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Abstract 

 

We use regular vine (r-vine), canonical vine (c-vine) and drawable vine (d-vine) copulas to examine the depend-

ence risk characteristics of three 20-stock portfolios from the retail, manufacturing and gold-mining equity sec-
tors of the Australian market in periods before, during and after the 2008-2009 global financial crisis (GFC). Our 

results indicate that the retail portfolio is less risky than the manufacturing counterpart in the crisis period, while 

the gold-mining portfolio is less risky than both the retail and manufacturing sector portfolios. Both the retail and 

gold stocks display a higher propensity to yield positively skewed returns in the crisis periods, contrary to the 

manufacturing stocks. The r-vine is found to best capture the multivariate dependence structure of the stocks in 

the retail and gold-mining portfolios, while the d-vine does it for the manufacturing stock portfolio. These find-

ings could be used to develop dependence risk and investment risk-adjusted strategies for investment, rebalanc-

ing and hedging which more adequately account for the downside risk in various market conditions.  
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1.   Introduction 

The important retail and manufacturing sectors of the Australian economy can be 

identified for having a strong relationship of dependence with the performance of the Austral-

ian grand resources sector, which includes the important gold mining sector that tends to per-

form well in risky market conditions, characterized by low confidence in the financial stock 

markets. Underlying the sectors’ relationship of interdependence with the retail and manufac-

turing sectors, which impacts the levels of demand, spending and investment in those sectors, 

lies the resource-based nature of the Australian economy and the positively skewed price and 

return behavior of the gold market, particularly during crisis periods (Mehmedovic et al., 

2011; Savills Research, 2014; Australian Retailers Association, 2014; Delloite, 2013; Kor-

daMentha, 2013; DIISR, 2010; NAB, 2012; Green and Roos, 2012; CWT, 2012).1  

In this context of dependence relationships, an accurate estimation and interpretation 

of the dependence structure and dependence risk of the stocks’ of the retail, manufacturing 

and gold-mining sectors are of particular interest to both policymakers and investors, given 

these major sectors’ economic linkages and dependence relationships.2 Their dependence 

structure may be complex, change over time and exhibit nonlinear patterns of asymmetric 

behavior, thus requiring the implementation of sophisticated models that could adequately 

decipher the dependence dynamics at various locations of pairs of variables’ joint distribu-

tions. Some of the most promising models that can be used to address the dependence struc-

ture and risk dynamics of asset portfolios are the pair vine copula models, which have been 

found to outperform alternative modeling techniques employed  in dependence estimation 

(Low et al., 2013; Dismman et al., 2013; Heinen and Valdesogo, 2009).  

In tune with this wave of financial risk modeling, this study employs the r-vine, c-vine 

and d-vine (regular, canonical and drawable, respectively) copula models to estimate and ex-

amine the dependence structure and dependence risk characteristics of three 20-stock portfoli-

os from the Australian retail, manufacturing and gold-mining sectors in the context of the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 The acronyms DIISR, NAB and CWT stand for the “Department of Innovation, Industry, Science and Re-

search”, the “National Australian Bank” and the “Common Wealth Treasury”, respectively. 
2
	  The concept of dependence risk refers to the risk stemming from a specific type of dependence relationship 

which two variables have in times of financial turbulence and in well-behaved financial stock markets (Hernan-

dez, 2015). The dependence risk that two stock return series have in the center of a joint distribution is reflected 

as mild swings in the return distribution, as opposed to the dependence risk in the tails which is characterized by 

large swings in the return distribution. Besides, the dependence risk of two variables could be linear, nonlinear, 

symmetric or asymmetric.  
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GFC.3  While the retail and manufacturing portfolios are the base of the current study, the 

gold-mining portfolio is included for benchmarking purposes, and due to its economic linkag-

es and spillover effects on the retail and manufacturing sectors, particularly during crises. 

Specifically, our study seeks to identify the risk profiles of the three sector portfolios 

and their stock market conditions under which one portfolio is riskier than another. We also 

examine the changes in these portfolios’ conditional dependence structure across three finan-

cial period scenarios revolving around the GFC, and also identify the vine copula models that 

most adequately capture the multivariate dependence risk dynamics of each portfolio. For this 

purpose, we thoroughly analyze the size and location of the dependence concentration and its 

symmetric and asymmetric features for pairs of stocks’ joint distributions. Moreover, a “copu-

la counting technique” is employed to tackle the complex interpretation of the portfolios’ de-

pendence structure and their changes over different market conditions. This technique is a 

simple and systematic procedure to dissect, organize, analyze and interpret dependence struc-

tures in high dimensions. This specific type of methodology for multivariate dependence 

structure analysis draws on the dependence structure analysis approach first introduced by 

Arreola-Hernandez (2014). It could also be seen as an extension since it adopts a more struc-

tured and systematic approach to analyzing the multivariate dependence structure matrices. 

We also stress primarily the methodological aspect of the proposed approach and undertake 

hypothesis testing to validate or invalidate the correctness and veracity of the copula counting 

technique, something not conducted in Arreola-Hernandez (2014). 

The vine copula models implemented in this study are based on the theory and model 

developments proposed by Joe (1997), Cooke (1997), Bedford and Cooke (2001, 2002) and 

Aas et al. (2009). While Joe (1997) discusses the construction of multivariate copulas that can 

be fitted to various types of dependence structures, Bedford and Cooke (2001, 2002) intro-

duce the concept of vine copulas and develop a framework for the construction of multivariate 

probability distributions based on pair copulas. Aas et al. (2009) propose analytical models 

for the decomposition of multivariate densities and inference of the c-vine and d-vine copulas. 

In terms of the empirical applications and asymmetric dependence modeling, our research is 

broadly linked to Chollete et al. (2009)’s asymmetric dependence c-vine modeling of a portfo-

lio consisting of stocks from the G5 and some South American countries. Heinen and Val-

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 The acronym GFC refers to the global financial crisis that took place in the United States during the 2008-2009 

period and after the collapse of the Lehman Brothers Holdings Inc, which then spread to most international fi-

nancial markets. This period is characterized by a signicant degree of financial market uncertainty, volatility and 

risk.   
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desogo (2009) analyze the asymmetric dependence of 95 stocks from the S&P 500 index by 

employing a c-vine copula model. Dissmann (2010) uses r-vines to investigate the asymmet-

ric dependence structure of a 16-asset portfolio consisting of equities, fixed income securities 

and commodity indices. Brechmann and Czado (2012) address the asymmetries and 

nonlinearities in the dependence structure of macroeconomic indicators by implementing a 

pairwise vine copula approach. More recently, Low et al. (2013) apply the Clayton c-vine 

copula model to asset return data. Our research is closely related to the work of Ni-

koloulopoulos et al. (2012), who use vine copulas to study the tail dependence of European 

indices. Moreover, Arreola-Hernandez (2014) recently adopts a similar framework to model 

the dependence structure of energy stock portfolios based on the Australian market.  

The research conducted in this study, as compared to that in the above-mentioned 

studies, is more complete in that it thoroughly and comprehensively examines the size, loca-

tion, and symmetric and asymmetric features of the dependence structure and dependence risk 

dynamics of three stock portfolios in the context of financial scenarios surrounding the GFC 

period. The financial crisis context sets the market conditions to identify dependence changes 

in the structure across the three financial period scenarios: the pre-GFC, GFC and post-GFC.  

Our results indicate that the retail sector stock portfolio, which consists of many de-

fensive stocks, is less dependence risky than the manufacturing portfolio in the GFC period. 

On the other hand, the gold-mining stock portfolio is less dependence risky than both the re-

tail and manufacturing portfolios in similar market conditions. The lower riskiness of the re-

tail sector portfolio relative to that of the manufacturing is due to the defensive nature of the 

retail stocks which include non-discretionary stocks such as those of heath care, and also 

since this sector has bearing to its more diversified economic linkages with most sectors of 

the economy, particularly its connection to the strong performance of the gold-mining sector 

during the crisis period. As defensive stocks, the retail stocks are recognized for having a 

higher propensity to yield positively skewed returns in crisis periods, a feature shared with the 

gold stocks but is absent in the manufacturing stocks. The r-vine and d-vine copulas are found 

to best capture the multivariate dependence structure of the retail, gold mining and manufac-

turing portfolios, respectively. Hence, our main contributions to the relevant literature come 

from the empirical results achieved through the implementation of the proposed “copula 

counting technique”.  
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The employed vine copula models along with the proposed copula counting technique 

are useful in terms of theory development and practical financial applications. Specifically, 

portfolio and risk managers and those who follow the trends of the Australian retail, manufac-

turing and gold-mining sectors may find our empirical results useful for trading and hedging 

purposes and for complying with capital adequacy requirements. For those end users, it is of 

interest to discern in more details the inherent dependence risk characteristics of these sectors, 

particularly in times of financial turbulence, when extreme downside events tend to occur. 

