estimate both the random EU model 𝑐𝑐 = 𝐶𝐶𝑟𝑟𝑒𝑒𝑒𝑒(𝑝𝑝|𝜓𝜓) + 𝜉𝜉 and the standard RDU 

model 𝑐𝑐 = 𝐶𝐶𝑠𝑠𝑟𝑟𝑟𝑟(𝑝𝑝|𝑥𝑥,𝜔𝜔) + 𝜀𝜀 using the same variety of estimators.  

The close resemblance of these two models suggests two possible types of mimicry. 

First, since 𝐶𝐶𝑠𝑠𝑟𝑟𝑟𝑟(𝑝𝑝|1,𝜔𝜔) ≡ 𝜋𝜋(𝑝𝑝|𝜔𝜔) in standard RDU, it will be troubling if 𝐶𝐶𝑟𝑟𝑒𝑒𝑒𝑒(𝑝𝑝|𝜓𝜓) can “look 

like” a stereotypical 𝜋𝜋(𝑝𝑝|𝜔𝜔), that is, can have properties like those that scholars believe are 

empirically characteristic of RDU weighting functions. I will refer to this as weak mimicry 

(of standard RDU by random EU). Second, it may happen that for some well-known and 

specific 𝜋𝜋(𝑝𝑝|𝜔𝜔), there exists a specific 𝑓𝑓(𝑥𝑥|𝜓𝜓) such that 𝐶𝐶𝑟𝑟𝑒𝑒𝑒𝑒(𝑝𝑝|𝜓𝜓) is a re-parameterization 
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of 𝐶𝐶𝑠𝑠𝑟𝑟𝑟𝑟(𝑝𝑝|𝑥𝑥,𝜔𝜔). Let 𝐷𝐷 be the set of possible parameter vectors (𝑥𝑥,𝜔𝜔), and let Ψ be the set of 

possible parameter vectors 𝜓𝜓; and suppose that, for some 𝑓𝑓(𝑥𝑥|𝜓𝜓), there exists a function 𝐻𝐻𝑓𝑓:𝐷𝐷 → Ψ such that 𝐶𝐶𝑟𝑟𝑒𝑒𝑒𝑒�𝑝𝑝,𝐻𝐻𝑓𝑓(𝑥𝑥,𝜔𝜔)� ≡ 𝐶𝐶𝑠𝑠𝑟𝑟𝑟𝑟(𝑝𝑝|𝑥𝑥,𝜔𝜔) ≡ 𝜋𝜋(𝑝𝑝|𝜔𝜔)𝑥𝑥: Then one may say there is 

strong mimicry (of standard RDU by random EU) for 𝑓𝑓(𝑥𝑥|𝜓𝜓). Notice that strong mimicry 

implies weak mimicry but not vice versa. 

Since −ln(𝑝𝑝) > 0 ∀ 𝑝𝑝 ∈ (0,1), so that 𝑥𝑥 > 0 too, the final integral in eq. 1 is the one-

sided Laplace transform ℒ{𝑓𝑓}(𝑥𝑥) of the p.d.f. 𝑓𝑓(𝑥𝑥|𝜓𝜓)—provided it exists; and below I only 

use p.d.f.s for which the existence and form of ℒ{𝑓𝑓}(𝑥𝑥) have been demonstrated and derived 

by others. In such instances, these known Laplace transforms ℒ{𝑓𝑓}(𝑥𝑥) of a p.d.f. 𝑓𝑓(𝑥𝑥|𝜓𝜓) 

make it simple to derive various examples of 𝐶𝐶𝑟𝑟𝑒𝑒𝑒𝑒(𝑝𝑝|𝜓𝜓), using the relationship 𝐶𝐶𝑟𝑟𝑒𝑒𝑒𝑒(𝑝𝑝|𝜓𝜓) =ℒ{𝑓𝑓}[−ln(𝑝𝑝)]. Some examples follow. 

 

Example 1.  Suppose X has the Gamma p.d.f 

 

 𝑓𝑓(𝑥𝑥|𝑘𝑘, 𝜃𝜃) =  
1Γ(𝑘𝑘)𝜃𝜃𝑘𝑘 𝑥𝑥𝑘𝑘−1𝑒𝑒−(𝑥𝑥 𝜃𝜃⁄ ) for 𝑥𝑥,𝑘𝑘, and 𝜃𝜃 ∈ (0,∞). 

 

It’s widely known that this has the Laplace transform ℒ{𝑓𝑓}(𝑥𝑥) = (1 + 𝜃𝜃𝑥𝑥)−𝑘𝑘, implying that  

 

(2)  𝐶𝐶𝑟𝑟𝑒𝑒𝑒𝑒(𝑝𝑝|𝑘𝑘,𝜃𝜃) = (1 − 𝜃𝜃ln (𝑝𝑝))−𝑘𝑘.  

 

Figure 1-A shows this Gamma c.e.f. for 𝑘𝑘 = 0.75 and 𝜃𝜃 =2.79. At these parameter 

choices, it has the “inverse-s” shape many believe is characteristic of weighting functions 𝜋𝜋(𝑝𝑝|𝜔𝜔) and the fixed point 𝑝𝑝 ≈ 𝑒𝑒−1 which is also characteristic of Prelec’s (1998) 1-

parameter weighting function; so this is an instance of weak mimicry. One needs to say that 

this Gamma c.e.f. can (not must) weakly mimic this characteristic shape. Figure 1-B shows 

the Gamma c.e.f. for 𝑘𝑘 = 0.75 and 𝜃𝜃 =0.9: Here we see the “Optimist” shape discussed by 

Quiggin (1982), and also the plurality shape of individually estimated weighting functions 

in Wilcox (2015). Such shape flexibility is also characteristic of 2-parameter weighting 

functions found in the literature on RDU and CPT, where this flexibility is usually regarded 

as a feature rather than a weakness. 
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Figure 1-A. Gamma conditional expectation function.

