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 Abstract: While credit cards provide transactions services, credit cards have never been included in 

measures of the money supply.  The reason is accounting conventions, which do not permit adding 

liabilities to assets.  However, index number theory measures service flows and is based on 

aggregation theory, not accounting.  We derive theory needed to measure the joint services of credit 

cards and money. We provide and evaluate two such aggregate measures having different objectives. 

We initially apply to NGDP nowcasting. Both aggregates are being implemented by the Center for 

Financial Stability, which will provide them to the public monthly, along with Bloomberg Terminals. 
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1. Introduction 

Most models of the monetary policy transmission mechanism operate through 

interest rates, and often involve a monetary or credit channel, but not both. See, e.g., 

Bernanke and Blinder (1988) and Mishkin (1996).  In addition, there are multiple 

versions of each mechanism, usually implying different roles for interest rates 

during the economy’s adjustment to central bank policy actions.  However, there is a 

more fundamental reason for separating money from credit.  While money is an 

asset, credit is a liability.  In accounting conventions, assets and liabilities cannot be 

added together.  But aggregation theory and economic index number theory are 

based on microeconomic theory, not accounting conventions.  Economic aggregates 
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measure service flows.  To the degree that money and some forms of credit produce 

joint services, those services can be aggregated.   

A particularly conspicuous example is credit card services, which are directly 

involved in transactions and contribute to the economy’s liquidity in ways not 

dissimilar to those of money.1 While money is both an asset and part of wealth, 

credit cards are neither.  Hence credit cards are not money.  To the degree that 

monetary policy operates through a wealth effect (Pigou effect), as advocated by 

Milton Friedman, credit cards do not play a role.  But to the degree that the flow of 

monetary services is relevant to the economy, as through the demand for monetary 

services or as an indicator of the state of the economy, the omission of credit card 

services from monetary services induces a loss of information.  For example, Duca 

and Whitesell (1995) showed that a higher probability of credit card ownership was 

correlated with lower holdings of monetary transactions balances.  Clearly credit 

card services are a substitute for the services of monetary transactions balances, 

perhaps to a much higher degree than the services of many of the assets included in 

traditional monetary aggregates, such as the services of nonnegotiable certificates of 

deposit. 

In this seminal paper, we use strongly simplifying assumptions.  We assume 

credit cards are used to purchase consumer goods.  All purchases are made at the 

beginning of periods, and payments for purchases are either by credit cards or 

money.  Credit card purchases are repaid to the credit card company at the end of 

the current period or at the end of a future period, plus interest charged by the 

credit card company. Stated more formally, all discrete time periods are closed on 

the left and open on the right. After aggregation over consumers, the expected 

interest rate paid by the “representative” credit card holder can be very high, 

despite the fact that about 20% of consumers pay no interest on credit card 

balances.  Future research is planned to disaggregate to heterogeneous agents, 

                                                        
1 We are indebted to Apostolos Serletis for his suggestion of this topic for research.  His suggestion is 

contained in his presentation as discussant of Barnett’s Presidential Address at the Inaugural 

Conference of the Society for Economic Measurement at the University of Chicago, August 18-20, 

2014.  The slides for Serletis’s discussion can be found online at 

http://sem.society.cmu.edu/conference1.html. 
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including consumers who repay soon enough to owe no interest. In the current 

model, such consumers affect the results only by decreasing the average credit card 

interest rate aggregated over consumers. 

To reflect the fact that money and credit cards provide services, such as liquidity 

and transactions services, money and credit are entered into a derived utility 

function, in accordance with Arrow and Hahn’s (1971) proof.2 The derived utility 

function absorbs constraints reflecting the explicit motives for using money and 

credit card services.  Since this paper is about measurement, we need only assume 

the existence of such motives.  In the context of this research, we have no need to 

work backwards to reveal the explicit motives.  As has been shown repeatedly, any 

of those motives, including the highly relevant transactions motive, are consistent 

with existence of a derived utility function absorbing the motive.3 

 Based on our derived theory, we propose two measurements of the joint 

services of credit cards and money.  These new Divisia monetary aggregates have 

different objectives. One is based on microeconomic structural aggregation theory, 

providing an aggregated variable within the macroeconomy.  That aggregate is 

widely applicable to models and policies dependent upon a measure of monetary 

services within the structure of the macroeconomy.  For example, that aggregate 

would be applicable to demand for money models or as possible intermediate 

targets of policy.  The relevant existence condition is weak separability within the 

                                                        
2 Our research in this paper is not dependent upon the simple decision problem we use for derivation 

and illustration.  In the case of monetary aggregation, Barnett (1987) proved that the same 

aggregator functions and index numbers apply, regardless of whether the initial model has money in 

the utility function or production function, so long as there is intertemporal separability of structure 

and separability of components over which aggregation occurs.  That result is equally as applicable to 

our current results with augmented aggregation over monetary asset and credit card services.  While 

this paper uses economic index number theory, it should be observed that there also exists a 

statistical approach to index number theory.  That approach produces the same results, with the 

Divisia index interpreted to be the Divisia mean using expenditure shares as probability.  See Barnett 

and Serletis (1990). 
3 The aggregator function is the derived function that always exists, if monetary and credit card 

services have positive value in equilibrium.  See, e.g., Samuelson (1948), Arrow and Hahn (1971), 

Fischer (1974), Phlips and Spinnewyn (1982), Quirk and Saposnik (1968), and Poterba and 

Rotemberg (1987).  Analogously, Feenstra (1986, p. 271) demonstrated “a functional equivalence 

between using real balances as an argument of the utility function and entering money into liquidity 

costs which appear in the budget constraints.”  The converse mapping from money and credit in the 

utility function back to the explicit motive is not unique. But in this paper we are not seeking to 

identify the explicit motives for holding money or credit card balances.   



4 

 

structure of the economy.4  The resulting structural aggregate is thereby directly 

factored out of the structure of the economy as a formal aggregator function.  

Because of the broad applicability of the structural aggregate, we leave its 

application to future research, as in replication of the extensive prior research using 

the Center for Financial Stability (CFS) Divisia monetary aggregates over monetary 

assets alone.  

Our other credit-card-augmented aggregate is indicator optimized and is weakly 

separable within our optimal nominal GDP nowcasting equation. Hence that 

aggregate is directly derived from our nowcasting results as an aggregator function 

factored out of the nowcasting equation.  Unlike the structural aggregate, which has 

broad potential applications, the indicator optimized aggregation is application 

specific and is the focus of our current empirical results provided in this paper. 

Relative to its objectives, each of the aggregates is uniquely derived from the 

relevant theory.  We evaluate the ability of our indicator-optimized monetary 

services aggregate in nowcasting nominal GDP and as an indicator of the state of the 

economy. This objective is currently topical, given proposals for nominal GDP 

targeting, which requires monthly measures of nominal GDP.  Both our structural 

credit-card augmented aggregates, based on the relevant theory in this paper, and 

our indicator optimized aggregates, derived and applied in this paper, will soon be 

available monthly from the CFS and to Bloomberg Terminal users. 

Our nowcasts are estimated using only real time information, as available to 

policy makers at the time predictions are made.  We use a multivariate state space 

model that takes into account asynchronous information --- the model proposed in 

Barnett, Chauvet, and Leiva-Leon (2016). The model considers real time information 

arriving at different frequencies and asynchronously, in addition to mixed 

frequencies, missing data, and ragged edges. The results indicate that the proposed 

model, containing information on real economic activity, inflation, the new Divisia 

                                                        
4 Weak separability is the fundamental existence condition for quantity aggregation. See Barnett 

(1982).  We do not empirically test the component clusterings.  An important literature exists on 

testing for weakly separable functional structure and could contribute in major ways to further 

research in this area.  Recent papers meriting serious consideration for future research include 

Cherchye, Demuynck, Rock, and Hjerstrand (2015) and Hjertstrand, Swofford, and Whitney (2016).  
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monetary aggregates, and past information nominal GDP itself, produces the most 

accurate real time nowcasts of nominal GDP growth. In particular, we find that the 

inclusion of the new aggregates in our nowcasting model yields substantially 

smaller mean squared errors than inclusion of the previous Divisia monetary 

aggregates, which in turn had performed substantially better than the official simple 

sum monetary aggregates in prior research by Barnett, Chauvet, and Leiva-Leon 

(2016). 

 

2. Intertemporal Allocation 

We begin by defining the variables in the risk neutral case for the representative 

consumer: 

 𝐱𝐱𝑠𝑠 = vector of per capita (planned) consumptions of N goods and services  

          (including those of durables) during period 𝑠𝑠. 𝐩𝐩𝑠𝑠 = vector of goods and services expected prices, and of durable goods  

          expected rental prices during period 𝑠𝑠. 𝑚𝑚𝑖𝑖𝑠𝑠 = planned per capita real balances of monetary asset 𝑖𝑖 during  

          period 𝑠𝑠 (𝑖𝑖 = 1,2, … , 𝑛𝑛). 𝑐𝑐𝑗𝑗𝑠𝑠 = planned per capita real expenditure with credit card type 𝑗𝑗 for transactions  

          during period s (𝑗𝑗 = 1,2, … ,𝑘𝑘).  In the jargon of the credit card industry, those  

          contemporaneous expenditures are called “volumes.” 𝑧𝑧𝑗𝑗𝑠𝑠 = planned per capita rotating real balances in credit card type j during period s 

          from transactions in previous periods (𝑗𝑗 = 1,2, … ,𝑘𝑘). 𝑦𝑦𝑗𝑗𝑠𝑠 = 𝑐𝑐𝑗𝑗𝑠𝑠 + 𝑧𝑧𝑗𝑗𝑠𝑠= planned per capita total balances in credit type j during period s  

          (𝑗𝑗 = 1,2, … ,𝑘𝑘). 𝑟𝑟𝑖𝑖𝑠𝑠 = expected nominal holding period yield (including capital gains and losses)  

          on monetary asset 𝑖𝑖 during period 𝑠𝑠 (𝑖𝑖 = 1,2, … ,𝑛𝑛). 𝑒𝑒𝑗𝑗𝑠𝑠 = expected interest rate on 𝑐𝑐𝑗𝑗𝑠𝑠. 

js
e  = expected interest rate on 𝑧𝑧𝑗𝑗𝑠𝑠. 𝐴𝐴𝑠𝑠 = planned per capita real holdings of the benchmark asset during period 𝑠𝑠. 
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𝑅𝑅𝑠𝑠 = expected (one-period holding) yield on the benchmark asset during  

          period 𝑠𝑠. 𝐿𝐿𝑠𝑠 = per capita labor supply during period 𝑠𝑠. 𝑤𝑤𝑠𝑠 = expected wage rate during period 𝑠𝑠. 

