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Abstract

Despite some recent criticisms, the conventional radial distance function, which treats undesirable
by-products as either frontier shifters or inputs, remains a popular go-to formulation of polluting
production processes among practitioners. This unfading popularity is arguably driven by the
ability of radial distance functions, unlike alternative directional distance functions, to allow
for unit-free multiplicative changes in arguments as well as, by implicitly postulating the radial
direction, to free researchers from the dilemma of having to explicitly choose the directional
vector. In this paper, we offer a generalization of the standard radial distance function to
polluting technologies that can accommodate undesirable by-products in a more economically
meaningful way. Specifically, we propose modeling undesirable outputs via a hedonic output
index, which is meant to ensure that pollutants are treated as outputs, as opposed to inputs or
theoretically unregulated frontier shifters, while also recognizing their undesirable nature. By
using a radial input distance function generalized to encompass an (unobservable) hedonic output
index of desirable and undesirable outputs, we are able to meaningfully describe relationships
between different products (including the complementarity of desirable and undesirable outputs)
within producible output sets as well as to represent technically feasible polluting production
possibilities given inputs. An empirical application of our methodology to the case of Dutch
dairy farms in 2001–2009 demonstrates the complexity of interactions between outputs, thereby
attesting to the value of more elaborate representations of production possibilities.
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1 Introduction

The by-production of undesirable, or so-called “bad”, outputs is an inherent attribute of many
production processes. In agriculture, some examples of such processes include the use of pesticides in
farming which, while increasing crop yields (good outputs), also results in an increase in undesirable
and oftentimes non-marketed environmental risks associated with leaching and runoff, or dairy
farming where the production of desirable dairy products like milk is accompanied by the natural
but undesirable generation of nitrogen surpluses in the form of manure. Moreover, the by-production
of undesirable outputs is not confined to agricultural production only. Undesirable by-products are
also relevant in carbon-based electric power generation that is accompanied by the emission of
pollutant gases or even in the provision of banking services which suffers from the by-production
of undesirable outputs like non-performing loans due to banks’ exposure to credit uncertainty.
These examples highlight the importance of accounting for undesirable outputs in the estimation
of polluting production technologies.

The modeling of polluting production technologies is however not a clear-cut issue. The as-
sortment of existing approaches to the formulation of multiple-output multiple-input production
processes in the presence of undesirable by-products include (i) hyperbolic distance functions that
allow equiproportional expansion of desirable and contraction of undesirable outputs (e.g., Färe
et al., 1989; Cuesta et al., 2009), (ii) directional distance functions that allow additive expansion of
desirable and contraction of undesirable outputs in a pre-specified direction (e.g., Chung et al., 1997;
Färe et al., 2005) or (iii) by-production systems of separable technologies for desirable production
and undesirable pollution generation (e.g., Fernández et al., 2002, 2005; Murty et al., 2012; Malikov
et al., 2015a).

Despite this apparent abundance of modeling frameworks, the conventional radial distance func-
tion of Shephard (1953, 1970), which measures equiproportional changes in inputs or desirable out-
puts, however persistently remains a popular go-to formulation of polluting production processes
among practitioners. The conventional radial distance function is usually augmented to incorporate
undesirable outputs in two ways. The function is either conditioned on the quantity of undesirable
by-products treated as (theoretically unregulated) technology shifters (e.g., Atkinson and Dorfman,
2005; Assaf et al., 2013) or expanded to effectively incorporate undesirable by-products in the role
of inputs (e.g., Reinhard et al., 1999, 2000; Hailu and Veeman, 2000, 2001). Arguably, these ap-
proaches remain popular among applied economists in spite of their criticism for the implied strong
disposability of undesirable outputs (Färe et al., 2005) because, unlike alternative directional dis-
tance functions, radial functions permit unit-free multiplicative changes in arguments as well as, by
implicitly postulating the radial direction, free researchers from the dilemma of having to explicitly
choose the directional vector.

In this paper, we offer a generalization of the standard radial distance function to polluting
technologies that can accommodate undesirable by-products in a more economically meaningful way.
Specifically, we propose modeling undesirable outputs via a hedonic output index, which is meant
to ensure that pollutants are treated as outputs, as opposed to inputs or theoretically unregulated
controls, while also recognizing their undesirable nature. By using a radial input distance function
(IDF) generalized to encompass an (unobservable) hedonic output index of desirable and undesirable
outputs, we are able to meaningfully describe relationships between different products (including
the complementarity of desirable and undesirable outputs) within producible output sets as well as
to represent technically feasible polluting production possibilities given inputs.

We apply our methodology to study the production technology of Dutch dairy farms which,
in addition to desirable outputs such as milk, other livestock products and crops, also generate
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environmentally detrimental nitrogen surpluses. This nitrogen pollution mostly arises from an
application of manure produced by livestock to soil well in excess of what crops need for growth
(Reinhard et al., 1999). The relationships among the outputs are rather complex in this setting.
For instance, while a nitrogen surplus has a tendency to increase with higher levels of dairy and
livestock production, the surplus might decrease (per unit) for farms with more crop production,
since the latter absorbs manure generated by livestock. Furthermore, although the crops produced
for feeding the farm livestock are complements to dairy products, crop production for sale is certainly
a substitute for dairy production. Accordingly, a more elaborate approach is required to consider
technological relations between desirable and undesirable outputs in this context. Following our
hedonic-output-index-based approach, we study the links between two desirable outputs, namely
dairy and crop products for sale, and an undesirable nitrogen surplus.