Those downside regimes and events are generally characterized by greater dependence across 

investment assets, particularly on the downside more than on the upside, and thus could se-

verely influence the performance of the sector stock portfolios. 

The remainder of this article is organized as follows. Section 2 introduces the pair vine 

copula models. Section 3 presents the data. Section 4 explains the bivariate copula counting 

technique. Section 5 deals with the empirical estimations. Section 6 concludes. 

2. The pair vine copula models 

The c-vine, d-vine and r-vine copula models are graph-based tree structures that make 

possible the design of high dimensional multivariate dependence structures. These bivariate 

copula-based models have become increasingly popular in the empirical domain for the anal-

ysis of multivariate real-world datasets since they allow for the estimation of random vector 

distributions through the assessment of copulas and marginals separately. The flexibility of 

these models enables one to overcome the limitations of traditional measures of dependence 

(e.g., bivariate copulas) and correlation (e.g., Pearson correlation), and leads to more accurate 

estimation of the dependence structure (Bekiros et al., 2015; Arreola-Hernandez, 2014; Aloui 

et al., 2011).4 

The graphical characteristic of the pair vine copulas also enables a localized and spe-

cific-specialized modeling of marginal and joint distributional features such as kurtosis, 

skewness, symmetric and asymmetric dependence, through the use of bivariate copulas serv-

ing as the building blocks (Czado, 2010; Brechmann and Schepsmeier, 2011; Czado et al., 

2012). The existing large set of bivariate copula families, as the building blocks of the pair 

vine copulas, enables one to capture various joint distributional characteristics and depend-

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 It should be noted that the limitation of the bivariate copulas, relative to the pair vine copulas, becomes evident 

when the former  are used in isolation (e.g., using only the Gaussian or only the Student-t bivariate copula to 

model a multivariate dataset). On the other hand, the strength of the pair vine copulas to a great extent stems 

from the simultaneous use of a wide array of bivariate copula families to model a multivariate distribution.  
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ence relationships between pairs of variables without altering the original marginal distribu-

tions (Low et al., 2013; Patton, 2012; Min and Czado, 2010). Both bivariate copula and pair 

vine copula developments have been built on the theory and mathematics proposed in the the-

orem of Sklar (1959).5  

2.1 Canonical, drawable and regular vines 

The c-vines are a subset of the r-vines that can be recognized for their star-like shape. 

The c-vine structure is comprised of trees, where each tree has a root node-variable selected 

under the criterion of having the highest correlation values with the rest of the variables. In 

our application, each root node is represented by a stock return series that is in a relationship 

of dependence with other stock return series of the dataset. Besides, in the c-vines a root 

node-variable (i.e., the stock return series with the strongest relationship of dependence with 

the rest of stock return series), which is located in the first tree, is chosen for the entire vine 

structure and exerts influence on the rest of the variables through high correlation values. The 

c-vine copulas have been acknowledged for best fitting the multivariate datasets that contain a 

variable that has exceptionally high correlations with the rest of the variables (Czado et al., 

2013).  

The d-vines, which are also a subset of the r-vines, have line tree shapes. The nodes in 

each tree of the d-vine cannot be linked to more than two edges. The d-vines have been found 

to more adequately fit multivariate datasets where a group of variables has an important influ-

ence on the rest of the variables in terms of high correlation values (Min and Czado, 2010). 

The following models, along with those found in Brechmann and Schepsmeier (2011), 

have been proposed to separate multivariate densities and infer the pair c-vine and pair d-vine 

copula structures:  

𝑓 𝒙 = 𝑓$ 𝑥$
&
$'(   

 ∙ 𝑐+,+-.|(: +1( 	  
&1+
.'(

&1(
+'( F 𝑥+ 𝑥(, … 𝑥+1( , F 𝑥+-. 𝑥(, … , 𝑥+1( 𝜽+,+-.|	  (:(+1()                       (1) 

𝑓 𝒙 = 𝑓$ 𝑥$
&
$'(   

	  	  	  	  	  	  	  	  	  	  ∙ 𝑐.,.-+| .-( :(.-+1()	  
&1+
.'(

&1(
+'( F 𝑥. 𝑥.-(, … 𝑥.-+1( , F 𝑥.-+ 𝑥.-(, … , 𝑥.-+1( 𝜽.,.-+|	   .-( :(.-+1()             (2) 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

5
	  A detailed explanation of the connection between Sklar’s theorem and pair vine copula models can be found in 

Brechmann and Schepsmeier (2011). 
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where 𝑓$ , 𝑘 = 1,… , 𝑑	   denote the marginal densities and 𝑐+,+-.|(: +1( 	  represent the bivariate 

copula densities with parameter (s) 𝜽+,+-.|	  (:(+1(). Also 𝑖 identifies the trees and 𝑗 runs over the 

edges in each tree.  

An r-vine on 𝑛 variables is one in which two edges in tree 𝑗 are joined by an edge in 

tree 𝑗 + 1 only if these edges share a common node. The shape of the r-vines unlike those of 

the c-vine and d-vines can vary significantly according to the statistical characteristics of the 

multivariate distribution being modeled. An exact and generalized analytical model has not 

been proposed for the decomposition of multivariate densities and the inference of r-vine 

structures, most likely because the set of possible r-vine structures is vast, diverse and com-

plex to be captured by an equation. Despite this obstacle, Kurowicka and Cooke (2006) build 

the following analytical model to decompose multivariate densities and approximate the in-

ference of the r-vine structures:  

𝑓 𝑥(, … , 𝑥? = 𝑓$ 𝑥$
?
$'( × 𝑐.(A),$(A)|B(A)	  A∈DE

?1(
+'( F 𝑥. A 𝑥B A , F 𝑥$ A 𝑥B A         (3) 

where 𝑓 𝑥(, … , 𝑥?  stands for a multivariate density,	  𝑐.(A),$(A)|B(A)	   represents a bivariate con-

ditional density copula with 𝑗(𝑒) and 𝑘(𝑒) as the conditioned nodes, and 𝐷(𝑒) as the condi-

tioning set. The parameter	  𝑒 = 𝑗(𝑒),	  𝑘(𝑒)|	  𝐷(𝑒) is an edge that belongs to the edge set Ԑ=

𝐸(, … , 𝐸?1( . The vector 𝑿B(A) is a vector of variables conditioned by the components of the 

conditioning set 𝐷(𝑒). Eq. (3) is uniquely determined since there is not a common-based tree 

structure shared among the r-vine statistical models (Kurowicka and Cooke, 2006). 

 

3. Data 

We consider three 20-stock portfolios from the retail, manufacturing and gold-mining 

equity sectors of the Australian stock market. 6 All stocks from each sector are selected ran-

domly. The retail and manufacturing sectors are the base of the study, while the gold-mining 

sector portfolio is included for benchmarking purposes, and is also due to the importance of 

this sector in the Australian economy. Besides, gold has the reputation of performing well in 

tumultuous stock market conditions, which is the focus of this study (Reboredo, 2013; Re-

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

6
	  While the pair vine copula approach can handle portfolios of a larger size, we only consider 20-stock portfolios 

since the estimation of the dependence matrix becomes quite complex as the number of stocks increases. This is 

due to the consideration of almost all existing bivariate copula families in the modeling. The summary statistics 

for the constituents of these two portfolios can be made available upon request to the corresponding author. 
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boredo and Rivera-Castro, 2014). The manufacturing and retail stocks are selected for the 

analysis of dependence because their underlying market sectors are important in the Australi-

an economy, each sector contributes roughly 5% and 6.5% of total GDP, respectively. Be-

sides, the manufacturing sector has been in a declining trend and exhibiting increasing risk, 

while the retail sector has been expanding (Department of Industry, 2014; Kryger, 2014; Aus-

tralian Bureau of Statistics, 2015). The backward and forward linkages the retail and manu-

facturing sectors have with the resources sector, the gold mining sector and other sectors of 

the economy also make these sectors worthy of studying (KordaMentha, 2013).  

The daily stock prices are obtained from DataStream International for the period Janu-

ary 2005 to July 2012 and consist of 1952 observations. The study period covers three finan-

cial scenarios surrounding the 2008-2009 GFC period: the pre-GFC (January 7, 2005-July 6, 

2007), the GFC (July 9, 2007-December 31, 2009) and the post-GFC (January 1, 2010-July 2, 

2012). In selecting these period scenarios, we follow Baur (2012) which used similar scenari-

os. The Bank for International Settlements (2009) and the Federal Reserve Bank of St. Louis 

(2009) also use similar time periods in their analysis. The logarithmic returns are computed 

and then filtered with an ARMA (1,1)-GARCH (1,1) process with Student-t innovations to 

capture the leptokurtic features in the tails of the stock return distribution. The fitted paramet-

ric Student-t distribution enables one to account for extreme downturn market behaviors and 

economic shocks reflected in financial stock markets as large transaction volumes on the sell 

side and shrinkage of liquidity. The consideration of subperiods aims at capturing changes in 

the dependence structure of the three portfolios across time and in different market conditions. 

