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ABSTRACT 
 

This paper investigates the dynamic causal linkages among U.S. equity and commodity futures 

markets via the utilization of complex network theory. We make use of rolling estimations of ex-

tended matrices and time-varying network topologies to reveal the temporal dimension of correla-

tion and entropy relationships. A simulation analysis using randomized time series is also imple-

mented to assess the impact of de-noising on the data dependence structure. We mainly show evi-

dence of emphasized disparity of correlation and entropy-based centrality measurements for all 

markets between pre- and post-crisis periods. Our results enable the robust mapping of network 

influences and contagion effects whilst incorporating agent expectations. 
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1. INTRODUCTION 

The commodity futures markets have recently received much attention from both academics and 

investor community, following their increasing financialization which is characterized by an in-

crease in trading activity as well as the number and nature of traders since the early 2000s. The 

2008 Commodity Futures Trading Commission (CFTC) staff report documented an net amount of 

$200 billion of commodity index investment as of June 2008, which is more than 10 times the level 

in 2003 and rose to about $250 billion in 2009 (Irwin and Sanders, 2011). Major investors of com-

modities traded in the US markets include institutional investors, index funds, sovereign wealth 

funds, and retail investors holding ETFs (exchange-traded funds), ETNs (exchange-traded notes), 

and similar instruments. Beside their traditional role in hedging price risks of underlying commodi-

ties, commodity futures have also been increasingly viewed as a new asset class providing high po-

tential for equity risk diversification, especially during times of financial crises and downturns in 

stock markets. The rationale behind this trend is that commodity futures offer high returns with rela-

tively low volatility and low correlation with stocks and bonds.1 Gorton and Rouwenhorst (2006) 

produce some stylized facts on the commodity markets after the 2000s and find that futures con-

tracts have the same average returns as equities along with a negative correlation between bonds 

and equities whilst comparatively demonstrating lower volatility. Moreover, the risk factors that 

drive the dynamics of commodity returns may differ from those that affect stock and bond returns 

(e.g., Domanski and Heath, 2007; Dwyer et al., 2011). Empirical studies such as Arouri et al. 

(2011), Daskalaki and Skiadopoulos (2011), and Narayan et al. (2013) provide evidence of valuable 

diversification benefits from adding commodity assets into portfolios of traditional assets (bonds 

and stocks).  

Recent developments in commodity futures markets witness, however, some structural shifts 

in their characteristics and linkages with equity markets. Cheng and Xiong (2014) document that 

the financialization has substantially affected commodity markets through risk sharing and infor-

mation discovery mechanisms. Several studies including, among others, Büyüksahin et al. (2010), 

Büyüksahin and Robe (2011), Tang and Xiong (2012), and Büyükşahin and Robe (2014) uncover 

the increased correlation not only between commodity futures returns, but also between commodity 

futures and equity returns.2 As a result of this stronger comovement, diversification benefits from 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 The modern portfolio theory suggests that investors can improve their risk-adjusted return performance by allocating resources to 

imperfectly correlated assets, which is the case of equities and commodities. The reduction of regional and international diversifica-
tion benefits due to higher stock market linkages and contagion risk during crisis periods (Forbes and Rigobon, 2002; Chan-Lau et 
al., 2004; Haldane, 2009) has caused investors to increase their holdings in alternative asset classes including commodity futures. 
2 Büyüksahin and Robe (2011) show that the equity-commodity link did not increase until 2008, but increases significantly amid the 
most severe episode of the global financial crisis 2008-2009. Büyükşahin and Robe (2014) reach similar conclusions based on a non-
public dataset of trader positions in 17 U.S. commodity futures markets, two U.S. equity market indices (S&P’s 500 and Dow Jones’ 
Industrial Average Index), and the MSCI World equity market index. Tang and Xiong (2012) find increasing correlation between 
non-energy commodity futures and oil futures returns, which implies that prices of individual commodities are no longer driven by 

their own supply and demand conditions. 
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the inclusion of commodity futures into stock portfolios have been found to decrease, particularly 

during crisis periods where they are needed (Silvennoinen and Thorp, 2010; Daskalaki and Skiado-

poulos, 2011). Large fluctuations in commodity prices over recent years have also been causes for 

concern among governments, policymakers and traders3, which have significant impacts (either 

positive or negative) on equity markets (e.g., Baur and McDermott, 2010; Narayan and Sharma, 

2011; Filis et al., 2011). Moreover, while the expansion of financial institutions’ positions in com-

modity markets may improve risk sharing, it can increase the importance of common shocks and 

spark off substantial volatility spillover and contagious effects in case of important financial dis-

tresses due to limits to arbitrage as reported in Gromb and Vayanos (2010). For instance, the results 

of Adams and Glück (2015) suggest that volatility transmission between commodity and stock mar-

kets will remain high since commodities are now an investment style of professional investors. 

It turns out from the above discussions that commodity futures and equity markets have be-

come more interconnected to each other over time. If they form a financial network, their interac-

tions could lead to the establishment of contagion channels and consequently amplify the shocks to 

the financial system. In their seminal study, Allen and Gale (2000) describe financial markets as 

complex networks and model financial contagion as an equilibrium phenomenon whereby liquidity 

shocks may spread through the network and contagious effects between financial institutions are 

smaller in a complete network structure than in an incomplete one. The complex dynamics of clus-

ters and networks in financial markets have made them less diverse in the years that led to the fi-

nancial crisis of 2008-2009, which thus witnesses the need for empirical research on financial net-

works, particularly after the global financial crisis (Allen and Babus, 2009). Upper (2011) provides 

a comprehensive survey on modern techniques and simulation methods to study contagion in finan-

cial networks. Other relevant studies on network modeling and contagion topic include Nagurney 

and Ke (2006), Barro and Basso (2010), and Veremyev and Boginski (2012). 

The present study builds upon the works of Sandoval (2013, 2014) to investigate the dynamic 

financial networks and information transmission between commodity futures and equity markets. In 

Sandoval (2013), the temporal evolution of financial market clusters and networks is investigated 

based on the correlations between stock market indices with the aim to construct asset graphs in 

diverse time periods. Sandoval (2014) uses the measure of transfer entropy as opposed to correla-

tion to examine the causal relationships among stocks of the 197 largest financial companies 

worldwide. Differently, we aim to illustrate two different types of networks (weighted and un-

weighted) based on daily data of the U.S. stock markets, represented by the S&P500 index and by 

ten S&P500 stock sector indices, and twelve liquid commodity futures grouped into three categories 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 Oil price peaked at over US$140 per barrel, after reaching the US$100 per barrel mark for the first time in 2008, while gold prices 
have quadrupled over the 2001–2010 period (Baur and McDermott, 2010). Agricultural commodity prices based on the Chicago cash 

corn price rose to over $3.00/bushel to reach $7.20/ bushel in July 2008. 



4 

	  

(energy, metals, and agriculture). These commodity futures are largely traded in the New York 

Mercantile Exchange (NYMEX) and the Chicago Board of Trade (CBOT).  

Our work contributes to the relevant literature in four main aspects. First, it examines the fi-

nancial networks of commodity futures and stock markets over the last 20 years, which covers sev-

eral episodes of major financial crises and market crashes. Second, it introduces the measure of 

transfer entropy for analyzing the co-movements, dynamic causalities and clustering structure of the 

examined networks. This particular concept was developed in information science and is utilized to 

track the transfer/diffusion of information between commodity and stock markets in the first and 

second moment (volatility). Third, the dynamics of the complex equity-commodity networks are 

analyzed through the temporal evolution of the correlations and entropy. Finally, we attempt to re-

veal and rationalize the potential effects of commodity financialization process on the equity-

commodity synchronization and their importance for investors, speculators, market makers and 

fund managers.  

The remainder of this paper is organized as follows. Section 2 presents the novel methodology 

utilized to explore the equity-commodity market links via the use of dynamic networks and various 

centrality measures. Section 3 describes the data. Section 4 reports and discusses the empirical re-

sults in terms of asset graphs, causal interdependencies and temporal network dynamics. Section 5 

provides the concluding remarks.  

