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Continuous-time random walks are pure-jump processes with several applications in physics, but
also in insurance, finance and economics. Based on heuristic considerations, a definition is given for
the stochastic integral driven by continuous-time random walks. The martingale properties of the
integral are investigated. Finally, it is shown how the definition can be used to easily compute the
stochastic integral by means of Monte Carlo simulations.

PACS numbers: 02.50.-r, 02.50.Ey, 05.40.-a, 05.40.Jc,

I. INTRODUCTION

A. The continuous-time random walk

Continuous-time random walks (CTRWs) are pure-
jump stochastic processes. They have been introduced
by Montroll and Weiss in physics as models for standard
and anomalous diffusion when the sojourn time at a site
is much greater than the time needed to jump at the new
position: Jumps are considered as instantaneous events
[1]. Shlesinger wrote a review paper that greatly con-
tributed to popularize CTRWs [2]. More recently, theo-
retical and empirical studies on CTRWs have been dis-
cussed by Klafter and Metzler [3, 4] and by a co-author of
the present paper [5]. In a CTRW, if x(t) denotes the po-
sition of a diffusing particle at time t, ξi denotes a random
jump occurring at a random time ti and τi = ti − ti−1 is
the interarrival or waiting time between two jumps, one
has

x(t)
def
= Sn(t)

def
=

n(t)
∑

i=1

ξi , (1)

where t0 = 0, x(0) = 0 and n(t) is a counting random pro-
cess giving the number of jumps up to time t. Through-
out this paper, we assume that

- the jumps ξi, i = 1, 2, . . . are independent and
identically distributed (iid) random vectors in R

d,
d = 1, 2, . . . [6];

- the waiting times τi, i = 1, 2, . . . are iid random
variables in R+;
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- the families (ξi, i = 1, 2, . . .) and (τi, i = 1, 2, . . .)
are independent.

The third assumption means that we consider so-called
uncoupled CTRWs. The first two assumptions entail
that the joint distribution of any pair (ξi, τi) does not
depend on i. If, in the uncoupled case, the law of (ξi, τi)
is given by a density function ϕ(ξ, τ), the independence
of ξi and τi entails that it can be factorized in terms
of the marginal probability densities for jumps w(ξ) and
waiting times ψ(τ): ϕ(ξ, τ) = w(ξ)ψ(τ). Eq. (1) means
that a CTRW is a random sum of independent random
variables. The process of the jump times

tn =

n
∑

i=1

τi, t0 = 0, (2)

is a renewal point process. Therefore, CTRWs can be
seen as compound renewal processes [7–9]. The existence
of uncoupled CTRWs can be proved, based on the corre-
sponding theorems of existence for renewal processes and
discrete-time random walks. Càdlàg (right-continuous
with left limit) realizations of CTRWs can be easily
and exactly generated by Monte Carlo simulations and
drawn. This is illustrated in Fig. 1. Uncoupled CTRWs
are Markovian if and only if the waiting time distribution
is exponential, meaning that ψ(τ) = λ exp(−λτ) [10, 11].
Uncoupled CTRWs belong to the class of semi-Markov
processes [11, 12], i.e. for any A ⊂ R

d and s > 0 we have

P (Sn ∈ A, τn ≤ s |S0, . . . , Sn−1, τ1, . . . , τn−1)

= P (Sn ∈ A, τn ≤ s |Sn−1) (3)

and, if we fix the position Sn−1 = y of the diffusing
particle at time tn−1, the probability on the right will
be independent of n. If the law of (ξn, τn) is given by a
density function ϕ(x, t), we can use Sn = ξn + Sn−1 and
rewrite this as

P (Sn ∈ A, τn ≤ s |Sn−1) =

∫ s

0

∫

A

ϕ(x − Sn−1, t) dx dt

(4)
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FIG. 1: Realization of a CTRW with exponentially dis-
tributed waiting times (λ = 1) and standard normally dis-
tributed jumps (µ = 0 and σ = 1).