 

The benchmark asset is defined to provide no services other than its expected 

yield, 𝑅𝑅𝑠𝑠, which motivates holding of the asset solely as a means of accumulating 

wealth.  As a result, 𝑅𝑅𝑠𝑠 is the maximum expected holding period yield available to 

consumers in the economy in period s from holding a secured asset.  The benchmark 

asset is held to transfer wealth by consumers between multiperiod planning 

horizons, rather than to provide liquidity or other services.  In contrast, 
js

e  is not 

the interest rate on an asset and is not secured.  It is the interest rate on an 

unsecured liability, subject to substantial default and fraud risk.  Hence, 
js

e  can be 

higher than the benchmark asset rate, and historically has always been much higher 

than the benchmark asset rate.5  

It is important to recognize that the decision problem we model is not of a single 

economic agent, but rather of the “representative consumer,” aggregated over all 

consumers.  All quantities are therefore averaged over all consumers.  Gorman’s 

assumptions for the existence of a representative consumer are implicitly accepted, 

as is common in almost all modern macroeconomic theory having microeconomic 

foundations.  This modeling assumption is particularly important in understand the 

credit card quantities and interest rates used in our research.  About 20% of credit 

card holders in the United States do not pay explicit interest on credit card balances, 

since those credit card transactions are paid off by the end of the period. But the 

                                                        
5 We follow the Center for Financial Stability (CFS) and the Bank of Israel in using the short term 

bank loan rate as a proxy for the benchmark rate.  That interest rate has always exceeded the interest 

rate paid by banks on deposit accounts and on all other monetary assets used in the CFS Divisia 

monetary aggregates, and has always been lower than the Federal Reserve’s reported average 

interest rate charged on credit card balances.  For detailed information on CFS data sources, see 

Barnett, Liu, Mattson, and Noort (2013).  For the additional data sources used by the CFS to extend to 

credit card services, see Barnett and Su (2016). 
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80% who do pay interest pay very high interest rates.6  The Federal Reserve 

provides two interest rate series for credit card debt.  One, 
js

e , includes interest 

only on accounts that do pay interest to the credit card issuing banks, while the 

other series, 𝑒𝑒𝑗𝑗𝑠𝑠, includes the approximately 20% that do not pay interest.  The latter 

interest rate is thereby lower, since it is averaged over interest paid on both 

categories of accounts.  Since we are modeling the representative consumer, 

aggregated over all consumers, 𝑒𝑒𝑗𝑗𝑠𝑠 is always less than 
js

e  for all j and s.  The interest 

rate on rotating credit card balances, 
js

e , is paid by all consumers who maintain 

rotating balances on credit cards.  But 𝑒𝑒𝑗𝑗𝑠𝑠 is averaged over both those consumers 

who maintain such rotating balances and hence pay interest on contemporaneous 

credit card transactions (volumes) and also those consumers who pay off such 

credit card transactions before the end of the period, and hence do not pay explicit 

interest on the credit card transactions.  The Federal Reserve provides data on both 

js
e  and 𝑒𝑒𝑗𝑗𝑠𝑠. Although 𝑒𝑒𝑗𝑗𝑠𝑠 is less than 

js
e ,  𝑒𝑒𝑗𝑗𝑠𝑠 also has always been higher than the 

benchmark rate.    This observation is a reflection of the so-called credit card debt 

puzzle.7 

We use the latter interest rate, 𝑒𝑒𝑗𝑗𝑠𝑠, in our augmented Divisia monetary 

aggregates formula, since the contemporaneous per capita transactions volumes in 

our model are averaged over both categories of credit card holders. We do not 

include rotating balances used for transactions in prior periods, since to do so would 

involve double counting of transactions services.   

The expected interest rate, 𝑒𝑒𝑗𝑗𝑠𝑠, can be explicit or implicit, and applies to the 

aggregated representative consumer.  For example, an implicit part of that interest 

                                                        
6 The following statement is from www.motherjones.com/kevin-drum/2011/10/americans-are-

clueless-about-their-credit-card-debt.   "In the four working age categories, about 50% of households 

think they have outstanding credit card debt, but the credit card companies themselves think about 

80% of households have outstanding balances."  Since these percentages are of total households, 

including those having no credit cards, the percent of credit card holders paying interest might be 

even higher. 
7See, e.g., Telyukova and Wright (2008), who view the puzzle as a special case of the rate dominance 

puzzle in monetary economics.  The “credit card debt puzzle” asks why people do not pay down debt, 

when receiving low interest rates on deposits, while simultaneously paying higher interest rates on 

credit card debt. 
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rate could be in the form of an increased price of the goods purchased or in the form 

of a periodic service fee or membership fee.  But we use only the Federal Reserve’s 

average explicit interest rate series, which is lower than the one that would include 

implicit interest. Nevertheless, that downward biased explicit rate of return to credit 

card companies, 𝑒𝑒𝑗𝑗𝑠𝑠,  aggregated over consumers, tends to be very high, far 

exceeding 𝑅𝑅𝑠𝑠, even after substantial losses from fraud. 

It is also important to recognize that we are using the credit card industry’s 

definition of “credit card,” which excludes “store cards” and “charge cards.”  

According to the trade’s definition, “store cards” are issued by businesses providing 

credit only for their own goods, such as gasoline company credit cards or 

department store cards.  To be a “credit card” by the trade’s definition, the card 

must be widely accepted for many goods and services purchaes in the economy.  

“Charge cards” can be widely accepted for such purchases, but do not charge 

interest, since the debt must be paid off by the end of the period.  To be a “credit 

card,” the card must provide a line of credit to the card holder with interest charged 

on purchases not paid off by the end of the period.  For example, American Express 

provides both charge cards and credit cards.  The first credit card was provided by 

Bank of America.  There now are four sources of credit card services in the United 

States:  Visa, Mastercard, Discover, and American Express.  From American Express, 

we use only their credit card account services, not their charge cards. We use data 

from only those four sources, in accordance with the credit card industry’s 

conventional definition of “credit card.” 

We let 𝑢𝑢𝑡𝑡  be the representative consumer’s current intertemporal utility 

function at time t over the T-period planning horizon. We assume that 𝑢𝑢𝑡𝑡  is weakly 

separable in each period’s consumption of goods and monetary assets, so that 𝑢𝑢𝑡𝑡  can 

be written in the form 𝑢𝑢𝑡𝑡 = 𝑢𝑢𝑡𝑡(𝐦𝐦𝑡𝑡 , … ,𝐦𝐦𝑡𝑡+𝑇𝑇;  𝐜𝐜𝑡𝑡, … , 𝐜𝐜𝑡𝑡+𝑇𝑇;  𝐱𝐱𝑡𝑡, … , 𝐱𝐱𝑡𝑡+𝑇𝑇;  𝐴𝐴𝑡𝑡+𝑇𝑇) 

               = 𝑈𝑈𝑡𝑡(𝑣𝑣(𝐦𝐦𝑡𝑡 , 𝐜𝐜𝑡𝑡), 𝑣𝑣𝑡𝑡+1(𝐦𝐦𝑡𝑡+1, 𝐜𝐜𝑡𝑡+1), … , 𝑣𝑣𝑡𝑡+𝑇𝑇(𝐦𝐦𝑡𝑡+𝑇𝑇 , 𝐜𝐜𝑡𝑡+𝑇𝑇); 

                                           𝑉𝑉(𝐱𝐱𝑡𝑡),𝑉𝑉𝑡𝑡+1(𝐱𝐱𝑡𝑡+1), … ,𝑉𝑉𝑡𝑡+𝑇𝑇(𝐱𝐱𝑡𝑡+𝑇𝑇);𝐴𝐴𝑡𝑡+𝑇𝑇),   (1) 
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for some monotonically increasing, linearly homogeneous, strictly quasiconcave 

functions, 𝑣𝑣, 𝑣𝑣𝑡𝑡+1, … , 𝑣𝑣𝑡𝑡+𝑇𝑇 ,𝑉𝑉,𝑉𝑉𝑡𝑡+1, … ,𝑉𝑉𝑡𝑡+𝑇𝑇 .The function 𝑈𝑈𝑡𝑡 also is monotonically 

increasing, but not necessarily linearly homogeneous. Note that ct, not yt, is in the 

utility function.  The reason is that yt includes rotating balances, zt, resulting from 

purchases in prior periods.  To include yt in the utility function would introduce a 

form of double counting into our aggregation theory by counting prior transactions 

services more than once. Those carried forward balances provided transactions 

services in previous periods and were therefore in the utility function for that 

period. Keeping those balances in the utility function for the current period would 

imply existence of a different kind of services from the transactions and liquidity 

services we are seeking to measure. 

Dual to the functions, 𝑉𝑉and 𝑉𝑉𝑠𝑠(𝑠𝑠 = 𝑡𝑡 + 1, … , 𝑡𝑡 + 𝑇𝑇), there exist current and 

planned true cost of living indexes, 𝑝𝑝𝑡𝑡∗ = 𝑝𝑝(𝐩𝐩𝑡𝑡) and 𝑝𝑝𝑠𝑠∗ = 𝑝𝑝𝑠𝑠∗(𝐩𝐩𝑠𝑠)(𝑠𝑠 = 𝑡𝑡 + 1, … , 𝑡𝑡 + 𝑇𝑇). 

Those indexes, which are the consumer goods unit cost functions, will be used to 

deflate all nominal quantities to real quantities, as in the definitions of 𝑚𝑚𝑖𝑖𝑠𝑠, 𝑐𝑐𝑗𝑗𝑠𝑠 , and 𝐴𝐴𝑠𝑠 above. 

Assuming replanning at each t, we write the consumer’s decision problem during 

each period 𝑠𝑠(𝑡𝑡 ≤ 𝑠𝑠 ≤ 𝑡𝑡 + 𝑇𝑇) within the planning horizon to be to choose 

(𝐦𝐦𝑡𝑡, … ,𝐦𝐦𝑡𝑡+𝑇𝑇;  𝐜𝐜𝑡𝑡 , … , 𝐜𝐜t+T;  𝐱𝐱𝑡𝑡, … , 𝐱𝐱𝑡𝑡+𝑇𝑇;  𝐴𝐴𝑡𝑡+𝑇𝑇) ≥ 𝟎𝟎 to  

max𝑢𝑢𝑡𝑡(𝐦𝐦𝑡𝑡, … ,𝐦𝐦𝑡𝑡+𝑇𝑇;  𝐜𝐜𝑡𝑡, … , 𝐜𝐜𝑡𝑡+𝑇𝑇;  𝐱𝐱𝑡𝑡, … , 𝐱𝐱𝑡𝑡+𝑇𝑇;  𝐴𝐴𝑡𝑡+𝑇𝑇), 

subject to 

𝐩𝐩𝑠𝑠′𝐱𝐱𝑠𝑠 = 𝑤𝑤𝑠𝑠𝐿𝐿𝑠𝑠 + ���1 + 𝑟𝑟𝑖𝑖,𝑠𝑠−1�𝑝𝑝𝑠𝑠−1∗ 𝑚𝑚𝑖𝑖,𝑠𝑠−1 − 𝑝𝑝𝑠𝑠∗𝑚𝑚𝑖𝑖𝑠𝑠�𝑛𝑛
𝑖𝑖=1

+ ��𝑝𝑝𝑠𝑠∗𝑐𝑐𝑗𝑗𝑠𝑠 − �1 + 𝑒𝑒𝑗𝑗,𝑠𝑠−1�𝑝𝑝𝑠𝑠−1∗ 𝑐𝑐𝑗𝑗,𝑠𝑠−1�                                                        (2)  

𝑘𝑘
𝑗𝑗=1

+ ��𝑝𝑝𝑠𝑠∗𝑧𝑧𝑗𝑗𝑠𝑠 − �1 +
, 1j s

e − � 𝑝𝑝𝑠𝑠−1∗ 𝑧𝑧𝑗𝑗,𝑠𝑠−1�𝑘𝑘
𝑗𝑗=1   + [(1 + 𝑅𝑅𝑠𝑠−1)𝑝𝑝𝑠𝑠−1∗ 𝐴𝐴𝑠𝑠−1− 𝑝𝑝𝑠𝑠∗𝐴𝐴𝑠𝑠].                                                         
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Planned per capita total balances in credit type j during period s are then 𝑦𝑦𝑗𝑗𝑠𝑠 = 𝑐𝑐𝑗𝑗𝑠𝑠 +𝑧𝑧𝑗𝑗𝑠𝑠.   

Equation (2) is a flow of funds identity, with the right hand side being funds 

available to purchase consumer goods during period s.  On the right hand side, the 

first term is labor income.  The second term is funds absorbed or released by rolling 

over the monetary assets portfolio, as explained in Barnett (1980).  The third term is 

particularly important to this paper.  That term is the net change in credit card debt 

during period s from purchases of consumer goods, while the fourth term is the net 

change in rotating credit card debt.  The fifth term is funds absorbed or released by 

rolling over the stock of the benchmark asset, as explained in Barnett (1980).  The 

third term on the right side is specific to current period credit card purchases, while 

the fourth term is not relevant to the rest of our results, since 𝑧𝑧𝑗𝑗𝑠𝑠 is not in the utility 

function.  Hence 𝑧𝑧𝑗𝑗𝑠𝑠 does not appear in the user cost prices, conditional decisions, or 

aggregates in the rest of this paper. 

Let  

𝜌𝜌𝑠𝑠 = � 1,                             𝑖𝑖𝑖𝑖 𝑠𝑠 = 𝑡𝑡,�(1 + 𝑅𝑅𝑢𝑢)

𝑠𝑠−1
𝑢𝑢=𝑡𝑡 , 𝑖𝑖𝑖𝑖 𝑡𝑡 + 1 ≤ 𝑠𝑠 ≤ 𝑡𝑡 + 𝑇𝑇.  

