
Munich Personal RePEc Archive

Patentability, RD direction, and

cumulative innovation

Chen, Yongmin and Pan, Shiyuan and Zhang, Tianle

University of Colorado Boulder, Zhejiang University, Lingnan

University

August 2016

Online at https://mpra.ub.uni-muenchen.de/73180/

MPRA Paper No. 73180, posted 19 Aug 2016 04:50 UTC



Patentability, R&D Direction, and Cumulative Innovation

Yongmin Chen∗ Shiyuan Pan† Tianle Zhang‡

August 2016

Abstract: We present a model of cumulative innovation where firms can conduct R&D

in both a safe and a risky direction. Innovations in the risky direction produce quality

improvements with higher expected sizes and variances. As patentability standards rise, an

innovation in the risky direction is less likely to receive a patent that replaces the current

technology, which decreases the static incentive for new entrants to conduct risky R&D,

but increases their dynamic incentive because of the longer duration–and hence higher

reward–for incumbency. These, together with a strategic substitution and a market struc-

ture effect, result in an inverted-U shape in the risky direction but a U shape in the safe

direction for the relationship between R&D intensity and patentability standards. There

exists a patentability standard that induces the efficient innovation direction, whereas R&D

is biased towards (against) the risky direction under lower (higher) standards. The optimal

patentability standard may distort the R&D direction to increase the industry innovation

rate that is socially deficient.
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1. INTRODUCTION

A central issue in the economics of innovation is how patent policy may affect innova-

tive activities. The recent literature has examined this issue in the context of cumulative

innovation, where discoveries build on each other, under a standard assumption that firms

pursue innovations along a single research direction. In many industries, however, firms can

conduct R&D in multiple directions to achieve a specific goal, as, for example, the develop-

ment of a next generation color copier in the early 1990s by Fuji Xerox, of a new mobile

system by Ericsson in the mid-1990s, and of an X Terminal workstation by the Hewlett

Packard in the late 1980s (Birkinshaw and Lingblad, 2001). The purpose of this paper is

to inquire how patent policy, specifically patentability standards, may affect the rate and

direction of cumulative innovation in an industry where firms can conduct R&D in multiple

directions.

We consider a situation where there are two research directions, A and B, for a sequence of

innovations (or new products) that deliver higher product qualities over time. The stochastic

quality improvement of an innovation in direction B has a higher variance than that in

direction A. Hence, if an innovation is patentable only when its quality improvement (or

innovation size) is sufficiently large, as for instance implied by the requirement of a minimum

inventive step, there will exist a range of quality thresholds or patentability standards (S),

under which an innovation is certainly patentable in direction A but not in direction B.

We will focus on patentability standards in the interior of such a range, and call A the safe

direction while B the risky direction.

If innovation is a one-time activity that ends with the successful introduction of a new

product, a (marginally) higher patentability standard would discourage R&D in B by mak-

ing it harder to obtain a patent and the rents associated with it through this direction,

which we shall call the threshold effect, whereas it would have no impact on R&D in A,

provided that there are no (dis)economies of scope in R&D and that the return to a suc-
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cessful patentable discovery in one direction is not diminished by that in the other. In this

static setting, a higher S reduces industry R&D through the threshold effect, and it also

allocates relatively more resources in direction A than in direction B, which can reduce the

expected size of innovation if, as we shall assume, a successful innovation through B has a

higher expected quality improvement than that through A.

The issue is more complex if innovations are cumulative, as we assume in this paper.

Specifically, we consider the following model that builds on and extends Hunt (2004) by

having two research directions: Suppose that n+ 1 firms have entered an industry. At any

time, one of them is the leader and the other n firms are challengers. The challengers are

in a patent race to develop a new product that improves upon the current leader’s. When

a challenger succeeds in a patentable innovation, it becomes the new leader to replace

the current one, who then joins the rank of challengers; and this process repeats itself

indefinitely. In this dynamic setting, a marginal increase in the patentability standard will

increase the value of being a leader because it will take longer before the leader is replaced

by a successful challenger. This incumbency-prolonging effect can potentially increase the

incentive for R&D in both A and B, even though the threshold effect from a higher S will

still have a negative impact on the incentive for R&D in direction B.

Moreover, the changes in the R&D incentives in the two different directions will interact

with each other, giving rise to a dynamic strategic substitution effect between the two

directions. In particular, an increase of R&D in direction B motivated by the incumbency-

prolonging effect could reduce the incentive for R&D in direction A, and vice versa. This

turns out to be the crucial new force that leads to new effects of patentability standards

under multiple research directions.

Finally, as we shall assume, a firm needs to incur a fixed cost to enter the market in

order to conduct R&D and innovate. Therefore, patentability standards, by impacting the

expected return to R&D in each direction, also affects the number of entrants in the free

entry equilibrium. Our analysis will examine how this market-structure effect interacts with
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the other forces in the model.

We find that as patentability standards rise, R&D intensity in direction B first rises

and then falls, exhibiting an inverted-U shape, whereas R&D intensity in direction A is

U-shaped, initially decreasing and then increasing. Thus, the incumbency-prolonging effect

is the dominating force in direction B when S is low, but it is dominated by the negative

threshold effect when S is high. More surprising is that despite the positive impact from

the incumbency-prolonging effect, increases in S initially lower R&D in direction A, due to

the strategic substitution effect.

We also find that as S increases, the industry rate of innovation initially goes up and

eventually falls down, reaching its maximum at some intermediate level. The market-

structure effect plays a balancing role: there will be more firms when the expected return

from R&D investment is higher, which moderates the effects of patentability standards on

R&D intensities both for each firm and for the industry.

We further compare the market equilibrium with the solutions that maximize social wel-

fare. First, in relation to the first-best innovation rate, we show that R&D intensities and

the number of entrants in the free entry equilibrium are deficient. This is due to the familiar

intuition that a firm’s private innovation incentive does not internalize the positive exter-

nalities to consumers.1 Second, compared to the first-best innovation direction, we find that

there exists a critical value of patentability standard, Ŝ, such that the equilibrium R&D

direction coincides with the first best when S = Ŝ, and it is biased towards (against) the

risky direction when S is below (above) Ŝ.2 For the second-best social welfare maximization

problem, in which a hypothetical social planner can only set the patentability standard but

not the R&D and entry activities of firms, the optimal S balances the two goals of moving

1Under competition, there can also be a business-stealing effect that potentially results in excessive R&D
and entry. In our model, as in Hunt (2004), the externality to consumers dominates.