In this case it is possible to write an integral equation for
the probability density p(x, t) of finding the particle in
position x at time t; this is done in terms of the marginal
probability densities of waiting times ψ(τ) and of jumps
w(ξ):

p(x, t) = Ψ(t)δ(x)+

∫

Rd

w(x−x′)
∫ t

0

ψ(t−t′)p(x′, t′) dt′ dx′ ,
(5)

where Ψ(t) = 1 −
∫ t

0 ψ(t′) dt′ is the complementary cu-
mulative distribution function for the waiting times, also
called survival function. The solution of Eq. (5), known
as Montroll-Weiss equation, can be written in terms of
the probability distribution function P (n, t) of the count-
ing process n(t), and the n-fold convolution w∗n(x) of
w(ξ) as

p(x, t) =

∞
∑

n=0

P (n, t)w∗n(x). (6)

This result can be derived from Eq. (5) using Fourier
and Laplace transforms, a method described in several
papers, including the original one by Montroll and Weiss
[1]. However, Eq. (6) can also be derived directly by
probabilistic considerations. Indeed, Eq. (1) is a random
sum of iid random variables. This means that any po-
sition x can be reached at time t by a finite number n
of jumps. The probability of reaching position x at time
t in exactly n jumps is P (n, t)w∗n(x). Eq. (6) follows
given that these events are mutually exclusive. Note that
P (0, t)w∗0(x) coincides with the singular term Ψ(t)δ(x),
meaning that the distribution function for x has a jump
at position x = 0 of height Ψ(t).

CTRWs with exponential waiting times—also called
compound Poisson processes (CPP), as in this case
P (n, t) = exp(−λt)(λt)n/n!—are not only Markovian,
but they are also Lévy processes. This means that

they have independent and time-homogeneous (station-
ary) increments. In this case, as a consequence of in-
finite divisibility and Kolmogorov’s representation theo-
rem, p(x, t) fully characterizes the stochastic process de-
fined by Eq. (1) [13–15].

B. CTRWs in physics, insurance, finance, and

economics

Since the seminal paper by Montroll and Weiss [1],
there has been much scientific activity on the applica-
tion of CTRWs to important physical problems. A line
of research investigated anomalous relaxation related to
power-law tails of the waiting time distribution as well
as the asymptotic behaviour of CTRWs for large times
[16–21]. As mentioned above, Klafter and Metzler have
extensively reviewed these and subsequent studies [3, 4].
Furthermore, in their book, ben-Avraham and Havlin
have discussed the applications to physical chemistry
[22]. Here, it is worth mentioning the recent work on
the relationship between CTRWs and fractional diffusion
that can be traced to papers by Balakrishnan and Hil-
fer [23, 24] and has been thoroughly discussed in Refs.
[25, 26]. Some specific applications include e.g. plasma
physics [27] and biopolymers [28, 29].

CTRWs have natural interpretations also in insurance,
finance, and economics. Even if well-known in the field of
econophysics [5, 30], these interpretations deserve a short
summary.

In ruin theory for insurance companies, the jumps ξi
are interpreted as claims and they are positive random
variables; ti is the instant at which the i-th claim is paid
[31].

In mathematical finance, if PA(t) is the price of an
asset at time t and PA(0) is the price of the same as-
set at a previous reference time t0 = 0, then x(t) =
log(PA(t)/PA(0)) represents the log-return (or log-price)
at time t. In regulated markets using a continuous
double-auction trading mechanism, such as stock mar-
kets, prices vary at random times ti, when a trade takes
place, and ξi = x(ti)− x(ti−1) = log(PA(ti)/PA(ti−1)) is
the tick-by-tick log-return, whereas τi = ti − ti−1 is the
intertrade duration; for more details, see [5, 30, 32] and
references therein.

In the theory of economic growth, ξi represents a
growth shock, x(t) is the logarithm of the size for a firm
or of the wealth for an individual, and τi is the time in-
terval between two consecutive growth shocks; see [5] and
references therein.