The “copula data” used to estimate the dependence structure of the three sector portfolios is 

obtained by applying a probability integral transform to the standardized residuals of the loga-

rithmic returns. Table 1 displays the names of the stocks in the three portfolios and their cor-

responding codes. 

Table 1: Names and codes of the stocks of the three portfolios 

Manufacturing 
stock names 

Manufacturing 
stock codes 

Retail 
stock names 

Retail 
stock codes 

Gold  
stock names 

Gold  
stock codes 

Schaffer Corp. SFCX Coca-cola CCLX ST Barbara SBMX 

Boral BLDX Hills Hld HILX Northwest Resources NWRX 

Brickworks BKWX Gwa Grp. GWAX Northern Star NSTX 

Csr CSRX 
M2 Telecom 

MTUX 
Stone Resources of Aus-

tralia 
SHKX 

James Hardie JHXX Metcash MTSX Degrey Mining DEGX 

Oilfield Hld. OLHX Woolworths WOWX Resolute Mining RSGX 

Colorpak CKLX Arb ARPX Apex Minerals AXMX 

Ansell ANNX Cash Conv. CCVX Orion Gold ORNX 

Sdi SDIX David Jones DJSX Redcliffe Resources RCFX 
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Somnomed SOMX Delecta DLCX Excalibur Mining EXMX 

USCOM UCMX Harvey Norman HVNX Tanami Gold TAMX 

Fleetwood FWDX Jb Hi-Fi JBHX Gleneagle Gold GLNX 

Fantastic Hld. FANX Rcg RCG Millenium Minerals	   MOYX	  

Kresta Hld. KRSX Specialty Fashion SFHX Evolution Mining EVNX 

Austal ASBX Super retail SULX Australian Mines AUZX 

Merchant House MHIX Wesfarmers WESX Hill End Gold HEGX 

Csl CSLX Fantastic Hld. FANX Kalgoorlie Mining KMCX 

Idt Australia IDTX Gazal GZLX Intermin Resources IRCX 

Codan CDAX Flight Centre FLTX Haoma Mining HAOX 

Legend LGDX Jetset Travel JETX Citigold CTOX 

 

4. The “copula counting technique” 

The copula counting technique we propose dissects, organizes, analyzes and interprets 

the portfolios’ dependence structure matrix. This technique consists of the following stages: 

(i) counting, (ii) recording, (iii) classification, (iv) grouping and (v) aggregate dependence 

reading, where each stage builds on the previous one. The technique allows one to identify the 

most dependence risky portfolio and the stock market conditions under which that portfolio is 

the riskier than others. The analysis of the changes of the portfolios’ dependence structure 

across the three financial period scenarios is also greatly simplified through the use of this 

technique. Besides, by implementing the technique the vine copula models that best account 

for the multivariate dependence structure and risk dynamics of portfolios are easily identified.  

In the literature of pair vine copula modeling, there have been some studies that have 

unsystematically engaged into one or two of the stages considered by the copula counting 

technique (e.g. Allen et al., 2013; Czado et al., 2012; Dissmann et al., 2012; Heinen and Val-

desogo, 2009). Thus, the technique could be seen as an extension of those earlier attempts to 

organize, process, and interpret the estimates of the vine copula models’ dependence struc-

ture. For instance, Allen et al. (2013) do not count for the vine models’ bivariate copula selec-

tion. Instead, they find that the Student-t bivariate copula is the most frequently selected in 

their analysis. As a result, the information contained in the dependence structure matrix of the 

portfolios they consider is not fully exploited. Czado et al. (2012) do not engage into counting 

the bivariate copulas selected by the vine models; however, they do identify by name the se-

lected copula families. The study by Dissmann et al. (2012), unlike those of Czado et al. 

(2012) and Allen et al. (2013), does engage into counting the selected bivariate copula fami-

lies and records the results in tables. These authors, however, do not pursue further the classi-

fication, grouping and interpretation of the selected copulas.  
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The dependence risk analysis we conduct is more in-depth and is in line with the work 

of Heinen and Valdesogo (2009) which count, record and classify the bivariate copulas se-

lected by the vine models. Nevertheless, those authors neither group nor aggregate the select-

ed bivariate copulas to draw generalizations and inferences about the dependence risk features 

of sector portfolios. As a result, our dependence risk analysis has the comparative advantage 

of effectively exploiting the information contained in the portfolios’ dependence structure 

matrices. A brief description of the techniques’ stages is as follows: 

 

i.   Counting  

The bivariate copulas selected by the vine models, and contained in the diagonal de-

pendence structure matrices presented in the next section, are counted in order to know how 

often a certain copula is selected for the estimation of dependence between stocks. Knowing 

the frequency of the selection is essential because aggregation is used to draw generalizations 

and inferences about the dependence risk features of the portfolios. The aggregation of the 

bivariate copulas is crucial to the analysis because single bivariate copulas considered in iso-

lation (i.e., using a single bivariate copula to model diverse pairs of variables’ relationships) 

do not provide sufficient information about the dependence risk features of a high dimension-

al dependence structure. 

ii.   Recording  

The counted bivariate copulas are organized in tables so that the patterns of the de-

pendence and the concentration of dependence are easily recognized. The recording of the 

frequency of the bivariate copula selection also facilitates the identification of the depend-

ence concentration shifts across the financial period scenarios considered or the changes in 

the dependence structure across time. 

iii.   Classification 

The counted and recorded bivariate copulas selected by the vine copula models are 

distinguished on the basis of the type of dependence modeling they perform. This process of 

differentiation needs not be recorded; however, it does require from the modeler to understand 

the dependence modeling characteristics of each of the bivariate copulas so that they are ade-

quately classified. An adequate classification of the bivariate copulas lays in turn a reliable 

ground to accurately interpret the dependence structure. 
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iv.   Grouping 

The counted, recorded and classified selected bivariate copulas are now grouped in the 

tables according to the type of dependence modeling they perform and the location of the de-

pendence they model (i.e., center, positive tail, negative tails).  

v.   Aggregate dependence reading 

This stage deals with the identification of the patterns of dependence, the symmetric 

and asymmetric features of the dependence, and the size and location of the dependence in the 

joint distributions. The shifts of dependence concentration between the three period scenarios 

and the vine copula models that best account for the overall dependence of the portfolios are 

recognized. 

5. Empirical application 

The dependence structure of the retail, manufacturing and gold portfolios is estimated by ap-

plying the c-vine, d-vine and r-vine copula models and is interpreted by using the “copula 

counting technique”. Table 2 lists the bivariate copula families employed by the vine copula 

models to measure the dependence relationships between the retail, manufacturing and gold 

stocks. Their corresponding conventional numbers are also listed to facilitate the estimation 

and interpretation of the portfolios’ dependence structure, contained in the diagonal matrices 

presented in this section. 

Table 2: Sets of bivariate copula families employed by the vine copula models 

One Param Archimedean 2 Param 90 Rotated 180 Rotated 270 Rotated 

Gaussian (1)      Clayton-Gumbel(BB1) (7) Clayton                        (23) Clayton                          (13) Clayton                          (33) 
Student-t (2) Joe-Gumbel(BB6)        (8) Gumbel                        (24) Gumbel                          (14) Gumbel                          (34) 

Clayton   (3) Joe-Clayton(BB7)        (9) Joe                               (26) Joe                                  (16) Joe                                  (36) 
Gumbel   (4) Joe-Frank(BB8)          (10) Clayton-Gumbel(BB1) (27) Clayton-Gumbel (BB1) (17) Clayton-Gumbel(BB1)  (37) 
Frank      (5)  Joe-Gumbel(BB6)       (28) Joe-Gumbel(BB6)          (18) Joe-Gumbel(BB6)         (38) 

Joe          (6)  Joe-Clayton(BB7)       (29) Joe-Clayton(BB7)          (19) Joe-Clayton(BB7)          (39) 
  Joe-Frank(BB8)          (30) Joe-Frank(BB8)             (20) Joe-Frank(BB8)             (40) 

   Notes: The bivariate copula families listed and numbered can measure linear and nonlinear dependence relationships. The Frank and the 

Gaussian copulas (i.e. copulas number 5 and 1 in the table) are designed to model greater dependence in the center of the joint distribu-
tions. The Clayton and the Gumbel copulas (i.e. copulas number 3 and 4 in the table) can account for the asymmetric dependence in the 
tails. The Student-t copula (i.e. copula number 2 in the table) models the dependence in the tails symmetrically.  