2 Intuitively, when S is low, innovations in direction B–the risky direction–are patentable even when the
quality improvement is small, which motives socially excessive R&D in B, relative to A. And the opposite
is true when S is high. Since we measure innovation or R&D direction by the ratio of R&D intensities in
the two directions, R&D can be efficient in both A and B and yet biased towards one direction.
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towards the socially optimal innovation rate and towards the socially optimal innovation

direction. Thus, in general, the second best patentability standard will be different both

from Ŝ and from the S that maximizes the number of innovating firms.

Our paper is related to the existing theoretical literature on patents and cumulative inno-

vation, which has studied models with R&D along a single direction and offered mixed find-

ings on the effects of patent protection. For example, O’Donoghue (1998) and O’Donoghue

et al. (1998) suggest that stronger patent protection has positive effects on the rate of

innovation, provided that ex-ante agreement or contracting between innovators is efficient,

whereas Bessen and Maskin (2009) and Segal and Whinston (2007) find cases where the

effects are negative. Horowitz and Lai (1996) consider a model in which longer patents

increase the size but decrease the frequency of the innovation. They show that the patent

length that maximizes the rate of innovation is finite (or intermediate).3 As we mentioned

earlier, our model is most closely related to Hunt (2004), who studies patentability and

cumulative innovation in a model with R&D only in one direction that corresponds to our

B. By allowing multiple R&D directions, we introduce the important dynamic substitution

effect and offer several new insights. In particular, in contrast to the result in Hunt that

the patentability standard affects innovation only through a market structure effect, with

no impact on each innovating firm’s R&D intensity, we show that it also affects innovation

through its impact on R&D intensities, in ways that are non-monotonic and somewhat un-

expected. Thus, in our model, patentability standards affect industry innovation through

both the extensive margin (number of entrants) and the intensive margin (R&D intensities).

Moreover, our results on innovation (or R&D) direction are novel in this literature.

Our paper is also related to the literature on R&D portfolio, which has focused on the

issue of how competition may affect the choice between safe and risky research projects for

3Chen et al. (2014) find that stronger patent protection can affect cumulative innovation either positively
or negatively, and the effect is generally non-monotonic. Empirically, some recent studies on cumulative
innovation (Murray et al., 2008; Furman and Stern, 2011; Galasso and Schankerman, 2013; Williams, 2013;
Sampat and Williams, 2014) find no evidence of a relationship.
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a stand-alone innovation.4 Some authors have found, under the assumption of winner-take-

all, that competition leads to over-investment in risky R&D projects because it magnifies

the negative externality of investment by one firm on other firms’ probability to win the

patent (e.g., Bhattacharya and Mookherjee, 1986; Klette and de Meza, 1986; Dasgupta

and Maskin, 1987). Others, however, have argued that investment in risky R&D project

decreases with the strength of competition, because the negative externality of the risky

R&D becomes small when competition strengthens, if each firm pursues multiple patents

(Cabral, 1994; Kwon, 2010).5 Anderson and Cabral (2007) study a game where firms choose

the variance of a stochastic innovation outcome. They find that the level of equilibrium

variance may be greater, smaller, or equal to the social optimum. Our paper contributes to

this literature by examining the effect of patent policy on R&D portfolio and by considering

cumulative innovations.

In the rest of the paper, we describe our model and its equilibrium in Section 2. In

Section 3, we establish our results on how the patentability standard affects the rates of

innovation, as measured by the R&D intensities of each firm in the two directions and by

the overall R&D intensity of the industry, and how it affects the direction of innovation,

as measured by the ratio of the innovation rates in the two directions. Section 4 contains

our welfare results, comparing the equilibrium rate and direction of innovation with the

social optimum, and discussing optimal patentability policy as the second best. Section 5

concludes. The main theoretical results are illustrated through a numerical example, and

proofs that are more technical in nature are relegated to the appendix.

4Relatedly, Choi and Gerlach (2014) study the R&D choice between easy and difficult projects that are
complementary for the production of a final product. They find that firms tend to invest excessively on the
easy innovation due to hold-up problems.

5Unlike the other papers, Kwon (2010) considers complementary projects–basic and applied research.
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2. THE MODEL

Time is continuous and is divided into periods, t = 0, 1, 2, ..., between stochastic dis-

coveries by innovating firms. There are n + 1 firms in the industry, one of whom is the

incumbent and the others are challengers in each period. At period t, the incumbent,

through a patented innovation at an earlier period, can produce a product that has quality

qt. Each of the challengers conducts R&D to further improve the product quality.

There are two possible research directions for the challengers, A and B. A successful

innovation through direction A will result in a certain quality improvement, ∆A.
6 A suc-

cessful innovation through direction B will yield an uncertain quality improvement, ∆B,

which is a random variable with cumulative distribution function G (·) and continuous den-

sity g (·) on support
[
∆B,∆B

]
. As we pointed out before, this formulation follows closely

Hunt (2004), with the main difference being that he considers R&D only along a single

uncertain direction corresponding to B here.

A challenger decides on a R&D portfolio by choosing the R&D intensity in each of the two

directions. We assume that each innovation occurs according to a Poisson process. The cost

for a challenger to maintain an arrival rate λz in research direction z ∈ {A,B} is C (λz) ,

which is strictly increasing and twice continuously differentiable, with C (0) = C ′ (0) = 0,

C ′′ (·) > 0, and limλz→∞C
′ (λz) = ∞.

7 We shall also refer to λz as the R&D intensity in

direction z.

The statutory life of a patent is assumed to be infinite, even though the patent life

effectively ends when the next patentable invention occurs. To be awarded a patent, the

quality improvement from an invention needs to meet a minimum improvement size, or

the patentability standard, S. In practice, the patentability standard (or requirement) can

6We can allow ∆A to be stochastic, as long as its variance is sufficiently small. For convenience, we
assume ∆A to be a constant.

7Notice that we allow the “corner” case where each firm chooses to conduct R&D only in one direction
among the alternatives available. Under our assumptions on the cost function, however, the equilibrium will
be interior.
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correspond to the requirement of non-obviousness in the American patent code, or of the

inventive step in Europe. For the purpose of this paper, we assume that S ∈
[
∆B, ∆̄B

]
and

S < ∆A. Thus, an innovation achieved through direction A is always patentable, whereas

θ ≡ 1 − G (S) is the probability that an innovation in direction B is granted a patent.