 

2. METHODOLOGY 

2.1 Correlation and Transfer Entropy 

The standard measure of relationship between variables is the well-known Pearson correlation coef-

ficient. For two variables and ,  with n sample size, it is defined as follows: 

𝜌"# =
𝑒" − 𝑒 𝑐" − 𝑐

(
")*

𝑒" − 𝑒
+(

")* 𝑐" − 𝑐
+(

")*

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (1) 

where  is the average of e and  is the average of c. Although there are nonlinear measures such 

as the Spearman and the Kendall rank correlations, the results obtained are not substantially differ-

ent for networks of financial variables as reported in Sandoval (2013). In our work, correlations 

between equity and commodity returns will be estimated over the whole period as well as in rolling 

samples in order to uncover possible differences in “normal” and “crisis” times. However, since 

correlations are unable to reveal directional causality relationships or the magnitude of impacts ow-

ing to the assumption of linearity and symmetry, we introduce a dynamic and non-symmetric meas-

ure called Transfer Entropy. The latter was developed by Schreiber (2000) and is based on the con-

cept of Shannon Entropy as defined in information theory (Shannon, 1948).  

i
e

i
c 1,...,i n=

e c
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Transfer entropy has been widely used in a variety of scientific fields such as the cellular au-

tomata in computer science (e.g., Lizier and Mahoney, 2013), the brain neural cortex in medicine 

(e.g., Vicente et al., 2011, Faes et al., 2013), social networks (e.g,, Ver Steeg and Galstyan, 2012), 

causal influences and applied statistics (e.g., Barnett, 2009, Amblard and Michel, 2013, Liu et al., 

2014), and in dynamical systems (e.g., Nichols et al., 2013, Prokopenko et al., 2013). Applications 

of transfer entropy to the analysis of financial market include, among others, Marschinski and Kantz 

(2002), Kwon and Yang (2008), Altiparmak and	  Dengiz (2009), Dimpfl and Peter (2012), Sandoval 

(2014), and Sandoval et al. (2015). 

More formally, when the time series of variable X is a Markov process of k degree, the state 

of X depends on the k previous states of the same variable i.e.,  

𝑝 𝑖(2* 𝑖(, 𝑖(4*, ⋯ , 𝑖6 = 𝑝 𝑖(2* 𝑖(, 𝑖(4*, ⋯ , 𝑖(472* 	  	  	  	  	  	  	  	  	  (2) 

where 𝑝 𝐴 𝐵  is the conditional probability of A given B, defined as	  𝑝 𝐴 𝐵 = 𝑝 𝐴, 𝐵 𝑝(𝐵). 

Hence, the conditional probability of state  of variable X on all its previous states is the same as 

the conditional probability of  on its k previous states. If variable X depends on another variable 

Y, we assume that the state  of X depends on the previous states 
	  
of variable Y. The Transfer 

Entropy from Y to X is defined as the “average information” contained in the source Y about the 

next state of the destination X that was not already contained in the destination’s past. We assume 

that each element (observation)  of the time series X is influenced by the k previous states of the 

same variable and by ℓ𝓁 previous states of Y, as depicted in Figure 1. The values of k and ℓ𝓁 may 

vary, according to the data and the state “memory” used to analyze the transfer of entropy from one 

variable to another. The Transfer Entropy from Y to X is defined as 

	  	  	  	  	  𝑇𝐸?→A 𝑘, ℓ𝓁 = 𝑝 𝑖(2*, 𝑖(
(7)
, 𝑗(
(ℓ𝓁)

𝑙𝑜𝑔+
G "HIJ|"H

(L)
,#H
(ℓ𝓁)

G "HIJ|"H
(L)"HIJ,"H

(L)
,#H
(ℓ𝓁) 	  	  	  	  	  (3) 

where  is the n element of X series,  of variable Y,  the joint probability of A and B and 

     𝑝 𝑖(2*, 𝑖(
(7)
, 𝑗(
(ℓ𝓁)

= 𝑝 𝑖(2*, 𝑖(, … , 𝑖(472*, … , 𝑗(4ℓ𝓁2*             (4) 

Eq. (4) shows the joint probability of state  with its k+1 predecessors, and  predecessors of 

state . This definition of Transfer Entropy assumes that events on a certain day may be influenced 

by events of k and  previous days. We may safely assume based on the efficient market hypothesis 

and random walk behavior of stock prices that a short memory 𝑘 = ℓ𝓁 = 1 i.e., previous day is sig-

nificant, but this will be verified later by also calculating the case where 𝑘 = ℓ𝓁 = 2. The calculation 

of Transfer Entropy may involve significant computational burden, particularly when the number of 

variables is high. Moreover, the measure is model-independent and asymmetric, and reveals direc-

1n
i
+

1n
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+

1n
i
+

1n
i
+ n

j

1n
i
+

n
i

n
j ( ),p A B
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tional causality relationships. It can be seen as a nonlinear version of the Granger causality, which is 

reduced to simple linear Granger causality in case of vector auto-regressive processes (Barnett, 

2009). Similarly to the calculation of correlations, Transfer Entropy will be estimated over the 

whole period as well as in moving window samples. 

[Please insert Figure 1] 
 

2.2 Centrality measurement 

On the basis of large matrices of correlations among assets or Transfer Entropy, a complex network 

can be formed and the corresponding nodes and edges can be specified. The edges represent the 

relationships between two nodes (e.g., commodity futures and equity indices). There exist two types 

of networks: weighted and unweighted. In weighted networks, all nodes are inter-connected and 

each edge is assigned a certain degree of connection intensity, i.e., each edge would comprise one 

element of the correlation or Transfer Entropy matrix. The unweighted network contains edges be-

tween nodes or not, whilst no intensity measure is assigned. Such networks may be obtained from 

large matrices by establishing thresholds above or below which edges are formed. For instance, if 

we consider the correlation matrix of all commodity futures examined in this study and filter out the 

correlations above a certain value T, which are represented as edges in the network, the rest of the 

relationships based on correlations below this value are ignored. Both representations incorporate 

different ways to measure the centrality of a node (Newman, 2010; Gómez et al., 2013). Centrality 

is an important concept in network theory, yet there is no unique definition. In financial networks, a 

node that is central may be important in the propagation or in the aversion of crises. Next, we de-

scribe the types of centrality measures utilized in this paper. 

Networks can be directed or undirected, depending on the edges between them. If the edges 

𝑤"# 	  and	  𝑤#" between two nodes 𝑖 and 𝑗 are always the same, then the network is undirected. Other-

wise, it is directed. The networks obtained with correlation are undirected, while networks obtained 

with TE or ETE are directed. For undirected networks, one of the most important centrality 

measures is the so-called Node Degree (ND), which represents the total number of edges through 

which a node is connected with other nodes. This measure is extensively used in asset graphs where 

some nodes are not inter-connected to each other and varies according to the choice of the threshold 

as in Sandoval (2013). Another measure is Eigenvector Centrality (EC), which takes into account, 

aside from how many connections a node has, whether it is situated in a region of highly connected 

nodes. Moreover, Closeness Centrality (CC) measures the average distance - in terms of the total 

number of edges necessary to reach another node - of a certain node. Closeness Centrality assigns 

high values for nodes that are low on centrality and small values for nodes that are high on centrali-

ty. Instead, the Harmonic Closeness (HC) measure is calculated using the inverse of the distances 

from one node to all others, and gives high values for highly central nodes and small values for 
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nodes that are not so central. Betweenness Centrality (BC) of a node is another type of measure that 

calculates how often a certain node is connected through the smallest distances (paths) among the 

other nodes. Finally, the Node Strength (NS) is independent of the use of thresholds in asset graphs, 

and takes into account the “strengths” of the connections, the degree of correlation or Transfer En-

tropy between the nodes. In particular, it measures the sum of the correlations or Transfer Entropy 

of a node to all others. 