 

The top row classifies the bivariate copulas according to the number of parameters they 

use and their degree of rotation. The standard elliptical bivariate copulas employ only one 

parameter, while the standard Archimedean bivariate copulas employ two parameters. In fact, 

90, 180 and 270 degrees can rotate both the standard elliptical and the standard Archimedean 
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bivariate copulas in order to capture distributional characteristics that the standard copulas 

cannot.7  

In order to test for the portfolios’ dependence risk differences or the differences in size 

between the portfolios’ overall, asymmetric and symmetric dependence concentrations, a two-

sample two-tailed t-test for the difference of means between concentrations of dependence at 

the 95% confidence level is conducted. The null hypothesis 𝐻K tested is: “No statistically sig-

nificant difference exists between the means of two concentrations of dependence.” The t-test 

to be fitted is: 

 𝑡 =
MNA	  &+OOAPA?QA	  RASTAA?	  UVWXYA	  WAV?U

DUS+WVSA&	  USV?&VP&	  APPKP	  KO	  &+OOAPA?QA	  RASTAA?	  WAV?U
 

 𝑡 =
Z[1Z\

]^[_^\
 ,                                                                                            (4) 

where	  𝑆Z[1Z\=
U[
\

?[
+

U\
\

?\
                                                                     (5) 

In Eq. (5), the variables 𝑠(
f and 𝑠f

f represent the sample variances, and 𝑛( and 𝑛f ac-

count for the numbers of observations in the respective samples. The degrees of freedom are 

estimated as follows: 

𝑑𝑓 = 𝑛( − 1 + (𝑛f − 1)                                       (6) 

If the null hypothesis is rejected, then the concentration of dependence accounted by 𝑛( is 

identified as being significantly larger, significantly smaller or neither (somewhere in the 

middle). The null hypothesis is rejected if the T-test value 𝑡 is greater than the 𝑡 statistic. In 

other words, the null hypothesis is rejected if 𝑡 > 𝑡 i.ik,ff ' ± 2.074 at the 95% confidence 

level and 22 degrees of freedom. 

5.1. The retail portfolio 

Figure 1 displays the r-vine diagonal dependence structure and the Kendall tau matri-

ces of the retail portfolio. All matrices consist of 192 components. The numbers in the diago-

nal dependence structure matrices of Panel (a) represent the bivariate copulas listed and num-

bered in Table 2. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
7
 Since the dependence structure corresponding to each financial period scenario is recorded in tables as part of 

the recording stage, the counting stage of the technique is only implemented to the full sample period scenario of 

each portfolio. The output from the counting, recording and classification stages is summarized in the grouping 

stage. Also, only the Kendall tau and the dependence structure matrices of the retail and manufacturing portfoli-

os for the one period scenario are shown.  
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According to Figure 1 and Table 3 of the retail portfolio, the bivariate copulas that are  

more frequently selected by the c-vine, d-vine and r-vine copulas, under the full sample peri-

od scenario, to measure the dependence in the pairs of stocks’ joint distributions are: the 

Frank (5) selected 38, 44 and 51 times for the c-vine, the d-vine and the r-vine models, re-

spectively; the Joe-Frank 180 degrees rotated (20) 9, 6 and 8 times; the Joe-Frank (10) 7, 5 

and 3 times; the Gaussian (1) 18, 16 and 18 times; the Clayton (3) 11, 9 and 7 times; the Stu-

dent-t (2) 45, 43 and 41 times; the Gumbel 180 degrees rotated (14) 14, 13 and 12 times; the 

Clayton 180 degrees rotated (13) 18, 15 and 16 times each; the Joe 180 degrees rotated (16) 5, 

3 and 3 times; and the Gumbel (4) 10, 7 and 8 times.  

 

        
Panel (a) 

 
Panel (b) 

Fig. 1: The dependence structure and Kendall tau matrices of the retail portfolio. Panel (a) displays the full sam-

ple period’s r-vine (on the left) and c-vine (on the right) copula family specification matrices. Panel (b) displays 

the full sample period’s r-vine Kendall tau correlation matrix.  
 

Table 3 summarizes the counting, recording, classification and grouping stages of the 

copula counting technique. The Frank copula is selected the most by the vine copula models, 

implying that most of the dependence in the retail portfolio is concentrated in the center of the 
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joint distributions for the pairs of stocks. As indicated, due to the predominance of the Frank 

copula under all financial period scenarios for the retail portfolio, most of the dependence is 

concentrated in the center of this portfolio’s joint distribution, implying that the retail stocks 

have a high dependence risk in the non-crisis periods and low dependence risk in the financial 

crisis periods. This finding in turn implies that the returns of the retail portfolio are liable to 

change more frequently in the non-crisis periods but have a low probability of being extreme 

in those market conditions, due to the moderate movements in the fundamental macroeco-

nomic variables during that period. Looking back into the 2008-2009 global financial crisis 

indicates that stock investments in the Australian retail sector were indeed exposed to lower 

market risk in comparison with similar investments in the United States’ retail sector and the 

Australian manufacturing sector. The primary reason for the lower risk exposure of the Aus-

tralian retail sector during the crisis period, as compared to the US retail sector, is that the 

Australian economy has a strong resource-based economic component, and unlike that of the 

United States’ retail sector, has a tight economic relationship of dependence with the perfor-

mance of the gold mining sector and other non-resources sectors of the Australian economy. 

In the U.S., the retail sector is tied more to the volatile consumer confidence that is in turn 

influenced by the job market as a whole. 

Table 3: The c-vine, d-vine and r-vine models’ bivariate copula selection for the retail portfolio 

Bivariate  

Copula 
Full sample Pre-GFC GFC Post-GFC 

Vine model 
C 

vine 

D 

vine 

R 

vine 

C 

vine 

D 

vine 

R 

vine 

C 

vine 

D 

vine 

R 

vine 

C 

vine 

D 

vine 

R 

vine 

   Negative tail  

Clayton 11 9 7 18 17 18 25 21 20 13 15 16 

Gumbel 180 14 13 12 12 8 9 13 10 10 13 11 9 

Studen-t 45 43 41 17 15 16 23 25 31 20 18 21 

Joe 180 5 3 3 2 3 5 3 4 6 4 3 5 

Joe-Frank 
180 

9 6 8 9 7 10 4 3 4 4 2 3 

Clayton 270 2 4 7 9 8 10 6 4 5 3 3 5 

   Center  

Frank 38 44 51 52 53 58 46 44 49 47 43 45 

Gaussian 18 16 18 28 24 22 21 19 21 31 27 25 

   Positive tail  

Gumbel 10 7 8 5 7 10 9 7 6 10 9 12 

Clayton 180 18 15 16 9 7 10 15 13 15 20 19 21 

Clayton 90 4 5 6 10 8 10 7 5 3 7 5 4 

Studen-t 45 43 41 17 14 16 23 25 31 20 19 21 

Joe 4 3 4 7 5 2 5 6 8 7 6 9 

Joe-Frank 7 5 3 6 5 4 4 3 1 2 1 3 

Notes: The full sample period spans from January 2005 to July 2012; the pre-GFC stretches from Jan 2005 to 

July 2007; the GFC period covers from July 2007 to Dec 2009 and; the post-GFC period accounts for the volatil-

ity between Jan 2010 and July 2012. The numbers in the table represent the number of times a bivariate copula 
function is selected. The Student-t copula is positioned with copulas for both positive and negative tail depend-

ence because it measures the dependence in both tails symmetrically.  This symmetric aspect of the Student-t 
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copula poses a challenge to the interpretation of the dependence structure because it is unclear in which tail of 

the distribution the dependence is concentrated. 

  

 

In essence, the retail sector had gone through moderate economic shocks during the 

financial crisis, mainly because the Australian gold-mining sector and other resources and 

non-resources sectors had overall outmaneuvered the financial crisis’ effects fairly well. Evi-

dence of this is that the gold-mining sector had its best historical performance during the cri-

sis period, with gold prices escalating sharply. Coal, uranium and gas prices did fall in the 

short term, as a consequence of the financial turmoil. However, the increased demand for 

commodities (stemming from their price declines) offsets the losses partially (Arreola et al., 

2014). The relative stability the uranium prices enjoyed during the crisis period is identified to 

have to do with the underlying price drivers, which appear not to be directly linked to the tra-

ditional macroeconomic fundamentals.8 The early intervention of the Australian government 

to stimulate the economy through fiscal and monetary policies had also, but to a lesser degree, 

impacted the consumption and investment in the retail sector. 

The most significant shift of dependence concentration in the retail portfolio is ob-

served to take place from the pre-GFC to the GFC periods. Specifically, the dependence struc-

ture is observed to move from the center of the joint distribution towards the end of the tails. 