                                                       (3) 

We now derive the implied Fisherine discounted wealth constraint.  The 
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It is important to understand that (4) is directly derived from (2) without any 

additional assumptions.  As in Barnett (1978, 1980), we see immediately that the 

nominal user cost (equivalent rental price) of monetary asset holding 𝑚𝑚𝑖𝑖𝑠𝑠 (𝑖𝑖 =

1,2, … ,𝑛𝑛) is 𝜋𝜋𝑖𝑖𝑠𝑠 =
𝑝𝑝𝑠𝑠∗𝜌𝜌𝑠𝑠 − 𝑝𝑝𝑠𝑠∗(1 + 𝑟𝑟𝑖𝑖𝑠𝑠)𝜌𝜌𝑠𝑠+1 . 

So the current nominal user cost price, 𝜋𝜋𝑖𝑖𝑡𝑡, of 𝑚𝑚𝑖𝑖𝑡𝑡 reduces to 𝜋𝜋𝑖𝑖𝑡𝑡 =
𝑝𝑝𝑡𝑡∗(𝑅𝑅𝑡𝑡 − 𝑟𝑟𝑖𝑖𝑡𝑡)

1 + 𝑅𝑅𝑡𝑡 .                                                (5) 

Likewise, the nominal user cost (equivalent rental price) of credit card transactions 

services, 𝑐𝑐𝑗𝑗𝑠𝑠 (𝑗𝑗 = 1,2, … , 𝑘𝑘), is 

 𝜋𝜋�𝑗𝑗𝑡𝑡 =
𝑝𝑝𝑠𝑠∗(1 + 𝑒𝑒𝑗𝑗𝑠𝑠)𝜌𝜌𝑠𝑠+1 − 𝑝𝑝𝑠𝑠∗𝜌𝜌𝑠𝑠 . 

Finally, the current period nominal user cost, 𝜋𝜋�𝑗𝑗𝑡𝑡, of 𝑐𝑐𝑗𝑗𝑡𝑡 reduces to 𝜋𝜋�𝑗𝑗𝑡𝑡 =
𝑝𝑝𝑡𝑡∗(1 + 𝑒𝑒𝑗𝑗𝑡𝑡)

1 + 𝑅𝑅𝑡𝑡 − 𝑝𝑝𝑡𝑡∗                                         (6)     

  =
𝑝𝑝𝑡𝑡∗(𝑒𝑒𝑗𝑗𝑡𝑡 − 𝑅𝑅𝑡𝑡)

1 + 𝑅𝑅𝑡𝑡 .                                                 (7)    

Equation (7) is a new result central to most that follows in this paper.8 The 

corresponding real user costs are  𝜋𝜋𝑗𝑗𝑠𝑠∗ =
𝜋𝜋𝑖𝑖𝑠𝑠𝑝𝑝𝑠𝑠∗                                                                  (8a) 

and 𝜋𝜋�𝑗𝑗𝑠𝑠∗ =
𝜋𝜋�𝑗𝑗𝑡𝑡𝑝𝑝𝑠𝑠∗ .                                                               (8𝑏𝑏)  

Equation (6) is particularly revealing.  To consume the transactions services of 

credit card type j, the consumer borrows 𝑝𝑝𝑡𝑡∗ dollars per unit of goods purchased at 

the start of the period during which the goods are consumed, but repays the credit 

card company 𝑝𝑝𝑡𝑡∗(1 + 𝑒𝑒𝑗𝑗𝑡𝑡) dollars at the end of the period.  The lender will not 

provide that one period loan to the consumer unless 𝑒𝑒𝑗𝑗𝑡𝑡 > 𝑅𝑅𝑡𝑡, because of the ability 

                                                        
8 The same user cost formula applies in the infinite planning horizon case, but the derivation is 

different.  The derivation applicable in that case is in the Appendix. 



12 

 

of the lender to earn 𝑅𝑅𝑡𝑡 without making the unsecured credit card loan.  Consumers 

do not have access to higher expected yields on secured assets than the benchmark 

rate. Hence the user cost price in (7) is nonnegative. 

Equivalently, equation (7) can be understood in terms of the delay between the 

goods purchase date and the date of repayment of the loan to the credit card 

company.  Credit cards provide the opportunity for consumers to defer payment for 

consumer goods and services.  During the one period delay, the consumer can invest 

the cost of the goods purchased at rate of return 𝑅𝑅𝑡𝑡.  Hence the net real cost to the 

consumer of the credit card loan, per dollar borrowed, is 𝑒𝑒𝑗𝑗𝑡𝑡 − 𝑅𝑅𝑡𝑡 .  Multiplication by 

the true cost of living index in the numerator of (7) converts to nominal dollars and 

division by 1 + 𝑅𝑅𝑡𝑡 discounts to present value within the time period. 

 

3.  Conditional Current Period Allocation 

We define 𝒥𝒥𝑡𝑡∗  to be real, and 𝒥𝒥𝑡𝑡 nominal, expenditure on augmented monetary 

services --- augmented to include the services of contemporaneous credit card 

transactions charges. The assumptions on homogeneous blockwise weak 

separability of the intertemporal utility function, (1), are sufficient for consistent 

two-stage budgeting.  See Green (1964, theorem 4). In the first stage, the aggregated 

representative consumer selects real expenditure on augmented monetary 

services, 𝒥𝒥𝑡𝑡∗, and on aggregate consumer goods for each period within the planning 

horizon, along with terminal benchmark asset holdings, 𝐴𝐴𝑡𝑡+𝑇𝑇 .  

In the second stage, 𝒥𝒥𝑡𝑡∗ is allocated over demands for the current period services 

of monetary assets and credit cards. That decision is to select 𝐦𝐦𝑡𝑡  and 𝐜𝐜𝑡𝑡  to 

max 𝑣𝑣(𝐦𝐦𝑡𝑡 , 𝐜𝐜𝑡𝑡),                                                     (9) 

subject to 𝛑𝛑∗𝑡𝑡′𝐦𝐦𝑡𝑡 + 𝛑𝛑�∗𝑡𝑡′𝐜𝐜𝑡𝑡 = 𝒥𝒥𝑡𝑡∗,                                             (10) 

where 𝒥𝒥𝑡𝑡∗ is expenditure on augmented monetary services allocated to the current 

period in the consumer’s first-stage decision.  

The rotating balances, 𝑧𝑧𝑗𝑗𝑠𝑠, from previous periods, not used for transactions this 

period, add a flow of funds term to the constraints, (2), but do not appear in the 
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utility function.  As a result, 𝑧𝑧𝑗𝑗𝑠𝑠 does not appear in the utility function, (9), or on the 

left side of equation (10), but does affect the right side of (10).  To implement this 

theory empirically, we need data on total credit card transactions volumes each 

period, 𝑐𝑐𝑗𝑗𝑠𝑠, not just the total balances in the accounts, 𝑐𝑐𝑗𝑗𝑠𝑠 + 𝑧𝑧𝑗𝑗𝑠𝑠 .  While those volumes 

are much more difficult to find than credit card balances, we have been able to 

acquire those current period volumes from the annual reports of the four credit 

card companies.  For details on available sources, see Barnett and Su (2016). 

 

4.  Aggregation Theory 

The exact quantity aggregate is the level of the indirect utility produced by 

solving problem ((9),(10)): ℳ𝑡𝑡 = max  {𝑣𝑣(𝐦𝐦𝑡𝑡, 𝐜𝐜𝑡𝑡):𝛑𝛑𝑡𝑡′𝐦𝐦𝑡𝑡 + 𝛑𝛑�𝑡𝑡′𝐜𝐜𝑡𝑡 = 𝒥𝒥𝑡𝑡}                           (11) 

       = max  {𝑣𝑣(𝐦𝐦𝑡𝑡, 𝐜𝐜𝑡𝑡):𝛑𝛑∗𝑡𝑡′𝐦𝐦𝑡𝑡 + 𝛑𝛑�∗𝑡𝑡′𝐜𝐜𝑡𝑡 = 𝒥𝒥𝑡𝑡∗}, 

where we define ℳ𝑡𝑡 = ℳ(𝐦𝐦𝑡𝑡, 𝐜𝐜𝑡𝑡) = 𝑣𝑣(𝐦𝐦𝑡𝑡, 𝐜𝐜𝑡𝑡) to be the “structural augmented 

monetary aggregate” --- augmented to aggregate jointly over the contemporaneous 

services of money and credit cards.  The category utility function, 𝑣𝑣, is the 

aggregator function we assume to be linearly homogeneous in this section. Dual to 

any exact quantity aggregate, there exists a unique price aggregate, aggregating over 

the prices of the goods or services. Hence there must exist an exact nominal price 

aggregate over the user costs (𝛑𝛑𝑡𝑡,𝛑𝛑�𝑡𝑡).  As shown in Barnett (1980,1987), the 

consumer behaves relative to the dual pair of exact monetary quantity and price 

aggregates as if they were the quantity and price of an elementary good.  The same 

result applies to our augmented monetary quantity and dual user cost aggregates. 

One of the properties that an exact dual pair of price and quantity aggregates 

satisfies is Fisher’s factor reversal test, which states that the product of an exact 

quantity aggregate and its dual exact price aggregate must equal actual expenditure 

on the components. Hence, if 𝛱𝛱(𝛑𝛑𝑡𝑡,𝛑𝛑�𝑡𝑡) is the exact user cost aggregate dual to ℳ𝑡𝑡 , 
then 𝛱𝛱(𝛑𝛑𝑡𝑡,𝛑𝛑�𝑡𝑡) must satisfy 𝛱𝛱(𝛑𝛑𝑡𝑡,𝛑𝛑�𝑡𝑡) =

𝒥𝒥𝑡𝑡ℳ𝑡𝑡 .                                                 (12) 
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Since (12) produces a unique solution for 𝛱𝛱(𝛑𝛑𝑡𝑡,𝛑𝛑�𝑡𝑡), we could use (12) to define the 

price dual to ℳ𝑡𝑡 . In addition, if we replace ℳ𝑡𝑡  by the indirect utility function defined 

by (11) and use the linear homogeneity of 𝑣𝑣, we can show that 𝛱𝛱 = 𝛱𝛱(𝛑𝛑𝑡𝑡,𝛑𝛑�𝑡𝑡), 

defined by (12), does indeed depend only upon (𝛑𝛑𝑡𝑡,𝛑𝛑�𝑡𝑡), and not upon (𝐦𝐦𝑡𝑡, 𝐜𝐜𝑡𝑡) or 𝒥𝒥𝑡𝑡. 
See Barnett (1987) for a version of the proof in the case of monetary assets alone. 

The conclusion produced by that proof can be written in the form  𝛱𝛱(𝛑𝛑𝑡𝑡,𝛑𝛑�𝑡𝑡) = [𝑚𝑚𝑚𝑚𝑚𝑚
(𝐦𝐦𝑡𝑡,𝐜𝐜𝑡𝑡)

{𝑣𝑣(𝐦𝐦𝑡𝑡, 𝐜𝐜𝑡𝑡):𝛑𝛑𝑡𝑡′𝐦𝐦𝑡𝑡 + 𝛑𝛑�𝑡𝑡′𝐜𝐜𝑡𝑡 = 1}]−1,                          (13) 

which clearly depends only upon (𝛑𝛑𝑡𝑡,𝛑𝛑�𝑡𝑡). 

Although (13) provides a valid definition of 𝛱𝛱, there also exists a direct 

definition that is more informative and often more useful. The direct definition 

depends upon the cost function 𝐸𝐸, defined by 𝐸𝐸(𝑣𝑣0,𝛑𝛑𝑡𝑡,𝛑𝛑�𝑡𝑡) = min
(𝐦𝐦𝑡𝑡,𝐜𝐜𝑡𝑡)

{𝛑𝛑𝑡𝑡′𝐦𝐦𝑡𝑡 + 𝛑𝛑�𝑡𝑡′𝐜𝐜𝑡𝑡: 𝑣𝑣(𝐦𝐦𝑡𝑡, 𝐜𝐜𝑡𝑡) = 𝑣𝑣0}, 

which equivalently can be acquired by solving the indirect utility function equation 

(11) for 𝒥𝒥𝑡𝑡 as a function of ℳ𝑡𝑡 = 𝑣𝑣(𝐦𝐦𝑡𝑡, 𝐜𝐜𝑡𝑡) and (𝛑𝛑𝑡𝑡,𝛑𝛑�𝑡𝑡).  Under our linear 

homogeneity assumption on 𝑣𝑣, it can be proved that  

        𝛱𝛱(𝛑𝛑𝑡𝑡,𝛑𝛑�𝑡𝑡) = 𝐸𝐸(1,𝛑𝛑𝑡𝑡,𝛑𝛑�𝑡𝑡)
= min

(𝐦𝐦𝑡𝑡,𝐜𝐜𝑡𝑡)
{𝛑𝛑𝑡𝑡′𝐦𝐦𝑡𝑡 + 𝛑𝛑�𝑡𝑡′𝐜𝐜𝑡𝑡: 𝑣𝑣(𝐦𝐦𝑡𝑡 , 𝐜𝐜𝑡𝑡) = 1},                                    (14) 

Which is often called the unit cost or price function. 