When an innovation is not protected by a patent, it becomes freely available to the public,

in which case we assume that competition drives the profit from marketing the product to

zero. Notice that the more stringent the patentability requirement, other things equal, the

smaller the probability that the challenger can profitably market her innovation achieved

through direction B.

We assume that at the beginning of period t = 0, there is a large number of firms, each

deciding whether to pay a one-time fixed investment cost k to enter the market. Thus,

the number of challengers, n, is endogenously determined by the free-entry condition. If a

challenger wins the race for a patentable innovation, it becomes the incumbent in the next

period, and the previous incumbent becomes a challenger. If a challenger succeeds in an

innovation that does not meet the patentability standard, then the incumbent maintains its

leader position, and all n+ 1 firms enter into a new period of patent race. The innovation

arrival rates and the costs to achieve them remain the same after any discovery, whether

patentable or not. Therefore, in either case, the relative positions of the n+ 1 firms in the

market are the same, and hence the choice problem for any firm in the market is stationary.

We denote the discount rate, common for all firms, by r.

The market contains a representative consumer, who demands one unit of the product per

period. The consumer’s valuation for a product is equal to its quality. The marginal cost of

production for any firm is normalized to zero. The incumbent and the challengers engage

in price competition. Thus, when the incumbent’s product quality exceeds the next closest

quality by ∆, it’s flow profit is exactly ∆ until the arrival of a new patentable innovation.

The challengers earn no flow profit.

As in Hunt (2004) and other studies in this literature, we shall focus on an equilibrium
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where only challengers, but not the incumbent, will invest in R&D. Incumbents tend to have

lower incentive to invest in R&D than entrants due to their existing profit. The assumption

that they make no investment is more extreme, and it is motivated mainly for analytical

tractability. Notice that in our model, players rotate their roles as the incumbent and the

challengers over time, so a firm may only temporarily stop investing. In our analysis that

follows, by construction, the strategies by the challengers and the incumbent will constitute

a stationary Markov Perfect Equilibrium (MPE).8

We shall maintain the following assumption throughout the paper:

∆B < rk < ∆A < E [∆B] ≡

∫ ∆B

∆
B

∆BdG (∆B) , (A1)

because of two considerations: First, we are interested in situations where a successful

innovation in the risky direction yields a higher expected quality improvement, which is

captured by ∆A < E [∆B] . Second, we wish to ensure that a positive number of firms will

be willing to enter the market to pursue innovation in each direction, which will require

∆B < rk < ∆A.

If a challenger innovates through direction A, she becomes an incumbent and receives a

profit flow of

πA = ∆A (1)

until she is replaced by a future challenger. If the challenger succeeds in innovation direction

B, the expected profit flow (conditional on the innovation being patentable) is

πB =

∫ ∆B
S

∆BdG (∆B)

1−G (S)
. (2)

8There could potentially be another equilibrium where an incumbent from direction B may conduct R&D
if the realized ∆B > S is relatively small, but its analysis appears to be untractable.
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Notice that

∂πB
∂S

=
−Sg (S) [1−G (S)] + g (S)

∫ ∆B
S

∆BdG (∆B)

[1−G (S)]2
=

g (S)

1−G (S)
(πB − S) ≥ 0,

where πB ≥ S because

∫ ∆B

S

∆BdG (∆B) ≥

∫ ∆B

S

SdG (∆B) = S [1−G (S)] .

It follows that

πB ≡ πB (S) ≥ πB (∆B) = E [∆B] .

This, together with (1) and assumption (A1), implies that πB > πA > rk > ∆B. Thus,

entry to pursue innovation in each direction can be potentially profitable. The equilibrium

number of entrants in the market will be determined simultaneously as the arrival rate of

innovation in each direction, as we show next.

At a stationary MPE, let V Iz be the value of being an incumbent through type-z innovation

and V E the value of being a challenger, all of which are evaluated at the beginning of a

period. Then V IA, V
I
B and V

E satisfy9:

rV IA = πA + n (λA + θλB)
(
V E − V IA

)
, (3)

rV IB = πB + n (λA + θλB)
(
V E − V IB

)
, (4)

and

rV E = λA
(
V IA − V

E
)
− CA (λA) + θλB

(
V IB − V

E
)
− CB (λB) . (5)

Equations (3), (4) and (5) suggest that the value of being an incumbent depends on the

9Notice that the probability that any two innovations succeed simultaneously is zero. Because we are
constructing an equilibrium in which the incumbent does not invest, no matter what its realized quality
improvement is, the value function V I

B below is not contingent on the realization of ∆B .
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type of innovation that has led to the incumbency.10

From (5), the challenger chooses optimal λA and λB, which respectively satisfy the first-

order conditions:11

C ′A (λA) = V
I
A − V

E , (6)

and

C ′B (λB) = θ
(
V IB − V

E
)
. (7)

The free entry condition implies

V E = k. (8)

From (3), (6) and (8), we find

V IA − V
E =

πA − rk

r + n(λA + θλB)
= C ′A (λA) . (9)

Similarly, from (4), (7) and (8), we have

V IB − V
E =

πB − rk

r + n(λA + θλB)
=
C ′B (λB)

θ
. (10)

Substituting (9) and (10) into (5) yields

λAC
′

A (λA) + λBC
′

B (λB)− CA (λA)− CB (λB)− rk = 0. (11)

The system of equations, (9), (10) and (11), determine the three equilibrium values λ∗A, λ
∗

B

and n∗, which we assume to exist uniquely. In particular, from (9) and (10), the equilibrium

10Note that the size of quality improvement appears with the corresponding probability, even though the
incumbent knows its exact value after innovation is successful. Hence πB is shown in the right hand of (4).
11The properties of the cost functions ensure that the second-order conditions are satisfied.
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number of challengers can be expressed as

n∗ =

[
πA − rk

C ′A (λ
∗

A)
− r

]
·

1

λ∗A + θλ
∗

B

=

[
θ (πB − rk)

C ′B (λ
∗

B)
− r

]
·

1

λ∗A + θλ
∗

B

. (12)

We illustrate the equilibrium of the model with the following example:

Example 1. Suppose that ∆B follows the uniform distribution on [0, 1], while CA (λA) =

1
2λ
2
A and CB (λB) =

1
2λ
2
B. Then, from (9), (10) and (11):

λ∗A =
(∆A − rk)

(1− S)
(
1+S
2 − rk

)

√√√√√
2rk

(
(∆A−rk)

(1−S)( 1+S2 −rk)

)2
+ 1

, λ∗B =

√√√√√
2rk

(
(∆A−rk)

(1−S)( 1+S2 −rk)

)2
+ 1

,

and

n∗ =

[
2 (∆A − rk)

λA
− r

] [
1

λB + (1− S)λA

]
.