This shift of dependence concentration reflects the highly volatile conditions in the financial 

stock markets during the GFC and the high propensity of some discretionary retail stocks in 

the portfolio (those with greater concentration of asymmetric dependence in the negative tail) 

to yield negatively skewed returns in those market conditions. 

The copulas for modeling the positive tail dependence have their largest presence in 

the post-GFC period, indicating a recovery in the financial stock markets and a high probabil-

ity of the retail stocks to realize positively skewed returns in those market conditions. Howev-

er, the shift of dependence concentration shows that the retail sector recovered at a slow pace 

in the post-crisis period. Alternative research in the field also indicates that the retail sector 

recovered at a slow pace in the post-crisis period. Its recovery is linked to the revival of the 

iron ore prices, the increase in financial stock market confidence and the depreciation of the 

Australian dollar (Delloite, 2011; AGPC, 2011).9 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
8 The strong relationship of dependence the Australian economy has with the mining and energy sectors is a 

common feature shared by the Canadian economy. 
9 It should be noted that the iron ore commodity plays a key role in the Australian resources economy. For in-

stance, in 2011 Australia occupied the first place in exports of iron ore worldwide, producing 40 per cent of the 

global iron ore exports. During the global financial crisis (in the period Oct-2008 to Dec-2009) iron ore prices 
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In order to identify the vine copula model that best accounts for the multivariate de-

pendence structure of the retail portfolio, through the use of the copula counting technique, 

we look at the frequency of the selection of the Frank copula across the period scenarios. This 

is because most of the dependence in the portfolio is located in the center of the joint distribu-

tions, as indicated above. The vine model’s frequency of the selection of the Frank copula 

under the full sample period scenario is given more weight since that period scenario accounts 

for the changes of the dependence structure between the pre-GFC, GFC and post-GFC period 

scenarios. In the full sample period, the pre-GFC and the GFC period scenarios, the r-vine 

model clearly selects the Frank copula the most, relative to the c-vine and d-vine. In the post-

GFC the c-vine selects it more frequently. Hence, according to the copula counting technique, 

the r-vine is the model that most accurately approximates the multivariate dependence struc-

ture of the retail portfolio. In Subsection 5.5, we undertake a goodness of fit testing on the 

vine models fitted to validate or invalidate the copula counting technique findings.   

The relative comparison of the dependence concentration of the portfolios modeled in 

our paper shows that the retail portfolio’s dependence concentration in the center is at the 

95% confidence level, significantly larger than that of the manufacturing. This concentration 

is also significantly smaller than that of the gold-mining portfolio (refer to Subsection 5.3 

where we undertake the significance testing of dependence concentration comparisons). This 

information implies that the retail portfolio is less dependence risky than the manufacturing 

portfolio during times of financial turbulence. But it is more dependence risky than the gold 

portfolio in similar market conditions. These findings are confirmed by the empirical results 

on the manufacturing and gold portfolios presented in Subsections 5.2 and 5.3. The findings 

also appear to be consistent with the performance of the retail, manufacturing and gold-

mining sectors during the crisis period. The retail sector, in general, had a better performance 

than the manufacturing sector during the crisis period (KordaMentha, 2013; NAB, 2012; 

Green and Roos, 2012; CWT, 2012; Baur and McDermott, 2010; Baur and Lucey, 2010; 

DIISR, 2010). A possible explanation for this behavior is that a greater percentage of the 

money yielded by the gold-mining sector’s performance and in circulation was spent and in-

vested for the acquisition of basic household and livelihood goods, rather than for durables 

that require larger investment and capital. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

suffered a sharp decline, losing 48 per cent in their value (from US$138 per tonne to US$71 per tonne) (Bing-

ham and Perkins, 2012).  
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Given the specific risk characteristics of the retail portfolio during the crisis periods, 

investments in its underlying sector could be used to hedge investment positions in alternative 

sectors that have high dependence risk during crisis periods, or be used as part of a risk man-

agement framework for downside risk. In relation to the sector portfolios modeled in our pa-

per, investments in the retail sector could be used to hedge an investment position in the man-

ufacturing sector during crisis periods and an investment position in the gold sector as the 

financial stock markets transit from crisis to non-crisis. 

5.2. The manufacturing portfolio 

Figure 2 displays the r-vine diagonal dependence structure and the Kendall tau matri-

ces of the manufacturing portfolio. Table 4 reports the vine models’ bivariate copula selec-

tions. The results show that most of the dependence for the manufacturing sector is also con-

centrated in the center, with the Frank copula being the most frequently selected by the vine 

copula models under each of the four financial period scenarios. While having most of the 

dependence concentrated in the center, the manufacturing portfolio has a smaller concentra-

tion of dependence than the retail. As a consequence, it is more dependence risky than the 

retail during the crisis periods. This dependence risk difference makes the return values of the 

manufacturing portfolio liable to change less frequently than those of the retail in non-crisis 

periods, and have a higher probability of being extreme in crisis periods. As a consequence, 

the manufacturing portfolio is riskier than the retail portfolio because greater losses can be 

incurred during the crisis periods. 

 
Panel (a) 
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Panel (b) 

Fig. 2: The dependence structure and the Kendall tau matrices of the manufacturing portfolio. Panel (a) displays 

the full sample period’s r-vine (on the left) and c-vine (on the right) dependence structure matrices of the manu-

facturing portfolio. Panel (b) displays the GFC period’s r-vine (on the left) and c-vine (on the right) dependence 

structure matrices of the manufacturing portfolio. All matrices consist of 192 components. The numbers in the 

diagonal dependence structure matrices represent the bivariate copulas listed and numbered in Table 2. 

 

A look into the Australian economy from economic and financial perspectives sug-

gests that the higher riskiness of the manufacturing portfolio stems from the pro-cyclicality of 

some products of the manufacturing sector and the interdependence and multiplier effects it 

has with the overall resources sector, which is an important driver of the Australian economy. 

Specifically, the economic linkages the overall resources sector and the gold-mining sector 

have with the Australian manufacturing sector are different from those economic linkages 

those sectors have with the Australian retail sector. The economic linkages with the manufac-

turing sector are more volatile, have a higher degree of uncertainty and deal with higher levels 

of risk aversion since spending and investment in the manufacturing sector tends to require 

more capital (Pilat et al. 2006). Hence, the Australian manufacturing sector overall has a 

higher exposure to risk than the Australian retail sector does.  

Table 4: The c vine, d-vine and r-vine models’ bivariate copula selections for the manufacturing portfolio 

Bivariate  

Copula 
Full sample Pre-GFC GFC Post-GFC 

Vine model 
C 

vine 
D 

vine 
R 

Vine 
C 

vine 
D 

vine 
R 

vine 
C 

vine 
D 

vine 
R 

vine 
C 

vine 
D 

vine 
R 

vine 

   Negative Tail  

Clayton 11 9 12 24 15 14 20 14 14 10 9 11 

Gumbel 180 8 8 7 11 15 8 8 13 5 12 12 11 

Studen-t 17 24 21 18 23 28 11 15 12 13 17 19 

Joe 180 2 1 2 15 11 14 5 7 9 3 4 6 

Joe-Frank 180 8 9 12 2 0 4 4 4 5 5 3 2 

Clayton 270 7 5 3 6 7 7 8 6 9 11 9 5 

   Center  

Frank 56 68 60 45 42 48 65 66 69 61 59 57 

Gaussian 30 15 23 22 24 23 25 23 21 25 27 32 

   Positive Tail  



	  

	  

19 

Gumbel 8 6 6 5 5 3 9 11 10 8 6 2 

Clayton 180 13 9 14 13 14 10 10 10 11 14 17 19 

Clayton 90 2 6 7 4 12 11 0 8 3 7 6 5 

Studen-t 17 24 21 18 23 28 11 15 12 13 15 19 

Joe 1 3 1 7 3 3 7 3 3 7 5 5 

Joe-Frank 8 12 7 4 1 3 1 2 7 2 3 2 

Notes: The full sample period spans from January 2005 to July 2012; the pre-GFC stretches from Jan 2005 to July 

2007; the GFC period covers from July 2007 to Dec 2009 and; the post-GFC period accounts for the volatility 
between Jan 2010 and July 2012. The numbers in the table represent the number of times a bivariate copula function 

is selected. The Student-t copula is positioned with copulas for both the positive and negative tail dependence 

because it measures dependence in both tails symmetrically.  This symmetric aspect of the Student-t copula poses a 

challenge to the interpretation of the dependence structure because it is unclear in which tail of the distribution the 

dependence is concentrated. 