The unit cost function is the minimum cost of attaining unit utility level for 𝑣𝑣(𝐦𝐦𝑡𝑡 , 𝐜𝐜𝑡𝑡) at given user cost prices (𝛑𝛑𝑡𝑡,𝛑𝛑�𝑡𝑡). Clearly, (14) depends only upon (𝛑𝛑𝑡𝑡,𝛑𝛑�𝑡𝑡). 

Hence by (12) and (14), we see that 𝛱𝛱(𝛑𝛑𝑡𝑡,𝛑𝛑�𝑡𝑡) =
𝒥𝒥𝑡𝑡 ℳ𝑡𝑡� = 𝐸𝐸(1,𝛑𝛑𝑡𝑡,𝛑𝛑�𝑡𝑡). 

 

5. Preference Structure over Financial Assets 

5.1. Blocking of the Utility Function 

While our primary objective is to provide the theory relevant to joint 

aggregation over monetary and credit card services, subaggregation separately over 

monetary asset services and credit card services can be nested consistently within 

the joint aggregates. The required assumption is blockwise weak separability of 
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money and credit within the joint aggregator function.  In particular, we would then 

assume the existence of functions ῦ, 𝑔𝑔1, 𝑔𝑔2, such that 𝑣𝑣(𝐦𝐦𝑡𝑡 , 𝐜𝐜𝑡𝑡) = ῦ�𝑔𝑔1(𝐦𝐦𝑡𝑡),𝑔𝑔2(𝐜𝐜𝑡𝑡)�,                                    (15) 

with the functions 𝑔𝑔1 and 𝑔𝑔2 being linearly homogeneous, increasing, and 

quasiconcave. 

We have now nested weakly separable blocks within weakly separable blocks to 

establish a fully nested utility tree. As a result, an internally consistent multi-stage 

budgeting procedure exists, such that the structured utility function defines the 

quantity aggregate at each stage, with duality theory defining the corresponding 

user cost price aggregates. 

In the next section we elaborate on the multi-stage budgeting properties of 

decision ((9),(10)) and the implications for quantity and price aggregation. 

 

5.2. Multi-stage Budgeting 

Our assumptions on the properties of 𝑣𝑣 are sufficient for a two-stage solution of 

the decision problem ((9),(10)), subsequent to the two-stage intertemporal solution 

that produced ((9),(10)).  The subsequent two-stage decision is exactly nested 

within the former one. 

Let 𝑀𝑀𝑡𝑡 = 𝑀𝑀(𝐦𝐦𝑡𝑡) be the exact aggregation-theoretic quantity aggregate over 

monetary assets alone, and let 𝐶𝐶𝑡𝑡 = 𝐶𝐶(𝐜𝐜𝑡𝑡) be the exact aggregation-theoretic 

quantity aggregate over credit card services.  Let 𝛱𝛱𝑚𝑚∗ = 𝛱𝛱𝑚𝑚(𝛑𝛑𝑡𝑡∗) be the real user 

costs aggregate (unit cost function) dual to 𝑀𝑀(𝐦𝐦𝑡𝑡), and let 𝛱𝛱𝑐𝑐∗ = 𝛱𝛱𝑐𝑐(𝛑𝛑�𝑡𝑡∗) be the user 

costs aggregate dual to 𝐶𝐶(𝐜𝐜𝑡𝑡). The first stage of the two-stage decision is to select 𝑀𝑀𝑡𝑡 
and 𝐶𝐶𝑡𝑡 to solve 

max
(𝐦𝐦𝑡𝑡,𝐜𝐜𝑡𝑡)

ῦ(𝑀𝑀𝑡𝑡,𝐶𝐶𝑡𝑡)                                                   (16) 

subject to 𝛱𝛱𝑚𝑚∗ 𝑀𝑀𝑡𝑡 + 𝛱𝛱𝑐𝑐∗𝐶𝐶𝑡𝑡 = 𝒥𝒥𝑡𝑡∗. 

From the solution to problem (16), the consumer determines aggregate real 

expenditure on monetary and credit card services, 𝛱𝛱𝑚𝑚∗ 𝑀𝑀𝑡𝑡and 𝛱𝛱𝑐𝑐∗𝐶𝐶𝑡𝑡. 
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In the second stage, the consumer allocates 𝛱𝛱𝑚𝑚∗ 𝑀𝑀𝑡𝑡  over individual monetary 

assets, and allocates 𝛱𝛱𝑐𝑐∗𝐶𝐶𝑡𝑡 over services of individual types of credit cards. She does 

so by solving the decision problem: 

max𝐦𝐦𝒕𝒕 𝑔𝑔1(𝐦𝐦𝑡𝑡),                                                           (17) 

subject to 𝛑𝛑𝑡𝑡∗′𝐦𝐦𝑡𝑡 = 𝛱𝛱𝑚𝑚∗ 𝑀𝑀𝑡𝑡. 
Similarly, she solves 

max𝐜𝐜𝐭𝐭 𝑔𝑔2(𝒄𝒄𝑡𝑡),                                                              (18) 

subject to 𝛑𝛑�𝑡𝑡∗′𝐜𝐜𝑡𝑡 = 𝛱𝛱𝑐𝑐∗𝐶𝐶𝑡𝑡. 
The optimized value of decision (17)’s objective function, 𝑔𝑔1(𝒎𝒎𝑡𝑡), is then the 

monetary aggregate, 𝑀𝑀𝑡𝑡 = 𝑀𝑀(𝐦𝐦𝑡𝑡), while the optimized value of decision (18)’s 

objective function, 𝑔𝑔2(𝐜𝐜t), is the credit card services aggregate, 𝐶𝐶𝑡𝑡 = 𝐶𝐶(𝐜𝐜𝑡𝑡).   

Hence, 𝑀𝑀𝑡𝑡 = max  {𝑔𝑔1(𝐦𝐦𝑡𝑡):𝛑𝛑𝑡𝑡∗′𝐦𝐦𝑡𝑡 = 𝛱𝛱𝑚𝑚∗ 𝑀𝑀𝑡𝑡}                             (19) 

and 𝐶𝐶𝑡𝑡 = max  {𝑔𝑔2(𝐜𝐜𝑡𝑡):𝛑𝛑�𝑡𝑡∗′𝐜𝐜𝑡𝑡 = 𝛱𝛱𝑐𝑐∗𝐶𝐶𝑡𝑡}.                                 (20) 

It then follows from (11) and (15) that the optimized values of the monetary and 

credit card quantity aggregates are related to the joint aggregate in the following 

manner: ℳ𝑡𝑡 = ῦ(𝑀𝑀𝑡𝑡,𝐶𝐶𝑡𝑡).                                                                 (21) 

 

6. The Divisia Index 

We advocate using the Divisia index, in its Törnqvist (1936) discrete time 

version, to track ℳ𝑡𝑡 = ℳ(𝐦𝐦𝑡𝑡, 𝐜𝐜𝑡𝑡), as Barnett (1980) has previously advocated for 

tracking 𝑀𝑀𝑡𝑡 = 𝑀𝑀(𝐦𝐦𝑡𝑡). If there should be reason to track the credit card aggregate 

separately, the Törnqvist-Divisia index similarly could be used to track 𝐶𝐶𝑡𝑡 = 𝐶𝐶(𝐜𝐜𝑡𝑡).  

If there is reason to track all three individually, then after measuring 𝑀𝑀𝑡𝑡 and 𝐶𝐶𝑡𝑡, the 

joint aggregate ℳ𝑡𝑡  could be tracked as a two-good Törnqvist-Divisia index using 

(21), rather as an aggregate over the n + k disaggregated components, (𝐦𝐦𝑡𝑡 , 𝐜𝐜𝑡𝑡). The 
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aggregation theoretic procedure for selecting the 𝑛𝑛 + 𝑚𝑚 component assets is 

described in Barnett (1982). 

 

6.1. The Linearly Homogeneous Case 

It is important to understand that the Divisia index (1925,1926) in continuous 

time will track any aggregator function without error.  To understand why, it is best 

to see the derivation.  The following is a simplified version based on Barnett (2012, 

pp. 290-292), adapted for our augmented monetary aggregate, which aggregates 

jointly over money and credit card services. The derivation is equally as relevant to 

separate aggregation over monetary assets or credit cards, so long as the prices in 

the indexes are the corresponding user costs, ((5),(7)).  Although Francois Divisia 

(1925, 1926) derived his consumer goods index as a line integral, the simplified 

approach below is mathematically equivalent to Divisia’s original method.     

At instant of continuous time, t, consider the quantity aggregator function, ℳ𝑡𝑡 =ℳ(𝐦𝐦𝑡𝑡, 𝐜𝐜𝑡𝑡) = 𝑣𝑣(𝐦𝐦𝑡𝑡 , 𝐜𝐜𝑡𝑡), with components (𝐦𝐦𝑡𝑡, 𝐜𝐜𝑡𝑡), having user cost prices (𝛑𝛑𝑡𝑡,𝛑𝛑�𝑡𝑡).  

Let 𝐦𝐦𝑡𝑡𝑎𝑎 = (𝐦𝐦𝑡𝑡′ , 𝐜𝐜𝑡𝑡′)′ and 𝛑𝛑𝑡𝑡𝑎𝑎 = (𝛑𝛑𝑡𝑡′ ,𝛑𝛑�𝑡𝑡′)′. Take the total differential of ℳ to get 

𝑑𝑑ℳ(𝐦𝐦𝑡𝑡𝑎𝑎) = � 𝜕𝜕ℳ𝜕𝜕𝑚𝑚𝑖𝑖𝑡𝑡𝑎𝑎  𝑑𝑑𝑚𝑚𝑖𝑖𝑡𝑡𝑎𝑎𝑛𝑛+𝑘𝑘
𝑖𝑖=1 .                                          (22) 

Since 𝜕𝜕ℳ/𝜕𝜕𝑚𝑚𝑖𝑖𝑡𝑡 contains the unknown parameters of the function ℳ, we replace 

each of those marginal utilities by 𝜆𝜆𝜋𝜋𝑖𝑖𝑡𝑡𝑎𝑎 = 𝜕𝜕ℳ/𝜕𝜕𝑚𝑚𝑖𝑖𝑡𝑡, which is the first-order 

condition for expenditure constrained maximization of ℳ, where 𝜆𝜆 is the Lagrange 

multiplier, and 𝜋𝜋𝑖𝑖𝑡𝑡𝑎𝑎  is the user-cost price of 𝑚𝑚𝑖𝑖𝑡𝑡𝑎𝑎  at instant of time t.  

We then get 𝑑𝑑ℳ(𝐦𝐦𝑡𝑡𝑎𝑎)𝜆𝜆 = �𝜋𝜋𝑖𝑖𝑡𝑡𝑎𝑎𝑑𝑑𝑚𝑚𝑖𝑖𝑡𝑡𝑎𝑎𝑛𝑛+𝑘𝑘
𝑖𝑖=1 ,                                                  (23) 

which has no unknown parameters on the right-hand side. 

For a quantity aggregate to be useful, it must be linearly homogeneous. A case in 

which the correct growth rate of an aggregate is clearly obvious is the case in which 

all components are growing at the same rate. As required by linear homogeneity, we 
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would expect the quantity aggregate would grow at that same rate. Hence we shall 

assume ℳ to be linearly homogeneous. 