C. Motivation for the study of stochastic integrals

driven by CTRWs

Given the wide range of applications of CTRWs
overviewed in the previous subsection, it is relevant to
study diffusive stochastic differential equations where the



driving noise is defined in terms of CTRWs:

dz = a(z, t)dt+ b(z, t)dx , (7)

where z(x, t) is the unknown random function, a(z, t)
and b(z, t) are known functions of z and time t, and
dx represents the CTRW measure with respect to which
stochastic integrals are defined. In order to give a rig-
orous meaning to such an expression, some constraints
on the properties of CTRWs are necessary. In a recent
paper, the theory has been discussed for stochastic inte-
gration on time-homogeneous (stationary) CTRWs—i.e.,
the already mentioned CPPs [33]. Although the theory
reported in Ref. [33] was already well known by mathe-
maticians and has been used in finance for option pric-
ing since 1976 [34], that paper contains useful material
and is written in a way that is clear and appealing for
physicists. Here, inspired by Ref. [33], the theory will be
further discussed and developed.

II. STOCHASTIC INTEGRALS

In Ref. [33], the stochastic integral is never explicitly
defined. However, starting from the fact that sample
paths of a CTRW can be represented by step functions,
it is possible to give an explicit formula.

A. Definition

For the definition of the stochastic integral

J(t) =

∫ t

0

y(s) dx(s), (8)

where x(t) is defined by Eq. (1), y(t) is a further random
process (often of the form y(t) = G(x(t)) with a suitable
function G(x)), some heuristic manipulations are useful.
Eq. (1) can be written in terms of Heaviside’s step func-
tion θ(t), which is 0 for t < 0 and 1 for t ≥ 0:

x(t) =

n(t)
∑

i=1

ξiθ(t− ti). (9)

Using the fact that the “derivative” of Heaviside’s θ func-
tion θ(t− ti) is Dirac’s δ function δ(t− ti), one can write

dx(t) =

n(t)
∑

i=1

ξiδ(t− ti) dt. (10)

Note that δ(t) is not a function, but rather a distribution
in the sense of Sobolev and Schwartz [35]. Replacing
Eq. (10) in Eq. (8) and using the properties of Dirac’s δ
function, one gets

J(t) =

n(t)
∑

i=1

y(ti)ξi. (11)

This definition works nicely if the driving noise is a step
function and if convergence is not an issue. This obser-
vation prompted K. Itô to use martingale convergence
theorems to tackle the convergence for a large class of in-
tegrators [36]. To do so we have to make sure that J(t) is
a martingale whenever x(t) is. For this we have to make
the integrand y(t) statistically independent of the “incre-
ment” ξi and replace y(ti) in Eq. (11) by y(t−

i
) = y(ti−1).

This leads to the following definition

I(t) =

∫ t

0

y(s) dx(s) =

n(t)
∑

i=1

y(t−
i

)ξi =

n(t)
∑

i=1

y(ti−1)ξi;

(12)
with such a choice, the integrand becomes non-

anticipating. An elementary introduction to the concept
of non-anticipating function can be found in Ref. [37]. A
great advantage of Eq. (12) is that it can be easily im-
plemented by means of Monte Carlo simulations as will
be shown in the next section.

However, before that, it is important to study the
martingale nature of the stochastic process defined by
Eq. (12). In order to define martingales, we need
a filtered probability space (Ω,F , (Ft)t≥0, P ), where
(Ft)t≥0 is a filtration—i.e., an increasing family of sub
σ-algebras—representing the information available up to
time t. A martingale is a stochastic process X(t) for
which the expected value E[|X(t)|] exists for t ≥ 0 and
the conditional average E[X(t) | Fs] is X(s) for all t ≥ s
[36, 38].

B. Martingale property

Although it is easy to directly simulate the stochastic
process defined in Eq. (12), it is not so easy to derive its
properties. Each term in the sum depends on the previ-
ous ones and the nice properties of convolutions are not
so helpful here. However, using the martingale transform

theorem, it is possible to obtain conditions under which
I(t) is a martingale.