𝐶𝐶𝑟𝑟𝑒𝑒𝑒𝑒(𝑝𝑝|𝑘𝑘, 𝜃𝜃) = 1 − 𝜃𝜃ln (𝑝𝑝) −𝑘𝑘
k = 0.75, 𝜃𝜃 = 2.79
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Figure 1-B. Another Gamma conditional expectation function.

𝐶𝐶𝑟𝑟𝑒𝑒𝑒𝑒(𝑝𝑝|𝑘𝑘, 𝜃𝜃) = 1 − 𝜃𝜃ln (𝑝𝑝) −𝑘𝑘
k = 0.75, 𝜃𝜃 = 0.9
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Example 2. Suppose X has the Inverse Gaussian (Wald) p.d.f.  

 

 𝑓𝑓(𝑥𝑥|𝜇𝜇, 𝜆𝜆) =  � 𝜆𝜆2𝜋𝜋 𝑥𝑥−3 2⁄ 𝑒𝑒𝑥𝑥𝑝𝑝 �−𝜆𝜆(𝑥𝑥−𝜇𝜇)22𝜇𝜇2𝑥𝑥 � for 𝑥𝑥, 𝜇𝜇 and 𝜆𝜆 ∈ (0,∞). 

 

This has the Laplace transform ℒ{𝑓𝑓}(𝑥𝑥) = 𝑒𝑒𝑥𝑥𝑝𝑝 �(𝜆𝜆 𝜇𝜇⁄ )�1−�1 + 2𝜇𝜇2𝑥𝑥 𝜆𝜆⁄ �� (Seshadri 1993 p. 

41), implying that 

 

(3)  𝐶𝐶𝑟𝑟𝑒𝑒𝑒𝑒(𝑝𝑝|𝜇𝜇, 𝜆𝜆) = 𝑒𝑒𝑥𝑥𝑝𝑝�(𝜆𝜆 𝜇𝜇⁄ )�1 −�1 − 2𝜇𝜇2ln (𝑝𝑝) 𝜆𝜆⁄ ��. 
 

Figure 2 shows this c.e.f. for 𝜇𝜇 = 11 and 𝜆𝜆 = 0.55. This also has the inverse-s shape and is 

also an instance of weak mimicry. Again, different parameter values will produce a wide 

variety of different shapes of this Inverse Gaussian c.e.f. 
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Figure 2. Inverse Gaussian conditional expectation function.𝑐𝑐𝑟𝑟𝑒𝑒𝑒𝑒(𝑝𝑝|𝜇𝜇, 𝜆𝜆) = 𝑒𝑒𝑥𝑥𝑝𝑝 λ µ⁄ 1− 1− 2𝜇𝜇2ln (𝑝𝑝) 𝜆𝜆⁄�
 𝜇𝜇 = 11, 𝜆𝜆 = 0.55
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Example 3. Suppose 𝑋𝑋 has the (unshifted) Lévy p.d.f. 

 

 𝑓𝑓(𝑥𝑥|𝛿𝛿) =  
𝛿𝛿2√𝜋𝜋 𝑥𝑥−3 2⁄ 𝑒𝑒𝑥𝑥𝑝𝑝 �−𝛿𝛿24𝑥𝑥 � for 𝑥𝑥 and 𝛿𝛿 ∈ (0,∞). 

 

This has the Laplace transform ℒ{𝑓𝑓}(𝑥𝑥) = 𝑒𝑒𝑥𝑥𝑝𝑝�−𝛿𝛿𝑥𝑥1 2⁄ � (González-Velasco 1995, p. 537), 

implying that 

 

(4)  𝐶𝐶𝑟𝑟𝑒𝑒𝑒𝑒(𝑝𝑝|𝛿𝛿) = 𝑒𝑒𝑥𝑥𝑝𝑝�−𝛿𝛿[−ln(𝑝𝑝)]1 2⁄ �.  

 

Earlier I noted that in the case of the Prelec (1998) 2-parameter weighting function, 𝑐𝑐𝑠𝑠𝑟𝑟𝑟𝑟(𝑝𝑝|𝑥𝑥,𝛼𝛼,𝛽𝛽) = exp(−𝑥𝑥𝛽𝛽[− ln(𝑝𝑝)]𝛼𝛼). Clearly, this is identical to eq. 4 if we set 𝛿𝛿 = 𝑥𝑥𝛽𝛽 and 

require that 𝛼𝛼 = 1 2⁄ . This is very close to being a case of strong mimicry, but not quite, 

since eq. 4 can only mimic the Prelec weighting function when 𝛼𝛼 just happens to be 1 2⁄ . 

Empirically, estimates of 𝛼𝛼 have a wider range than a small neighborhood of 1 2⁄ . 