Besides, due to the predominance of the Frank copula in the GFC period scenario, the 

returns of the manufacturing portfolio appear to be driven by complex relationships of de-

pendence in the center. On the other hand, the reduced presence of the Frank copula and the 

increased presence of the Gaussian during the post-GFC indicate that the dependence rela-

tionships of the manufacturing stocks during the post-crisis period are more of the linear type. 

The increased presence of the Gaussian copula may also be an indication of the reduced vola-

tility in the post-crisis period, and of a less chaotic world of dependence relationships. 

Unlike in the retail portfolio, the Student-t copula in the manufacturing portfolio has 

its smallest presence in the GFC and its largest presence in the pre-GFC, confirming that the 

manufacturing stocks are riskier than the retail stocks in crisis periods and have a high pro-

pensity of yielding negatively skewed returns in those market conditions. From the GFC to 

the post-GFC periods, the dependence structure is observed to shift only slightly, with minor 

increases in the number of stocks having positive tail dependence. This observation suggests 

that the Australian manufacturing sector lagged behind the effects of the financial crisis until 

the end of 2012, and as a consequence, recovered at a slower pace than the retail sector. The 

Australian Department of Innovation, Industry, Science and Research confirms that the manu-

facturing sector recovered at a slower pace during the post-crisis period relative to the retail 

sector (KordaMentha, 2013; DIISR, 2010; NAB, 2012, Green and Roos, 2012; CWT, 2012).10 

The significance testing of dependence concentration displayed in Subsection 5.4 con-

firms that the manufacturing portfolio has a smaller concentration of dependence in the center 

of the joint distributions relative to the retail portfolio, making it more dependence risky dur-

ing crisis periods. Also, while the manufacturing portfolio has a higher propensity to yield 

negatively skewed returns, the retail portfolio tends to yield positively skewed ones. With 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
10
	  The acronyms DIISR, NAB and CWT stand for: the Department of Innovation, Industry, Science and Re-

search; the National Australian Bank; and the Common Wealth Treasury, respectively.	  
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respect to model selection, the d-vine overall is recognized to select the Frank copula most 

frequently to model dependence of the manufacturing stocks. Specifically, by means of the 

copula counting technique it is observed that under the full sample period scenario, the d-vine 

selects the Frank copula the most, relative to the c-vine and r-vine. Despite the r-vine select-

ing the Frank copula the most under the pre-GFC and the GFC period scenarios and the c-vine 

doing it in the post-GFC, the priority given to the full sample period scenario leads to the 

identification of the d-vine as the most adequate model. 

Considering the specific risk characteristics of the Australian manufacturing stock 

portfolio, investments in the underlying sector are to be avoided during crisis periods and be 

taken with caution in normal market conditions. As part of a hedging strategy or a risk man-

agement framework, investments in the manufacturing sector could serve best against invest-

ment positions with higher risk in non-crisis periods or in normal market conditions. 

5.3. The gold portfolio 

  According to Table 5, most of the dependence in the gold-mining portfolio is concen-

trated in the center of the joint distributions, indicating that this equity sector has low depend-

ence risk in times of financial turbulence and high dependence risk when the financial stock 

markets behave smoothly. This specific type of dependence risk feature is found to be coher-

ent with the price behavior of gold during the 2008-2009 global financial crisis. Gold-mining 

stocks during the GFC and part of the post-GFC periods displayed an exceptionally strong 

negative correlation with the financial stock market confidence. They reached historical levels 

and were perceived by investors as a “relatively secure defensive investment and storage of 

wealth” (Collins, 2013). The high concentration of dependence the gold-mining stock portfo-

lio has in the center also implies that its return values are liable to change more frequently 

when the stock markets are tranquil and less frequently when the stock markets lack the in-

vestors’ confidence. Gold-mining stocks could therefore be used to hedge an investment posi-

tion in the manufacturing sector primarily but also in the retail sector during the crisis periods. 

Table 5: The c-vine, d-vine and r-vine models’ bivariate copula selection for the gold portfolio 

Bivariate  

Copula 
Full sample Pre-GFC GFC Post-GFC 

Vine model 
C 

Vine 
D 

Vine 
R 

vine 
C 

vine 
D 

Vine 
R 

vine 
C 

vine 
D 

vine 
R 

vine 
C 

Vine 
D 

vine 
R 

vine 

 Negative Tail  

Clayton 6 8 11 12 18 19 9 11 12 15 12 18 

Gumbel180 16 16 15 22 14 14 14 15 12 9 12 11 

Studen-t 20 23 21 14 14 17 16 19 21 19 17 19 

Joe 180 1 8 8 15 15 10 3 7 6 0 0 8 

Joe-Frank 180 26 28 19 0 0 8 8 8 11 0 0 6 
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Clayton 270 0 0 0 5 8 0 0 0 0 5 7 0 

 Centre  

Frank 54 46 54 48 49 51 85 69 72 58 59 53 

Gaussian 17 17 15 27 25 22 17 21 18 30 26 28 

 Positive Tail  

Gumbel 15 14 11 13 4 10 0 0 3 9 11 9 

Clayton 180 0 0 6 11 18 14 8 6 13 10 11 9 

Clayton 90 4 5 0 4 4 0 0 0 0 7 8 0 

Studen-t 20 23 21 14 14 17 16 19 21 19 17 19 

Joe 0 0 3 0 0 3 0 0 5 0 0 6 

Joe-Frank 15 16 20 7 3 2 7 8 4 0 0 4 

          Notes: The full sample period spans from January 2005 to July 2012; the pre-GFC stretches 

from Jan 2005 to July 2007; the GFC period covers from July 2007 to Dec 2009 and; the post-

GFC period accounts for the volatility between Jan 2010 and July 2012. The numbers in the ta-

ble represent the number of times a bivariate copula function is selected. The Student-t copula 

is positioned with copulas for both positive and negative tail dependence because it measures 

the dependence in both tails symmetrically.  This symmetric aspect of the Student-t copula pos-

es a challenge to the interpretation of the dependence structure because it is unclear in which 
tail of the distribution the dependence is concentrated. 

 
 

The noticeable decrease of the copulas for the modeling of asymmetric dependence in 

the negative tail from the pre-GFC to the GFC period scenarios confirms the immunity of 

gold to financial crisis periods’ effects. As to model selection, the r-vine copula model overall 

is observed to most frequently select the Frank copula under most of the considered period 

scenarios. Thus, it is discerned to be the model that best captures the multivariate dependence 

structure and dependence risk dynamics of the gold-mining stock portfolio. The significance 

testing of dependence concentration confirms that the gold portfolio is less dependence risky 

than the retail and manufacturing during crisis periods. As a consequence, investments in its 

underlying sector are desirable during crisis periods, preferable to investments in the retail 

and manufacturing sectors in similar market conditions, while being used in hedging strate-

gies and risk management frameworks to deal with downside risk. 

5.4. Significance testing of dependence concentration comparison  

The results of the dependence concentration comparison are based on the two-tailed t-

test fitted to account for the difference in means between the portfolios’ concentrations of 

dependence. As indicated above, we have tested the null hypothesis	  𝐻K: “No statistically sig-

nificant difference exists between the means of two concentrations of dependence.” The null 

hypothesis is rejected if 𝑡 > 𝑡(i.ik,ff) = ±2.074. Table 6 displays the t-test values for the dif-

ference of the means of the portfolios’ relative comparison of overall, asymmetric and sym-

metric dependence concentration. The asymmetric dependence comparison looks at the de-

pendence concentration in the negative and positive tails for the Clayton and the 180 degree-
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rotated Gumbel, Joe, and Joe-Frank copulas. The comparison of symmetric dependence in 

both tails looks at the dependence concentration for the Student-t copula, while the depend-

ence concentration in the center is compared for the Frank copula. According to the relative 

comparison of dependence concentration displayed in Table 6, the retail portfolio’s overall 

dependence concentration (e.g., in the center) is significantly larger than that of the manufac-

turing portfolio at the 95% confidence level. In addition, the dependence concentration of 

gold portfolio in the center is at the same confidence level significantly larger than that of the 

retail portfolio. As a result, the gold portfolio has also a significantly larger concentration of 

dependence than the manufacturing portfolio in the center. 

 

      Table 6: Test for the differences of means between the sectors portfolios’ dependence concentration. 