Let us consider the natural filtration, that is the σ-
algebra generated by the CTRW itself: Fs = σ(x(t) : t ≤
s) = σ(ξ1, . . . , ξk; τ1, . . . , τk : k ≤ n(s))

def
= Gn(s). Then

x(t) is a martingale with respect to Ft if, and only if,
the mean of the jumps E[ξi] is zero. Denote by (ti, ξi)
the time and height of the (finitely many) jumps i =
n(s) + 1, . . . , n(t) occurring between s and t > s. Then

E[x(t) | Fs] = x(s) +

n(t)
∑

i=n(s)+1

E[ξi | Fs]. (13)

Using the semi-Markov property, Eq. (3), we get for i >
n(s)

E[ξi | Fs] = E[ξi | Gn(s)] = E[ξi | ξn(s)] = E[ξi] = 0, (14)



thanks to the independence of ξi and ξ1, . . . , ξn(s).
Eq. (13) becomes

E[x(t) | Fs] = x(s), (15)

which shows that (x(t))t≥0 is indeed a martingale with
respect to its natural filtration.

Note that, for a compound Poisson process with zero-
mean jumps, the martingale property can also be de-
rived from the independence of increments defined as
∆x(t,∆t) = x(t+∆t)−x(t) for all non-overlapping inter-
vals, whereas in general uncoupled CTRWs do not have
independent increments.

Let us now investigate the integral defined in Eq. (12)
for a martingale CTRW x(t). If there is an arbitrary but
finite number of jumps between s and t > s, one has the
following:

E[I(t) | Fs] = I(s) +

n(t)
∑

i=n(s)+1

E[y(t−
i
)ξi | Gn(s)]; (16)

now, one observes that ξi = x(ti) − x(ti−1) and that the
random sum in Eq. (16) becomes

n(t)
∑

i=n(s)+1

E[y(t−
i

)ξi | Gn(s)]

=

n(t)
∑

i=n(s)+1

E[y(t−
i
)(x(ti) − x(ti−1)) | Gn(s)]. (17)

By definition, y(t−
i

) is given by y(ti−1) and is there-
fore Gi−1-measurable; this is to say that y(t−

i
) is pre-

dictable for the filtration Gi, i.e. the value of y(t−
i

) is
known at time ti−1. Whenever for each i the expression
y(t−

i
)(x(ti)−x(ti−1)) has a finite absolute mean—e.g., if

the process y(t−
i

) is bounded—we have

E[y(t−
i

)(x(ti) − x(ti−1)) | Gn(s)]

= E
[

E[y(t−
i
)(x(ti) − x(ti−1)) | Gi−1] | Gn(s)

]

= E
[

y(t−
i

) E[(x(ti) − x(ti−1)) | Gi−1] | Gn(s)

] (18)

In the above calculation we have used the fact that Gn(s)

is contained in Gi−1 as (i−1) ≥ n(s), along with the tower

property and the fact that we can take out what is known

from beneath the conditional expectation [39]. Since x(t)
is a martingale, we have E[x(ti) | Fti−1

] = x(ti−1) which
means that

E[y(t−
i
)(x(ti) − x(ti−1)) | Gn(s)] = 0. (19)

Consequently, each term in the random sum vanishes and
E[I(t) | Fs] = I(s). Summing up, if x(t) is a martingale
with respect to Ft and if the integrand is bounded and
predictable, one has that I(t) is also a martingale with
respect to Ft.

III. SIMULATIONS

As outlined above, the Monte Carlo simulation of an
uncoupled CTRWs is straightforward. If one wants to
compute the value x(t), it is sufficient to generate a se-
quence of n(t) + 1 iid waiting times τi until their sum is
greater than t. Then the last waiting time can be dis-
carded and n(t) iid jumps ξi can be generated. Their
sum is the desired value of x(t). Based on Eqs. (1) and
(2), this algorithm was used to generate Fig. 1.

Similarly, an algorithm based on Eq. (12) can be im-
plemented by generating a sequence of n(t)+1 iid waiting
times τi until their sum is greater than t. Then after gen-
erating n(t) iid jumps ξi, their values can be multiplied
by G(x(ti−1)) and the results of these multiplications can
be summed to obtain I(t). In Fig. 2, a Monte-Carlo-

generated histogram for I(t) =
∫ t

0
x(s) dx(s) (i.e., with

y(s) = x(s)) is given, where t = 100 and x(t) is a nor-
mal compound Poisson process (NCPP). The simulated
NCPP has exponentially distributed waiting times with
λ = 1 and normally distributed jumps with µ = 0 and
σ = 1. For a general NCPP, the probability density of
finding the value x at time t is given by

p(x, t) = exp(−λt)
∞
∑

n=0

(λt)n

n!