However, this result for the Lévy distribution provides a strong and fruitful hint. The 

Lévy distribution is but one specific instance of the Lévy Alpha-Stable distributions, also 

known more simply as the Stable distributions. Except for special cases (e.g. Normal, 

Cauchy and Lévy), Stable random variables 𝑋𝑋 usually have no p.d.f. expressible in terms of 

elementary functions: Instead, they are generally expressed by their characteristic function 𝜑𝜑(𝑥𝑥) ≡ 𝐸𝐸[exp (𝑖𝑖𝑥𝑥𝑋𝑋)]. For Stable random variables with support (0,∞), one 

parameterization (Nolan 2017, pp. 8-12) is 𝜑𝜑(𝑥𝑥) =  exp �−𝛾𝛾𝑎𝑎|𝑥𝑥|𝑎𝑎 �1 − 𝑖𝑖 �𝑥𝑥𝑡𝑡𝑡𝑡 𝑎𝑎𝜋𝜋2 ���, where 𝛾𝛾 > 0 is a scale parameter and 𝑡𝑡 ∈ (0,1) is called the index of stability or characteristic 

exponent. Nolan (2017, p. 109) also shows that the Laplace transform of these particular 

Stable distributions on (0,∞) exists and is ℒ{𝑓𝑓}(𝑥𝑥) = exp �−𝛾𝛾𝑎𝑎 �𝑠𝑠𝑒𝑒𝑐𝑐 𝑎𝑎𝜋𝜋2 � 𝑥𝑥𝑎𝑎�, so for these 

Stable distributions we have 

 

(5)  𝐶𝐶𝑟𝑟𝑒𝑒𝑒𝑒(𝑝𝑝|𝑡𝑡, 𝛾𝛾) = exp �−𝛾𝛾𝑎𝑎 �𝑠𝑠𝑒𝑒𝑐𝑐 𝑎𝑎𝜋𝜋2 � [−ln (𝑝𝑝)]𝑎𝑎�,  
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Eq. 5 is identical to 𝐶𝐶𝑠𝑠𝑟𝑟𝑟𝑟(𝑝𝑝|𝑥𝑥,𝛼𝛼,𝛽𝛽) = exp(−𝑥𝑥𝛽𝛽[− ln(𝑝𝑝)]𝛼𝛼) when we set 𝑡𝑡 = 𝛼𝛼 and 𝛾𝛾 =�𝛽𝛽𝑥𝑥 �𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼𝜋𝜋2 ��1/𝛼𝛼
, so we have strong mimicry of the 2-parameter Prelec (1998) function, 

provided that 𝛼𝛼 < 1. Since this is both characteristic of most empirical estimates of 𝛼𝛼 and 

indeed yields the characteristic inverse-s shape, this is strong mimicry of a well-known and 

widely used probability weighting function in the relevant part of the parameter space. 

 

2. Intuition. 

 

 To see the intuition behind the formal results, it helps to return to the more usual 

representation of the power utility function, that is 𝑢𝑢(𝑧𝑧) = 𝑧𝑧𝜎𝜎 , thinking now of 𝜎𝜎 as having 

a distribution with support  Σ ⊆ (0,∞) under the random preference model. Then under 

EU the normalized certainty equivalent of a simple prospect (given any value of 𝜎𝜎) will be 𝑝𝑝1 𝜎𝜎⁄ , whose second derivative with respect to 𝜎𝜎 is  

 

(7)  
𝜕𝜕2𝜕𝜕𝜎𝜎2  𝑝𝑝1 𝜎𝜎⁄ =

−ln (𝑝𝑝)𝑝𝑝1 𝜎𝜎⁄𝜎𝜎4 [− ln(𝑝𝑝) − 2𝜎𝜎] > 0  for all  𝜎𝜎 < − 12 ln (𝑝𝑝). 

 

As 𝑝𝑝 approaches zero, eq. 7 shows that the normalized certainty equivalent 𝑝𝑝1 𝜎𝜎⁄  

approaches being convex in 𝜎𝜎 at all 𝜎𝜎 ∈ (0,∞). If Σ is in fact bounded above, there must be 

sufficiently small p such that 𝑝𝑝1 𝜎𝜎⁄  is convex ∀ 𝜎𝜎 ∈ Σ: In that event, Jensen’s Inequality 

implies that 𝐸𝐸�𝑝𝑝1 𝜎𝜎⁄ � > 𝑝𝑝1 𝐸𝐸(𝜎𝜎)⁄ . Assuming that 𝐸𝐸(𝜎𝜎) ≥ 1, then, we have 𝐸𝐸�𝑝𝑝1 𝜎𝜎⁄ � > 𝑝𝑝 for 

sufficiently small 𝑝𝑝. That is, mean normalized certainty equivalents will exceed 𝑝𝑝 when 𝑝𝑝 is 

small enough: We have apparent overweighting of small (enough) probabilities if the 

support of 𝜎𝜎 is bounded above.   

 As 𝑝𝑝 approaches 1, on the other hand, eq. 7 shows that 𝑝𝑝1 𝜎𝜎⁄  becomes concave at almost 

all 𝜎𝜎, and the argument above flips around: If Σ is bounded below away from zero, there 

will be p sufficiently close to 1 such that 𝑝𝑝1 𝜎𝜎⁄  is concave ∀ 𝜎𝜎 ∈ Σ, and Jensen’s Inequality 

then implies that 𝐸𝐸�𝑝𝑝1 𝜎𝜎⁄ � < 𝑝𝑝1 𝐸𝐸(𝜎𝜎)⁄ . Again setting 𝐸𝐸(𝜎𝜎) = 1, we have 𝐸𝐸�𝑝𝑝1 𝜎𝜎⁄ � < 𝑝𝑝 for 𝑝𝑝 

sufficiently close to one. That is, mean normalized certainty equivalents will fall short of 𝑝𝑝 



11 

 

when 𝑝𝑝 is high enough: We have apparent underweighting of high (enough) probabilities if 

the support of 𝜎𝜎 is bounded below away from zero. 