Define 𝛱𝛱𝑎𝑎(𝛑𝛑𝑡𝑡𝑎𝑎) to be the dual price index satisfying Fisher’s factor reversal test, 𝛱𝛱𝑎𝑎(𝛑𝛑𝑡𝑡𝑎𝑎)ℳ(𝐦𝐦𝑡𝑡𝑎𝑎) = 𝛑𝛑𝑡𝑡𝑎𝑎′𝐦𝐦𝑡𝑡𝑎𝑎. In other words, define 𝛱𝛱𝑎𝑎(𝛑𝛑𝑡𝑡𝑎𝑎) to equal 𝛑𝛑𝑡𝑡𝑎𝑎’𝐦𝐦𝑡𝑡𝑎𝑎/ ℳ(𝐦𝐦𝑡𝑡𝑎𝑎), 

which can be shown to depend only upon 𝛑𝛑𝑡𝑡𝑎𝑎, when ℳ is linearly homogeneous. 

Then the following lemma holds. 

 

Lemma 1: Let 𝜆𝜆 be the Lagrange multiplier in the first order conditions for solving the 

constrained maximization ((9),(10)), and assume that 𝑣𝑣 is linearly homogeneous.  

Then 𝜆𝜆 =
1𝛱𝛱𝑎𝑎(𝛑𝛑𝑡𝑡𝑎𝑎)

 

Proof:  See Barnett (2012, p. 291).       ∎ 

 

From Equation (23), we therefore find the following: 

𝛱𝛱𝑎𝑎(𝛑𝛑𝑡𝑡𝑎𝑎)𝑑𝑑ℳ(𝐦𝐦𝑡𝑡𝑎𝑎) = �𝜋𝜋𝑖𝑖𝑎𝑎𝑑𝑑𝑚𝑚𝑖𝑖𝑎𝑎𝑛𝑛+𝑘𝑘
𝑖𝑖=1 .                                    (24) 

Manipulating Equation (24) algebraically to convert to growth rate (log change) 

form, we find that 

𝑑𝑑𝑑𝑑𝑑𝑑𝑔𝑔 ℳ(𝐦𝐦𝑡𝑡𝑎𝑎) = �𝜔𝜔𝑖𝑖𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑔𝑔 𝑚𝑚𝑖𝑖𝑎𝑎,                                  (25)

𝑛𝑛+𝑘𝑘
𝑖𝑖=1  

where 𝜔𝜔𝑖𝑖𝑡𝑡 = 𝜋𝜋𝑖𝑖𝑎𝑎𝑚𝑚𝑖𝑖𝑎𝑎/𝛑𝛑𝑡𝑡𝑎𝑎′𝐦𝐦𝑡𝑡𝑎𝑎  is the value share of 𝑚𝑚𝑖𝑖𝑎𝑎 in total expenditure on the 

services of 𝐦𝐦𝑡𝑡𝑎𝑎 . Equation (25) is the Divisia index in growth rate form. In short, the 

growth rate of the Divisia index, ℳ(𝐦𝐦𝑡𝑡𝑎𝑎), is the share weighted average of the 

growth rates of the components.  Notice that there were no assumptions at all in the 

derivation about the functional form of ℳ, other than existence (i.e., weak 

separability within the structure of the economy) and linear homogeneity of the 

aggregator function. 
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If Divisia aggregation was previously used to aggregate separately over money 

and credit card services, then equation (25) can be replaced by a two-goods Divisia 

index aggregating over the two subaggregates, in accordance with equation (21). 

 

6.2. The Nonlinearly Homogeneous Case 

For expositional simplicity, we have presented the aggregation theory 

throughout this paper under the assumption that the category utility functions, 𝑣𝑣, 𝑔𝑔1, 

and 𝑔𝑔2, are linearly homogeneous.  In the literature on aggregation theory, that 

assumption is called the “Santa Claus” hypothesis, since it equates the quantity 

aggregator function with the welfare function.  If the category utility function is not 

linearly homogeneous, then the utility function, while still measuring welfare, is not 

the quantity aggregator function.  The correct quantity aggregator function is then 

the distance function in microeconomic theory.  While the utility function and the 

distance function both fully represent consumer preferences, the distance function, 

unlike the utility function, is always linearly homogenous. When normalized, the 

distance function is called the Malmquist index. 

In the latter case, when welfare measurement and quantity aggregation are not 

equivalent, the Divisia index tracks the distance function, not the utility function, 

thereby continuing to measure the quantity aggregate, but not welfare.  See Barnett 

(1987) and Caves, Christensen, and Diewert (1982). Hence the only substantive 

assumption in quantity aggregation is blockwise weak separability of components.  

Without that assumption there cannot exist an aggregate to track. 

 

6.3. Discrete Time Approximation to the Divisia Index 

If (𝐦𝐦𝑡𝑡, 𝐜𝐜𝑡𝑡) is acquired by maximizing (9) subject to (10) at instant of time t, then 𝑣𝑣(𝐦𝐦𝑡𝑡 , 𝐜𝐜𝑡𝑡) is the exact augmented monetary services aggregate, ℳ𝑡𝑡 , as written in 

equation (11).  In continuous time, ℳ𝑡𝑡 = 𝑣𝑣(𝐦𝐦𝑡𝑡 , 𝐜𝐜𝑡𝑡) can be tracked without error by 

the Divisia index, which provides ℳ𝑡𝑡  as the solution to the differential equation 
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𝑑𝑑𝑑𝑑𝑑𝑑𝑔𝑔 ℳ𝑡𝑡𝑑𝑑𝑡𝑡 = �𝜔𝜔𝑖𝑖𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑔𝑔 𝑚𝑚𝑖𝑖𝑡𝑡𝑑𝑑𝑡𝑡𝑛𝑛
𝑖𝑖=1 + �𝜔𝜔�𝑗𝑗𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑔𝑔 𝑐𝑐𝑗𝑗𝑡𝑡𝑑𝑑𝑡𝑡𝑘𝑘

𝑗𝑗=1  ,               (26) 

in accordance with equation (25).  The share 𝜔𝜔𝑖𝑖𝑡𝑡 is the expenditure share of 

monetary asset i in the total services of monetary assets and credit cards at instant 

of time t, 𝜔𝜔𝑖𝑖𝑡𝑡= 𝜋𝜋𝑖𝑖𝑡𝑡𝑚𝑚𝑖𝑖𝑡𝑡/(𝛑𝛑𝑡𝑡′𝐦𝐦𝑡𝑡 + 𝛑𝛑�𝑡𝑡′𝐜𝐜𝑡𝑡),   

while the share 𝜔𝜔�𝑖𝑖𝑡𝑡 is the expenditure share of credit card services, i, in the total 

services of monetary assets and credit cards at instant of time t, 𝜔𝜔�𝑖𝑖𝑡𝑡= 𝜋𝜋�𝑖𝑖𝑡𝑡𝑐𝑐𝑖𝑖𝑡𝑡/(𝛑𝛑𝑡𝑡′𝐦𝐦𝑡𝑡 + 𝛑𝛑�𝑡𝑡′𝐜𝐜𝑡𝑡). 

Note that the time path of (𝐦𝐦𝑡𝑡, 𝐜𝐜𝑡𝑡) must continually maximize (9) subject to (10), in 

order for (26) to hold. 

In discrete time, however, many different approximations to (25) are possible, 

because 𝜔𝜔𝑖𝑖𝑡𝑡 and 𝜔𝜔�𝑖𝑖𝑡𝑡 need not be constant during any given time interval.  By far the 

most common discrete time approximations to the Divisia index is the Törnqvist-

Theil approximation (often called the Törnqvist (1936) index or just the Divisia 

index in discrete time).  That index can be viewed as the Simpson’s rule 

approximation, where t is the discrete time period, rather than an instant of time: 𝑑𝑑𝑑𝑑𝑔𝑔 ℳ(𝐦𝐦𝑡𝑡𝑎𝑎) − 𝑑𝑑𝑑𝑑𝑔𝑔 ℳ(𝐦𝐦𝑡𝑡−1𝑎𝑎 )

=  �𝜔𝜔�𝑖𝑖𝑡𝑡�log𝑚𝑚𝑖𝑖𝑡𝑡 − log𝑚𝑚𝑖𝑖,𝑡𝑡−1�𝑛𝑛
𝑖𝑖=1

+  �𝜔𝜔��𝑖𝑖𝑡𝑡�log 𝑐𝑐𝑖𝑖𝑡𝑡 − log 𝑐𝑐𝑖𝑖,𝑡𝑡−1�,

𝑘𝑘
𝑖𝑖=1                     (27) 

where 𝜔𝜔�𝑖𝑖𝑡𝑡 = (𝜔𝜔𝑖𝑖𝑡𝑡 + 𝜔𝜔𝑖𝑖,𝑡𝑡−1)/2 and 𝜔𝜔��𝑖𝑖𝑡𝑡 = (𝜔𝜔�𝑖𝑖𝑡𝑡 + 𝜔𝜔�𝑖𝑖,𝑡𝑡−1)/2. 

A compelling reason exists for using the Törnqvist index as the discrete time 

approximation to the Divisia index. Diewert (1976) has defined a class of index 

numbers, called “superlative” index numbers, which have particular appeal in 

producing discrete time approximations to aggregator functions. Diewert defines a 

superlative index number to be one that is exactly correct for some quadratic 

approximation to the aggregator function, and thereby provides a second order local 

approximation to the unknown aggregator function.  In this case the aggregator 
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function is ℳ(𝐦𝐦𝑡𝑡, 𝐜𝐜𝑡𝑡) = 𝑣𝑣(𝐦𝐦𝑡𝑡, 𝐜𝐜𝑡𝑡). The Törnqvist discrete time approximation to the 

continuous time Divisia index is in the superlative class, because it is exact for the 

translog specification for the aggregator function.  The translog is quadratic in the 

logarithms. If the translog specification is not exactly correct, then the discrete 

Divisia index (27) has a third-order remainder term in the changes, since quadratic 

approximations possess third-order remainder terms.  

With weekly or monthly monetary asset data, the Divisia monetary index, 

consisting of the first term on the right hand side of (27), has been shown by Barnett 

(1980) to be accurate to within three decimal places in measuring log changes in 𝑀𝑀𝑡𝑡 = 𝑀𝑀(𝐦𝐦𝑡𝑡) in discrete time.  That three decimal place error is smaller than the 

roundoff error in the Federal Reserve’s component data.  We can reasonably expect 

the same to be true for our augments Divisia monetary index, (27), in measuring the 

log change of ℳ𝑡𝑡 = ℳ(𝐦𝐦𝑡𝑡, 𝐜𝐜𝑡𝑡). 

 

7. Data Sources 

The credit card transactions services are measured by the transactions volumes 

summed over four sources:  Visa, MasterCard, American Express, and Discover.  Our 

theory does not apply to debit cards or to store cards or to charge cards not 

providing a line of credit.  We acquired the volumes from their annual reports and 

seasonally adjusted them by the Census X-13ARIMA-SEATS program. The start date 

is the quarter during which those credit card firms went public and the annual 

reports became available.  The contemporaneous transactions volumes do not 

include the carried forward rotating balances resulting from transactions during 

prior periods.9  The credit card interest rates imputed to the representative 

consumer are from the Federal Reserve Board’s data on all commercial bank credit 

card accounts, including those not charged interest, since paid off within the 

                                                        
9 Credit limits are not considered, since we do not have a way to untangle the effect of those 

constraints on contemporaneous transactions volumes from the effect on the carried forward 

rotating balances associate with previous period transactions. 
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month.10  All other component quantities and interest rates are as used in the CFS 

Divisia monetary aggregates at www.centerforfinancialstability.org/amfm.php. 

Our extensive search for relevant sources of credit card data are provided in 

detail in Barnett and Su (2016), which documents our decisions about credit card 

data sources.  All details about data sources and data decisions regarding monetary 

asset components and interest rates are provided in Barnett, Liu, Mattson, and van 

den Noort (2013).  We use only sources available to the public.11   

 The resulting augmented Divisia monetary services aggregates, ℳ𝑡𝑡 =ℳ(𝐦𝐦𝑡𝑡, 𝐜𝐜𝑡𝑡), satisfy the existence conditions for a structural economic variable in a 

macroeconomic model.  Hence those aggregates can be used as the quantity of 

monetary services in a demand for money equation, or as a monetary intermediate 

target or long run anchor in a monetary rule, or in any other econometric or policy 

application requiring a macroeconomic model containing the monetary service flow 

as a structural variable. 