1√
2πnσ

exp

[

− (x− nµ)2

2nσ2

]

.

(20)
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FIG. 2: Histogram of the integral I(t) =
R

t

0
x(s) dx(s) for

exponentially distributed waiting times (λ = 1) and standard
normally distributed jumps (µ = 0 and σ = 1) and for t =
100. The circles represent the results of 10 000 independent
realizations of the integral. The dashed line is plotted to guide
the eye.

As the NCPP approximates the Bachelier-Wiener pro-
cess W (t) for λ → ∞ and σ → 0 with λσ2 = σ2

W
[33],

when x(t) is an NCPP the integral in Eq. (12) is an
approximation of the Itô integral IW (t). This point is



illustrated in Fig. 3 where the histogram of 50 000 val-

ues of I(t = 1) =
∫ 1

0
x(s) dx(s) when λ = 10 000 and

σ = 1/100 (and µ = 0) is compared to the analytic
expression of the probability density for σW = 1 when

IW (t) =
∫ t

0 W (s) dW (s) = (W 2(t) − t)/2 and for t = 1.
The agreement between the Monte Carlo histogram and
the analytic formula is excellent. However, a detailed
study of convergence properties and bounds is beyond
the scope of the present paper.
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FIG. 3: Comparison between the empirical probability
density from Monte Carlo simulation (circles) of I(t) =
R

t

0
x(s) dx(s) and the analytic probability density for the Itô

integral (solid line) IW (t) =
R

t

0
W (s) dW (s) = (W 2(t)− t)/2,

where W (t) is the Bachelier-Wiener process. x(t) is a NCPP
with λ = 10 000, µ = 0 and σ = 1/100 yielding σW = 1 for the
limiting Bachelier-Wiener process. In this plot t = 1 and IW

has the following probability density p(IW ) = 2 exp[−(2IW +

1)/2]/
p

2π(2IW + 1).

IV. CONCLUSIONS AND OUTLOOK

This paper is based on the definition of a stochastic
integral driven by CTRWs and given in Eq. (12). If the
process x(t) that defines the measure used in Eq. (12) is a
martingale with respect to its natural filtration, then also
I(t) is a martingale. This is a consequence of the mar-
tingale transform theorem. It turns out that uncoupled
CTRWs with zero-mean jumps are martingales. These
results have relevance for applications in insurance and
finance as well as in all the fields where martingale meth-
ods can help in quantitatively evaluating risks.

Eq. (12) is convenient for Monte Carlo calculations of
stochastic integrals. In Section III, it is shown how to use
Monte Carlo simulations of the NCPP to effectively ap-
proximate the Itô integral based on the Bachelier-Wiener
process.

Future work will deal with Monte Carlo simulations for
uncoupled and coupled CTRWs where waiting times do
not follow the exponential distribution and jumps obey
fat-tailed distributions [5, 25, 26, 40, 41].
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[32] Á. Cartea and D. del-Castillo-Negrete, Phys. Rev. E 76,
041105 (2007).

[33] R. Zygad lo, Phys. Rev. E, 68, 046117 (2003).
[34] R. C. Merton, J. of Financial Economics 3, 125 (1976).
[35] I. M. Gel’fand and G. E. Shilov, Generalized Functions

(Academic Press, New York, 1964).
[36] P. Protter, Stochastic Integration and Differential Equa-

tions (Springer, Berlin, 1990).
[37] C. W. Gardiner, Handbook of Stochastic Methods

(Springer, Berlin, 1985).
[38] D. Williams, Probability with Martingales (Cambridge

University Press, Cambridge, UK, 1991).
[39] R. L. Schilling, Measures, Integrals and Martingales

(Cambridge University Press, Cambridge, UK, 2005).
[40] M. M. Meerschaert, D. A. Benson, H.-P. Scheffler, P.

Becker-Kern, Phys. Rev. E 66, 060102(R) (2002).
[41] M. M. Meerschaert and E. Scalas, Physica A 370, 114

(2006).