Further assuming ∆A = 0.3, r = 0.05, k = 0.9, and S = 0.1, we have λ∗A = 0.147, λ∗B =

0.261 63, and n∗ = 8. 68.

We shall continue with this example to also illustrate results in the following sections.

3. THE RATES AND DIRECTION OF INNOVATION

We are now in a position to examine how the patentability standard, S, may affect the

rates and direction of innovation. We first consider the effects of S on the equilibrium R&D

intensities, λ∗A and λ
∗

B, which can be viewed as each entrant’s innovation rates in directions

A and B, respectively. Recall that λ∗A, λ
∗

B and n
∗ are determined by (9), (10) and (11). In

the appendix, we show the following by using the Cramer’s rule:

∂λ∗A
∂S

=
g(S)λ∗B(λ

∗

A + θλ
∗

B) [C
′

A (λ
∗

A)]
2C

′′

B (λ
∗

B) (rk − S)

|M |
(13)
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and

∂λ∗B
∂S

=
−g(S)λ∗A(λ

∗

A + θλ
∗

B) [C
′

A (λ
∗

A)]
2C

′′

A (λ
∗

A) (rk − S)

|M |
, (14)

where

|M | = −(λ∗A + θλ
∗

B)C
′ (λ∗B)C

′′

(λ∗A)C
′′

(λ∗B) [λ
∗

A(πA − rk) + θλ
∗

B(πB − rk)] < 0

since πB > πA > rk. Thus, if S < rk, then
∂λ∗

A

∂S
< 0 and

∂λ∗
B

∂S
> 0; while if S > rk, then

∂λ∗
A

∂S
> 0 and

∂λ∗
B

∂S
< 0. This leads to the following result, where we define

d (S) ≡
λ∗B
λ∗A

(15)

as the innovation direction.

Proposition 1 As S increases, λ∗B first increases and then decreases, whereas λ∗A first

decreases and then increases, reaching the maximum and the minimum, respectively, at S ≡

rk. Moreover, innovation direction d (S) has an inverted-U shape, maximized at S = rk.

Interestingly, R&D intensities in both directions vary non-monotonic with S, in contrast

to the result in Hunt (2004) that R&D intensity is invariant with the patentability standard.

As we discussed in the introduction, the presence of two research directions in our model

introduced a strategic substitution effect. When the R&D intensity in one direction becomes

higher (or lower), it exerts an opposite force on the R&D intensity in the other direction.

Thus, in the free entry equilibrium of our model, patentability standards impact industry

R&D not only through the number of firms (the extensive margin), but also through changes

in the R&D intensities in different directions (the intensive margin). Notice that in (14), if

λ∗A = 0, then λ
∗

B would be independent of S, and our results would be the same as Hunt’s.
12

12See the equation after (A.7) on pp. 421 in Hunt (2004), except that, in Hunt, (i) there is an industry-
specific productivity parameter, which we assume to be 1; and (ii) the reservation value of the product is
the level of its quality multiplied by p, and we assume p = 1.
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In our model, innovation direction, d (S) , is measured by each challenger’s R&D intensity

in the risky direction relative to that in the safe direction, which determines the relative

rates of innovation achieved through the two directions. The inverted-U shaped d (S) , with

its maximum attained at S = rk, follows directly from the shapes of λ∗B (S) and λ
∗

A (S) .

Since the expected size of each innovation is higher in direction B than in direction A, one

might think that it would be desirable to choose S = rk. However, the overall expected

innovation rate of each challenger,

ρ ≡ λ∗A∆A + λ
∗

BE [∆B] ,

depends also on how different λ∗B (S) and λ
∗

A (S) are. Hence, ρ may not be maximized at

rk. For the industry innovation rate, we need to further consider the number of entrants in

equilibrium (n∗), which is also a function of S.

The equilibrium overall innovation rate of the industry can be defined as:

R ≡ n∗ρ. (16)

The result below indicates that the shape of R ≡ R (S) is consistent with that of d (S).

Proposition 2 As S rises, R initially increases and eventually decreases, reaching its max-

imum when S is at some intermediate level.

Proof. See the appendix.

As in Hunt (2004), the industry rate of innovation (R) is maximized when the patentabil-

ity standard is neither too high nor too low. However, the channels through which S affects

R differ in the two models. In Hunt, as S increases, the equilibrium number of firms to

conduct R&D in the market first increases and then decreases, whereas the equilibrium

R&D intensity remains unchanged. Our model entails a second channel: the changes in the
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R&D intensities, since

∂R

∂S
= n∗

∂ρ

∂S
+ ρ

∂n∗

∂S
,

and in our model, λ∗A and λ
∗

B–and hence also ρ–in general vary with S.

Define SR as the patentability requirement that maximizes the innovation rate of the

industry R = R (S):

SR = argmax {R (S)} .

In the appendix, we show that

∂R

∂S
|S=rk > 0, (17)

which immediately leads to:

Remark 1 If R is a single-peaked function of S, then SR > rk.

Therefore, the patentability standard that maximizes the overall rate of innovation in the

industry is higher than S = rk, which maximizes λB, provided that R (S) is single-peaked.

Continuing with Example 1, we next illustrate Proposition 1 by showing how λ∗A and λ
∗

B

vary with S:

Example 1 (Continue). Assume that the parameter values are as assumed in Example

1, except now S is allowed to vary. Then:

λ∗A = 0.153

√
1

S4 − 0.18S3 − 1. 811 9S2 + 0.163 8S + 1. 088 2
,

λ∗B = 0.3 (S + 0.91) (1− S)

√
1

S4 − 0.18S3 − 1. 811 9S2 + 0.163 8S + 1. 088 2
.
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Figures 1 and 2 below illustrate λ∗A and λ
∗

B as functions of S, where rk = 0.045.