 Alternatively, money can be used as an indicator of the state of the economy.  

For example, new-Keynesian nominal GDP targeting policies require monthly 

measures of nominal GDP, although data on nominal GDP are available only 

quarterly.  The usefulness of Divisia monetary aggregates in nowcasting monthly 

nominal GDP has been established by Barnett, Chauvet, and Leiva-Leon (2016). 

Indicator uses of monetary data are free from the controversies that have 

surrounded uses of money as a policy target.  In the next section, we produce an 

indicator-optimized augmented monetary aggregate, ℳ𝑡𝑡∗ = ℳ𝑡𝑡∗(𝐦𝐦𝑡𝑡 , 𝐜𝐜𝑡𝑡). Since this 

aggregate is application specific, its existence condition is different from the one 

used above to produce the augmented structural Divisia monetary aggregates.  

Unlike the augmented structural aggregates, ℳ𝑡𝑡 = ℳ(𝐦𝐦𝑡𝑡 , 𝐜𝐜𝑡𝑡), which are statistical 

                                                        
10This interest rate includes those credit card accounts not assessed interest, and hence is lower than 

the Federal Reserve’s supplied interest rates on accounts assessed interest.  This imputation includes 

only explicit interest paid, averaged over all credit card accounts.   
11 The CFS sweep adjusts demand deposits.  During periods when available from the Federal Reserve, 

the CFS uses the reported sweep adjustments.  When not available, the CFS uses an econometric 

model to approximate the sweep adjustment.  Although sweep adjustment is important at the M1 

level of aggregation, the sweep adjustment has insignificant effect on the broader aggregates, since 

sweeps are largely internalized within those aggregates. 
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index numbers in the superlative index number class, the indicator optimized 

aggregates, ℳ𝑡𝑡∗ = ℳ𝑡𝑡∗(𝐦𝐦𝑡𝑡 , 𝐜𝐜𝑡𝑡), are econometrically estimated aggregator functions, 

not statistical index numbers.  The estimated aggregator function is time dependent, 

because of the real time estimation used in the nowcasting. 

 In the near future, the CFS plans to add to its site our augmented Divisia 

structural monetary aggregates, ℳ𝑡𝑡 = ℳ(𝐦𝐦𝑡𝑡, 𝐜𝐜𝑡𝑡), as defined in equations 11 and 21, 

including credit card services, along with our indicator optimized monetary 

aggregates, ℳ𝑡𝑡∗ = ℳ𝑡𝑡∗(𝐦𝐦𝑡𝑡 , 𝐜𝐜𝑡𝑡).  Monthly updates will be provided to the public by 

the CFS through monthly releases.  The monthly updates will also be provided by 

Bloomberg to its terminal users.   

 

8. Nowcasting Nominal GDP 

In this section we turn to the use of our data as indicators, rather than as policy 

targets or as structural variables in the macroeconomy.   We find that the 

information contained in credit card transaction volumes is a valuable addition to 

the indicator set in formal nowcasting of nominal GDP.  A consequence is a directly 

derived indicator-optimized augmented aggregator function over monetary and 

credit card services.  This aggregator function uniquely captures the contributions 

of monetary and credit card services as indicators of nominal GDP in the nowcasting.  

An important contribution to the literature on nowcasting is Giannone, Reichlin, 

and Small (2008). Their approach, based on factor analysis, has proved to be very 

successful.  Barnett, Chauvet, and Leiva-Leon (2016) propose an alternative 

methodology based on confirmatory factor analysis and find that Divisia monetary 

aggregates are particularly valuable indicators within the resulting set of optimal 

indicators.  Barnett and Tang (2016) compared the factor analysis approach of 

Giannone, Reichlin, and Small (2008) and Barnett, Chauvet, and Leiva-Leon (2016) 

with alternative nowcasting approaches, and find that the factor analysis 

approaches are usually best and benefit substantially from inclusion of the CFS 

Divisia monetary aggregates among its indicators.   
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In this paper, we investigate the further gains from inclusion of credit card 

transactions volumes in the nowcasting. We also produce and explore the derived 

indicator optimized aggregates, ℳ𝑡𝑡∗ = ℳ𝑡𝑡∗(𝐦𝐦𝑡𝑡, 𝐜𝐜𝑡𝑡).  

 

8.1. The Model 

In this paper we use data on credit card transaction volumes along with the 

optimal indicators found by Barnett, Chauvet, and Leiva-Leon (2016) to provide a 

model useful to yield accurate nowcasts of monthly Nominal GDP. Accordingly, as 

indicators we use growth rates of quarterly Nominal GDP, 𝑦𝑦1,𝑡𝑡, monthly Industrial 

Production, 𝑦𝑦2,𝑡𝑡, monthly Consumer Price Index, 𝑦𝑦3,𝑡𝑡, a monthly Divisia monetary 

aggregate measure, 𝑦𝑦4,𝑡𝑡, and a monthly credit card transaction volume, 𝑦𝑦5,𝑡𝑡, to 

estimate the following Mixed Frequency Dynamic Factor model: 
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The model separates out, into the unobserved factor, 𝑖𝑖𝑡𝑡, the common cyclical 

fluctuations underlying the observed variables. The idiosyncratic movements are 

captured by the terms, 𝑣𝑣𝑖𝑖,𝑡𝑡, for 𝑖𝑖 = 1,2, … ,5. The factor loadings, 𝛾𝛾𝑖𝑖, measure the 

sensitivity of the common factor to the observed variables. The dynamics of the 

factor and idiosyncratic components are given by  𝑖𝑖𝑡𝑡 = 𝜙𝜙1𝑖𝑖𝑡𝑡−1 + ⋯+ 𝜙𝜙𝑝𝑝𝑖𝑖𝑡𝑡−𝑝𝑝 + 𝑒𝑒𝑡𝑡 ,          𝑒𝑒𝑡𝑡~𝑁𝑁(0,1)                                                 (29)                     𝑣𝑣𝑖𝑖,𝑡𝑡 = 𝜑𝜑𝑖𝑖1𝑣𝑣𝑖𝑖,𝑡𝑡−1 + ⋯+ 𝜑𝜑𝑖𝑖𝑄𝑄𝑖𝑖𝑣𝑣𝑖𝑖,𝑡𝑡−𝑄𝑄𝑖𝑖 + 𝜀𝜀𝑖𝑖,𝑡𝑡 ,          𝜀𝜀𝑖𝑖,𝑡𝑡~𝑁𝑁�0,𝜎𝜎𝜀𝜀𝑖𝑖2�, for 𝑖𝑖 = 1, … ,5.    (30) 
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Following Stock and Watson (1989), the model assumes that 𝑖𝑖𝑡𝑡  and 𝑣𝑣𝑖𝑖,𝑡𝑡 are mutually 

independent at all leads and lags for all 𝑛𝑛 = 5 variables. 

The model in equations (28)-(30) can be cast into a measurement equation and 

transition equation yielding the following state-space representation 

                                                     𝐲𝐲𝑡𝑡 = 𝐇𝐇𝐅𝐅𝑡𝑡 + 𝛏𝛏𝑡𝑡 ,      𝛏𝛏𝐭𝐭~𝑖𝑖. 𝑖𝑖.𝑑𝑑.𝑁𝑁(𝟎𝟎,𝐑𝐑)                                  (31) 

                                                   𝐅𝐅𝑡𝑡 = 𝐆𝐆𝐅𝐅𝑡𝑡−1 + 𝛇𝛇𝑡𝑡 ,      𝛇𝛇𝑡𝑡~𝑖𝑖. 𝑖𝑖.𝑑𝑑.𝑁𝑁(𝟎𝟎,𝐐𝐐).                               (32) 

We apply the Kalman filter to extract optimal inferences on the state vector, 𝐅𝐅𝑡𝑡, 
which contains the common factor of interest, 𝑖𝑖𝑡𝑡 , and the idiosyncratic terms, 𝑣𝑣𝑖𝑖,𝑡𝑡. 

Following Mariano and Murasawa (2003), we modify the state-space model to 

incorporate into the system missing observations, which are frequently present 

when performing nowcasts in real-time. The modification consists of substituting 

each missing observation with a random draw 𝛽𝛽𝑡𝑡~𝑁𝑁�0,𝜎𝜎𝛽𝛽2�. This substitution keeps 

the matrices conformable, without affecting the estimation of the model parameters, 

in accordance with the rule: 
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where 𝐇𝐇𝑖𝑖,𝑡𝑡∗  is the i-th row of a matrix 𝐇𝐇∗, which has 𝑘𝑘 columns, and 𝟎𝟎1𝑘𝑘 is a 𝑘𝑘 row 

vector of zeros. Hence, the modified measurement equation of the state-space model 

remains as 

                                                 𝐲𝐲𝑡𝑡∗ = 𝐇𝐇𝑡𝑡∗𝐅𝐅𝑡𝑡 + 𝛏𝛏𝑡𝑡∗,       𝛏𝛏𝑡𝑡∗~𝑖𝑖. 𝑖𝑖.𝑑𝑑.𝑁𝑁(𝟎𝟎,𝐑𝐑𝑡𝑡∗).                                      (33) 

The output is an optimal estimator of the dynamic factor, constructed using 

information available through time t. As new information becomes available, the 

filter is applied to update the state vector on a real-time basis. 

 

8.2. In-Sample Analysis 

       We empirically evaluate the predictive ability of the information contained in 

credit card volumes to produce the most accurate nowcasts of nominal GDP growth, 

when credit card transactions volumes are included into the optimal indicator set 
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found by Barnett, Chauvet, and Leiva-Leon (2016).  One of the indicators in that set 

is the current CFS Divisia monetary aggregates, unaugmented by inclusion of credit 

card data. We perform pairwise comparisons between models that include credit 

card information and models that do not.  In the former case, the indicator set 

includes four variables, while in the latter case the indicator set includes five 

variables.  Both sets include the same CFS unaugmented Divisia monetary 

aggregates, Mt = M(mt), as defined in equation 19, among its optimal indicators. We 

first examine the predictive ability of both models, with and without credit card 

information as a fifth indicator, by performing an in-sample analysis. We consider 

the sample period from November 2003 until May 2015 as a result of the availability 

of the needed data.  For the in-sample analysis, we estimate the model only once for 

the full sample.  From November 2003 to June 2006, there are some missing 

observations of some variables, but this does not present a problem, since the 

nowcasting model allows dealing with missing observations using the Kalman filter.  

Regular data availability for all relevant variables begins in July 2006, when the 

credit card companies’ data became available in annual reports.   

              The first two columns of Table 1 report the full sample Mean Square Errors 

(MSE) associated with the models containing each of the two indicator sets. The 

table shows that models containing both CFS Divisia monetary aggregates and credit 

card transactions volumes produce lower MSE than models containing only Divisia 

monetary aggregates, Mt = M(mt) among the other three indicators. This applies at 

any of the four levels of disaggregation, M1, M2, M3, and M4. Next, we compute the 

MSE only for the years associated with the Great Recession (2008-2009), reported 

in the last two columns of Table 1. The results show that the models including credit 

card information produce lower MSE than the models omitting such information in 

nowcasting of nominal GDP growth. 
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Table 1. In-Sample Mean Squared Errors  

  FULL SAMPLE GREAT RECESSION 

  CFS Augmented CFS Augmented 

DM1 0.16 0.17 0.33 0.30 

DM2 0.18 0.17 0.36 0.31 

DM3 0.16 0.15 0.32 0.26 

DM4 0.18 0.15 0.39 0.25 
 

Note. The table reports the mean squared errors associated with each model for the entire sample 

period, November 2003 - May 2015, and for the Great Recession years, January 2008 - December 

2009.  The CFS column includes the CFS Divisia monetary aggregates, Mt = M(mt), among the Barnett, 

Chauvet, and Leiva-Leon (2016) optimal indicator set, but without inclusion of credit card 

transaction volumes, while the Augmented column includes credit card transactions volumes among 

the indicators as a fifth independent indicator. 
 