On the other hand, the aforementioned measures of centrality are rather inappropriate for di-

rected networks. The latter have either ingoing edges to a node, outgoing edges from the node, or 

both. So, centrality measures often should be broken down into ingoing and outgoing ones. For ex-

ample, a node that may be highly central with respect to all others is called hub, while a node that 

has many other nodes pointing at it is called authority. Node Degree (ND) is analyzed into two 

measures: In-Node Degree (NDin), which measures the sum of all ingoing edges to a certain node, 

and Out-Node Degree (NDout) representing the sum of all outgoing edges from a node. In a similar 

fashion, In-Eigenvector Centrality (ECin), Out-Eigenvector Centrality (ECout), In-Harmonic Close-

ness (HCin) and Out-Harmonic Closeness (HCout) are defined. Now Betweenness Centrality is cal-

culated along directed paths only, and it is called Directed Betweenness Centrality, (BCdir). Finally, 

the sum of the weights of all edges that end at a node demonstrates its In-Node Strength (NSin), 

whilst the sum of the weights of all edges that begin at a node represents its Out-Node Strength 

(NSout). Thereafter, we use all previously mentioned measures, except Closeness Centrality, to as-

sess the centrality of each node depending on the type of the network. 

 

3. DATA AND PRELIMINARY ANALYSIS 

The dataset consists of daily observations of twelve continuous futures prices for three commodity 

groups: energy (crude oil, heating oil, and natural gas), metals (copper, platinum, gold and silver) 

and agricultural products (corn, wheat, cocoa, coffee and cotton).4 Energy and metal futures con-

tracts are traded in the New York Mercantile Exchange (NYMEX), whilst the agricultural commod-

ities are widely traded in the Chicago Board of Trade (CBOT). We consider the U.S. stock indices 

for 10 industries (S&P sector indices): consumer discretionary, health, energy, financials, industri-

als, materials, technology, utilities, automobiles and consumer staples. These sectoral indices offer a 

robust view of the performance of the U.S. stock markets across economic sectors. The S&P 500 

index is also used as a proxy for the U.S. equity markets as a whole. All data are obtained from 

Datastream International. The data span the period January 1995 to June 2015, which covers several 

episodes of major crises such as the Asian crisis of 1997-1998, the dot-com bubble burst in 2001, 

the 11th of September 2001 terrorist attack, the Gulf war in 2003, the commodity bull-bear cycle of 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 Futures prices are derived from individual futures contracts based on the Type 0 and Type 2 roll methods as described in “Futures 

continuous series: Methodology and definitions.”, Thomson Reuters Datastream, August 2010. 
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2006-2009, the Subprime crisis in 2007 and the global financial crisis of 2008-2009. We compute 

commodity futures and stock returns by taking the difference in the logarithm of two successive 

prices. Table 1 presents the descriptive statistics of the daily returns for the U.S. commodity futures 

and equity markets. Among the commodity futures, heating oil exhibits the highest average return 

followed by crude oil, while the lowest return is observed for coffee and cotton. Commodity futures 

with high return volatility as measured by standard deviation include those of the energy (natural 

gas in particular) and agriculture groups. Gold futures return is the least volatile. For equity, health 

and consumer discretionary sectors achieve the highest daily average return, while the most volatile 

sectors are financials and automobiles. Our diagnostic tests (Jarque-Bera, ARCH, and Ljung-Box) 

show that our return series exhibit departure from normality, conditional heteroscedasticity, and 

serial correlation in squared level. All return series are stationary according to the Augmented 

Dickey and Fuller (1981) and Phillips and Perron (1988) tests.5 Table 2 reports the unconditional 

correlations between commodity futures and equity markets. They are low in general and positive, 

with the exception of the links between gold futures and the S&P500, between gold futures and 

some sector indices (consumer discretionary, health, financials, industrials, technology, automo-

biles, and consumer staples), and between natural gas futures and automobiles. The highest correla-

tion (0.43) is, as expected found between crude oil futures and energy sector returns. This finding 

suggests that commodity futures, and particularly gold futures, could provide stock investors with 

good diversification benefits.   

 [Please insert Tables 1 and 2 and Figure 2] 

An important aspect of empirical investigation is that we use log returns and their 1-period lagged 

values to explore the relations between present as well as past values of the commodity futures and 

equity markets. Accordingly, we deal with four interacting clusters over time, as depicted in Figure 

2: one of commodity futures, one of equity indices, and two others made by their lagged counter-

parts. It is worth noting that these clusters are produced by defining a distance matrix between each 

of the variables (nodes) of the network and then by positioning each node as a point in two dimen-

sions in such a way to preserve as best as possible the distances between nodes (see, Borg and 

Groenen, 2005). The particular distance measure being used is one minus the Spearman correlation 

between each pair of variables. We also tested other distance measures, but the results remain intact.  

 
4. EMPIRICAL RESULTS 

4.1 Heat maps for correlation 

We first calculate the Pearson correlation matrix of the original variables plus their 1-period lagged 

counterparts and show the results in Figure 3. Both horizontal and vertical axes represent the varia-

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5 The results are not reported here for brevity, but can be made available on request. 
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bles in the same ordering described in Section 3, Table 1. Higher correlations are depicted by lighter 

tones, lower correlations are displayed in darker tones, while the main diagonal acquires the unitary 

correlation value. As we can see, the correlation matrix displays some structure with two stylized 

sectors: one representing the correlations among the original indices (left, topmost quarter) and an-

other incorporating the correlations among the lagged variables (right, bottommost quarter). More-

over, there seems to be very low correlation between lagged and original variables (left, topmost 

and right, bottommost quarters), which indicates that past returns can predict only a small portion of 

actual returns. Along the main diagonal, there are clusters of bright spots that indicate stronger con-

nection between variables, but it is still moderate and does not eliminate equity-commodity diversi-

fication benefits.  

[Please insert Figure 3] 

Figure 4 provides a breakdown of the correlation matrix into submatrices of correlations in 

order to better analyze the dynamic linkages between variables. Since the main purpose of this arti-

cle is to study the commodity market and its relation with the equity indices, we do not explore in 

detail the correlations between equity indices and themselves for both actual and lagged return se-

ries. Figure 5 shows the five correlation submatrices involving commodity futures. In the first heat 

map where the correlation matrix between commodity futures is represented, we observe the for-

mation of three main clusters with high correlation: one of energy commodities (crude oil and heat-

ing oil), one of metal commodities (platinum, silver and gold), and one of agriculture commodities 

(corn and wheat). The average correlation between commodity futures excluding autocorrelation 

(0.19) is low when compared with the one between equity indices (0.63). The heat map of correla-

tion between commodity futures and equity indices witnesses the interest of holding commodity 

assets in diversified portfolios of stocks as most commodity-equity correlations do not exceed 0.2. 

Copper futures is the least attractive in terms of diversifying potential, while gold futures offer a 

good cushion for all stock sectors, except for energy sector which has a substantially higher correla-

tion with gold futures. This result corroborates the findings of past studies on the safe haven role of 

gold for stock markets (e.g., Draper et al., 2006; Baur and McDermott, 2010). 

[Please insert Figures 4 and 5] 

The heat map of correlations between 1-period lagged and actual commodity futures returns show 

that all correlations are very low (below 0.07) and the highest correlation occurs between platinum 

and most lagged commodity futures. The last two heat maps uncover that correlations between 

lagged equity and actual commodity futures returns are significantly greater than those between 

lagged commodity futures and actual equity returns. This finding seems to suggest that past equity 

returns can be used as a predictor of commodity futures returns. 
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4.2 Statistical significance of correlations 

Figure 6 displays the probability distributions of some return correlation submatrices. The histo-

gram of the elements of the return correlation matrix between commodity futures is strongly tilted 

towards higher values and has some spikes at the right tail, together with a peak that corresponds to 

autocorrelations. The histogram of the return correlations between equity indices is even more tilted 

towards higher correlations. Histograms peaked at higher values of correlations are also obtained 

for the correlation matrices between commodity futures and equity returns, and the one between 

lagged equity and commodity futures returns. The histograms of the correlation matrices between 

lagged and actual commodity returns, and between lagged commodity and equity returns are mainly 

distributed close to zero. Lastly, the histogram of the correlation matrix between lagged and actual 

equity returns is slightly tilted to negative correlation values. 