We estimate our proposed hedonic-output-index-based model subject to theoretical regularity
conditions using the Augmented Lagrangian Adaptive Barrier Minimization Algorithm (Lange,
2004) that is capable of handling nonlinear inequality constraints. We impose monotonicity and
curvature regularity restrictions (at every data point) in order to ensure that our results are econom-
ically meaningful, as emphasized by Barnett et al. (1991) and Barnett (2002). Among other things,
our findings confirm significant complementarity between nitrogen surpluses and dairy farms’ de-
sirable outputs. Our estimates also suggest the median price of non-marketed nitrogen pollutants
at e893 per ton (in 2005 prices). In addition to our proposed model, we also estimate two aux-
iliary models based on the traditional IDF, as customarily done in the literature. Our findings
exemplify the need in a more elaborate approach to modeling undesirable outputs in the setup of
radial distance functions. Specifically, we find that modeling undesirable outputs as technology
shifters yields rather counter-intuitive results suggesting that nitrogen surpluses may not only be
substitutable with other desirable outputs but also desirable. On the other hand, when treating
nitrogen surplus as an input, the radial IDF produces unrealistically high estimates of the shadow
price of this non-marketable pollutant as well as stark evidence of the dramatic technological regress
in the Dutch dairy sector in 2001–2009. In contrast to these popular specifications of radial distance
functions, our hedonic-output-index-based model yields more reasonable and intuitive results.

The rest of the paper proceeds as follows. Section 2 describes the (radial) distance function
formulation of the production process in the presence of undesirable outputs where the latter are
incorporated via a hedonic output index. We present our econometric model in Section 3. Data on
Dutch dairy farms are discussed in Section 4. Section 5 presents the empirical results, and Section
6 concludes.

2 Input Distance Function with a Hedonic Output Index

We start by introducing the (radial) distance function formulation of the production process in the
presence of undesirable outputs. Consider the pollution-generating production process in which J
inputs x ∈ ℜJ

+, which include both “good” and pollution-generating inputs, are being transformed
into M desirable (“good”) outputs y ∈ ℜM

+ and P undesirable by-products b ∈ ℜP
+ (“bad” outputs)

such as pollution. The production technology is given by

T
def
= {(x,y,b) : x can produce (y,b)}, (2.1)

subject to the usual axioms (see Chambers et al., 1998; Färe et al., 2005):

(T.1) closedness of T;
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(T.2) no free lunch: if (x,y,b) ∈ T and x = 0, then (y,b) = (0,0);

(T.3) null-jointness of the output production: if (x,y,b) ∈ T and b = 0, then y = 0;

(T.4) free input disposability: if (x,y,b) ∈ T and x′ ≥ x, then (x′,y,b) ∈ T;

(T.5) weak joint disposability of desirable and undesirable outputs: if (x,y,b) ∈ T and 0 ≤ κ ≤ 1,
then (x, κy, κb) ∈ T;

(T.6) free disposability of desirable outputs: if (x,y,b) ∈ T and y′ ≤ y, then (x,y′,b) ∈ T;

(T.7) feasibility of inaction: (0,0,0) ∈ T;

(T.8) convexity of T.

To allow for a meaningful relationship between desirable and undesirable outputs as well as to
ensure that the above theoretical properties of production technology are maintained, we propose
modeling the pollution-generating nature of T using a hedonic output (index) function. Specifically,
we formulate technology T in the form of the radial input distance function Di : ℜ

J
+×ℜ+ → [1; +∞)

defined as
Di

(

x, h(y,b)
) def
= sup

β

{

β ≥ 1 :
(

x/β, h(y,b)
)

∈ T
}

, (2.2)

where h(y,b) : ℜM
+ × ℜP

+ → ℜ+ is a scalar hedonic function which aggregates both desirable and
undesirable outputs into an output index. The hedonic-output-index-based IDF in (2.2) measures
the (input-)radial distance between the observed (x,y,b) and the boundary of technology T. It seeks
the maximal proportionate contraction of inputs x while still preserving the feasibility of outputs
(y,b). The function Di

(

x, h(y,b)
)

satisfies the following usual theoretical properties extended to
accommodate a single output index:

(D.1) Di

(

x, h(y,b)
)

≥ 1 ⇐⇒ (x,y,b) ∈ T;

(D.2) linear homogeneity in inputs: Di

(

αx, h(y,b)
)

= αDi

(

x, h(y,b)
)

for α > 0;

(D.3) positive monotonicity in inputs: if x′ ≥ x, then Di

(

x′, h(y,b)
)

≥ Di

(

x, h(y,b)
)

;

(D.4) strict negative monotonicity in the hedonic output index: if h′(y,b) ≤ h(y,b), then
Di

(

x, h′(y,b)
)

> Di

(

x, h(y,b)
)

;

(D.5) concavity of Di

(

x, h(y,b)
)

in x.

The formulation in (2.2) differs from a standard textbook definition of the IDF (e.g., Färe and
Primont, 1995; Kumbhakar and Lovell, 2000) in that it imposes a structure on both desirable and
undesirable outputs by having the latter enter the distance function via a hedonic output index
h(·). Such a specification is meant to ensure that undesirable by-products are explicitly treated as
outputs rather than as “controls” or, worse, inputs. Function h(·) is an equivalent representation
of the output vector (y,b) and satisfies the following properties:

(H.1) linear homogeneity: h(αy, αb) = αh(y,b) for α > 0;

(H.2) positive monotonicity in desirable outputs: if y′ ≥ y, then h(y′,b) ≥ h(y,b);

(H.3) strict negative monotonicity in undesirable outputs: if b′ ≤ b, then h(y,b′) > h(y,b).

Properties (H.1)–(H.3) together suggest costly disposability of undesirable outputs b as well as
complementarity between the two types of outputs (on the technological frontier), i.e., ∂bp/∂ym ≥
0 ∀ m = 1, . . . ,M ; p = 1, . . . , P . The latter is especially important because, given the pollut-
ing nature of T, the quantity of desirable outputs y cannot be increased without also increasing
the quantity of its by-products b for a given input vector x (in the absence of inefficiency and
abatement). However, we emphasize that h(·) is unobserved in practice.
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3 Econometric Model

In this paper, we consider a stochastic production process, where for simplicity we assume that all
firms are technically efficient, i.e., operate on the technological frontier. The stochastic IDF with a
hedonic output index is then given by

1 = Di

(

x, h(y,b)
)

exp{ǫ}, (3.1)

where ǫ is an i.i.d. zero-mean finite-variance random disturbance. We impose the linear homogeneity
property onto the IDF by making use of (D.2) and setting α = 1/x1, which yields the following
equation in logs:

− lnx1 = lnDi

(

x/x1, h(y,b)
)

+ ǫ. (3.2)

In a similar fashion, we use property (H.1) to impose linear homogeneity onto the hedonic output
index (by setting α = 1/b1):

lnh(y,b) = ln b1 + lnh
(

y/b1,b/b1)
)

, (3.3)

where we remind the reader that h(y,b) is unobserved.