       To provide a deeper exploration about the role that each indicator plays in the 

construction of nominal GDP predictions, we follow the line of Banbura and Rustler 

(2007) and decompose each forecast into the relative contribution of each indicator, 

with emphasis on the Divisia monetary aggregate, Mt = M(mt), and credit card 

transactions volume.  In doing so, we substitute the prediction error, 𝛏𝛏𝑡𝑡|𝑡𝑡−1∗ , and the 

predicted state, 𝐅𝐅𝑡𝑡|𝑡𝑡−1, into the updating equation of the Kalman filter, yielding 

                                                          𝐅𝐅𝑡𝑡|𝑡𝑡 = (𝐈𝐈 − 𝐊𝐊𝑡𝑡∗𝐇𝐇𝑡𝑡∗)𝐆𝐆𝐅𝐅𝑡𝑡−1|𝑡𝑡−1 + 𝐊𝐊𝑡𝑡∗𝐲𝐲𝑡𝑡∗,                                          (34) 

where the Kalman gain is denoted by 𝐊𝐊𝑡𝑡∗ = 𝐏𝐏𝑡𝑡|𝑡𝑡−1(𝐇𝐇𝑡𝑡∗′(𝐇𝐇𝑡𝑡∗𝐏𝐏𝑡𝑡|𝑡𝑡−1𝐇𝐇𝑡𝑡∗′ + 𝐑𝐑𝑡𝑡∗)), and the 

predicted variance of the state vector is given by 𝐏𝐏𝑡𝑡|𝑡𝑡−1 = 𝐆𝐆𝐏𝐏𝑡𝑡−1|𝑡𝑡−1𝐆𝐆+𝐐𝐐. When the 

Kalman filter approaches its steady state, the updated state vector can be 

decomposed into a weighted sum of observations 

                                                                       𝐅𝐅𝑡𝑡|𝑡𝑡 = ∑ 𝐙𝐙𝑗𝑗𝑡𝑡∗ 𝐲𝐲𝑡𝑡−𝑗𝑗∗∞𝑗𝑗=0  ,                                                         (35) 

where 𝐙𝐙𝑡𝑡∗(𝐿𝐿) = (𝐈𝐈 − (𝐈𝐈 − 𝐊𝐊𝑡𝑡∗𝐇𝐇𝑡𝑡∗)𝐆𝐆𝐆𝐆)−1𝐊𝐊𝑡𝑡∗, and each element of the matrix 𝐙𝐙𝑡𝑡∗(𝐿𝐿) 

measures the effects of unit changes in the lags of individual observations on the 

inference of the state vector 𝐅𝐅𝑡𝑡|𝑡𝑡 . Therefore, the matrix 𝐙𝐙𝑡𝑡∗(1) contains the cumulative 

impacts of the individual observations in the inference of the state vector. For 

further details about this decomposition, see Banbura and Rustler (2007). 

Accordingly, the vector containing the cumulative impact of each indicator on the 

forecast of nominal GDP growth can be calculated as follows 
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     𝛚𝛚𝑡𝑡 = 𝐇𝐇1 �13 𝐳𝐳1𝑡𝑡∗ +
23 𝐳𝐳2𝑡𝑡∗ + 𝐳𝐳3𝑡𝑡∗ +

23 𝐳𝐳4𝑡𝑡∗ +
13 𝐳𝐳5𝑡𝑡∗ �+ �13 𝐳𝐳7𝑡𝑡∗ +

23 𝐳𝐳8𝑡𝑡∗ + 𝒛𝒛9𝑡𝑡∗ +
23 𝐳𝐳10𝑡𝑡∗ +

13 𝐳𝐳11𝑡𝑡∗ �,     (36) 

where, 𝐳𝐳1𝑡𝑡∗ , is the i-th row of 𝐙𝐙𝑡𝑡∗(1). 

       The average cumulative forecast weights, 𝛚𝛚𝑡𝑡 , associated with each indicator are 

reported in Table 2 for all the models under consideration. The results show that, on 

average, one third of the contribution is associated with previous releases of 

nominal quarterly GDP itself. Such information is primary in the model, but is only 

observed once per quarter. Regarding the monthly indicators, Industrial Production 

is the indicator that contributes the most to nominal GDP growth predictions, 

followed by the Divisia monetary aggregates. The indicator that provides the least 

contribution across models is often the Consumer Price Index, CPI. However, when 

credit card information is included, it shows a significantly greater forecast 

contribution than the unaugmented CFS Divisia monetary aggregates or the 

Consumer Price Index.  This conclusion is independent of the aggregation level of 

the monetary measure. These results corroborate that the in sample predictive 

ability of the optimal combination, including both Divisia monetary aggregates and 

credit-card volumes, outperforms models that exclude credit card information.12 

 

                                                        
12 It should be observed that the weights in the CFS rows are not directly comparable to those in the 

Augmented rows, since the weights are relative and sum to one along the rows, with more indicators 

being weighted in the Augmented rows.  Much of the weight on IP in the CFS rows is transferred to 

the credit card volumes in the Augmented rows, producing substantially better nowcasts.  The 

weights on the Divisia monetary aggregates are consistent with the results in Barnett, Chauvet, and 

Leiva-Leon (2016), who found inclusion of the Divisia monetary aggregates to be highly statistically 

significant, in contrast with the many other indicators considered and rejected from the optimal 

indicator set. 
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Table 2. Cumulative Forecast Weight of Each Indicator 

  NGDP IP CPI DIVISIA CREDIT 

DM1 CFS 0.33 0.59 0.03 0.05 -- 

DM1 Augmented 0.33 0.34 0.05 0.03 0.25 

DM2 CFS 0.33 0.58 0.03 0.06 -- 

DM2 Augmented 0.33 0.34 0.04 0.04 0.24 

DM3 CFS 0.33 0.63 0.04 0.01 -- 

DM3 Augmented 0.33 0.35 0.05 0.01 0.26 

DM4 CFS 0.33 0.60 0.03 0.03 -- 

DM4 Augmented 0.33 0.37 0.04 0.02 0.24 

 
Note. The table reports the cumulative forecast weights, averaged over time, for the entire sample.  

As in table 1, the CFS rows include the CFS Divisia monetary aggregates among the Barnett, Chauvet, 

and Leiva-Leon (2016) optimal indicator set, but without inclusion of credit card transaction 

volumes, while the Augmented rows include credit card transactions volumes among the indicators 

as a fifth independent indicator.  In both cases, the Divisia column is the CFS unaugmented Divisia 

monetary aggregate, Mt = M(mt), defined in equation 19. 

 

8.3. Real Time Analysis 

       For the initial estimation of the model in real time analysis, we use data from 

November 2003 to September 2007, yielding 47 observations. Hence, our 

nowcasting evaluation sample is the remaining observations from October 2007 to 

May 2015, yielding 92 observations. The samples have been chosen based on two 

criteria, (i) to guarantee that the estimation sample represents one third of the total 

available sample, and (ii) to incorporate the Great Recession episode in the 

evaluation sample, since it is of particular interest.13 For every month of the 

evaluation sample, we re-estimate the model parameters, compute the nowcast of 

the target variable, and compare it with the first release of nominal GDP to construct 

mean squared errors. 

 

                                                        
13We also tried with different partitions of the sample, but the results remained qualitatively 

unchanged. 
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Figure 1: Mean Square Error Comparison (Full sample) 

 

 

With each model, the MSE associated with the real-time nowcasts are shown in 

Figure 1 for the entire evaluation sample. The figure shows that models 

incorporating credit card information provide a significantly lower MSE than the 

models not incorporating such information. Optimal weighting between credit card 

transactions volumes and Divisia monetary aggregates improves the accuracy in 

producing real-time nowcasts of nominal GDP. The superiority of the extended 

models, which include credit card information, over the un-extended models, 

omitting that information, can be observed at all four levels of aggregation and 

particularly for the M2 monetary aggregates. 

Additionally, we perform the same evaluations, but only focusing on the 

subsample containing the years of the Great Recession. The motivation for doing 

this analysis relies on comparing the ability of the extended and un-extended 

models to track nominal GDP dynamics during recessionary periods, associated 

with macroeconomic instabilities and higher uncertainty. Figure 2 shows the mean 

squared errors associated with real-time nowcasts computed with each model for 

the evaluation sample, containing the years of 2008 and 2009. The results 

corroborate the significant superiority of the extended over unextended models in 

nowcasting nominal GDP during contractionary episodes. 
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Figure 2: Mean Square Error Comparison (Great Recession) 

 

 

       The model is re-estimated at every period of time during which new information 

is available, to simulate real-time conditions. We thereby investigate potential 

changes in the contemporaneous relationship between each indicator in the model 

and the extracted factor used to produce real-time nowcasts of nominal GDP 

growth. This information allows us to examine in detail the comovement between 

each indicator and the signals used to forecast nominal GDP during periods of 

instabilities, such as the Great Recession.  In Table 1, the first row at each level of 

aggregation is for the four indicator model, while the second row is for the five 

indicator model. 

       The upper part of Table 3 reports the full sample average of the recursively 

estimated factor loadings for each indicator and for each model. The results show a 

positive and strong comovement between Industrial Production and the common 

factor, and a positive but weak comovement between Consumer Price Index and the 

common factor, with stronger comovement in the case of the five factor model. 

Regarding the CFS Divisia monetary aggregates, the results show relatively weak 

and sometimes negative comovement with the common factor.  As the sample size 

grows in the future, we anticipate that the recursive loadings of the Divisia 
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monetary aggregates on the common factor will remain small but will become 

consistently positive, as in Barnett, Chauvet, and Leiva-Leon (2016).14  In the five 

factor models, credit card transactions volumes show very strong comovement with 

the common factor, even stronger than the comovement of quarterly nominal GDP 

with the common factor.  Clearly the four factor model is missing important 

indicator information. 

       To assess the comovements during the Great Recession period, we compute the 

average recursive loadings for the period January 2008 to December 2009 and 

report them in the lower part of Table 3.  The comovement between each indicator 

and the common factor across models presents a similar pattern to the one obtained 

with the full sample averages, with one notable exception. With both the four 

indicator and the five indicator models, the Consumer Price Index experiences a 

negative relationship with the common factor, providing countercyclical signals to 

nowcasts of nominal GDP growth.   Again the credit-card transactions volumes 

experience positive and strong comovement with the common factor, and hence 

show the ability to improve the accuracy of signals in nowcasting nominal GDP 

growth during periods of instability. 

        

                                                        
14 The sample size in Barnett, Chauvet, and Leiva-Leon (2016) was much larger than in the current 

study, since the earlier research was not constrained by lack of availability of credit card volumes 

prior to the credit card firms going public.  In the earlier study, the recursive loadings of the Divisia 

monetary aggregates in the common factor were always positive, but smaller than the loadings on 

the other optimal indicators.  The sometimes negative out of sample average factor loadings on the 

Divisia monetary aggregates in the current study are associated with the smaller sample size, having 

a large percentage of observations during the Great Recession period of unusual instability. 
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Table 3. Out of Sample Recursive Loadings 

Full sample period 

  NGDP IP CPI DIVISIA CREDIT 

DM1 CFS 0.19 0.39 0.09 -0.10 -- 

DM1 CFS & CREDIT 0.22 0.42 0.15 -0.14 0.38 

DM2 CFS 0.20 0.38 0.07 -0.13 -- 

DM2 CFS & CREDIT 0.22 0.41 0.14 -0.17 0.36 

DM3 CFS 0.18 0.38 0.08 0.02 -- 

DM3 CFS & CREDIT 0.21 0.41 0.16 0.03 0.38 

DM4 CFS 0.19 0.39 0.06 -0.11 -- 

DM4 CFS & CREDIT 0.21 0.41 0.14 -0.12 0.36 

Great Recession period 

DM1 CFS 0.21 0.43 -0.04 -0.05 -- 

DM1 CFS & CREDIT 0.24 0.48  0.00 -0.08 0.29 

DM2 CFS 0.25 0.39 -0.08 -0.01 -- 

DM2 CFS & CREDIT 0.25 0.46 -0.03 -0.06 0.25 

DM3 CFS 0.21 0.42 -0.05  0.00 -- 

DM3 CFS & CREDIT 0.23 0.48 -0.01  0.01 0.31 

DM4 CFS 0.23 0.44 -0.09 -0.16 -- 

DM4 CFS & CREDIT 0.24 0.47 -0.01 -0.14 0.26 

 
Note. The table reports the average out of sample recursively estimated factor loading. The upper 

part of the table focuses on the entire sample November 2003 - May 2015, while the lower part of the 

table focuses on the Great Recession years, January 2008 - December 2009. 
 