 Figure 3 illustrates this intuition. Assume that the agent has a binomial distribution on 𝜎𝜎 such that 𝐸𝐸(𝜎𝜎) = 1: Specifically she has 𝜎𝜎 = 0.5 with probability 2 3⁄  and 𝜎𝜎 = 2 with 

probability 1 3⁄ . Figure 3 shows the function 𝑝𝑝1 𝜎𝜎⁄  for 𝜎𝜎 ∈ (0,3] for two values of 𝑝𝑝. The 

upper heavy curve is for 𝑝𝑝 = 0.95 and, as can be seen, this curve is overwhelmingly and 

strongly concave: In this case, 𝐸𝐸�0.95(1 𝜎𝜎)⁄ � < 0.95, so this agent appears to underweight 

high probabilities.  The lower heavy curve is for 𝑝𝑝 = 0.05 and, as can be seen, this curve is 

first convex and, for 𝜎𝜎 beyond about 1.5, very gently concave: Here, 𝐸𝐸�0.05(1 𝜎𝜎)⁄ � > 0.05, so 

this agent appears to overweight low probabilities. 

 

 

 

 This story does not completely explain the formal results: All of the examples in section 

1 involve p.d.f.s with support (0,∞), so this story (which is told by appealing to a support 

bounded above and bounded below away from zero) is only an aid to intuition, not any sort 
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of demonstration—which is another way of saying the formal results are necessary. The 

intuition does, however, explain why one may easily derive the characteristic s-shape from 

many p.d.f.s 𝑓𝑓(𝑥𝑥|𝜓𝜓) underlying a random EU model. 

 

3. Discussion and Conclusions 

 

 My results complicate empirical interpretation of elicited certainty equivalents. 

However, I say ‘complicate’ rather than ‘undermine’ for several reasons. First, I have not 

shown that random preference EU and standard RDU are indistinguishable. My formal 

results are entirely about conditional expectations and say nothing about conditional 

medians or conditional variances and other moments; and one might test both random EU 

and random RDU on the basis of these other characteristics. For instance, recall that 𝐶𝐶𝑠𝑠𝑟𝑟𝑟𝑟(𝑝𝑝, 𝑥𝑥,𝜔𝜔) ≡ 𝜋𝜋(𝑝𝑝|𝜔𝜔)𝑥𝑥 and suppose we now assume that 𝑥𝑥 is a realization of a random 

variable 𝑋𝑋, giving a random RDU model. Let 𝐶𝐶𝑉𝑉 denote coefficient of variation; then under 

random RDU, assuming that any weighting function parameters are fixed (not themselves 

random variables), we have  

 

(8)    𝐶𝐶𝑉𝑉(− ln(𝑐𝑐)) ≡ �𝑉𝑉(− ln(𝑐𝑐))𝐸𝐸(− ln(𝑐𝑐))
=

�𝑉𝑉(𝑋𝑋)[−ln (𝜋𝜋(𝑝𝑝|𝜔𝜔))]2𝐸𝐸(𝑋𝑋)[−ln (𝜋𝜋(𝑝𝑝|𝜔𝜔))]
=  

�𝑉𝑉(𝑋𝑋)𝐸𝐸(𝑋𝑋)
= 𝐶𝐶𝑉𝑉(𝑋𝑋) 

 

This says that for any given individual, the coefficient of variation of −ln(𝑐𝑐) will be 

equivalent to the coefficient of variation of 𝑋𝑋 and, moreover, independent of the particular 

W and 𝑝𝑝 of any simple prospect (𝑊𝑊, 𝑝𝑝), regardless of whether the weighting function is an 

identity function (EU) or not (RDU). This immediately suggests a test of both random 

preference EU and RDU based on multiple (more than two) certainty equivalent elicitation 

trials for several different simple prospects. To my knowledge, such data are scarce but 

more could be gathered with appropriate experimental designs. The key point, however, is 

that for certainty equivalents, the random preference hypothesis can make strong refutable 

predictions about higher moments that are independent of the form or even the presence 

of any rank-dependent weighting function. Whether the same can be said of the standard 

model is unclear to me. 
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 Second, discrete choice experiments already suggest that random EU cannot be a 

complete model of decision behavior (e.g. Becker, DeGroot and Marschak 1963; Loomes 

and Sugden 1998). Under the random preference hypothesis, much of what EU predicts 

concerning pairs of related discrete choice problems remains unchanged relative to what 

EU predicts in its deterministic form (Loomes and Sugden 1995; Gul and Pesendorfer 2006; 

Wilcox 2008). This implies that many well-known discrete choice violations of EU also 

violate random EU. Here I showed once more (see Hilton 1989) that certainty equivalents 

are a different matter: Under random EU, the expected values of certainty equivalents can 

mimic predictions of standard RDU and CPT. The upshot of this fact is that when one 

estimates risk models from certainty equivalents, part of the estimates (perhaps 

substantial parts) may reflect random preference heterogeneity as well as any underlying 

mean preference. 

Third, my formal analysis only complicates estimation based on conditional 

expectation functions. While this is the overwhelmingly common basis for estimation, some 

of the empirical literature on RDU and CPT uses conditional medians of certainty 

equivalents for description (see e.g. Tversky and Kahneman 1992, pp. 309-311). It may be 

that conditional median estimation (that is, least absolute deviation or LAD estimators) can 

sidestep the issue uncovered here. Recall the key role played by Jensen’s Inequality in 

Section 2 where I discussed intuition: There is no counterpart of Jensen’s Inequality for 

medians. As far as I am aware, there are no conditional median estimations (based on 

elicited certainty equivalents) of either RDU or CPT models. My appendix takes a look at a 

LAD estimator and finds encouraging results for random EU data, but not for standard 

model EU data. I do not know whether any estimator exists that would correctly identify 

weighting functions regardless of the true error model generating the data; finding such an 

estimator would be a nice contribution to decision research.   