We assume that both the IDF and the hedonic output index take flexible translog functional
forms as well as allow for temporal shifts in the technological frontier via the time trend t:

− lnx1 = α0 + αh lnh(y,b) +
1

2
αhh

(

lnh(y,b)
)2

+
∑

j 6=1

αhj lnh(y,b) ln

(

xj
x1

)

+

∑

j 6=1

βj ln

(

xj
x1

)

+
1

2

∑

j 6=1

∑

j′ 6=1

βjj′ ln

(

xj
x1

)

ln

(

xj′

x1

)

+

γtt+
1

2
γttt

2 + γth t lnh(y,b) +
∑

j 6=1

γtj t ln

(

xj
x1

)

+ ǫ, (3.4)

where

lnh(y,b) = ln b1 +
∑

m

ωm ln

(

ym
b1

)

+
1

2

∑

m

∑

m′

ωmm′ ln

(

ym
b1

)

ln

(

ym′

b1

)

+

∑

p 6=1

δp ln

(

bp
b1

)

+
1

2

∑

p 6=1

∑

p′ 6=1

δpp′ ln

(

bp
b1

)

ln

(

bp′

b1

)

+

∑

m

∑

p 6=1

θmp ln

(

ym
b1

)

ln

(

bp
b1

)

. (3.5)

The model in (3.4)–(3.5) is estimated by substituting the equation for the hedonic output index
in (3.5) into the IDF given in (3.4), which produces a highly nonlinear (in parameters) specification
of the production technology.1

We estimate the hedonic-output-index-based IDF in (3.4)–(3.5) subject to the Slutsky symmetry
as well as the theoretical monotonicity and curvature restrictions in order to ensure that our results
are economically meaningful, as emphasized by Barnett et al. (1991), Barnett (2002) and Malikov

1Note that the constant term in the translog specification of the hedonic output index is normalized to zero for
identification purposes.
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et al. (2015b).2 Specifically, the monotonicity of Di

(

x, h(y,b)
)

in inputs and hedonic output index,
respectively, requires that the log-derivatives satisfy the following conditions:

∂ lnDi(·)

∂ lnxj
= αhj lnh(y,b) + βj +

∑

j′

βjj′ lnxj′ + γtjt ≥ 0 ∀ j = 1, . . . , J (3.6a)

∂ lnDi(·)

∂ lnh(·)
= αh + αhh lnh(y,b) +

∑

j

αhj lnxj + γtht < 0, (3.6b)

whereas monotonicity of the hedonic output index h(y,b) in desirable and undesirable outputs,
respectively, requires that

∂ lnh(·)

∂ ln ym
= ωm +

∑

m′

ωmm′ ln ym′ +
∑

p

θmp ln bp ≥ 0 ∀ m = 1, . . . ,M (3.7a)

∂ lnh(·)

∂ ln bp
= δp +

∑

p′

δpp′ ln bp′ +
∑

m

θmp ln ym < 0 ∀ p = 1, . . . , P. (3.7b)

The concavity of the IDF requires that its Hessian matrix

Hi =







β11 . . . β1J
...

. . .
...

βJ1 . . . βJJ






(3.8)

is a negative semi-definite. We guarantee the latter by restricting odd-numbered (even-numbered)
principal minors of Hi to be non-positive (non-negative).

Few remarks are warranted here. Both the monotonicity and concavity constraints are formu-
lated in the level form, i.e., prior to the “linear homogeneity” normalization. To recover parameters
for the normalizing input x1 and output b1, we use the following restrictions implicitly built into
the normalized IDF (3.4) and hedonic output index (3.5):

∑

j

βj = 1,
∑

j

βjj′ = 0 ∀ j′,
∑

j

αhj = 0,
∑

j

γtj = 0;

∑

m

ωm +
∑

p

δp = 1,
∑

m

ωmm′ +
∑

p

θpm′ = 0 ∀ m′,
∑

p

δpp′ +
∑

m

θmp′ = 0 ∀ p′.

The monotonicity restrictions are observation-specific and imposed at every data point. In total,
we have (J +M +P +1)NT + J theoretical regularity conditions, where N and T are the numbers
of firms and time periods, respectively.

4 Data

The data for a sample of Dutch dairy farms come from the Farm Data Accountancy Network
(FADN) which represents 99% of the dairy production in the Netherlands. Our data sample is an
unbalanced panel of 348 farms observed over the period from 2001 to 2009. The sample consists of
1,866 observations on dairy farms whose revenues from sales of milk and livestock products account
for at least 80% of their total revenues.

2Recall that the linear homogeneity properties are already imposed by construction.
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Table 1. Summary Statistics for Dutch Dairy Production, 2001–2009

Variable Description and Units Mean Median SD

x1 Materials & Feed, Real e1,000 84.91 72.73 55.11
x2 Land, Hectares 51.47 43.99 30.40
x3 Labor, Man-Years 1.71 1.59 0.66
x4 Capital, Real e1,000 48.81 39.57 34.40
x5 Livestock, Livestock Std. Units 114.24 98.00 66.66

b Nitrogen Surplus, Tons 9.10 7.44 6.47
y1 Dairy & Livestock Products, Real e1,000 227.12 188.81 154.03
y2 Crop Products, Real e1,000 13.34 7.93 15.78

s1 Share of y1 in Total Output, % 94.60 96.09 4.56

NOTE: Zero values appear due to rounding.