Significance testing of dependence Gold vs. Retail Retail vs. Manufacturing 

Overall dependence (center) 

Frank T-test  3.02* 3.34* 

 
Statistical significance 
 

Sig. larger Sig. larger 

Overall dependence (negative tail) 

Clayton T-test -0.84 0.75 

Gumbel 180 T-test 2.87* 1.38 

Joe 180 T-test 2.00 -2.46* 

Joe-Frank 180 T-test 1.35 -0.35 

 
Statistical significance 

 

Neither	   Neither 

Overall dependence (positive tail) 

Gumbel T-test -0.05 1.95 

Clayton 180 T-test -3.14* 1.35 

Joe T-test -4.85* 1.81 

Joe-Frank T-test 1.86 -0.45 

 

Statistical significance 
 

Sig. smaller	   Neither 

Symmetric dependence (tails) 

Student-t T-test -2.56* 2.44* 

 

Statistical significance 
 

Sig. smaller Sig. larger 

Asymmetric dependence (negative tail) 

Clayton T-test -0.84 0.75 

Gumbel 180 T-test 2.87* 1.38 

 
Statistical significance 

 

Sig. larger	   Neither 

Asymmetric dependence (positive tail) 

Gumbel T-test -0.05 1.95 

Clayton 180 T-test -3.14* 1.35 

 
Statistical significance 

 

Sig. smaller Neither 

Critical value= 𝑡(i.ik,ff)=±2.07 

Notes: The table displays the t-test values for the difference of means between the portfolios’ concentra-

tion of dependence in the center, the negative tail and the positive tail. The null hypothesis of equality is 

rejected if 𝑡 > 𝑡 i.ik,ff ' ± 2.074, and marked by an asterisk (*). When four copulas are used to deter-

mine the statistical significance, we require that the t-values of at least two copulas are larger or smaller 
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than the critical value. When only two copulas are used to determine the statistical significance, we re-

quire that the t-value of at least one copula is larger or smaller than the critical value. 

 

5.5 Vine copula models’ goodness-of-fit testing 

In Subsections 5.1, 5.2 and 5.3 it was found through the use of the copula counting 

technique, that the r-vine and the d-vine respectively are the models that most accurately ap-

proximate the multivariate dependence structure of the retail, manufacturing and gold-mining 

portfolios. This section implements the ECP and ECP2 goodness-of-fit tests, which are based 

on the empirical copula processes to validate or invalidate those findings. The tests are non-

parametric and are based on the Cramer-von Mises (CvM) and Kolmogorov-Smirnov (KS) 

test statistics, which use a 95% confidence level. Our motivation for the specific selection of 

these tests is that, relative to the Akaike and Bayesian Information Criteria, they are more 

reliable sources of information regarding the goodness-of-fit of the pair vine copula models 

fitted (Schepsmeier, 2013; Genest et al., 2009; Panchenko, 2005). The objective is therefore 

to identify the pair vine copula model that most closely approximates the multivariate de-

pendence structure of the gold, retail and manufacturing portfolios.  

The following alternative hypothesis is tested: 

𝐻V : There is a pair vine copula model that best captures the dependence structure of 

the portfolios. 

The specified confidence level in the CvM and KS test statistics employed by the ECP 

and ECP2 is 95%. In practice, the ECP and ECP2 measure the distance between the fitted 

parametric marginal and joint distributions and the empirical marginal and joint distributions 

of the observations.  

Table 7: Gold, retail and manufacturing portfolios’ goodness-of-fit testing for the c-vine, d-vine and r-vine 

Portfolios and 

copulas 
Gold Retail Manufacturing 

 c-vine d-vine r-vine c-vine d-vine r-vine c-vine d-vine r-vine 

Full sample 

ECP(CvM) ts=0.016 

p=0.44 

ts=0.003 

p=0.975 

ts=0.004 

p=0.98 

ts=0.011 

p =0.65 

ts=0.0093 

p =0.87 

ts=0.00 

p=0.96 

ts=0.023 

p=0.19 

ts=0.0033 

p =0.98 

ts=0.021 

p=0.67 

ECP2(CvM) ts=0.000 

p=1.00 

ts=0.000 

p=1.00 

ts=0.000 

p=1.00 

ts=0.000 

p=1.00 

ts=0.000 

p =1.00 

ts=0.000 

p=1.00 

ts=0.000 

p=1.00 

ts=0.000 

p =1.00 

ts=0.000 

p=1.00 

ECP (KS) ts=1.825 
p=0.23 

ts=0.952 
p=0.425 

ts=1.339 
p=0.04 

ts=1.200 
p=0.505 

ts=1.597 
p =0.14 

ts=1.275 
p=0.61 

ts=1.498 
p=0.38 

ts=1.089 
p =0.21 

ts=2.293 
p=0.15 

ECP2(KS) ts=0.022 
p=1.00 

ts=0.022 
p=1.00 

ts=0.022 
p=1.00 

ts=0.022 
p=1.00 

ts=0.045 
p =1.00 

ts=0.022 
p=1.00 

ts=0.022 
p=1.00 

ts=0.022 
p =1.00 

ts=0.022 
p=1.00 

Pre-GFC 

ECP(CvM) ts=0.003 
p=1.00 

ts=0.003 
p =1.00 

ts=0.003 
p=1.00 

ts=0.001 
p=1.00 

ts=0.001 
p =1.00 

ts=0.001 
p=1.00 

ts=0.001 
p=1.00 

ts=0.001 
p =1.00 

ts=0.001 
p=1.00 

ECP2(CvM) ts=0.001 
p=1.00 

ts=0.001 
p=1.00 

ts=0.001 
p=1.00 

ts=0.001 
p=1.00 

ts=0.001 
p =1.00 

ts=0.001 
p=1.00 

ts=0.001 
p=1.00 

ts=0.001 
p =1.00 

ts=0.001 
p=1.00 

ECP (KS) ts=0.607 
p=0.28 

ts=0.849 
p=0.27 

ts=0.824 
p=0.34 

ts=0.391 
p=0.24 

ts=0.290 
p =0.12 

ts=0.315 
p=0.24 

ts=0.117 
p=1.00 

ts=0.117 
p =1.00 

ts=0.117 
p=1.00 

ECP2(KS) ts=0.039 

p=1.00 

ts=0.039 

p=1.00 

ts=0.039 

p=1.00 

ts=0.039 

p=1.00 

ts=0.039 

p =1.00 

ts=0.039 

p=1.00 

ts=0.039 

p=1.00 

ts=0.039 

p =1.00 

ts=0.039 

p=1.00 

GFC 
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ECP(CvM) ts=0.012 

p=0.77 

ts=0.004 

p=1.00 

ts=0.003 

p=1.00 

ts=0.007 

p=1.00 

ts=0.004 

p =1.00 

ts=0.004 

p=1.00 

ts=0.004 

p=1.00 

ts=0.001  

p =1.00 

ts=0.005 

p=1.00 

ECP2(CvM) ts=0.001 
p=1.00 

ts=0.001 
p=1.00 

ts=0.001 
p=1.00 

ts=0.001 
p=1.00 

ts=0.001 
p =1.00 

ts=0.001 
p=1.00 

ts=0.001 
p=1.00 

ts=0.001 
p =1.00 

ts=0.001 
p=1.00 

ECP (KS) ts=1.010 
p=0.395 

ts=0.770 
p=0.22 

ts=0.367 
p=0.78 

ts=0.754 
p=0.53 

ts=0.435 
p =0.66 

ts=0.550 
p=0.40 

ts=0.902 
p=0.07 

ts=0.195 
p =0.99 

ts=0.851 
p=0.07 

ECP2(KS) ts=0.077 

p=1.00 

ts=0.039 

p=1.00 

ts=0.076 

p=1.00 

ts=0.039 

p=1.00 

ts=0.039 

p =1.00 

ts=0.039 

p=1.00 

ts=0.902 

p=0.07 

ts=0.039 

p =1.00 

ts=0.039 

p=1.00 

Post-GFC 

ECP(CvM) ts=0.002 
p=1.00 

ts=0.001 
p=1.00 

ts=0.002 
p=1.00 

ts=0.003 
p=1.00 

ts=0.004 
p =1.00 

ts=0.005 
p=1.00 

ts=0.001 
p=1.00 

ts=0.002 
p =1.00 

ts=0.001 
p=1.00 

ECP2(CvM) ts=0.001 
p=1.00 

ts=0.001 
p=1.00 

ts=0.001 
p=1.00 

ts=0.001 
p=1.00 

ts=0.001 
p =1.00 

ts=0.001 
p=1.00 

ts=0.001 
p=1.00 

ts=0.001 
p =1.00 

ts=0.001 
p=1.00 

ECP (KS) ts=0.431 

p=0.055 

ts=0.131 

p=1.00 

ts=0.304 

p=0.43 

ts=0.394 

p=0.305 

ts=0.397 

p =0.57 

ts=0.468 

p=0.245 

ts=0.117 

p=1.00 

ts=0.470 

p =0.21 

ts=0.139 

p=1.00 

ECP2(KS) ts=0.039 

p=1.00 

ts=0.039 

p=1.00 

ts=0.039 

p=1.00 

ts=0.039 

p=1.00 

ts=0.039 

p =1.00 

ts=0.039 

p=1.00 

ts=0.039 

p=1.00 

ts=0.039 

p =1.00 

ts=0.039 

p=1.00 

Notes: The abbreviations p and ts stand for the p-value and the t-statistic. The ECP and ECP2 refer to 

the empirical copula processes.  The CvM and KS stand the Cram von Mises and Kolmogorov-

Smirnov test statistics. 