 However, meaningful preference measurement may not be possible without strong 

assumptions concerning the random part of decision behavior (Wilcox 2008; Blavatskyy 

and Pogrebna 2010; Wilcox 2011; Apesteguia and Ballester 2016). Many scholars say that 

elicited certainty equivalents, or quantities that are argued to be estimated certainty 

equivalents, permit “nonparametric” identification and estimation of preferences (Gonzales 

and Wu 1999; Abdellaoui 2000; Abdellaoui, Bleichrodt and Paraschiv 2007). The word 
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“nonparametric” gets used in many different ways, but many authors divide discussion of 

models in two parts: (1) a conditional expectation function, or perhaps a conditional 

median function, and (2) the error, the random part that remains once such a function has 

been removed in a way that makes the expectation of the error zero. Generally, in the 

preference measurement literature, scholars who say their estimation is “nonparametric” 

mean that they are making relatively few assumptions about the form of preference entities 

(utilities or values, and probability weights, and so forth) that appear in a c.e.f. However, 

they routinely make a strong assumption about the random part of observed behavior, and 

I showed that this assumption is critically consequential. 

 The essence of this strong but implicit assumption is that the c.e.f. has an obvious 

interpretation—the intended interpretation being that of algebraic (deterministic) decision 

theory. Hendry and Morgan (2005, p. 23) argue that when we speak of model identification, 

we have things in mind beyond the original Cowles Foundation meaning—including 

“correspondence to the desired entity” and “satisfying the assumed interpretation (usually 

of a theory model).” Estimation of preferences from elicited certainty equivalents is now 

complicated in just these senses. We cannot take the standard model for granted, and 

under a random preference model, the c.e.f. in part reflects the underlying distribution of 

preferences within the individual, in ways that can mimic the “desired entity”—in the case 

discussed here, the preference entity called the probability weighting function. I do not 

know whether certainty equivalents can nonparametrically identify such entities: This 

question needs a good answer. However, at this time there is certainly no clear 

presumption that elicited certainty equivalents dominate elicited discrete choices as a basis 

for estimation of preference. Both kinds of data seem to require strong assumptions for 

meaningful estimation of preference entities.   
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Appendix: A brief Monte Carlo illustration of the problem (and a possible solution). 

 

  Simulated data sets for this brief Monte Carlo analysis of several estimation methods 

are based on the experimental design of Gonzalez and Wu (1999). Certainty equivalents 

were elicited from their subjects for 𝑥𝑥 = 1, 2, … , 165 distinct two-outcome prospects 𝐿𝐿𝑡𝑡 =

(𝑝𝑝𝑡𝑡,ℎ𝑡𝑡; 1 − 𝑝𝑝𝑡𝑡, 𝑙𝑙𝑡𝑡). These were constructed by fully crossing 15 distinct pairs of high and low 

outcomes (ℎ𝑡𝑡 , 𝑙𝑙𝑡𝑡) with 11 distinct probabilities 𝑝𝑝𝑡𝑡 of receiving the high outcome ℎ𝑡𝑡  (and 

corresponding probabilities 1 − 𝑝𝑝𝑡𝑡 of receiving the low outcome 𝑙𝑙𝑡𝑡). The probabilities are 𝑝𝑝𝑡𝑡 ∈ (.01, .05, .10, .25, .40, .50, .60, .75, .90, .95, .99); the high and low outcome pairs are 

(ℎ𝑡𝑡, 𝑙𝑙𝑡𝑡) ∈ {(25,0), (50,0), (75,0), (100,0), (150,0), (200,0), (400,0), (800,0), (50,25),    

(75,50), (100,50), (150,50), (150,100), ( 200,100), (200,150)}. These same 165 prospects 

are the input to the simulated subjects I create for estimation. 

 Each simulated subject 𝑠𝑠 = 1, 2, … 1000 is given random EU preferences. Each subject 𝑠𝑠 

is endowed with parameters 𝑘𝑘𝑠𝑠 and 𝜃𝜃𝑠𝑠 of the Gamma distribution p.d.f. as given in Example 

1 of Section 1. The parameter 𝑘𝑘𝑠𝑠 is drawn once for each subject from a Lognormal 

distribution with mean 𝐸𝐸(𝑘𝑘) = 0.75 and variance V(𝑘𝑘) ≈ 0.16 to provide some subject 

heterogeneity; the parameter 𝜃𝜃𝑠𝑠 is then set to the value (given the drawn 𝑘𝑘𝑠𝑠) such that 𝐶𝐶𝑟𝑟𝑒𝑒𝑒𝑒(𝑒𝑒−1|𝑘𝑘𝑠𝑠, 𝜃𝜃𝑠𝑠) = (1 + 𝜃𝜃𝑠𝑠)−𝑘𝑘𝑠𝑠 = 𝑒𝑒−1. This endows each random EU agent with a c.e.f. 

having the fixed point 𝑒𝑒−1 as is characteristic of the 1-parameter Prelec (1998) weighting 

function, but also creates heterogeneity in the degree of curvature of the subject c.e.f.s. 

Then, for each subject 𝑠𝑠, for each prospect 𝑥𝑥, a new 𝑥𝑥𝑡𝑡𝑠𝑠  is independently drawn from the 

Gamma distribution with that subject’s parameters 𝑘𝑘𝑠𝑠 and 𝜃𝜃𝑠𝑠, and these create simulated 

elicited certainty equivalents 𝐶𝐶𝑡𝑡𝑠𝑠 = �𝑝𝑝𝑡𝑡ℎ𝑡𝑡1/𝑥𝑥𝑡𝑡𝑠𝑠 + (1 − 𝑝𝑝𝑡𝑡)𝑙𝑙𝑡𝑡1/𝑥𝑥𝑡𝑡𝑠𝑠�𝑥𝑥𝑡𝑡𝑠𝑠  for Monte Carlo study. This 

is the “Random EU data.” 