Figure 1: Figure 2:

λ∗A (S) λ∗B (S)
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0.1465

0.1470
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0.1480

S
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

0.2612

0.2614

0.2616

0.2618

S

4. EFFICIENT INNOVATION INCENTIVE AND OPTIMAL S

In this section, we compare the equilibrium and the efficient incentives for cumulative

innovation, where “efficient” means welfare-maximizing or the first-best; and we study

how to choose S optimally at the market equilibrium. Specifically, we seek to answer two

questions. First, if one could directly choose the number of entrants and the R&D intensities

to maximize social welfare, what would be these choices and how would they differ from

those in the market equilibrium? Second, if policy can choose patentability standards, but

not firms’ innovative activities, what should be the optimal S? Subsection 4.1 addresses the

two questions in terms of the values for λA, λB, and n, while subsection 4.2 considers the

questions from the perspective of innovation directions.
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4.1 Comparing R&D Intensities and the Number of Entrants

When there are n challengers, each choosing R&D intensities λA and λB in directions A

and B, respectively, total welfare is

W =
n

r

[
λA
∆A
r
− CA (λA) + λB

E [∆B]

r
− CB (λB)− rk

]
, (18)

where ∆A
r
and E[∆B ]

r
are the expected social values of innovations generated by one innovat-

ing firm through directions A and B, respectively. The expression inside the square brackets

in (18) is thus the instantaneous social benefit from one innovating firm, and there are n

independent innovating firms for the industry, multiplied by 1
r
to account for the discounted

sum of the instantaneous benefits.

At the first best where a hypothetical social planner directly chooses λA, λB and n to

maximize W, the welfare-maximizing λoA and λ
o
B satisfy the following first-order conditions:

C ′ (λoA) =
∆A
r

and C ′ (λoB) =
E [∆B]

r
. (19)

Notice that the efficient R&D intensities equate their marginal social benefits and costs.

Comparing (19) to (9) and (10) and noticing that

θ (πB − rk) =

∫ ∆B

S

∆BdG (∆B)− θrk < E [∆B] , (20)

we find that the efficient R&D intensities are higher than those in the free entry equilibrium:

λoz > λ∗z, for z = A,B. Intuitively, this is because when choosing R&D intensities in the

market equilibrium, a firm does not internalize the positive externalities of its innovation

to consumers.

Moreover, since λzC
′

z (λz) − C (λz) increases in λz and λ
o
z > λ∗z for z = A,B, utilizing
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(19) and (11), we have

λoA
∆A
r
− CA (λ

o
A) + λ

o
B

E [∆B]

r
− CB (λ

o
B)− rk

= λoAC
′

A (λ
o
A)− CA (λ

o
A) + λ

o
BC

′

B (λ
o
B)− CB (λ

o
B)− rk

> λ∗AC
′

A (λ
∗

A)− CA (λ
∗

A) + λ
∗

BC
′

B (λ
∗

B)− CB (λ
∗

B)− rk = 0. (21)

Hence, as in Hunt (2004), the efficient number of firms is no =∞ > n∗.

Summarizing the discussions above, we have:

Proposition 3 Compared to the first-best, R&D intensities and the number of entrants are

deficient under the free entry equilibrium.

When policy can choose the patentability standard whereas firms choose R&D intensities

under free entry to maximize their private benefits, the optimal choice of S is also called

the second-best problem. Let W (S) be the welfare in equilibrium at the second best. Then,

from (18),

∂W (S)

∂S
=

1

r

∂n∗

∂S

[
λ∗A
∆A
r
− CA (λ

∗

A) + λ
∗

B

E [∆B]

r
− CB (λ

∗

B)− rk

]

+
n∗

r

{[
∆A
r
− C ′A (λ

∗

A)

]
∂λ∗A
∂S

+

[
E [∆B]

r
− C ′B (λ

∗

B)

]
∂λ∗B
∂S

}
. (22)

The optimal patentability standard, denoted by S∗, coincides with the one that maximizes

the number of entrants in Hunt (2004) if λ∗A ≡ 0. To see this, notice that if λ∗A ≡ 0, our

model reduces to that in Hunt (2004), implying
∂λ∗

A

∂S
= 0, and by (14)

∂λ∗
B

∂S
= 0. Hence,

∂W (S)
∂S

= 0 implies ∂n
∗

∂S
= 0. However, in our model

{[
∆A
r
− C ′A (λ

∗

A)

]
∂λ∗A
∂S

+

[
E [∆B]

r
− C ′B (λ

∗

B)

]
∂λ∗B
∂S

}

is generally not zero when ∂n∗

∂S
= 0, and thus the optimal patentability standard generally

differs from the one that maximizes n∗.
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From Remark 1, the S that maximizes the industry innovation rate (R) exceeds rk,

provided that R is a single-peaked function of S. If W is a single-peaked function of S, then

S∗ also exceeds rk. To see this, note that, from (9), (10) and (20),

C ′A (λ
∗

A) <
∆A
r

and C ′B (λ
∗

B) <
θ (πB − rk)

r
<
E [∆B]

r
.

Thus, noticing
∂λ∗

A

∂S
|S=rk =

∂λ∗
B

∂S
|S=rk = 0 and

∂n∗

∂S
|S=rk > 0, we have

∂W

∂S
|S=rk =

1

r

∂n∗

∂S
|S=rk

[
λ∗A
∆A
r
− CA (λ

∗

A) + λ
∗

B

E∆B
r

− CB (λ
∗

B)− rk

]

>
1

r

∂n∗

∂S
|S=rk

[
λ∗AC

′

A (λ
∗

A)− CA (λ
∗

A) + λ
∗

BC
′

B (λ
∗

B)− CB (λ
∗

B)− rk
]

= 0,

where the equality follows from (11).

Summarizing the above discussion, we have:

Remark 2 As a second-best, the patentability standard that maximizes W ≡ W (S) , S∗,

generally does not maximize the number of firms in the industry. Furthermore, if W (S) is

single-peaked, then S∗ > rk.

Therefore, even though the expected quality improvement from an innovation is higher

in direction B than in direction A, under the single-peak condition, the welfare-maximizing

S does not maximize innovation in direction B. This is because by raising S above rk,

industry innovation can be increased.

Notice that for S∗ to be a valid solution to the maximization problem for W (S) , we

have implicitly assumed that S∗ ≤ ∆A. If this constraint is binding, then we would have

S∗ = ∆A. This is because if S > ∆A, then no entrant would conduct R&D in direction A, so

that λA = 0 and the problem is the same as if B were the only research direction. But since

C ′A (0) = 0 by assumption, it is socially desirable to have strictly positive R&D investment
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in direction A. This implies that W (S) would jump down at S = ∆A. Therefore, it is likely

that S∗ ≤ ∆A even if we allow S to be larger than ∆A.