 [Please insert Figure 6 and 7] 

Based on the above probability distributions, we develop a new model to determine the char-

acteristics of the networks that are not attributed to random connections. For this purpose, we con-

sider the time series of each variable and reorder or re-shuffle all their elements randomly. This 

process, while maintaining the basic statistical attributes of the time series, yet destroys any possible 

correlation between them. A correlation matrix is thereafter calculated based on the new random-

ized series. Next, we build the probability distribution of the randomized series after 10,000 simula-

tions and we consider the average of the correlation values obtained out of each simulation. The 

result for each correlation submatrix is a probability distribution that looks very much like a Gauss-

ian distribution, which is depicted in Figure 7. So, correlations that are below -0.04 or above 0.04 

can be considered as not being caused by random effects. This applies to all correlation submatrices 

and shows the statistical significance of almost all commodity-equity correlation coefficients. 

 

4.3 Asset graphs for correlation 

We now turn to Asset Graphs, which allow us to visualize dynamic networks while reducing the 

large amount of information contained in the correlation matrix. This tool has been used in a variety 

of works in finance (e.g., Onela et al., 2002,2003; Ausloos and Lambiotte, 2007; Sandoval, 

2012,2014). In asset graphs, threshold values for the connections between nodes (commodity fu-

tures and equity indices in our case) are chosen and only nodes with connections (correlations) 

above (or below) such thresholds are represented, whereas nodes not connected to any other node 

are not considered at all. Our focus is on the connections between commodity futures only, and also 

on the connections between commodity futures and equity indices.  

[Please insert Figure 8] 

Figure 8 shows the asset graphs associated with thresholds ranging from T=0.7 to T=0.2. 

Above threshold T=0.8, there are no connections among commodity futures, whereas for threshold 



11 

	  

T=0.8, the only connections are those between crude oil and heating oil, and between silver and 

gold. Next, for T=0.6, there is a connection between corn and wheat. For T=0.5, a cluster formed 

by platinum, silver and gold emerges, while for T=0.4, a connection between crude oil and the en-

ergy equity sector index is formed. For T=0.3, the metals cluster grows with the inclusion of copper 

and platinum and a connection between heating oil and the energy equity sector index forms. At this 

threshold level, a connection between copper and the materials equity index is also established. At 

T=0.2, a large cluster of metals and energy is formed, with connections to the energy, materials, and 

industrial equity sector indices, and also to the S&P 500. Copper is a major hub, connecting the 

metals and energy sub-clusters with the equity indices. 

The results from asset graphs thus indicate that commodity futures form clusters within par-

ticular category and they cluster with other categories of commodity futures and equity markets at 

low correlation levels. This evidence confirms the findings of Sensoy et al. (2005) in that not all 

types of commodities are alike, with a high degree of convergence for energy and metal commodi-

ties and no sign of convergence for agricultural commodities. Similar to the conclusions of Do-

manski and Heath (2007), and Dwyer et al. (2011), it shows the potential of diversification benefits 

for equity investors from holding corn and wheat futures contracts, and energy and precious metal 

futures contracts (gold, platinum, and silver). Futures contracts on copper, which is an important 

industrial metal, are less interesting than others given their close connections with industrial activi-

ties.   

 

4.4 Centrality measures for asset graphs based on correlation 

As we have seen through the use of randomized data, an asset graph just above T=0.1 can be set as 

the largest cluster which can be relatively indicated as “free of strong noise effects”. We use this 

topology (T=0.1) to calculate some centrality measures and present the results in Tables 3 and 4. 

One exception is the Node Strength measure, which is calculated directly from the correlation ma-

trix.  

Table 3 shows some centrality measures obtained from the commodity-commodity correlation 

submatrix taken at threshold T=0.1. Many of the nodes are very much connected at this level and 

we thus have a large node degree for most commodity futures, except for natural gas which is de-

coupled from other energy, commodity and equity markets due to its regional nature and depend-

ence on specific short-lived factors such as weather conditions, inventories and interruptions in sup-

ply (Aloui et al., 2014). Regarding the betweeness, harmonic closeness and eigenvalue centralities, 

we see a strong presence of agricultural commodities, with coffee, cocoa and wheat futures always 

among the top three positions. Node strength, which is independent of the threshold level, tells a 

different story. Results are closer to those obtained from node degree and the cluster analysis as 

expected, but positions change, with the energy and metals commodity futures appearing in the top 
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positions, agricultural commodities appearing next, and natural gas again occupying the last posi-

tion.  

[Please insert Tables 3 and 4] 

Table 4 reports the in and out node strengths of the networks concerning some of the remain-

ing correlation submatrices. We do not consider more centrality measures because the networks 

built from those submatrices have much fewer connections above the threshold level and hence do 

not provide much relevant information for calculating the centrality measures. We must also have in 

mind that correlations between -0.04 and 0.04 can be associated with noise, and node strengths from 

about -0.5 to 0.5 are not statistically significant, since node strengths are calculated as the sums of 

lines or columns of the correlation submatrices (each with 11 or 12 lines or columns). 

For the commodity-equity submatrix, we see that for in-ns, the energy and materials equity 

indices present higher values and that copper and crude oil have the largest values for out-ns. Gold 

appears with a negative value, but within the region that may be considered as due to noise. The 

equity-commodity correlation submatrix is just the transpose of the commodity-equity one, and we 

just have the exchange between in and out node strengths. There is no implied causation here. The 

lagged commodity–commodity submatrix leads to very small values of node strengths, well within 

what may be considered as not statistically significant. Also, although we are dealing with lagged 

variables, there is no causation implied since the transpose of this matrix (the commodity–lagged 

commodity submatrix) also gives the same results, with in and out node strengths interchanged. The 

same observations also apply to the lagged commodity–equities submatrix, as results are also not 

significant. However, the lagged equity–commodity correlation submatrix offers stronger results, 

with the metal commodity futures occupying the top in-ns positions while the materials, utilities, 

and energy equity sector indices have the highest out-ns values. This finding is indeed expected as 

these economic sectors are the most sensitive to price changes in commodity markets.   

 

4.5 Transfer Entropy and Effective Transfer Entropy 

We proceed by calculating the Transfer Entropy (TE) between the original variables and their 

lagged counterparts and by creating a causality matrix (in the sense of Granger causality). Figure 9 

(first heat map) displays a heat map of the TE matrix, depicting with brighter shades the relations of 

higher value and with darker shades those of relatively low value. The TE was calculated using 𝑘 =

ℓ𝓁 = 1 in (3) and one might inquire whether the use of higher values of 𝑘	  and	  ℓ𝓁 might offer better 

results. In order to test this, we calculated the TE using 𝑘 = ℓ𝓁 = 2 in (3). The result is plotted as the 

second heat map in Figure 9. One may see there is no significant difference between the first and 

the second heat maps. The difference between each TE matrix is less than 6% of the maximum val-
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ue of the first TE matrix. Calculations with 𝑘 = ℓ𝓁 = 2 come at the expense of considerable added 

computational time, therefore we will use 𝑘 = ℓ𝓁 = 1 throughout this article. 

[Please insert Figure 9] 

As it can be seen from the graph, there is some structure emerging particularly in the bottom 

left quadrant. However, we must first remove possible effects due to noise and take into account the 

fact that a high-entropy variable (i.e., high-volatility) naturally transmits more information to anoth-

er one. Both effects can be taken into account when the TE matrix is re-calculated for randomized 

data, namely the time series are re-ordered in order to sustain their basic statistical properties, but all 

causal relations are destroyed. We perform the re-shuffling for a total of 1,000 simulations and take 

the average among all the calculated values of TE. The resulting TE for randomized data is plotted 

in the second heat map of Figure 9, where the darker shades in the main diagonal are still pertain-

ing, as well as four lighter streaks that are also present in the matrix as in for the original TE matrix 

(note that the scales for the TE and randomized TE matrices are not the same, and are adjusted for 

better visibility). The first horizontal and vertical strips are due to the natural gas variable, and the 

second ones are produced by the lagged natural gas variable. Both series exhibit a much larger vola-

tility (measured as the standard deviation of the time series) than the other variables. 