We distinguish between two desirable and one undesirable outputs. The good outputs are y1,
defined as the real revenue from sales of milk and livestock products plus changes in the valuation of
the livestock, and y2, defined as the real revenue from sales of crops and other agricultural products.
The production of both desirable outputs by farms in the livestock sector is accompanied by the
by-production of an undesirable, environmentally detrimental output – “nitrogen surplus” (b). This
nitrogen pollution mostly arises from an application of manure produced by livestock to soil well in
excess of what crops need for growth (Reinhard et al., 1999). To document such nitrogen pollution,
Dutch dairy farms are required to keep nutrient balance sheets, from which we can quantify a
nitrogen surplus as the difference between the quantity of nitrogen applied on the farm and the
quantity of nitrogen in the farms’ desirable outputs (see Reinhard et al., 1999, 2000).

The farm’s five inputs are materials (x1) which also include purchased feed, land (x2), labor
(x3), capital (x4) and livestock (x5). Materials are defined as farm variable costs including those on
purchased feed and concentrated feeding stuff. Land is defined as the farm total agricultural land
measured in hectares. The number of agricultural work units is used to measure the farm labor
force. Capital is defined in terms of the value of the machines and building depreciation. Livestock
is measured as the number of standardized livestock units. All monetary values were deflated to
the 2005 price level by using the price indices for each category as reported by Eurostat (2012).
All variables are normalized by their respective geometric means. Table 1 reports the summary
statistics for our variables.

On average, nitrogen application per farm is 14.87 tons per year over the course of the sample
period. The intensity of nitrogen use during the 2001–2009 period is 0.29 tons per hectare of
agricultural land and 0.13 tons as measured per livestock unit. The surplus nitrogen during the
same period amounts to an average of 9.10 tons per farm-year, which results in intensity values
of 0.18 tons per hectare of land and 79.9 kilograms per livestock unit. These figures indicate
that the use of nitrogen and the accompanying (by-)generation of a nitrogen surplus has decreased
substantially in the last decade. For instance, the average nutrient input by Dutch dairy farms
from a comparable FADN data sample used by Reinhard et al. (2000) was significantly higher in
1991–1994 amounting to 17.75 tons per farm-year. The dairy farms in Reinhard et al.’s (2000)
sample also generated considerably more nitrogen surpluses: an average of 14.63 tons per farm-
year. Furthermore, dairy farms in 1991–1994 also appear to have had higher ratios of total revenue
to nitrogen surpluses than farms in our 2001–2009 sample: an average of e26.4 vs. e17.3 of revenue
per kilogram of nitrogen surplus (in 2005 prices).
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Table 2. Summary of the Estimated Models

Model Formulation of the IDF Treatment of b

(I) Di

(

x, h(y,b)
)

= supβ

{

β ≥ 1 :
(

x/β, h(y,b)
)

∈ T
}

Undesirable output

(II) Di(x,y,b) = supβ {β ≥ 1 : (x/β,y,b) ∈ T} (Theoretically unregulated) technology shifter

(III) Di(x,y,b) = supβ {β ≥ 1 : (x/β,y,b/β) ∈ T} Input

5 Results

This section reports estimates of the hedonic-output-index-based IDF that we propose in this pa-
per for Dutch dairy farms in 2001–2009. We estimate the nonlinear model in (3.4)–(3.5) subject
to (J + M + P + 1)NT + J restrictions in (3.6)–(3.8) via nonlinear least squares.3 The theo-
retical restrictions that we seek to impose (to ensure an economically meaningful analysis) are
observation-specific and nonlinear, which makes their computational implementation rather diffi-
cult. For instance, the standard constrained optimization routines subject to the so-called “box”
constraints on parameters are of no use here. Instead, we implement the constrained optimization
of the nonlinear least squares objective function corresponding to our model in (3.4)–(3.5) using the
Augmented Lagrangian Adaptive Barrier Minimization Algorithm (Lange, 2004) that is capable
of handling nonlinear inequality constraints. The algorithm searches for a solution by replacing
the original constrained problem with a sequence of unconstrained problems adding a penalty and
Lagrange-multiplier-type terms per constraint to the objective function.

In addition to our preferred hedonic-output-index-based IDF model [hereafter referred to as
Model (I)], we also estimate two auxiliary models based on the more conventional IDF formulations
of the production processes augmented to incorporate undesirable by-products. The two models are
as follows. First, as is oftentimes done in the literature (e.g., Atkinson and Dorfman, 2005; Assaf
et al., 2013), we estimate the standard IDF that treats undesirable by-products as (theoretically
unregulated) technology shifters [Model (II)]. As usual, here the IDF is defined as Di

(

x,y,b
)

=
supβ {β ≥ 1 : (x/β,y,b) ∈ T} which is assumed to be linearly homogeneous, positively monotone
and concave in inputs x and negatively monotone in desirable outputs y. No explicit theoretical reg-
ularity assumption is made about undesirable outputs b that are treated as mere “control variables”
shifting the frontier. The other auxiliary model [Model (III)] is also based on the standard IDF with
the sole difference from Model (II) in that it treats undesirable by-products effectively as inputs nec-
essary for the production of desirable outputs, i.e., Di

(

x,y,b
)

= supβ {β ≥ 1 : (x/β,y,b/β) ∈ T}
(e.g., Reinhard et al., 1999, 2000; Hailu and Veeman, 2000). In this case, the IDF is assumed to be
linearly homogeneous, positively monotone and concave in both x and b and negatively monotone
in desirable outputs y. Both auxiliary models are estimated subject to the corresponding regularity
conditions.

For the reader’s convenience, all estimated models are summarized in Table 2. By estimat-
ing these models, we are able to empirically assess the sensitivity of the estimates of a polluting
production technology to the treatment of undesirable by-products.