4.2 Comparing the Innovation Directions

We now compare the equilibrium innovation direction d (S) with the innovation direction

that maximizes social welfare, do. From (19), we have

do =
λoB
λoA
, where

C ′ (λoB)

C ′ (λoA)
=
E [∆B]

∆A
.

Hence, at the welfare-maximizing innovation direction, the ratio of the marginal costs equals

the ratio of the marginal benefits of innovations in the two directions.

Recall from Proposition 1 that the equilibrium innovation direction d (S) is maximized

at S = rk. The result below states that firms are biased towards (against) innovation in

direction B when S is below (above) some threshold. A sketch of the proof is as follows:

If S = ∆B, we have d (S) > d
o, with a bias towards B. As S increases but is smaller than

rk, innovation is even more biased towards B because, from Proposition 1, λ∗B/λ
∗

A increases

in S if S < rk. As S further increases and surpasses rk, λ∗B starts to decrease and λ
∗

A to

increase, and thus d (S) becomes smaller but can still be larger than do. When S > Ŝ, the

threshold value of S, d (S) falls below do and monotonically decreases, so that innovation

direction is biased towards A. Formally:

Proposition 4 There exists Ŝ ∈
[
∆B,∆B

]
such that d

(
Ŝ
)
= do, with d (S) > do if S < Ŝ

but d (S) < do if S > Ŝ. Moreover, Ŝ > rk.

Proof. From (19), under the social optimum,

C ′B (λ
o
B)

C ′A (λ
o
A)
=
E∆B
∆A

.
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From (9) and (10), given S, in the free-entry equilibrium

C ′B (λ
∗

B (S))

C ′A (λ
∗

A (S))
=
θ (S) [πB (S)− rk]

∆A − rk
.

Thus,

δ (S) ≡

C′
B(λ

∗

B
(S))

C′
A(λ

∗

A
(S))

C′
B(λ

o

B)
C′
A(λ

o

A)

=
θ (S) [πB (S)− rk]

E [∆B]
∆A−rk
∆A

.

As S increases,

Φ (S) ≡ θ (S) [πB (S)− rk]

first increases and then decreases, reaching its maximum at S = rk, because, since θ (S) =

1−G (S) ,

∂Φ (S)

∂S
=

∂θ

∂S
[πB (S)− rk] + θ (S)

∂πB (S)

∂S

= −g (S) [πB (S)− rk] + θ (S)
g (S) [πB (S)− S]

1−G (S)

= −g (S) (S − rk) .

Moreover, Φ (∆B) = E [∆B] − rk > 0 and Φ
(
∆B
)
= 0. Therefore, there exists a unique

Ŝ > rk, determined by

Φ
(
Ŝ
)
= E [∆B]

∆A − rk

∆A
< E [∆B] ,

such that δ
(
Ŝ
)
= 1, with

d
(
Ŝ
)
=
λ∗B

(
Ŝ
)

λ∗A

(
Ŝ
) =

λoB
λoA

= do.
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Moreover, since

δ (∆B) =
Φ (∆B)

E [∆B]
∆A−rk
∆A

=
E [∆B]− rk

E [∆B]
∆A−rk
∆A

=
1− rk

E[∆B ]

1− rk
∆A

> 1

and
λ∗
B
(S)

λ∗
A
(S)–hence δ (S)–increases for S ∈ [∆B, rk) but decreases for S ∈

(
rk, Ŝ

)
, we have

δ (S) > 1 and
λ∗
B
(S)

λ∗
A
(S) > d

o if S < Ŝ. Also, since λ∗B (S) decreases in S while λ
∗

A (S) increases

in S for S > rk, we have δ (S) < 1 and
λ∗
B
(S)

λ∗
A
(S) < d

o if S > Ŝ.

Therefore, Ŝ implements the welfare-maximizing innovation direction, provided that Ŝ ≤

∆A; innovation is biased towards B when S < Ŝ, whereas it is biased towards A when

S > Ŝ. Intuitively, when the patentability standard is relatively low, the risky research

direction with uncertain innovation size is likely to yield a patent even when the quality

improvement is small, which motivates firms to conduct R&D in that direction excessively

relative to the direction with a certain innovation size. Conversely, when the patentability

standard is high enough, the direction with uncertain innovation size is unlikely to receive

a patent even when the quality improvement is relatively large, which unduly discourages

R&D in that direction.

Notice that while Ŝ leads to the efficient choice of research direction, it need not be the

welfare-maximizing S for W (S) in the second-best problem. This is because S also affects

W (S) through n∗ (S) , as can be seen from (22), and thus Ŝ need not maximize W (S) .

Intuitively, the second-best choice of S, S∗, will generally involve a trade off between two

policy goals: moving towards the efficient R&D direction (do) and towards the efficient

number of entrants (no). When S achieves the efficient R&D direction, as Ŝ does, it does

not optimally balance the two goals, and hence in general Ŝ does not maximize W (S) (i.e.

Ŝ 6= S∗).
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4.3 Example

To illustrate the results in this section, we continuing with example 1:

Example 1 (Continue). First, as an illustration of Remark 2. we find that W (S) is

maximized at S = S∗ = 0.272, whereas n∗ (S) is maximized at S = 0.269.

Next,

λoA =
∆A
r
=
0.3

0.05
= 6, λoB =

E [∆B]

r
=
0.5

0.05
= 10, do =

5

3
= 1.67.

Recall from Section 3 that λ∗A = 0.147, λ
∗

B = 0.261 63, and n
∗ = 8. 68. Therefore λ∗A < λ

o
A,

λ∗B < λ
o
B, and n

∗ < no =∞, illustrating Proposition 3.

Notice that

θ (S) [πB (S)− rk] = (1− S)

(∫ 1
S
xdx

1− S
−

45

1000

)

=
1

200
(100S + 91) (1− S) ,

E [∆B]
∆A − rk

∆A
= 0.5

0.3− 0.045

0.3
= 0.425.