Furthermore, we remove the randomized TE matrix from the original TE matrix, and thus ob-

tain the Effective Transfer Entropy (ETE) matrix (Marschinski and Kantz, 2002), which is shown as 

the third heat map in Figure 9. The brighter strips have now disappeared, while the remaining 

brighter relations may be seen as representing some inherent structure among the variables. The 

main diagonal is darker as there is no ETE from one source to itself. The top left quadrant depicts 

the ETE pointing from the original variables to themselves, the bottom left quadrant shows the ETE 

from the lagged variables to the original ones, the top right quadrant illustrates ETE values from 

original variables to the lagged ones, whilst the bottom right quadrant demonstrates the ETE scores 

from the lagged variables to themselves. All but the bottom left quadrant show no sign of non-

trivial ETE, i.e., only noise seems to be present in the structure. This means that most of the ETE-

based causality dependencies are derived from lagged to original variables, in that the main influ-

ences are produced from one day to the next one. 

 [Please insert Figure 10] 

We also break the ETE matrix into submatrices, and discuss in greater detail six of them (Figure 

10): the ones depicting the ETEs from commodities to commodities, from commodities to equity 

indices, from equity indices to commodities, from lagged commodities to commodities, from lagged 

commodities to equity indices, and from lagged equity indices to commodities.  

The ETEs from commodities to commodities (first heat map of Figure 10) are low. There is 

some ETE from heating oil, natural gas, copper, platinum and silver to crude oil, but the amount of 
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transferred information is not much important. Coffee is the commodity futures that receives the 

least ETE from other commodity futures. The ETE matrix from commodities to equity indices (se-

cond heat map of Figure 10) presents some larger values and a clear transfer of entropy from copper 

and silver, and in a lesser way, from crude oil and platinum, to all equity indices. The ETE matrix 

from equity indices to commodities (third heat map in Figure 10) presents similar values as those of 

the previous submatrix. The diversified and automobiles equity sector indices are the ones that send 

most ETE to commodities and copper is the commodity futures that receives most ETE from equity 

indices. 

The ETEs from lagged variables to original (unlagged) ones are typically much stronger than 

the ETEs between simultaneous variables. The fourth heat map of Figure 10 shows the ETEs from 

lagged commodity futures returns to actual commodity futures returns. We see a similar structure as 

the one based on the correlation between actual commodity futures turns, but there are very high 

ETE values from lagged commodity returns to their unlagged counterparts and exist some clusters 

(crude oil - heating oil, silver - gold - platinum, and corn - wheat). The fifth heat map of Figure 10 

shows the ETE from lagged commodity futures returns to actual equity index returns (unlagged). 

The values are low again, but there are some larger values of ETE from crude oil and copper to 

most equity indices, with energy and materials being the two equity sector indices that receive most 

ETE. Energy, in particular, receives a good amount of information from crude and heating oil fu-

tures. The sixth heat map of Figure 10, which reveals the ETE from lagged equity index returns to 

actual commodity futures returns, shows that the energy equity sector transmits a good amount of 

information to crude oil and heating oil as well as to other commodity futures. The materials equity 

sector also sends some ETE to other commodity futures.  

 

4.6 Assessing the statistical significance of Effective Transfer Entropy 

Figure 11 shows the histograms for eight submatrices of the ETE matrix. The first four graphs show 

the histograms for ETE submatrix from commodities to commodities, from equity indices to equity 

indices, from commodities to equity indices, and from equity indices to commodities, respectively. 

They are all tilted towards higher values centered around different values for each one. The four last 

graphs show the histograms for ETE submatrices from lagged variables to unlagged ones. All sig-

nals are much stronger now and the distributions tend to have gaps between lower and larger values. 

The histogram from lagged commodities to commodities and from lagged equity indices to lagged 

equity indices have particularly large values, mostly due to the higher ETE from a lagged variable.  

[Please insert Figure 11] 

We do not plot here the randomized submatrices, since ETE has them already discounted, so in 

general, ETE values below zero mean Transfer Entropy values that are smaller than the expected for 

random data, and that any ETE above zero mean Transfer Entropy values above the expected for 
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random data. Since randomized TE ranges from 0 to 0.0235, we may think as values smaller than 

0.0235 as probably due to random effects. 

4.7 Asset graphs for Effective Transfer Entropy 

Under the same rationale as before, an analysis is conducted via the utilization of asset graphs. We 

shall do this analysis only on the lagged commodities – commodities submatrix of the ETE matrix, 

since the largest signals can be found there (with the exception of the ETEs from equity indices to 

equity indices, which are much higher). All ETE values above 0.3 account for the relationships be-

tween lagged variables and their original counterparts and those will not be analyzed thereafter. In 

Figure 11 we show the graphs entailing thresholds below T=0.3. All lines have no arrows because 

represent bidirectional ETE relations, which are always present in this sample. In Figure 11, the 

lagged commodities are not represented as separate nodes, but are merged with their unlagged 

counterparts. Comparing Figure 12 vs. Figure 8, one may observe a prominent correspondence be-

tween ETE-based connections vis-à-vis correlation-formed connections. For T=0.3 (not represented 

in the figure), the only ETEs (with the exception of ETEs form lagged variables to their unlagged 

counterparts) happened between Crude Oil and Heating Oil. For T=0.2 only, a new ETE relation 

appears between Silver and Gold and, for T=0.15, between Corn and Wheat. For T=0.1, Platinum 

Connects with Silver and Gold, and for T=0.05, we Copper connects to Silver, and we have ETEs 

being exchanged between Crude Oil, Heating Oil and the Energy equity index. 

[Please insert Figure 12] 

 

4.7 Centrality measures for asset graphs based on Effective Transfer Entropy 

Next, we use the ETEs asset graphs above threshold T=0.02 to study some network centrality 

measures. The only submatrices with ETEs above this threshold value are those from lagged varia-

bles to unlagged ones. The submatrices from commodities to lagged commodities, and from equity 

indices to equity indices also present some values (from natural gas to lagged natural gas, from di-

versified to lagged diversified and lagged automobiles, and from automobiles to lagged diversified 

to lagged automobiles), although very small ones, close to the threshold value. 

Table 5 presents some centrality measures for the submatrices corresponding to ETEs from 

lagged commodities to commodities, from lagged commodities to equity indices, and from lagged 

equity indices to commodities. The centralities for the submatrix corresponding to ETEs from 

lagged equity indices to equity indices are not shown, since that network is fully connected at this 

threshold level and thus offers no useful information. 

 [Please insert Table 5] 

When considering the network formed by the asset tree based on the ETE submatrix from lagged 

commodities to commodities, we see that crude oil, copper, silver, and gold occupy the positions 
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with highest in and out node degrees. In terms of node strength of the full ETE submatrix, crude oil, 

heating oil, silver, and gold occupy the highest positions of both in and out node strengths while 

copper falls to the eighth position in terms of both centralities. For the network formed from the 

ETE submatrix from lagged commodities to equity indices, we see that few nodes are connected, 

but energy and materials have highest in node degrees and lagged crude oil and lagged copper have 

the highest out node degrees. For node strength of the full submatrix, we have again energy and 

materials as receiving the most ETEs and crude oil, heating oil, and copper, all lagged, as sending 

the most ETEs. The opposite positions occur when dealing with the network based on the ETE 

submatrix from lagged equity indices to commodities, showing that the nodes that send most ETEs 

also receive most ETEs: crude oil, copper and heating oil are the major receivers, and lagged energy 

and lagged materials are the major senders. For node strength, crude oil, copper and heating oil are 

again the major receivers, and lagged energy and lagged materials sectors are the major senders.  