5.1 Elasticities

The estimates of the IDF elasticities obtained from the three models are summarized in Table 3.
The last column reports the fraction of observations for which the elasticity estimates would have

3Quasi maximum likelihood is another feasible alternative.
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Table 3. Elasticities of the Input Distance Function, 2001–2009

Elast. Mean 1st Qu. Median 3rd Qu. Violations

Model (I)

x1 0.2657 0.2231 0.2672 0.3109 0.21%

x2 0.0708 0.0541 0.0705 0.0869 22.24%

x3 0.3150 0.2310 0.3117 0.3953 0.91%

x4 0.0646 0.0484 0.0643 0.0808 0.32%

x5 0.2837 0.2155 0.2859 0.3517 0.00%

y1 –0.7972 –0.8799 –0.7980 –0.7169 0.00%

y2 –0.0968 –0.1084 –0.0973 –0.0847 0.16%

b 0.0083 0.0050 0.0081 0.0111 96.62%

Model (II)

x1 0.2669 0.2128 0.2677 0.3236 0.16%

x2 0.0551 0.0438 0.0551 0.0658 19.34%

x3 0.2839 0.2144 0.2797 0.3573 1.87%

x4 0.1531 0.1135 0.1534 0.1925 0.53%

x5 0.2410 0.1870 0.2415 0.2918 0.00%

y1 –0.7657 –0.8573 –0.7698 –0.6700 0.00%

y2 –0.0368 –0.0446 –0.0366 –0.0284 3.00%

b –0.2692 –0.3510 –0.2716 –0.1928 —–

Model (III)

x1 0.3344 0.2891 0.3351 0.3837 1.33%

x2 0.0533 0.0411 0.0533 0.0648 42.65%

x3 0.2222 0.1648 0.2176 0.2710 0.37%

x4 0.1250 0.1060 0.1253 0.1450 0.80%

x5 0.2321 0.1810 0.2322 0.2842 0.37%

y1 –0.8793 –1.0950 –0.8919 –0.6562 0.00%

y2 –0.0490 –0.0603 –0.0482 –0.0378 4.55%

b 0.0329 0.0258 0.0329 0.0399 53.00%

violated theoretical monotonicity properties had we not imposed the latter during the estimation.
The two elasticities that stand out here are those with respect to land (x2) and nitrogen surplus
(b). Unconstrained models produce the most violations of the monotonicity conditions for these
two elasticities. For instance, if we estimate Models (I) and (III) without imposing regularity
conditions, the elasticities of IDF with respect to the undesirable nitrogen surplus are wrongly
negative for 96.6% and 53.0% farm-years, respectively, which would counter-intuitively suggest that
a nitrogen surplus is a desirable output.4 This finding exemplifies the importance of the estimation
of production technologies subject to theoretically warranted regularity conditions, as advocated
by Barnett et al. (1991) and Barnett (2002). Thus, in what follows, we focus solely on the results
obtained from the constrained estimation.

Despite rather large quantitative differences in elasticity estimates across the models, all three
seem to agree about the following. All models suggest that labor, livestock and materials (including
feed) have the highest values of elasticity among inputs. This expectedly implies (by duality) that
the cost of dairy farms is the most sensitive to the quantities of these variable inputs that are

4Note that no “violations” are computed for the same elasticity in the case of Model (II) since this model does not
theoretically regulate the sign of monotonicity of the IDF with respect to undesirable by-products.
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Figure 1. Fitted (b, y1, y2) Relation based on Model (I) on the left and Model (II) on the right
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Table 4. Returns to Scale, 2001–2009

Point Estimates Statistical Significance

Model Mean 1st Qu. Median 3rd Qu. < 1 = 1 > 1

(I) 1.1496 1.0140 1.1163 1.2492 5.25% 43.67% 51.07%

(II) 1.3017 1.1179 1.2416 1.4202 0.69% 31.72% 67.57%

(III) 1.2251 0.8727 1.0645 1.4184 27.11% 38.58% 34.29%

NOTE: Percentage points may not sum up to a hundred due to rounding.

directly used in the production of milk and other dairy products. Similarly, all models indicate that
the farms’ cost is far more sensitive to the volume of diary production (y1) than to the quantity
of produced crop products (y2). Specifically, across the models, the implied (by duality) average
cost elasticity of dairy products ranged between 0.77 and 0.88, whereas the average cost elasticity
of crop products falls between 0.04 and 0.10.

We document stark differences in the estimates of the IDF elasticity with respect to the un-
desirable nitrogen surplus across the fitted models. Contrasting the results from the two models
that theoretically regulate undesirable byproducts [Models (I) and (III)], we find that our preferred
hedonic-output-index-based Model (I) produces the IDF elasticity with respect to this undesir-
able output of considerably smaller magnitudes than does Model (III) which treats bads as inputs:
0.008 versus 0.033, on average. Even more starkly, we find that when one models undesirable by-
products as theoretically unregulated controls as in Model (II), the results imply that, contrary to
common sense, a nitrogen surplus is a desirable output. To further exemplify the consequences of
modeling undesirable by-products as technology shifters, consider Figure 1 which plots the fitted
three-dimensional relationships between dairy farms’ desirable and undesirable outputs based on
Models (I) and (II) at median values of inputs. The left subfigure, which is produced using the
estimated hedonic-output-index-based IDF, depicts an expected complementary relation between
the nitrogen surplus b and two desirable outputs y1 and y2. In contrast, the estimates from Model
(II) point to the existence of the trade-off (substitution) between b and desirable outputs y1 and
y2 (see the right subfigure in Figure 1), which is rather counter-intuitive given the complementary
by-production nature of a nitrogen surplus. These findings lend support to our preferred Model (I)
which explicitly treats b as an undesirable output.

5.2 Returns to Scale

Table 4 presents the summary statistics of the point estimates of returns to scale based on all three
models over the entire sample period. The returns to scale are computed as the negative of the
inverse of the sum of desirable output elasticities (Färe and Primont, 1995), i.e.,5

RTS = −

[

∑

m

∂ lnDi(·)

∂ ln ym

]−1

. (5.1)

Our preferred Model (I) produces an average estimate of the returns to scale at about 1.15
suggesting the presence of economies of scale among Dutch dairy farms during our sample period.
We also find that Model (II) tends to over-estimate whereas Model (III) tends to under-estimate
the magnitude of returns to scale. These differences across the models are vividly illustrated in

5Following Malikov et al. (2015b), the concept of returns to scale is defined over desirable outputs only.
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Figure 2. Returns to Scale across Models (I) through (III)

Figure 2 which plots kernel densities of RTS estimated using a second-order Epanechnikov kernel
with cross-validated bandwidths.