Thus, from

1

200
(100S + 91) (1− S) = 0.5

0.3− 0.045

0.3
,

we find Ŝ = 0.294, such that d (S) > do if S < Ŝ but d (S) < do if S > Ŝ. Notice that

in this example, to maximize W (S) , S∗ = 0.272, which is lower than Ŝ. Figure 3 displays

the curve for d (S) . As predicted in Proposition 1, d (S) initially increases in S, reaching its

maximum at rk = 0.045, and decreases thereafter.
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Figure 3: Innovation Direction d (S)

5. CONCLUSION

This paper has provided a first look at how patent policy may impact the rate and

direction of cumulative innovation when firms can conduct R&D in multiple directions. We

have three main findings: (i) Patentability standards affect the rate of industry innovation

through both the number of entrants and their R&D intensities in the free entry equilibrium.

As S rises, the rate of industry innovation initially increases and eventually decreases. (ii)

Compared to the social optimum, market incentives for cumulative innovation are deficient

for both R&D intensities and the number of entrants. (iii) There exists a critical level of

patentability standard (Ŝ) under which the innovation direction is efficient, whereas R&D

is biased towards (against) the risky direction when S is below (above) Ŝ. However, if S

is the only policy variable available, then the optimal policy, which balances the trade-off

between the rate and direction of innovation, will in general be different from Ŝ.

Discussions about patent policy and the patent system have frequently surrounded the

issue of patentability standards. It has been argued that patentability standards in the

24



U.S. are too low, leading to excessive incentives for small-size innovations (e.g., Hunt, 2004;

Jaffe, 2000). Our results suggest that raising patentability standards may indeed improve

innovation direction, with two caveats: first, the effect of a higher S on innovation direction

may be non-monotonic, and a small increase in S can either alleviate or exacerbate possible

direction biases depending on the starting point; second, in our model, the risky direction

may lead to more small-size innovations but to a higher expected size than the safe direction.

Hence, even when raising S reduces the patenting of small-size innovations, it may not raise

the expected innovation size.

In our model, the fixed setup cost for R&D (adjusted by r), rk, plays important roles

in determining the innovation incentives and the optimal patentability standards. This

cost generally differs for different industries. For instance, it is likely much larger in the

pharmaceutical industry than in the software industry. Thus, it would be desirable that

patentability standards differ for different industries, depending (indirectly) on the setup

cost for R&D projects. Moreover, innovations in developing countries tend to be much

below the world technology frontier and require lower setup cost rk than those in devel-

oped countries. Then, the desirable patentability requirement could be lower in developing

countries in order to promote innovation.13

For tractability, we have studied a highly stylized model. It would be desirable for future

research to extend our analysis to more general situations, especially to settings where

incumbents and challengers both make R&D investments. It would also be interesting to

consider other patent policy instruments, including patent strength aimed at preventing

imitations. Our framework of cumulative innovation with multiple R&D directions can be

a useful starting point for these and other studies.

13Chen and Puttitanun (2005) shows how intellectual property rights (IPRs) affect innovations in devel-
oping countries and how the optimal IPRs policy may vary with a country’s level of development.

25



REFERENCES

[1] Bessen, J. and E. Maskin. (2009). “Sequential Innovation, Patents, and Imitation”, RAND

Journal of Economics, 31, 611-635.

[2] Bhattacharya, S. and D. Mookherjee. (1986). “Portfolio Choice in Research and Develop-

ment”, RAND Journal of Economics, 17, 594-605.

[3] Birkinshaw, J. and M. Lingblad. (2001). “Making Sense of Internal Competition: Designs

for Organizational Redundancy in Response to Environmental Uncertainty”, London

Business School Working Paper.

[4] Cabral, L. (1994). “Bias in Market R&D Portfolios”, International Journal of Industrial

Organization, 12, 533-547.

[5] Cabral, L. (2007). “Go for Broke or Play It Safe? Dynamic Competition with Choice of

Variance”, Rand Journal of Economics, 38, 593-409.

[6] Chen, Y., S. Pan and T. Zhang. (2014). “(When) Do Stronger Patents Stimulate Continual

Innovation?”, Journal of Economic Behavior & Organization, 98, 115-124.

[7] Chen, Y. and T. Puttitanun. (2005). “Intellectual Property Rights and Innovation in De-

veloping Countries”, Journal of Development Economics, 78, 474-493.

[8] Choi, J. and H. Gerlach. (2014). “Selection Biases in Complementary R&D Projects”, Jour-

nal of Economics & Management Strategy, 23, 899-924.

[9] Dasgupta, P. and E. Maskin. (1987). “The Simple Economics of Research Portfolios“, Eco-

nomic Journal, 97, 581-595.

[10] Furman, Jeffrey and Scott Stern. (2011). “Climbing atop the Shoulders of Giants: The

Impact of Institutions on Cumulative Research”, American Economic Review, 101,

1933-1963.

26



[11] Galasso, Alberto and Mark Schankerman. (2013). “Patents and Cumulative Innovation:

Causal Evidence from the Courts”, Working Paper.

[12] Horowitz, A. and E. Lai. (1996). “Patent Length and the Rate of Innovation”, International

Economic Review, 37, 785-801.

[13] Hunt, Robert M., (2004). “Patentability, Industry Structure, and Innovation”, Journal of

Industrial Economics, 52, 401-425.

[14] Jaffe, A., (2000). “The U.S. Patent System in Transition: Policy Innovation and the Inno-

vation Process”, Research Policy, 29, 531-557.

[15] Klette, T. and D. de Meza. (1986). “Is the Market Biased against Risky R&D?”, Rand

Journal of Economics, 17, 133-139.

[16] Kwon, I. (2010). “R&D Portfolio and Market Structure”, Economic Journal, 120, 313-323

[17] Murray, F. and S. Stern. (2007). “Do Formal Intellectual Property Rights Hinder the Free

Flow of Scientific Knowledge? An Empirical Test of the Anti-commons Hypothesis”,

Journal of Economic Behavior and Organization, 63, 648-687.

[18] O’Donoghue, Ted. (1998). “A Patentability Requirement for Sequential Innovation”, RAND

Journal of Economics, 29, 654-679.

[19] O’Donoghue, Ted, Suzanne Scotchmer, and Jacques-Francois Thisse. (1998). “Patent

Breadth, Patent Life, and the Pace of Technological Progress”, Journal of Economics

and Management Strategy, 7, 1-32.

[20] Sampat, Bhaven and H. Williams. (2014). “How Do Patents Affect Follow-on Innovation?

Evidence from the Human Genome”, Working Paper.

[21] Segal, I. and M.Whinston. (2007). “Antitrust in Innovative Industries”, American Economic

Review, 97, 1703-1730.