 

5. NETWORK DYNAMICS 

In this section, we analyze the temporal (dynamic) dimension of the correlation and Effective 

Transfer Entropy linkages among the investigated commodities and equity indices. We utilize mov-

ing windows, each one covering a certain time period. Considering the trade-off between the “con-

centrated” influence of particular events that occur rarely during the examined period and require 

the use of narrow window lengths vs. the statistical problems due to small samples sizes, we adopt-

ed each window to correspond to a semester, with 126 observations for every window span. This 

could be seen as an ideal compromise toward not diluting too many extreme/peak events (e.g., cri-

ses) and at the same time not applying relatively small sample effects. Thereafter, we analyze the 

results from the moving correlation and ETE matrices. 

In Figure 13, we plot the individual node strengths (NSs) for each of the variables in 10 sub-

matrices of the correlation matrices calculated at each semester, from 1995 to mid-2015 in two dif-

ferent ways: as individual graphs and as heat maps, one way complementing the other. The NSs of 

commodities and commodities usually rise and fall together, particularly in the beginning of 2006 

and after 2008, the year when the global financial crisis begun. In the case of equity indices and 

equity indices, we NSs are much higher, and they also rise in 2008, but not as steeply. There is also 

a peak in the late 2011, coinciding with the European sovereign debt crisis.  

[Please insert Figure 13 and 14] 

For the correlation submatrix of commodities and equity indices, the In and Out NSs rise dur-

ing the crisis of 2008 and then slowly fall afterwards. This finding seems to suggest that the strong 

correlation between commodities and equities was mainly caused by the onset of the recent crises, 

but not the phenomenon of financialization of commodity markets since 2004 as suggested by sev-
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eral previous studies (Tang and Xiong, 2012; Cheng and Xiong, 2014). Inversely, it is consistent 

with the results of Büyüksahin and Robe (2011) in that the equity-commodity linkages did not in-

crease until 2008, but only rise sharply during the global financial crisis 2008-2009. The remaining 

NSs are weaker in comparison to the first one, and we can only see that there is higher volatility 

after the crisis of 2008, although there is a clear peak in In NS from lagged commodities to equity 

indices in the first semester of 2010, and clear peak in Out NS from lagged equity indices to com-

modities in the first semester of 2008. 

In Figure 14, the same is done to the ETE matrices, only now there are only In and Out NSs, 

since all submatrices are asymmetric. Not much can be seen from the evolution of the Out NS of the 

ETE from commodities to commodities, but there is a sharp drop in In NS in 2008 for crude oil and 

copper. For the In and Out NSs of the ETE from equity indices to equity indices, we can see a sharp 

drop of all indices during the crisis of 2008. This is common for the ETE from actual variables in 

times of high volatility, and shows that there is little spillover of information between return series 

during the crisis, probably because they behave like a block. The opposite situation happens when 

we consider the NSs of the ETEs from commodities to equity indices: although there is no rise of 

Out NS from commodities (except for natural gas and platinum), there is a clear peak in In NS to 

equity indices that happen precisely in the crisis of 2008. There is also a steep rise of Out NS from 

equity indices to commodities in the 2008 crisis, but little In NS to commodities at the same time. 

The ETEs from lagged variables to original (unlagged) ones are generally much higher. Both In and 

Out NSs rise during the crisis of 2008, falling quickly afterwards, what contrasts the fast rise and 

slow fall of the corresponding NSs for correlation. Platinum and silver show late peaks, only at the 

end of 2009. The In and Out NSs from lagged commodities to equity indices show some very di-

verse results. For Out NS from lagged commodities, there is a peak in early and late 2009 and an-

other large peak in the end of 2011 for crude and heating oils, and also for copper. For In NS to 

equity indices, there are smaller peaks in 2009 and 2011. For the Out NS from lagged equity indices 

to commodities, we see a rise of energy sector before and during the crisis of 2008 and a peak in 

materials sector during the crisis. Another, smaller peak can be also be seen in 2011. The In NSs to 

commodities also rise during the crisis of 2008 and particularly during the European debt crisis in 

2011, but mainly for the crude oil, heating oil, and copper futures. Looking at the In and Out NSs 

from lagged equity indices to equity indices, we see a very uniform behavior between NSs. Peaks 

occur in 2003, 2008, and in 2011, pinpointing some of the most severe episodes of recent crises. 

Lastly, the results from the heat maps of the ETE node strengths are in full accordance with the 

aforementioned findings. 

 
6. CONCLUSIONS 
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We investigated the causal relationships between U.S. equity and commodity futures markets via 

the utilization of complex network theory, and particularly tools based on correlation and Transfer 

Entropy measures. This approach allows us to explore the commodity-equity linkages not only 

within same category of assets (i.e., energy futures, metal futures, agricultural futures, and equities) 

but also the clusters across different categories of assets (e.g., energy-metal futures, metal-

agricultural futures, and equity-metal futures, etc.) extracted from various network topologies. Roll-

ing estimations of large matrices are also implemented to analyze the temporal (dynamic) dimen-

sions of equity-commodity networks based on correlation and Transfer Entropy. Furthermore, we 

conducted a simulation analysis using randomized time series for rolling windows of centrality 

measures to assess the impact of various time periods on the data dependence structure. We mainly 

show that commodity futures markets are not homogenous and only have strong connections within 

the same category. They are still decoupled from equity markets. The asset graphs based on the ef-

fective entropy transfer shows for example that commodity futures form three networks (crude oil-

heating oil, silver-gold-copper-platinum, and corn-wheat), and that only energy equity sector is 

connected to energy futures (crude and heating oil). In terms of effective entropy transfer, finan-

cials, automobiles and energy equity sectors transmit the most information to commodity futures 

(particularly copper), while copper, silver, and crude oil futures to a lesser extent transfer the most 

information to equity markets. Finally, our results indicate that equity-commodity links only in-

creased during recent crises, possibly due to increased holdings of commodity futures by financial 

investors to diversify way the risk of stock portfolios. Accordingly, while it does not seem to play 

an important role, the financialization of commodity markets helps facilitate the risk management 

and hedging strategies with commodity futures trading. 
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TABLE 1: DESCRIPTIVE STATISTICS 

 
Mean (%) Std. Dev.(%) Skewness Kurtosis JB  Q

2
(12) ARCH(12) 

 Commodity futures 

Crude oil 0.010 1.000 -0.132 7.615 4760+ 1456.29+ 55.02+ 
Heating oil 0.011 0.959 -0.637 9.380 9431+ 336.18+ 16.98+ 
Natural gas 0.004 1.542 -0.031 12.202 18866+ 321.43+ 18.72+ 

Copper 0.005 0.748 -0.222 7.328 4217+ 2337.27+ 73.95+ 
Platinum 0.008 0.621 0.429 20.118 65445+ 122.47+ 7.57+ 
Silver 0.009 0.825 -0.821 10.860 14363+ 641.72+ 29.84+ 
Gold 0.009 0.465 -0.116 10.421 12280+ 551.84+ 25.50+ 
Corn 0.005 0.776 -0.612 15.762 36618+ 47.94+ 3.24+ 
Wheat 0.003 0.835 0.227 5.595 1546+ 492.33+ 22.05+ 
Cocoa 0.008 0.807 -0.121 6.301 2441+ 227.50+ 12.58+ 
Coffee -0.002 1.041 0.116 7.455 4434+ 808.57+ 37.06+ 

Cotton -0.002 0.869 -1.087 22.147 82729+ 18.51+++ 1.32 

 Equity markets 

S&P500 0.012 0.517 -0.247 11.577 16445+ 4839.60+ 153.41+ 
Consumer discretationary 0.015 0.584 -0.110 10.280 11818+ 3703.41+ 119.26+ 
Health 0.018 0.510 -0.135 9.584 9674+ 2407.78+ 88.78+ 
Energy 0.014 0.684 -0.305 13.888 26493+ 5473.63+ 174.13+ 
Financials 0.013 0.910 -0.040 17.797 48783+ 3840.63+ 121.70+ 

Industrials 0.013 0.567 -0.342 8.882 7813+ 3853.55+ 122.97+ 
Materials 0.009 0.645 -0.248 9.879 10598+ 4943.48+ 152.60+ 
Technology 0.016 0.776 0.152 8.003 5597+ 2437.91+ 79.05+ 
Utilities 0.006 0.499 -0.027 13.422 24199+ 4273.43+ 133.54+ 
Automobiles 0.001 0.933 -0.088 12.114 18512+ 3893.01+ 131.98+ 
Consumer staples 0.013 0.413 -0.127 11.756 17095+ 2491.76+ 90.39+ 

Notes: JB, Q2(12) and ARCH(12) refer to Jarque-Bera test for normality, the Ljung-Box test with 12-order serial autocorrelation in 

squared returns, and Engle (1982)’s test for conditional heteroscedasticity, respectively. +, ++ and +++ indicates rejection of the null 
hypotheses of normality, no autocorrelation and conditional homoscedasticity at the 1%, 5% and 10% levels.  