9. Indicator Optimized Augmented Aggregate  

       As explained in the previous section, the nowcasts can be transformed into 

weighted averages of the indicators, with the weights being the vector 𝛚𝛚𝑡𝑡  provided 

in Table 2.  The nowcasting-derived indicator-optimized aggregate, ℳ𝑡𝑡∗ =ℳ𝑡𝑡∗(𝐦𝐦𝑡𝑡, 𝐜𝐜𝑡𝑡), is the weighted averages of the CFS Divisia monetary aggregate and the 

credit card transactions volume. The weights of those two components are in the 

fourth and fifth columns of Table 2, with those two weights renormalized to sum to 

one.  The estimated aggregator function, ℳ𝑡𝑡∗(. ), is time dependent, since the 

weights, 𝛚𝛚𝑡𝑡 , are time dependent.15  The detailed procedure for computing the 

                                                        
15 In principle, it might be possible to factor a non-time-dependent function solely of (𝐦𝐦𝑡𝑡 , 𝐜𝐜𝑡𝑡) out of 

the nowcasting equation.  But because of the deep nonlinearity of that equation in (𝐦𝐦𝑡𝑡 , 𝐜𝐜𝑡𝑡) and the 

recursive real time nature of the nowcasting estimation, it would be impossible to solve for that 

aggregator function in algebraic closed form.  The extreme difficulty of solving for that function 
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weights in Table 2 and the indicator optimized aggregate, ℳ𝑡𝑡∗ = ℳ𝑡𝑡∗(𝐦𝐦𝑡𝑡, 𝐜𝐜𝑡𝑡),  is 

provided in the appendix VI of Barnett, Chauvet, Leiva-Leon, and Su (2016). 

It is important to observe that if the CFS Divisia monetary aggregate is replaced 

by ℳ𝑡𝑡∗ computed in that manner, then all of the results in Tables 1, 2, and 3 for five 

indicators are equally and exactly applicable to the nowcasting with four indicators.  

As evident from those tables, replacing the CFS Divisia monetary aggregates, Mt, by ℳ𝑡𝑡∗ produces very large gains in indicator information with four indicators in each 

case.  No indicator information is lost by the aggregation, ℳ𝑡𝑡∗ = ℳ𝑡𝑡∗(𝐦𝐦𝑡𝑡, 𝐜𝐜𝑡𝑡), since 

that optimized augmented indicator is uniquely nowcasting indicator exact.  

All of the figures below display three graphs:  (1) nominal quarterly measured 

GDP growth, (2) growth of the CFS Divisia monetary aggregates, Mt = M(mt), and  (3) 

growth of the indicator optimized augmented monetary aggregates, ℳ𝑡𝑡∗ =ℳ𝑡𝑡∗(𝐦𝐦𝑡𝑡, 𝐜𝐜𝑡𝑡). Although the nowcasts and the monetary aggregates are available 

monthly, the plots below are quarterly, since GDP data are available only quarterly.   

The following observations follow from the figures. The fluctuations in the 

credit-card augmented Divisia monetary aggregates lead the conventional Divisia 

monetary aggregates at all four levels of aggregation. The credit-card augmented 

Divisia monetary aggregates better correlate with nominal GDP than the 

conventional Divisia monetary aggregates do. The credit-card augmented Divisia 

monetary aggregates more accurately reflect the Great Recession time period than 

the conventional Divisia monetary aggregates do. 

Although the broadest aggregates, DM3 and DM4, more accurately and 

completely measure the economy’s flow of monetary services, the transmission of 

policy to the aggregates is somewhat slower for the distant substitutes for money 

than for the assets in DM1 and DM2. 

It is evident from these results why, in Tables 1 and 2, the new credit-card 

augmented Divisia monetary aggregates improve so dramatically upon the 

performance of the nominal GDP nowcasting approach developed by Barnett, 

Chauvet, and Leiva-Leon (2016).  That approach previously incorporated the 

                                                                                                                                                                     
numerically, if the function exists, would have no benefit, since ℳ𝑡𝑡∗(𝐦𝐦𝑡𝑡 , 𝐜𝐜𝑡𝑡) is indicator optimal and 

loses no information in the nowcasting.    
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conventional CFS Divisia monetary aggregates among its significant indicators, with 

improved performance compared with use of the official simple sum monetary 

aggregates in the same nowcasting procedure. 

 

9.1. Average Quarterly Growth Rates 

 

Figure 3: M1 Average Quarterly Growth Rates (2007Q4-2015Q1)

 

Figure 4: M2 Average Quarterly Growth Rates (2007Q4 – 2015Q1)
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Figure 5: M3 Average Quarterly Growth Rates (2007Q4 – 2015Q1)

 

Figure 6: M4 Average Quarterly Growth Rates (2007Q4 – 2015Q1)
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9.2. Quarterly Year-over-Year Growth Rates 

 

Figure 7: M1 Quarterly Year-over-Year Growth Rates (2007Q4 – 2015Q1)

 

 

Figure 8: M2 Quarterly Year-over-Year Growth Rates (2007Q4 – 2015Q1)
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Figure 9: Quarterly M3 Year-over-Year Growth Rates (2007Q4 – 2015Q1)

 
 

Figure 10: M4 Quarterly Year-over-Year Growth Rates (2007Q4 – 2015Q1)
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10. Conclusions 

Many economists have wondered how the transactions services of credit cards 

could be included in monetary aggregates.  The conventional simple sum accounting 

approach precludes solving that problem, since accounting conventions do not 

permit adding liabilities to assets.  But economic aggregation and index number 

theory measure service flows, independently of whether from assets or liabilities.  

We have provided theory solving that long overlooked problem both for use as a 

structural economic variable or as an indicator.  Different theory is relevant to those 

two objectives, and hence we have provided two different aggregates.  The 

aggregation-theoretic exact approach provides our credit card-augmented 

structural aggregate, ℳ𝑡𝑡 = ℳ(𝐦𝐦𝑡𝑡 , 𝐜𝐜𝑡𝑡), while the indicator optimized augmented 

aggregate, uniquely derived from our nowcasting model, produces our aggregate, ℳ𝑡𝑡∗ = ℳ𝑡𝑡∗(𝐦𝐦𝑡𝑡 , 𝐜𝐜𝑡𝑡).  In the former case, the aggregate is defined to be weakly 

separable within the structure of the economy, while in the latter approach the 

aggregate is defined to be weakly separable within the nowcasting equation.  The 

former approach is relevant to any application requiring a measure of monetary 

services within the structure of the economy, while the latter approach is 

application specific and only relevant for use as an indicator. 

We have provided the solution under various levels of complexity in terms of 

theory, econometrics, and data availability. Both sets of new aggregates will be 

provided to the public in monthly releases by the Center for Financial Stability (CFS) 

and also to Bloomberg terminal users.  The CFS is now providing the unaugmented 

aggregates, Mt = M(mt), and will soon be providing both the structural augmented 

aggregates, ℳ𝑡𝑡 = ℳ(𝐦𝐦𝑡𝑡, 𝐜𝐜𝑡𝑡), and indicator-optimized augmented aggregates, ℳ𝑡𝑡∗ =ℳ𝑡𝑡∗(𝐦𝐦𝑡𝑡, 𝐜𝐜𝑡𝑡). 

In previous research, Barnett, Chauvet, and Leiva-Leon (2016) have found that 

the CFS Divisia monetary aggregate, Mt = M(mt), is a valuable indicator in a four 

factor nowcasting model of nominal GDP.  In this current research, we have found 

that our new augmented Divisia monetary aggregates, ℳ𝑡𝑡∗ = ℳ𝑡𝑡∗(𝐦𝐦𝑡𝑡 , 𝐜𝐜𝑡𝑡), provide 

substantially greater indicator value than Mt = M(mt).  Although the greater 
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indicator value is evident from our time series plots, we have displayed the formal 

nowcasting results to confirm the evidence from the plots. Among the potential 

applications of the indicator approach would be in nominal GDP targeting, requiring 

the existence of monthly nominal GDP nowcasts.  

An extensive literature exists on policy relevance of the Divisia monetary 

aggregates.16  Much of that literature could be strengthened further by use of the 

soon to be available credit-card-augmented CFS structural Divisia monetary 

aggregates,  ℳ𝑡𝑡 = ℳ(𝐦𝐦𝑡𝑡, 𝐜𝐜𝑡𝑡).   We leave such empirical research with those 

aggregates to future applications, but we provide the supporting economic theory.  

It should be observed that ℳ𝑡𝑡  and ℳ𝑡𝑡∗ are not good substitutes for each other, 

having been derived from different existence conditions relevant to different 

objectives.17  Our empirical research in this paper focuses on the indicator 

optimized aggregates, ℳ𝑡𝑡∗ = ℳ𝑡𝑡∗(𝐦𝐦𝑡𝑡, 𝐜𝐜𝑡𝑡).  

A more challenging approach would introduce risk aversion in accordance with 

Barnett and Wu (2005). 18 Adapting that advanced approach to our augmented 

aggregates remains another topic for future research, as does disaggregation to a 

heterogeneous agents approach.  
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APPENDIX 

 

Derivation of the User Cost Formula for Credit Card Services, Equation (7), in the 

Infinite Lifetimes Case 

 

From equation 2, the flow of funds identities, for , 1,..., ,s t t= + ∞ are 

𝐩𝐩𝑠𝑠′𝐱𝐱𝑠𝑠 = 𝑤𝑤𝑠𝑠𝐿𝐿𝑠𝑠 + ���1 + 𝑟𝑟𝑖𝑖,𝑠𝑠−1�𝑝𝑝𝑠𝑠−1∗ 𝑚𝑚𝑖𝑖,𝑠𝑠−1 − 𝑝𝑝𝑠𝑠∗𝑚𝑚𝑖𝑖𝑠𝑠�𝑛𝑛
𝑖𝑖=1

+ ��𝑝𝑝𝑠𝑠∗𝑐𝑐𝑗𝑗𝑠𝑠 − �1 + 𝑒𝑒𝑗𝑗,𝑠𝑠−1�𝑝𝑝𝑠𝑠−1∗ 𝑐𝑐𝑗𝑗,𝑠𝑠−1�                                                          

𝑘𝑘
𝑗𝑗=1

+ [(1 + 𝑅𝑅𝑠𝑠−1)𝑝𝑝𝑠𝑠−1∗ 𝐴𝐴𝑠𝑠−1 − 𝑝𝑝𝑠𝑠∗𝐴𝐴𝑠𝑠].                                                        (A. 1) 

The intertemporal utility function 𝑢𝑢(𝐦𝐦𝑡𝑡, 𝐜𝐜𝑡𝑡 , 𝐱𝐱𝑡𝑡) + 𝐸𝐸𝑡𝑡[ � � 1

1 + 𝜉𝜉�𝑠𝑠−𝑡𝑡 𝑢𝑢(

∞
𝑠𝑠=𝑡𝑡+1 𝐦𝐦𝑠𝑠, 𝐜𝐜𝑠𝑠, 𝐱𝐱𝑠𝑠)]             

under perfect certainty is  �� 1

1 + 𝜉𝜉�𝑠𝑠−𝑡𝑡 𝑢𝑢(

∞
𝑠𝑠=𝑡𝑡 𝐦𝐦𝑠𝑠 , 𝐜𝐜𝑠𝑠, 𝐱𝐱𝑠𝑠).                                                                                (A. 2) 

Let ℑ  be the Lagrangian for maximizing intertemporal utility subject to the 

sequence of flow of funds identities for ,..., ,s t= ∞  and let tλ  be the Lagrange 

multiplier for the t’th constraint.  Then the following are the first order conditions 

for maximizing (A.2) subject to the sequence of constraints, (A.1). 
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From equation (A.3), we have 
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1(1 ) 0.t t tRλ λ+− + + =         (A.7) 

Substitute equation (A.7) into (A.6) to eliminate 1tλ + , we get 
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      (A.8) 

Rearranging we get the first order condition that identifies jt
π as the user cost price 

of credit card services: 
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