27



[22] Williams, Heidi. (2013). “Intellectual Property Rights and Innovation: Evidence from the

Human Genome”, Journal of Political Economy, 121, 1-27.

28



APPENDIX

The appendix contains proofs for Proposition 1, Proposition 2, and inequality (17).

Proof of Proposition 1. From (9), (11), and (10), the equilibrium λ∗A, λ
∗

B and n
∗ solve

the system of equations below:

M ≡

M1 ≡ C ′A (λA) [r + n(λA + θλB)]− (πA − rk)

M2 ≡ λAC
′

A (λA) + λBC
′

B (λB)− CA (λA)− CB (λB)− rk

M3 ≡ θC ′A (λA) (πB − rk)− C
′

B (λB) (πA − rk)

= 0

Let M i
j ≡

∂M i

∂j
, for i = 1, 2, 3 and j = λA, λB, S, n. Define |MAS | , |MBS | , |MnS | and |M |

as the determinants of matrix MAS , MBS , MnS and M , respectively:

|MAS | =

∣∣∣∣∣∣∣∣∣∣

M1
S M1

λB
M1
n

M2
S M2

λB
M2
n

M3
S M3

λB
M3
n

∣∣∣∣∣∣∣∣∣∣

, |MBS | =

∣∣∣∣∣∣∣∣∣∣

M1
λA

M1
S M1

n

M2
λA

M2
S M2

n

M3
λA

M3
S M3

n

∣∣∣∣∣∣∣∣∣∣

,

|MnS | =

∣∣∣∣∣∣∣∣∣∣

M1
λA

M1
λB

M1
S

M2
λA

M2
λB

M2
S

M3
λA

M3
λB

M3
S

∣∣∣∣∣∣∣∣∣∣

, and |M | =

∣∣∣∣∣∣∣∣∣∣

M1
λA

M1
λB

M1
n

M2
λA

M2
λB

M2
n

M3
λA

M3
λB

M3
n

∣∣∣∣∣∣∣∣∣∣

.

By Cramer’s rule, we have

∂λ∗A
∂S

= −
|MAS |

|M |
and

∂λ∗B
∂S

= −
|MBS |

|M |
.

We next compute the relevant derivatives:

M1
λA

= [r + n(λA + θλB)]C
′′

A (λA) + nC
′

A (λA) , M1
λB
= nθC ′A (λA) ,

M1
n = (λA + θλB)C

′

A (λA) , M1
S = −g(S)nλBC

′

A (λA) ;
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M2
λA
= λAC

′′

A (λA) , M2
λB
= λBC

′′

B (λB) , M2
n = 0, M2

S = 0;

M3
λA

= θ(πB − rk)C
′′

A (λA) , M3
λB
= −(πA − rk)C

′′

B (λB) ,

M3
n = 0, M3

S = g(S)C
′

A (λA) (rk − lS).

Thus,

|MAS | = M1
SM

2
λB
M3
n +M

1
λB
M2
nM

3
S +M

1
nM

2
SM

3
λB
−M1

nM
2
λB
M3
S −M

1
λB
M2
SM

3
n −M

1
SM

2
nM

3
λB

= −g(S)λB(λA + θλB)
(
C ′A
)2
C
′′

B(rk − S),

|MBS | = M1
λA
M2
SM

3
n +M

1
SM

2
nM

3
λA
+M1

nM
2
λA
M3
S −M

1
nM

2
SM

3
λA
−M1

SM
2
λA
M3
n −M

1
λA
M2
nM

3
S

= g(S)λA(λA + θλB)
(
C ′A
)2
C
′′

A(rk − S),

and

|M | = M1
λA
M2
λB
M3
n +M

1
λB
M2
nM

3
λA
+M1

nM
2
λA
M3
λB
−M1

nM
2
λB
M3
λA
−M1

λB
M2
λA
M3
n −M

1
λA
M2
nM

3
λB

= −(λA + θλB)C
′

BC
′′

AC
′′

B[λA(πA − rk) + θλB(πB − rk)] < 0.

Therefore,

∂λ∗A
∂S

= −
|MAS |

|M |
=
g(S)λ∗B(λ

∗

A + θλ
∗

B) (C
′

A)
2C

′′

B(rk − S)

|M |
,

and

∂λ∗B
∂S

= −
|MBS |

|M |
=
−g(S)λ∗A(λ

∗

A + θλ
∗

B) (C
′

A)
2C

′′

A(rk − S)

|M |
.

It follows that
∂λ∗

B

∂S
> 0 and

∂λ∗
A

∂S
< 0 if S < rk and

∂λ∗
B

∂S
< 0 and

∂λ∗
A

∂S
> 0 if rk < S.

This further implies that λ∗B/λ
∗

A, same as λ
∗

B, is an inverted-U function of S, maximized at

S = rk.
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Proof of Proposition 2. By Cramer’s rule,

∂n

∂S
= −

|MnS |

|M |
.

where

|MnS | = g(S)C ′AC
′′

AC
′′

B






nλB[λA(πA − rk) + θλB(πB − rk)]

+λB(rk − S)[r + n(λA + θλB)]





(23)

+g(S)n
(
C ′A
)2 (

λBC
′′

B − θλAC
′′

A

)
](rk − S).

From (13), (14) and (23), we can show that, after substitution and simplification,

∂R

∂S
= (λA∆A+λBE∆B)

∂n

∂S
+∆A

∂λA
∂S

+E∆B
∂λB
∂S

=

−g(S)C ′A






(λA∆A + λBE∆B)C
′′

AC
′′

BλB[nλA(πA − S)

+nθλB(πB − S) + r(rk − S)]

+nC ′A(E∆B − θ∆A)
(
λ2AC

′′

A + λ
2
BC

′′

B

)
(rk − S)






|M |
. (24)

Note that E∆B > θ∆A since θ ≤ 1. If S = ∆B, then S < min {πA, πB, rk} and E∆B −

θ∆A > 0. It follows that
∂R
∂S
|S=∆

B
> 0. If S = ∆B, then S > max {πA, πB, rk} and we have

∂R
∂S
|S=∆B < 0.

Proof of (17). From (24),

∂R

∂S
|S=rk =

−g(S)C ′A
|M |

(λA∆A + λBE∆B)C
′′

AC
′′

BλB[nλA(πA − rk) + nθλB(πB − rk)] > 0.
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