 
 

TABLE 2: UNCONDITIONAL CORRELATION 

 

S&P500 Cons-Dis Health Energy Financials Industrials Materials Technology Utilities Automobiles Cons-Sta 

Crude oil 0.15 0.08 0.05 0.43 0.11 0.12 0.19 0.09 0.13 0.08 0.04 
Heating oil 0.13 0.06 0.05 0.37 0.08 0.10 0.16 0.09 0.13 0.06 0.02 
Natural Gas 0.03 0.01 0.01 0.16 0.01 0.01 0.04 0.00 0.06 -0.01 0.00 
Copper 0.23 0.19 0.13 0.29 0.19 0.23 0.31 0.17 0.15 0.18 0.12 

Platinum 0.09 0.06 0.03 0.17 0.06 0.08 0.17 0.07 0.08 0.06 0.04 
Silver 0.07 0.03 0.02 0.20 0.03 0.07 0.20 0.04 0.05 0.04 0.02 
Gold -0.02 -0.06 -0.05 0.12 -0.06 -0.02 0.12 -0.03 0.00 -0.05 -0.04 
Corn 0.10 0.08 0.05 0.16 0.06 0.09 0.15 0.08 0.09 0.07 0.06 
Wheat 0.11 0.09 0.06 0.16 0.08 0.10 0.15 0.08 0.08 0.08 0.07 
Cocoa 0.08 0.06 0.06 0.13 0.06 0.08 0.13 0.03 0.06 0.05 0.06 
Coffee 0.07 0.07 0.05 0.10 0.06 0.07 0.11 0.05 0.04 0.06 0.05 
Cotton 0.11 0.09 0.08 0.14 0.09 0.09 0.13 0.06 0.09 0.08 0.06 

Notes: Cons-Dis and Cons-Sta refer to consumer discretionary and consumer staples sectors. 

 
TABLE 3: CENTRALITY MEASURES FOR THE UNDIRECTED COMMODITIES NETWORK BASED ON CORRE-

LATIONS 
 

Degree Betweenness Harmonic Closeness Eigenvector Strength 

Crude Oil (10) Coffee (5) Coffee (5) Coffee (6) Silver (3.98) 

Heating Oil (10) Wheat (4) Cocoa (4) Cocoa (5) Gold (3.72) 
Copper (10) Cotton (4) Wheat (3) Wheat (4) Crude Oil (3.59) 
Platinum (10) Cocoa (4) Cotton (3) Cotton (4) Platinum (3.40) 
Silver (10) Copper (3) Natural Gas (2) Copper (3) Heating Oil (3.39) 
Gold (10) Platinum (3) Copper (1) Platinum (3) Copper (3.37) 
Corn (10) Silver (3) Platinum (1) Silver (3) Corn (3.16) 
Wheat (9) Gold (3) Silver (1) Gold (3) Wheat (3.05) 
Cotton (9) Corn (3) Gold (1) Corn (3) Cotton (2.37) 

Cocoa (9) Natural Gas (2) Corn (1) Natural Gas (2) Cocoa (2.30) 
Coffee (8) Crude Oil (1) Crude Oil (1) Crude Oil (1) Coffee (2.25) 
Natural Gas (2) Heating Oil (1) Heating Oil (1) Heating Oil (1) Natural Gas (1.99) 

Notes: Variables classified in order of centrality, according to the diverse centrality criteria. The values of centralities appear in brackets. 
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TABLE 4: NODE STRENGTHS FOR DIRECTED NETWORKS BASED ON CORRELATIONS 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

TABLE 5: NODE DEGREES FOR DIRECTED NETWORKS BASED ON CORRELATIONS 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: Variables classified in order of in and out node strengths for four correlation and three ETE submatrices submatrices. Lagged 
variables appear with an *. 

Commodities - Equities Commodities* - Commodities 

In-NS Out-NS In-NS Out-NS 

Energy (2.43) Copper (2.19) Platinum (0.46) Wheat* (0.25) 

Materials (1.86) Crude Oil (1.48) Cocoa (0.35) Corn* (0.2) 
S&P 500 (1.16) Heating Oil (1.26) Silver (0.13) Platinum* (0.12) 
Industrials (1.04) Wheat (1.06) Coffee (0.13) Natural Gas* (0.08) 

Utilities (0.95) Cotton (1.01) Gold (0.11) Coffee* (0.08) 
Diversified (0.78) Corn (1.01) Corn (0.06) Cotton* (0.07) 
Discretionary (0.76) Platinum (0.91) Corn (-0.01) Heating Oil* (0.00) 

Technology (0.73) Cocoa (0.81) Heating Oil (-0.02) Cocoa* (0.00) 
Automobiles (0.70) Silver (0.75) Wheat (-0.07) Crude Oil* (-0.02*) 
Health (0.51) Coffeee (0.73) Natural Gas (-0.12) Gold* (-0.03) 

Staples (0.50) Natural Gas (0.32) Copper (-0.14) Silver* (-0.03) 
 Gold (-0.08) Crude Oil (-0.16) Copper* (-0.06) 

Commodities* - Equities Equities* - Commodities 

In-NS Out-NS In-NS Out-NS 

Materials (-0.09) Natural Gas* (-0.05) Silver (1.15) Materials* (0.81) 
Automobiles (-0.11) Gold* (-0.12) Platinum (1.11) Utilities* (0.70) 

Utilities (-0.12) Heating Oil* (-0.12) Copper (0.82) Energy* (0.69) 
Energy (-0.16) Copper* (-0.12) Gold (0.54) S&P 500* (0.69) 
Technology (-0.16) Cotton* (-0.13) Coffee (0.52) Discretionary* (0.63) 

Industrials (-0.19) Wheat* (-0.13) Crude Oil (0.50) Industrials* (0.62) 
Health (-0.24) Coffee* (-0.15) Cocoa (0.43) Automobiles* (0.60) 
Diversified (-0.26) Corn* (-0.19) Heating Oil (0.41) Technology* (0.54) 

Discretionary (-0.27) Cocoa* (-0.21) Corn (0.34) Staples* (0.51) 
S&P 500 (-0.27) Platinum* (-0.26) Cotton (0.34) Diversified* (0.48) 
Staples (-0.30) Crude Oil* (-0.34) Natural Gas (0.25) Health* (0.39) 

 Silver* (-0.35) Wheat (0.24)  

From Lagged Commodities to Commodities 

In-ND Out-ND In-NS Out-NS 

Crude Oil (5) Crude Oil* (5) Crude Oil (0.56) Crude Oil* (0.57) 
Copper (4) Copper* (5) Heating Oil (0.53) Silver* (0.53) 
Silver (4) Silver* (5) Silver (0.52) Heating Oil* (0.52) 