 For comparison it is also useful to have simulated “Standard EU data.” To construct this 

data, each simulated subject s is endowed with a fixed value 𝑥𝑥𝑠𝑠 , drawn once for each subject 

from a Gamma distribution with fixed parameters 𝑘𝑘 = 0.75 and 𝜃𝜃 = 2.79. The drawn 𝑥𝑥𝑠𝑠  

creates expected certainty equivalents 𝐸𝐸(𝐶𝐶𝑡𝑡𝑠𝑠) = �𝑝𝑝𝑡𝑡ℎ𝑡𝑡1/𝑥𝑥𝑠𝑠
+ (1 − 𝑝𝑝𝑡𝑡)𝑙𝑙𝑡𝑡1/𝑥𝑥𝑠𝑠�𝑥𝑥𝑠𝑠 . One may then 

express this as a proportion of the interval [𝑙𝑙𝑡𝑡,ℎ𝑡𝑡], that is as ∆𝑡𝑡𝑠𝑠= (𝐸𝐸(𝐶𝐶𝑡𝑡𝑠𝑠) − 𝑙𝑙𝑡𝑡) (ℎ𝑡𝑡 − 𝑙𝑙𝑡𝑡)⁄ , and 
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define parameters of a beta distribution 𝛼𝛼𝑡𝑡𝑠𝑠 = 𝜛𝜛∆𝑡𝑡𝑠𝑠 and 𝛽𝛽𝑡𝑡𝑠𝑠 = 𝜛𝜛(1 − ∆𝑡𝑡𝑠𝑠). Draw a beta 

variate 𝑦𝑦𝑡𝑡𝑠𝑠 using these parameters, and simulated certainty equivalents are 𝐶𝐶𝑡𝑡𝑠𝑠 = 𝑙𝑙𝑡𝑡 +

(ℎ𝑡𝑡 − 𝑙𝑙𝑡𝑡)𝑦𝑦𝑡𝑡𝑠𝑠. I chose 𝜛𝜛 = 6 to give the resulting simulated certainty equivalents 𝐶𝐶𝑡𝑡𝑠𝑠  in this 

Standard EU data conditional variances resembling those found in the Random EU data.   

  I consider several estimation methods. The first two methods assume a standard RDU 

model of the c.e.f. of the 𝐶𝐶𝑡𝑡𝑠𝑠 , 𝐸𝐸(𝐶𝐶𝑡𝑡𝑠𝑠|𝑣𝑣𝑠𝑠,𝑤𝑤𝑠𝑠) = (𝑣𝑣𝑠𝑠)−1�𝑤𝑤𝑠𝑠(𝑝𝑝𝑡𝑡)𝑣𝑣𝑠𝑠(ℎ𝑡𝑡) + �1 − 𝑤𝑤𝑠𝑠(𝑝𝑝𝑡𝑡)�𝑣𝑣𝑠𝑠(𝑙𝑙𝑡𝑡)�; 
the corresponding empirical model is then 𝐶𝐶𝑡𝑡𝑠𝑠 = 𝐸𝐸(𝐶𝐶𝑡𝑡𝑠𝑠|𝑣𝑣𝑠𝑠,𝑤𝑤𝑠𝑠) + 𝜀𝜀𝑡𝑡𝑠𝑠. I’ll make the standard 

assumptions about the error, those being 𝐸𝐸(𝜀𝜀𝑡𝑡𝑠𝑠) = 𝐸𝐸(𝜀𝜀𝑡𝑡𝑠𝑠|𝑝𝑝𝑡𝑡,ℎ𝑡𝑡 , 𝑙𝑙𝑡𝑡) = 0, but also adopt an 

assumption of Bruhin, Fehr-Duda and Epper (2010) that 𝑉𝑉𝑡𝑡𝑉𝑉(𝜀𝜀𝑡𝑡𝑠𝑠) is proportional to 

(ℎ𝑡𝑡 − 𝑙𝑙𝑡𝑡)2 for each subject. This all implies that a weighted error 𝜖𝜖𝑡𝑡𝑠𝑠 may be written as 𝜖𝜖𝑡𝑡𝑠𝑠 =

[𝐶𝐶𝑡𝑡𝑠𝑠 − 𝐸𝐸(𝐶𝐶𝑡𝑡𝑠𝑠|𝑣𝑣𝑠𝑠,𝑤𝑤𝑠𝑠)] (ℎ𝑡𝑡 − 𝑙𝑙𝑡𝑡)⁄ , and the first two estimation methods amount to optimizing 

some function of these weighted errors.  

The first method combines a nonlinear least squares estimator with lean 1-parameter 

versions of the functions 𝑣𝑣𝑠𝑠 and 𝑤𝑤𝑠𝑠, 𝑣𝑣𝑠𝑠(𝑧𝑧) = 𝑧𝑧𝜎𝜎𝑠𝑠and 𝑤𝑤𝑠𝑠(𝑞𝑞) = 𝑞𝑞𝛾𝛾𝑠𝑠 �𝑞𝑞𝛾𝛾𝑠𝑠 + (1 − 𝑞𝑞)𝛾𝛾𝑠𝑠�1/𝛾𝛾𝑠𝑠� . 

This is the estimation method of Tversky and Kahneman (1992): I’ll call it NLS-M-L (for 

“nonlinear least squares, money errors, lean parameterization”). The second method 

combines a maximum likelihood estimator with the same 𝑣𝑣𝑠𝑠(𝑧𝑧) = 𝑧𝑧𝜎𝜎𝑠𝑠  as above and a more 

expansive 2-parameter weighting function 𝑤𝑤𝑠𝑠(𝑞𝑞) = 𝛿𝛿𝑠𝑠𝑞𝑞𝛾𝛾𝑠𝑠 �𝛿𝛿𝑠𝑠𝑞𝑞𝛾𝛾𝑠𝑠 + (1 − 𝑞𝑞)𝛾𝛾𝑠𝑠�� . The 

weighted error 𝜖𝜖𝑡𝑡𝑠𝑠 is assumed to have a Normal distribution with zero mean and constant 

variance. This estimation method is inspired by Bruhin, Fehr-Duda and Epper (2010), but I 

will always estimate at the individual subject level whereas they estimated finite mixture 

models of the subject population and included prospect-specific error variance terms 

(which cannot be done in the case of individual estimation). I’ll call this method ML-M-C 

(for “maximum likelihood, money errors, common parameterization”). The power utility 

function, combined with some 2-parameter weighting function, is quite common in the 

literature on risk preference estimation. 