The right panel of Table 4 also reports the groupings of dairy farms by the returns to scale cat-
egories: decreasing, constant and increasing returns to scale. We classify a dairy farm as exhibiting
decreasing/constant/increasing returns to scale if the point estimate of its returns to scale is found
to be statistically less than/equal to/greater than one at the 5% significance level.6 As expected, the
empirical evidence suggests that Model (III) that treats a nitrogen surplus as an input misleadingly
predicts that about a quarter of dairy farms in our sample operate at decreasing returns to scale,
whereas our preferred Model (I) suggests that the number of such farms hardly exceeds 5% of the
sample. Overall, when modeling b as an undesirable output [as in Model (I)], we find that about
a half of farms in our sample (51%) exhibit significant scale economies indicating the potential for
the cost reduction as a result of expansion of the scale of operation. The other 44% of farms are
found to be scale-efficient, i.e., they operate at unitary constant returns to scale. Our findings are
generally consistent with earlier results reported in Brümmer et al. (2002) and Emvalomatis et al.
(2011) who also document the evidence of increasing returns to scale among Dutch dairy farms,
although no previous study reports farm-level estimates of scale economies providing only average
estimates thereof.

5.3 Technical Change Decomposition

We next proceed to the analysis of the technical change experienced by dairy farms in the Nether-
lands during the 2001–2009 period. The annual rate of technical change is defined as a ceteris
paribus outward shift in the technological frontier over time and can be measured as the time

6Standard errors for the returns to scale estimates are constructed using the delta method. In turn, the standard
errors for the IDF parameter estimates are computed using the robust outer-product sandwich variance-covariance
matrix.
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Table 5. Technical Change, 2001–2009

Point Estimates Statistical Significance

Model Mean 1st Qu. Median 3rd Qu. < 0 = 0 > 0

(I) 0.0078 –0.0055 0.0077 0.0212 8.36% 44.10% 47.53%

(II) 0.0057 –0.0033 0.0076 0.0172 10.61% 50.85% 38.53%

(III) –0.0185 –0.0568 –0.0159 0.0175 0.00% 100.00% 0.00%

NOTES: Percentage points may not sum up to a hundred due to rounding.

semi-elasticity of the IDF, i.e.,

TC
def
=

∂ lnDi(·)

∂t
. (5.2)

The summary of the technical change estimates is reported in Table 5. The table also reports
the break-down of dairy farms by the statistical significance (at the 5% significance level) of these
estimates. Our preferred Model (I) estimates the rate of technical change of the highest magnitude
among all three models: the average annual rate of 0.78% with estimates being significantly positive
for 48% of the sample. Our average estimate of technical change falls in the middle between those
reported for Dutch dairy farms by earlier studies that do not account for the by-production of
undesirable outputs. For instance, Brümmer et al. (2002) report the average annual rate of technical
progress of 0.53% in 1991–1994, whereas Emvalomatis et al. (2011) report the rate of 1.25% per
annum in 1995–2005.7

We find that Model (II) reports slightly lower estimates of technical advancement than does our
preferred hedonic-output-index-based model. However, the TC estimates are the most surprising
in the case of Model (III) which suggests a persistent technological regress at the average rate
of –1.85% per annum, although none of the estimates are statistically significant at conventional
levels. The stark distortions in the technical change estimates produced by Model (II) which treats
a nitrogen surplus as an input can be clearly assessed from Figure 3. The plotted are the technical
change indices implied by all three models. The indices are normalized to 100 in the year 2000 and
are constructed using the total-revenue-weighted average annual technical change rates computed
as TCt =

∑

iwitTCit, where wit = TotalRevenueit/
∑

j TotalRevenuejt ∀ t. From the figure,
modeling the production technology in which undesirable outputs are treated as inputs produces a
hard-to-believe estimate of the cumulative ten-year decline in dairy farming technology of 40.5%. In
contrast, our preferred Model (I) suggests a modest but more reasonable 9.7% cumulative ten-year
improvement in technology.

Changes in the weighted estimates of the annual rate of technical change TCt over years can
be attributed to two primary sources: a secular shift in the technological frontier across farms
and the reallocation of fixed factors towards more technologically advanced farms that operate on
“higher” frontiers. To differentiate between these two sources, we decompose the weighted measure
of technical change TCt into two components à la Olley and Pakes (1996):

TCt =
∑

i

witTCit

=
∑

i

[wt + (wit − wt)]
[

TCt +
(

TCit − TCt

)]

7It is also noteworthy that the two papers use different formulations of the production technology. Brümmer et al.
(2002) estimate a conventional input distance function, whereas Emvalomatis et al. (2011) specify an output distance
function.
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Figure 3. Technical Change Indices across Models (I) through (III)

= TCt +
∑

i

(wit − wt)
(

TCit − TCt

)

∀ t,

where TCt = 1/Nt

∑

iTCit and wt = 1/Nt are the unweighted average technical change and un-
weighted revenue share (a uniform weight), respectively. According to the above decomposition,
the (aggregate) weighted average rate of technical change TCt is a sum of the unweighted average
of farm-level technical change TCt and a sample covariance between the farm-level (total) revenue
and technical change TCt − TCt =

∑

i (wit − wt)
(

TCit − TCt

)

. While changes in the first compo-
nent represent a secular trend in technical change, yearly changes in the covariance term capture
the reallocation of economic activity from farms that exhibit slow technological growth to those
exhibiting faster technological advancement. The larger the covariance term, the larger the (total)
revenue share of farms with faster technological improvement in the dairy sector.