Gold (4) Gold* (4) Gold (0.47) Gold* (0.46) 
Heating Oil (3) Platinum* (3) Platinum (0.35) Platinum* (0.34) 
Platinum (3) Heating Oil* (2) Corn (0.31) Corn* (0.31) 

Natural Gas (2) Natural Gas* (2) Wheat (0.28) Wheat* (0.28) 
Corn (2) Corn* (1) Copper (0.24) Copper* (0.24) 
Wheat (1) Wheat* (1) Cotton (0.11) Cotton* (0.11) 

  Cocoa (0.10) Coffee* (0.10) 
  Natural Gas (0.10) Natural Gas* (0.10) 
  Coffee (0.09) Cocoa* (0.09) 

From Lagged Commodities to Equities 

In-ND Out-ND In-NS Out-NS 

Energy (3) Crude Oil* (3) Energy (0.28) Crude Oil* (0.22) 
Materials (2) Copper* (3) Materials (0.16) Copper* (0.17) 
Diversified (1) Heating Oil* (1) Diversified (0.10) Heating Oil* (0.12) 

Automobiles (1)  Automobiles (0.09) Silver* (0.09) 
  Industrials (0.08) Corn* (0.08) 
  S&P 500 (0.07) Platinum* (0.08) 

  Discretionary (0.07) Wheat* (0.06) 
  Utilities (0.06) Gold* (0.06) 
  Technology (0.06) Cotton* (0.05) 

  Health (0.03) Coffee* (0.04) 
  Staples (0.02) Cocoa* (0.03) 
   Natural Gas* (0.03) 

From Lagged Equities to Commodities 

In-ND Out-ND In-NS Out-NS 

Crude Oil (3) Energy* (3) Crude Oil (0.23) Energy* (0.29) 

Copper (2) Materials* (2) Copper (0.16) Materials* (0.16) 
Heating Oil (1) Diversified* (1) Heating Oil (0.13) Diversified* (0.13) 
 Automobiles* (1) Silver (0.09) Automobiles* (0.10) 

  Corn (0.08) Industrials* (0.08) 
  Platinum (0.08) S&P 500* (0.07) 
  Cotton (0.07) Technology* (0.07) 

  Wheat (0.06) Consumer* (0.06) 
  Gold (0.06) Utilities* (0.06) 
  Cocoa (0.05) Health (0.04) 

  Coffee (0.04) Consumer* (0.03) 
  Natural Gas (0.04)  
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FIGURE 1: SCHEMATIC REPRESENTATION OF TRANSFER ENTROPY 

 

 

 
 

 
FIGURE 2: DISTANCE MAP OF COMMODITIES, EQUITY INDICES & THEIR LAGGED COUNTERPARTS 

 

 
 

Notes: This figure shows four interacting clusters over time: one of commodity futures returns, one of equity index returns, and two 
others made by their 1-lagged values. They are produced by defining a distance matrix between each of the variables (nodes) of the 
network and then by positioning each node as a point in two dimensions. The distance measure is one minus the Spearman correla-

tion between each pair of variables. 

 
FIGURE 3: HEAT MAP OF THE CORRELATION MATRIX BETWEEN VARIABLES 

 

Notes: Brighter tones represent higher correlation, and darker tones represent lower correlation.  
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FIGURE 4: PARTITION OF THE CORRELATION MATRIX ACCORDING TO THE NATURE OF VARIABLES 

 

Notes: Separation of the enlarged correlation and ETE matrices into eight separate matrices. The effects of unlagged variables to 
lagged ones (from the future to the past) are being ignored, as well as the effects from lagged to lagged variables, which are almost 
identical to the effects of variables on themselves, without lagging.  

 

FIGURE 5: HEAT MAPS OF CORRELATION INVOLVING COMMODITIES AND EQUITY INDICES. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Notes: The first heat map shows the correlations between commodities; the second heat map shows the correlations between com-
modities and equity indices; the third heat map represents the correlations between lagged commodities and commodities; the fourth 
heat map shows the correlations between lagged commodities and equity indices; and the fifth heat map represents the correlations 
between lagged equity indices and commodities. 
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FIGURE 6: PROBABILITY DISTRIBUTION OF CORRELATION MATRICES 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 7: PROBABILITY DISTRIBUTION OF CORRELATION MATRICES BASED ON RANDOMIZED DATA 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: The probability distribution of the correlation matrices (Figure 6), and the same probability distribution obtained from 10,000 
simulations of correlation matrices based on randomized data (Figure 7). 

 
 
 

FIGURE 8: ASSET GRAPHS BASED ON THE CORRELATION MATRIX	  
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FIGURE 8 (contd.): ASSET GRAPHS BASED ON THE CORRELATION MATRIX  (contd.)	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  	  	  	  	  	  	  	  	  	  	  

	   	   	   	   	   	   	  

Notes: Asset graphs with thresholds from T=0.7 to T=0.2. The nodes associated with lagged variables are not represented, since they 

have an almost exact structure as the ones associated with the original variables, and form a cluster detached from the first one. Only 
for T=0.1, there are connections between the original and lagged clusters. The network between commodities is also not represented. 

 

FIGURE 9: HEAT MAP OF TE FOR 𝑘 = ℓ𝓁 = 1 (1ST
 FIGURE), TE FOR 𝑘 = ℓ𝓁 = 2	  (2ND

 FIGURE), OF RANDOM-

IZED TE (3RD
 FIGURE), AND OF ETE (4TH

 FIGURE) 

         

           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: Brighter tones represent higher transfer entropy (or higher effective transfer entropy), and darker tones represent lower trans-
fer entropy (or lower effective transfer entropy). The first graph represents TE for 𝑘 = ℓ𝓁 = 1 and the second graph represents TE for 

𝑘 = ℓ𝓁 = 2. The third graph represents the average of the correlations calculated based on randomized time series. The fourth heat 

maps represents the Effective Transfer Entropy, obtained by subtracting the Transfer Entropy based on randomized data from the 
original Transfer Entropy matrix. 
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FIGURE 10: HEAT MAPS OF THE EFFECTIVE TRANSFER ENTROPY INVOLVING COMMODITIES AND EQ-

UITY INDICES. 

	  

	  

	  

 

Notes: The first heat map shows the ETEs from commodities to commodities. The second heat map represents the ETEs from com-
modities to equity indices; the third heat map shows the ETEs from equity indices to commodities; the fourth heat map represents the 
ETEs from lagged commodities to commodities; the fifth heat map represents the ETEs from lagged commodities to equity indices; 
and the sixth heat map shows the ETEs from lagged equity indices to commodities. 
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FIGURE 11: PROBABILITY DISTRIBUTION OF EFFECTIVE TRANSFER ENTROPY MATRICES 

 

Notes: The probability distributions based on the effective transfer entropy matrices are depicted. 

 

FIGURE 12: ASSET GRAPHS BASED ON THE EFFECTIVE TRANSFER ENTROPY MATRIX 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: Asset graphs for the ETE matrix with thresholds from T=0.2, 0.15, 0.1, and 0.05. The nodes associated with lagged variables 
are not represented, and all relations are assumed to be from a lagged variable to an original one. 
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FIGURE 13: NODE STRENGTHS AND HEAT MAPS OF CORRELATIONS BETWEEN VARIABLES IN TIME 
 

	  
	  

	  
 

Notes: The first ten pictures show the Node Strengths (NS) of the specified variables in time as individual graphs, and the last ten 
pictures show heat maps of these node strengths. For the correlation matrices of Commodities and Commodities and of Equity indi-
ces and Equity indices (first, second, eleventh and twelfth figures), there is just Node Strength, since the corresponding correlation 

matrices are symmetric. For the remaining figures, there are In and Out Node Strengths.  
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FIGURE 14: NODE STRENGTHS AND HEAT MAPS OF ETES BETWEEN VARIABLES IN TIME 
	  

	  

 

Notes: The first sixteen pictures show the In and Out Node Strengths (InNS and OutNS) of the specified variables in time as individ-
ual graphs, and the last sixteen pictures show heat maps of these node strengths.  