The third method writes an estimating equation in utility rather than money terms, 

and the parameterizations of 𝑣𝑣𝑠𝑠 and 𝑤𝑤𝑠𝑠 are maximally expansive. There are nine distinct 

outcomes in the experiment, so there are nine distinct values of 𝑣𝑣𝑠𝑠(𝑧𝑧). Since the RDU value 

function is an interval scale, though, one can choose 𝑣𝑣𝑠𝑠(0) = 0 and 𝑣𝑣𝑠𝑠(800) = 1, leaving 
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seven unique and distinct values of 𝑣𝑣𝑠𝑠(𝑧𝑧) as seven parameters to estimate. Similarly, the 

eleven distinct probabilities in the experiment become eleven distinct parameters 𝑤𝑤𝑠𝑠(𝑝𝑝𝑡𝑡) 

to estimate. Now linearly interpolate 𝑣𝑣𝑠𝑠(𝐶𝐶𝑡𝑡𝑠𝑠) from the parameters 𝑣𝑣𝑠𝑠(𝑧𝑧) in the following 

manner. Let 𝑙𝑙𝑢𝑢𝑙𝑙(𝐶𝐶𝑡𝑡𝑠𝑠) and 𝑔𝑔𝑙𝑙𝑙𝑙(𝐶𝐶𝑡𝑡𝑠𝑠) be the least upper bound and greatest lower bound (among 

the nine outcomes in the experiment) on 𝐶𝐶𝑡𝑡𝑠𝑠, and let their values be given by the parameter values 𝑣𝑣𝑠𝑠(𝑙𝑙𝑢𝑢𝑙𝑙(𝐶𝐶𝑡𝑡𝑠𝑠)) and 𝑣𝑣𝑠𝑠(𝑔𝑔𝑙𝑙𝑙𝑙(𝐶𝐶𝑡𝑡𝑠𝑠)). Then 𝑣𝑣�𝑠𝑠(𝐶𝐶𝑡𝑡𝑠𝑠) =
[𝑙𝑙𝑒𝑒𝑙𝑙(𝐶𝐶𝑡𝑡𝑠𝑠)−𝐶𝐶𝑡𝑡𝑠𝑠]𝑣𝑣𝑠𝑠�𝑔𝑔𝑙𝑙𝑙𝑙(𝐶𝐶𝑡𝑡𝑠𝑠)�+[𝐶𝐶𝑡𝑡𝑠𝑠−𝑔𝑔𝑙𝑙𝑙𝑙(𝐶𝐶𝑡𝑡𝑠𝑠)]𝑣𝑣𝑠𝑠�𝑙𝑙𝑒𝑒𝑙𝑙(𝐶𝐶𝑡𝑡𝑠𝑠)�𝑙𝑙𝑒𝑒𝑙𝑙�𝐶𝐶𝑡𝑡𝑠𝑠�−𝑔𝑔𝑙𝑙𝑙𝑙�𝐶𝐶𝑡𝑡𝑠𝑠�  is a 

linear interpolation of 𝑣𝑣𝑠𝑠(𝐶𝐶𝑡𝑡𝑠𝑠). This method then assumes that the c.e.f. of 𝑣𝑣�𝑠𝑠(𝐶𝐶𝑡𝑡𝑠𝑠) is the RDU of 

prospect 𝑥𝑥, that is 𝐸𝐸(𝑣𝑣�𝑠𝑠(𝐶𝐶𝑡𝑡𝑠𝑠)|𝑣𝑣𝑠𝑠,𝑤𝑤𝑠𝑠) = 𝑤𝑤𝑠𝑠(𝑝𝑝𝑡𝑡)𝑣𝑣𝑠𝑠(ℎ𝑡𝑡) + �1 − 𝑤𝑤𝑠𝑠(𝑝𝑝𝑡𝑡)�𝑣𝑣𝑠𝑠(𝑙𝑙𝑡𝑡), and one may then 

think of 𝑣𝑣�𝑠𝑠(𝐶𝐶𝑡𝑡𝑠𝑠) − 𝐸𝐸(𝑣𝑣�𝑠𝑠(𝐶𝐶𝑡𝑡𝑠𝑠)|𝑣𝑣𝑠𝑠,𝑤𝑤𝑠𝑠) as a “utility error.” Following Wilcox (2011), assume 

the variance of these utility errors is proportional to [𝑣𝑣𝑠𝑠(ℎ𝑡𝑡) − 𝑣𝑣𝑠𝑠(𝑙𝑙𝑡𝑡) ]2. Then 𝜁𝜁𝑡𝑡𝑠𝑠 =

[𝑣𝑣�𝑠𝑠(𝐶𝐶𝑡𝑡𝑠𝑠) − 𝐸𝐸(𝑣𝑣�𝑠𝑠(𝐶𝐶𝑡𝑡𝑠𝑠)|𝑣𝑣𝑠𝑠,𝑤𝑤𝑠𝑠)] [𝑣𝑣𝑠𝑠(ℎ𝑡𝑡) − 𝑣𝑣𝑠𝑠(𝑙𝑙𝑡𝑡) ]⁄  is a weighted utility error that becomes the 

object of nonlinear least squares estimation. I call this the NLS-U-E estimation (for 

“nonlinear least squares, utility errors, expansive parameterization”). It is inspired by 

Gonzalez and Wu’s (1999) estimation method, though there are several differences 

between their method and this one (see Gonzalez and Wu 199, pp.146-148, for details). 