The identification of the vine copula model that provides the best fit is ultimately 

based on the resulting p-values from the goodness-of-fit testing. The smaller the p-values are, 

the larger the distance between the fitted parametric vine copula model and the empirical dis-

tribution of the multivariate dependence structure. The larger the p-values are, the smaller the 

distance between the fitted parametric vine copula model and the empirical distribution of the 

multivariate dependence structure. When deciding on the vine model that best accounts for 

the dependence of the assets, a particular weight is given to the p-values from the full sample 

period’s goodness-of-fit testing. The reason for this is that the goodness-of-fit testing has been 

found to best perform when the number of observations is large (Schepsmeier, 2013, 2014; 

Panchenko, 2005; Genest et al., 2009) for further details on the goodness of fit tests).  

According to Table 7, the p-values resulting from the goodness of fit testing of the re-

tail portfolio for the r-vine are in general (i.e., taking into account all four period scenarios) 

larger than those resulting from the goodness of the fit testing for the c-vine and d-vine. The 

same applies to the gold portfolio, with the r-vine best capturing its multivariate dependence 

structure. Also, the p-values resulting from the goodness of fit testing of the manufacturing 

portfolio for the d-vine are in general larger than those resulting from the goodness of fit test-

ing for the r-vine and c-vine.  

Hence, the alternative hypothesis is accepted. As a result, the goodness of fit testing 

confirms the copula counting technique findings about the r-vine and d-vine as the models 

that most accurately approximate the dependence structure of the gold, retail and manufactur-

ing portfolios. 
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6. Conclusion 

This article applies the pair vine copula models to relatively large sector portfolios to 

address the complex issue of dependence risk modeling. We extend the related literature by 

providing an in-depth and comprehensive analysis of the portfolios’ multivariate dependence 

structure and dependence risk dynamics by means of a “copula counting technique”. In doing 

so, new insights and useful information are provided that could be used to develop depend-

ence risk and investment risk-adjusted strategies for investment, rebalancing and hedging that 

more adequately account for downside risk in various market conditions.  

By considering three 20-asset portfolios from the retail, manufacturing and gold-

mining equity sectors of the Australian stock market, in the context of the 2008-2009 global 

financial crisis and other period scenarios revolving around it, we find the retail portfolio is 

less dependence risky than the manufacturing portfolio in the crisis period. This is due to the 

economic linkages the retail sector has with the overall Australian resources sector and the 

more volatile economic linkages the overall resources sector has with the manufacturing sec-

tor (Pilat et al., 2006). The benchmark gold-mining portfolio is found to be less dependence 

risky than the retail and significantly less dependence risky than the manufacturing in similar 

market conditions. The relative good performance of the gold-mining sector relative to the 

retail and manufacturing sectors during crisis periods makes the gold-mining stocks prefera-

ble. On the other hand, the performance of the retail and manufacturing sectors is dependent 

on the performance of the gold-mining sector in those turbulent times. The retail and gold-

mining stocks are observed to display a higher propensity to yield positively skewed returns 

in the crisis period, relative to the manufacturing stocks. The r-vine and d-vine are found to 

best capture the multivariate dependence structure of the retail and gold portfolios, and the 

manufacturing portfolio, respectively.  

Considering the specific risk characteristics of the modeled portfolios, investments in 

the retail and gold-mining equity sectors could be used to hedge investment positions in alter-

native sectors (e.g. the manufacturing sector) that have higher dependence risk and negatively 

skewed return behavior during crisis periods. As part of a risk management framework or a 

hedging strategy, both sectors could in general be used to manage downside risk. Also, based 

on both portfolios dependence risk differences, investments in the retail sector could be used 

to hedge an investment position in the gold-mining sector as the financial stock markets trans-

it from a crisis to a non-crisis period. In terms of investment and downside risk management 

during crisis periods, the gold sector is preferable to the retail sector and both sectors are pref-
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erable to the manufacturing sector. Portfolio and risk managers and those who follow the 

trends of the Australian retail, manufacturing and gold-mining sectors may find our empirical 

results useful for trading and hedging purposes in order to design dependence risk-adjusted 

resource management frameworks and for complying. 
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Appendix 

 

	      Table A1: Descriptive statistics of the gold, retail and manufacturing stocks 

Gold 
stock 
codes 

µμ σf K SK 

 
Retail 
stock 
codes 

µμ σf K SK 

Manu-
factur-

ing 
stock 
codes 

µμ σf K SK 

SBMX 0.07 0.18 4.56 -0.05 CCLX 0.03  0.03  5.15  -0.17  SFCX -0.06 0.04 16.39 -1.38 
NWRX -0.02 0.44 26.64 -1.10 HILX -0.07  0.06  6.78  0.14  BLDX -0.04 0.05 3.78 -0.14 
NSTX 0.11 0.37 10.66 0.16 GWAX -0.02  0.05  2.77  0.14  BKWX -0.01 0.03 7.57 0.26 
SHKX -0.17 0.30 4.29 0.47 MTUX 0.12  0.10  4.69  0.50  CSRX -0.07 0.05 7.69 -0.68 
DEGX -0.18 0.32 11.40 1.08 MTSX 0.01  0.02  4.38  -0.14  JHXX 0.01 0.06 4.83 0.42 
RSGX 0.01 0.15 5.75 -0.23 WOWX 0.03  0.02  5.57  -0.33  OLHX -0.13 0.15 23.73 -1.04 
AXMX -0.22 0.44 16.79 -0.15 ARPX 0.05  0.03  5.47  0.10  CKLX -0.01 0.06 5.08 0.10 
ORNX -0.16 0.36 6.61 -0.03 CCVX 0.04  0.10  5.38  -0.21  ANNX 0.02 0.03 2.50 0.33 
RCFX -0.14 0.61 5.67 0.65 DJSX 0.00  0.05  6.22  -0.26  SDIX -0.13 0.17 12.64 0.45 
EXMX -0.17 1.78 13.85 0.02 DLCX -0.07  0.60  9.17  0.33  SOMX -0.08 0.37 10.52 0.18 
TAMX -0.05 0.26 17.94 0.85 HVNX -0.02  0.05  4.05  0.16  UCMX -0.17 0.25 17.43 -0.60 
GLNX -0.41 1.14 563.41 -17.93 JBHX 0.04  0.06  4.72  -0.11  FWDX 0.02 0.04 6.85 0.04 
MOYX -0.15 0.45 22.31 0.11 RCG 0.00  0.21  8.64  0.20  FANX -0.03 0.06 9.59 -0.44 
EVNX 0.00 0.32 10.79 0.74 SFHX -0.04  0.10  5.17  0.48  KRSX -0.08 0.15 11.24 -0.43 
AUZX -0.14 2.15 16.55 -0.00 SULX 0.05  0.06  6.68  -0.25  ASBX -0.01 0.06 8.43 0.46 
HEGX -0.09 0.29 3.09 0.45 WESX -0.01  0.03  8.31  -0.39  MHIX 0.00 0.13 23.90 -0.03 
KMCX -0.21 0.53 45.01 -2.27 FANX -0.03  0.06  9.59  -0.44  CSLX 0.07 0.03 2.73 0.04 
IRCX 0.01 0.28 10.24 0.70 GZLX -0.03  0.05  17.29  -0.80  IDTX -0.12 0.10 11.57 -0.13 
HAOX -0.02 0.67 18.06 1.85 FLTX 0.00  0.07  9.55  0.07  CDAX -0.01 0.08 11.39 0.69 
CTOX -0.02 0.19 27.91 2.05 JETX -0.02  0.10  5.78  0.12  LGDX -0.03 0.18 90.45 -4.44 

Notes: This table reports the descriptive statistics of the gold-mining, retail and manufacturing portfoli-

os. The abbreviations µμ, σf, K and SK stand for mean, variance, kurtosis and skewness. 

The stock portfolios’ descriptive statistics indicate that in the gold portfolio ST. 

BARBARA (SBMX), NORTHERN STAR (NSTX), RESOLUTE MINING (RSGS) and IN-

TERMIN RESOURCES (IRCX) have the largest mean returns relative to risk. In the retail 

portfolio, COCA-COLA (CCLX), M2 TELECOM (MTUX), WOOLWORTHS (WOWX) 

and ARB (ARPX) offer the best risk-return trade-offs. In the manufacturing portfolio CSL 

(CSLX), FLEETWOOD (FWDX), ANSELL (ANNX) and JAMES HARDIE (JHXX) offer 

the best risk-return trade-offs. 