The decomposition results are presented in Table 6. Both Models (I) and (II) suggest that there
is a steady decline in the covariance between farms’ total revue and the rate of technical change
in the first five years of our sample period followed by a dramatic increase in 2006–2007 which
seems to fade out by 2009. The latter findings indicate that the acceleration in the rate of technical
change observed during the 2001–2007 period is primarily driven by a secular improvement in the
pace of technological advancement except in 2006–2007 when the reallocation of resources towards
more technologically advanced farms has played a bigger role. Interestingly, Model (III) produces
a contrary result according to which in 2006–2007 resources seem to have reallocated towards less
technologically advanced farms. These differences yet again highlight the importance of modeling
a nitrogen surplus as an undesirable output as opposed to an input.
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Table 6. Technical Change Decomposition, in %

Model (I) Model (II) Model (III)

Year TCt TCt Realloc. TCt TCt Realloc. TCt TCt Realloc.

2001 –0.54 –0.44 –0.09 0.49 0.20 0.28 –5.41 –1.95 –3.46
2002 0.08 0.16 –0.08 0.81 0.46 0.35 –3.98 –1.28 –2.70
2003 0.59 0.76 –0.16 1.09 0.91 0.18 –3.54 –1.39 –2.15
2004 1.02 1.34 –0.32 0.81 0.71 0.09 –4.04 –1.73 –2.31
2005 1.32 1.94 –0.62 0.58 0.49 0.08 –3.76 –2.13 –1.63
2006 3.91 2.51 1.40 1.80 0.72 1.08 –9.29 –2.13 –7.15
2007 5.43 3.11 2.31 2.09 0.82 1.26 –12.8 –3.32 –9.48
2008 –1.32 –1.62 0.29 0.44 0.29 0.15 –3.09 –1.36 –1.72
2009 –0.98 –1.04 0.05 0.58 0.52 0.06 –3.99 –1.24 –2.74

NOTES: TCt is the farm-revenue-share-weighted average estimate of annual farm-level technical change;
TCt is the simple average of annual farm-level technical change; “Realloc.” equals the sample covariance
between TCt and farm revenue.

5.4 Shadow Price of the Undesirable By-Product

Like most environmentally detrimental pollutants, a nitrogen surplus is a non-marketable output
with no observable market price. However, the derivation of shadow prices for undesirable by-
products is of particular relevance for designing and targeting environmental policy instruments.
We can obtain the estimate of unobserved shadow prices for a nitrogen surplus using estimates of
a distance function under some behavioral assumptions. Specifically, the shadow prices for b can
be obtained under the proposition that the ratio of the shadow prices for two outputs ought to be
equal to the marginal rate of transformation between the two, where the latter equals the ratio of
derivatives of the distance function with respect to outputs (Färe et al., 1993).

Following Färe et al. (2005), we derive the shadow price of a non-marketed nitrogen surplus using
our preferred hedonic-output-index-based IDF in the revenue maximization framework. Specifically,
for dairy farms that seek to maximize revenues, the revenue function is given by

R(x,y, b)
def
= max

y,b

{

p
′y − rb : Di

(

x, h(y, b)
)

≥ 1
}

(5.3)

with the corresponding first-order conditions given by

pm
r

= −

[

∂Di

(

x, h(y, b)
)

∂b

]−1
∂Di

(

x, h(y, b)
)

∂ym
∀ m = 1, . . . ,M, (5.4)

where p = (p1, . . . , pm, . . . , pM )′ is an M × 1 vector of market prices of desirable outputs, and r is
the shadow price of a (scalar) undesirable output.

Summing over M first-order conditions yields a unique shadow price of the nitrogen surplus b:

r = −
1

M

∂Di

(

x, h(y, b)
)

∂b

∑

m

pm

[

∂Di

(

x, h(y, b)
)

∂ym

]−1

= −
1

Mb

[

∂ lnDi

(

x, h(y, b)
)

∂ ln b

]

∑

m

pmym

[

∂ lnDi

(

x, h(y, b)
)

∂ ln ym

]−1

, (5.5)

which can be computed using the estimates of the IDF elasticities.
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Table 7. Shadow Price of Nitrogen Surplus, in e per ton

Model Mean 1st Qu. Median 3rd Qu.

(I) 1,282.0 482.7 892.6 1,551.5

(II) –58,999.4 –74,475.17 –47,088.2 –30,627.5

(III) 479,711.5 253,344.5 387,703.1 606,189.1

The summary statistics for the shadow price estimates are reported in Table 7. Here, we also
report the shadow price estimates based on the two auxiliary models. In the case of Models (II) and
(III), we use the same formula given in (5.5) where we replace Di

(

x, h(y, b)
)

with the conventional
IDF Di(x,y, b).

8 According to our preferred Model (I), the average shadow price of a nitrogen
surplus is estimated at e1,282 per ton during the 2001–2009 period, which is significantly lower
than the estimate of e1,960 per ton (in 2005 prices)9 reported by Reinhard et al. (1999) for 1991–
1994. The latter suggests a substantial decline in the price of an undesirable by-product like a
nitrogen surplus over the course of years, indicating that it might have become less costly for Dutch
dairy farms to cut their nitrogen surpluses.

The remaining two models yield rather odd results. Model (II), which imposes no theoretical
regularity onto b and treats it as a frontier shifter, produces negative values for the shadow price of a
nitrogen surplus, yet again indicating that this pollutant is desirable. In the instance of Model (III),
while we generally obtain positive values for the r estimates, they are all however of unreasonably
high magnitudes in excess of e100,000 per ton, likely pointing to the misspecification of the model
due to the modeling of a nitrogen surplus as an input.

5.5 Elasticity of Substitution between Desirable and Undesirable Outputs

We conclude our analysis of the production technology in Dutch dairy farming by looking at the
complementarity of desirable and undesirable outputs. To do so, we compute the the Morishima
output elasticity of substitution (Blackorby and Russell, 1981) between a desirable output ym and
undesirable output b defined as MESm ≡ ∂ ln(r/pm)/∂ ln(ym/b). This elasticity measures how the
pollution intensity (an inverse of ym/b) influences the undesirable-desirable shadow price ratio. We
compute the Morishima output elasticity only for our preferred Model (I), since this is the only
model that treats a nitrogen surplus as an output.10 To estimate the Morishima elasticity using
the fitted hedonic-output-index-based IDF, we rewrite the revenue-maximizing first-order condition
(5.4) as follows

r

pm
= −

∂ lnDi

(

x, h(y, b)
)

∂ ln b

[

∂ lnDi

(

x, h(y, b)
)

∂ ln ym

]−1

×
ym
b

= −
∂ lnh(y, b)

∂ ln b

[

∂ lnh(y, b)

∂ ln ym

]−1

×
ym
b
. (5.6)

8It might appear that one cannot use the same methodology to compute the shadow price of b for Model (III) because
it treats b as an input. However, the formula for r even when b is an input stays unchanged if one replaces the
revenue maximization framework with the profit maximization in which b is treated as one of the inputs.