Finally I consider one estimation method that may sidestep the issue identified in the 

text. Rather than taking (𝑣𝑣𝑠𝑠)−1�𝑤𝑤𝑠𝑠(𝑝𝑝𝑡𝑡)𝑣𝑣𝑠𝑠(ℎ𝑡𝑡) + �1 − 𝑤𝑤𝑠𝑠(𝑝𝑝𝑡𝑡)�𝑣𝑣𝑠𝑠(𝑙𝑙𝑡𝑡)� to be the conditional 

mean of 𝐶𝐶𝑡𝑡𝑠𝑠 , this last estimation method takes this to be the conditional median of 𝐶𝐶𝑡𝑡𝑠𝑠: That 

is, let 𝑀𝑀𝑒𝑒𝑑𝑑(𝐶𝐶𝑡𝑡𝑠𝑠|𝑣𝑣𝑠𝑠,𝑤𝑤𝑠𝑠) = (𝑣𝑣𝑠𝑠)−1�𝑤𝑤𝑠𝑠(𝑝𝑝𝑡𝑡)𝑣𝑣𝑠𝑠(ℎ𝑡𝑡) + �1 −𝑤𝑤𝑠𝑠(𝑝𝑝𝑡𝑡)�𝑣𝑣𝑠𝑠(𝑙𝑙𝑡𝑡)�, and let weighted 

money errors be 𝜖𝜖𝑡𝑡𝑠𝑠 = [𝐶𝐶𝑡𝑡𝑠𝑠 −𝑀𝑀𝑒𝑒𝑑𝑑(𝐶𝐶𝑡𝑡𝑠𝑠|𝑣𝑣𝑠𝑠,𝑤𝑤𝑠𝑠)] (ℎ𝑡𝑡 − 𝑙𝑙𝑡𝑡)⁄ . Although these errors have exactly 

the same form as the errors in the first two methods, the fact that we wish to estimate a 

conditional median function (rather than a c.e.f.) implies that least squares is not the 

appropriate estimator: Rather, we want a least absolute deviation or LAD estimator. 

Combined with the same lean parameterization used for the first method, I call this the 

LAD-M-L estimation (for “least absolute deviation, money errors, lean parameterization”). 

With the exception of the NLS-U-E estimation method, the well-known simplex  

algorithm of Nelder and Mead (1965) was used to optimize objective functions. For the 

NLS-U-E estimation method, I imposed monotonicity constraints on the estimated 𝑣𝑣𝑠𝑠(𝑧𝑧) 

and 𝑤𝑤𝑠𝑠(𝑝𝑝𝑡𝑡) (one difference versus Gonzalez and Wu 1999) and this requires a different 

optimization algorithm: Powell’s (1992) COBYLA algorithm is used for this estimation 
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instead. All estimations were performed using the SAS procedure “NLP” (nonlinear 

program) in the 9.4 version of the SAS/OR software. 

Rather than providing tabular results of these four estimation methods as applied to 

the two data sets, I provide a sequence of eight figures. The features of each figure are 

identical. Estimated weighting functions for the first 250 subjects in each data set are 

plotted as quite thin, light greyscale lines on a black background: This has the effect of 

representing the behavior of each method as a light cloud of lines. A heavy light grey 

identity line shows  the (linear, identity) weighting function of an EU agent; deviations from 

this line represent both sampling variability and possible bias in the estimations. Finally, a 

heavy dashed white line plots the mean estimated probability weight (across all 1000 

subjects in each simulated data set) at each of the eleven values of 𝑝𝑝𝑡𝑡 in the experimental 

design, illustrating the bias of each estimation method in each data set. 

The figures come in pairs on each page that follows. Each page presents the results for 

one estimation method, with the top and bottom figures showing results for the Standard 

EU and Random EU data sets, respectively. The pair of Figures A1-a and A1-b show results 

for the NLS-M-L estimation method; Figures A2-a and A2-b show results for the ML-M-C 

method; Figures A3-a and A3-b show results for the NLS-U-E method; and Figures A4-a and 

A4-b show results for the LAD-M-L method.  

None of these four estimation methods are bias-free for both the Standard EU and 

Random EU data sets, and this is the primary finding of this appendix. The method NLS-U-E 

is biased towards finding inverse-s probability weighting for both data sets: In the case of 

the Standard EU data I suspect this is because this method is just too parametrically 

expansive for the sample size. By contrast, the NLS-M-L and ML-M-C methods are virtually 

unbiased for Standard EU data, while they show the predicted bias when applied to the 

Random EU data. As speculated, the LAD-M-L method provides unbiased (and 

astonishingly tight) estimates for the Random EU data, but displays a pronounced bias in 

the Standard EU data in a direction opposite to inverse-s probability weighting. In sum, 

none of these four estimation methods are robust to the underlying source of randomness 

in the data generating process.  
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Figure A1-a: NLS-M-L Weighting Estimates, Standard EU Data
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Figure A1-b: NLS-M-L Weighting Estimates, Random EU Data
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Figure A2-a: ML-M-C Weighting Estimates, Standard EU Data
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Figure A2-b: ML-M-C Weighting Estimates, Random EU Data
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Figure A3-a. NLS-U-E Weighting Estimates, Standard EU Data
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Figure A3-b. NLS-U-E Weighting Estimates, Random EU Data
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Figure A4-a: LAD-M-L Weighting Estimates, Standard EU Data
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Figure A4-b: LAD-M-L Weighting Estimates, Random EU Data