9To be able to compare our shadow price estimates with those reported by Reinhard et al. (1999), we convert their
average shadow price estimate measured in 1991 guilders into euros of 2005.

10Morishima elasticity computed using the IDF estimates from the other two models will lack a proper economic
interpretation.
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Table 8. Morishima Elasticities of Substitution based on Model (I)

Point Estimates Statistical Significance

Elasticity Mean 1st Qu. Median 3rd Qu. < 0 = 0 > 0

MES: b vs. y1 1.7882 1.3944 1.5638 1.9387 0.00% 2.24% 97.75%

MES: b vs. y2 0.2895 0.1612 0.4812 0.6251 9.91% 40.72% 49.35%

NOTES: Percentage points may not sum up to a hundred due to rounding.

Log-differentiating both sides with respect to ln (ym/b), we get

MESm
def
=

∂ ln
(

r
pm

)

∂ ln
(

ym
b

) = 1 +
∂ ln

[

−∂ lnh(y,b)
∂ ln b

]

∂ ln
(

ym
b

) −
∂ ln

[

∂ lnh(y,b)
∂ ln ym

]

∂ ln
(

ym
b

) . (5.7)

Obtaining the closed-form expression for MESm is quite tedious given that our specifications of
the IDF and the hedonic output index are in the log form. We therefore compute these elasticities
of substitution using numerical derivatives.

Table 8 presents the summary of the MESm estimates based on our Model (I). In the (y1, b) di-
mension, our statistically non-negative estimates of MES1 expectedly suggest that milk production
and a nitrogen surplus are complements, given that most nitrogen surpluses originate in the form
of unused or over-utilized manure. The sample average estimate of MES1 is 1.78 with 97% of the
estimates being statistically above zero at the 5% level. In the (y2, b) dimension, the estimates of
Morishima elasticity are still mostly positive pointing to complementarity between crop production
and nitrogen surplus generation. However, the MES2 estimates are somewhat lower in magnitude
than are the MES1 estimates, suggesting that an increase in the y1/b ratio leads to a much bigger
increase in the shadow price ratio r/p1 than a commensurate increase in the y2/b ratio evokes in
the r/p2 ratio. The average value of MES2 is estimated at 0.29 with 49% (41%) of the estimates
being statistically above zero (statistically insignificant).

Lastly, we examine the relationship (if any) between the degree of complementarity between
desirable and undesirable outputs and a farm’s extent of specialization in one of desirable outputs.
We assess this relationship not just at the mean but distribution-wise. To accomplish the latter, we
estimate bivariate kernel densities11 of farm-level estimates of Morishima elasticities of substitution
and (nominal) dairy output share in the total revenue defined as p1y1/

∑

m pmym. Figure 4 depicts
contour plots for these densities. The left sub-figure suggests that the degree of complementarity
between the dairy output and nitrogen surplus (MES1) appears to decrease as the dairy output
share in the farm’s total agricultural output goes up. This result suggests that a higher degree of
specialization in dairy production allows farms to decrease the marginal rate of substitution between
y1 and b given a change in their quantity ratio y1/b, i.e., highly specialized farms forgo less revenue
per unit of y1 due to the generation of a nitrogen surplus. In contrast, the right subfigure in Figure
4 indicates a different picture, according to which the extent of specialization in dairy production
is positively related with the Morishima elasticity of substitution between crop products y2 and
nitrogen surplus b.

11We employ an axis-aligned bivariate Gaussian kernel, evaluated on a square grid using the normal reference band-
width.
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Figure 4. Morishima Output Elasticity of Substitution vs. Dairy Output Share based on Model (I)

6 Conclusion

The by-production of undesirable, or so-called “bad”, outputs is an inherent attribute of many pro-
duction processes. It is therefore imperative to account for such undesirable outputs in the estima-
tion of polluting production technologies. Despite the apparent abundance of modeling frameworks
which include hyperbolic and directional distance functions, the conventional radial distance func-
tion of Shephard (1953, 1970) however persistently remains a popular go-to formulation of polluting
production processes among practitioners. The unfading popularity of radial distance functions in
spite of their recent criticisms is arguably driven by their ability, unlike alternative directional
distance functions, to allow for unit-free multiplicative changes in arguments as well as, by implic-
itly postulating the radial direction, to free researchers from the dilemma of having to explicitly
choose the directional vector. The conventional radial distance function is usually augmented to
incorporate undesirable outputs in two ways. The function is either conditioned on the quantity of
undesirable by-products treated as (theoretically unregulated) technology shifters or expanded to
effectively incorporate undesirable by-products in the role of inputs.

In this paper, we offer a generalization of the standard radial distance function to polluting
technologies that can accommodate undesirable by-products in a more economically meaningful
way. Specifically, we propose modeling undesirable outputs via a hedonic output index, which is
meant to ensure that pollutants are treated as outputs, as opposed to inputs or theoretically un-
regulated frontier shifters, while also recognizing their undesirable nature. By using a radial input
distance function generalized to encompass an (unobservable) hedonic output index of desirable and
undesirable outputs, we are able to meaningfully describe relationships between different products
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(including the complementarity of desirable and undesirable outputs) within producible output sets
as well as to represent technically feasible polluting production possibilities given inputs. An em-
pirical application of our methodology to the case of Dutch dairy farms in 2001–2009 demonstrates
the complexity of interactions between outputs, thereby attesting to the value of more elaborate
representations of production possibilities.
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