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1 Introduction

Innovation is a key driver of economic growth and prosperity. To encourage innovation,

successful innovators often are awarded patents for their inventions. A patent grants an

innovator exclusive rights to her invention for a speci�ed period of time. An extensive litera-

ture analyzes optimal patent protection, focusing on issues such as the optimal strength and

breadth of patents.1 An important, but less developed, literature studies �nancial penal-

ties (�damages�) for patent infringement. To date, this literature has primarily analyzed

the performance of individual damage rules that are employed in practice, including the lost

pro�t (LP) rule and the unjust enrichment (UE) rule.2 In contrast, the purpose of this paper

is to analyze the optimal design of patent damage rules under sequential innovation, where

an initial innovator�s patent may be infringed by a follow-on innovator whose di¤erentiated

product, possibly of higher quality, expands market demand.

Sequential innovation is important to consider because it drives progress in many modern-

day industries. To illustrate, today�s smartphones are estimated to embody innovations pro-

tected by as many as 250,000 patents that have been developed sequentially (Sparapani,

2015).3 The design of damages for patent infringement is particularly subtle in the presence

of sequential innovation because, although stringent damage rules can encourage early in-

novation, they may discourage subsequent innovation, especially when uncertainty prevails

about whether follow-on innovations infringe earlier patents.4

1Early studies of optimal patent protection include Nordhaus (1969), Gilbert and Shapiro (1990), Klemperer
(1990), and Scotchmer (1991)
2Anton and Yao (2007) examine the performance of the LP rule. Shankerman and Scotchmer (2001), Choi
(2009), and Henry and Turner (2010) examine the performance of both the LP and the UE rules. (These
rules are described below.) Choi and Henry and Turner also analyze the performance of the reasonable
royalty damage rule, which is discussed in section 6.
3It has been observed that modern computing technologies like smart phones �tightly and e¢ciently integrate
the engineering of other companies and other earlier inventors, and are enhanced with new functions and
features to attract consumer interest and drive demand� (Sparapani, 2015). Similarly, discoveries regarding
gene sequencing are valuable inputs in follow-on scienti�c research and in commercial applications (Sampat
and Williams, 2015). Murray et al. (2016) examine the e¤ects of a¤ording academic researchers expanded
access to newly discovered information about genetically engineered (transgenic) mice. The authors report
that expanded access increases follow-on discoveries by new researchers and promotes diverse follow-on
research methodologies without reducing the rate of innovation.
4Green and Scotchmer (1995) examine the patent length and division of surplus required to induce e¢cient
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We consider a model in which innovation is not certain due to stochastic variation in

innovation costs. Patent protection also is uncertain in our model, as it is in practice.5

Hundreds of thousands of patents are granted annually, and patent descriptions can be

vague and incomplete.6 Therefore, in practice, it is often di¢cult to discern whether an

innovation infringes an existing patent.7 The parameter � 2 (0; 1 ] in our model denotes the

probability that the patent of an initial innovator, �rm 1, is infringed by the di¤erentiated

product of a follow-on innovator, �rm 2. The value of � can be viewed as a measure of the

strength of patent protection (e.g., Choi, 1998; and Farrell and Shapiro, 2008).

We consider damage rules that are linear combinations of the LP rule and the UE rule,

coupled with a lump-sum transfer between the innovators. The LP rule requires the infringer

to compensate the patent holder for the reduction in pro�t the latter su¤ers due to the

infringement.8 The UE rule requires the infringer to deliver its realized pro�t to the patent

holder.9 Under the linear rules that we analyze, if �rm 2 is found to have infringed �rm 1�s

patent, �rm 2 must deliver a damage payment (D) to �rm 1 that has three components: a

sequential innovation. We extend their work in part by explicitly modeling competition between innovators
in the presence of uncertainty about the applicability of existing patents.
5Anton and Yao (2007), Choi (2009), and Henry and Turner (2010) also analyze probabilistic patent en-
forcement.
6See, for example, Choi (1998), Lemley and Shapiro (2005), Bessen and Meurer (2008), and Farrell and
Shapiro (2008).
7The recent protracted patent infringement ligation between Apple and Samsung is a case in point (e.g.,
Vascellaro, 2012). In addition, Lemley and Shapiro (2005) report that the U.S. Patent and Trademark O¢ce
issues nearly 200,000 patents annually, so the time that a patent o¢cer can devote to assessing the merits
of any individual patent application is limited. Consequently, even after a patent is issued, its validity may
be successfully contested in court. Uncertainty about prevailing patent protection also can complicate the
licensing of innovations. See Kamien and Tauman (1986), Katz and Shapiro (1986), and Scotchmer (1991),
for example, for analyses of the licensing of innovations.
8U.S. patent law stipulates that the damage penalty for patent infringement must be �adequate to compensate
for the infringement, but in no event less than a reasonable royalty for the use made of the invention by the
infringer, together with interest and costs as �xed by the court.� Courts have interpreted this stipulation
to require �an award of lost pro�ts, or other compensatory damages, where the patentee can prove, and
elects to prove, such damages� (Frank and DeFranco, 2000-2001, p. 281).
9The UE rule is sometimes employed when a design patent is infringed. The Supreme Court of the United
States recently agreed to review a Federal Appeals Court decision that Apple is entitled to all of the pro�t
that Samsung earned from its sales of smartphones because Samsung �infringed three Apple design patents
relating to a portion of the iPhone�s outer shell and a single graphical-user-interface screen� (Amici Curiae
Brief, 2016).
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lump sum monetary payment (m), a fraction (d1) of the amount by which �rm 2�s operation

reduces �rm 1�s pro�t, and a fraction (d2) of �rm 2�s pro�t. Thus, linear rules generalize

the LP rule and the UE rule, including the former (with d1 = 1 and m = d2 = 0) and the

latter (with d2 = 1 and m = d1 = 0) as special cases.10

We �nd that although linear rules are relatively simple in nature, an optimally-designed

linear rule secures the highest welfare among all balanced damage rules (i.e., rules in which

all payments are internal to the industry). The optimality of the linear rule in this sense

re�ects in part its links to both the (lost) pro�t of the initial innovator and the (realized)

pro�t of the follow-on innovator. These links enable an optimally-designed linear rule to

secure desired levels of industry pro�t, distribute the pro�t to foster innovation by both

�rms, and ensure desired allocations of industry output.

We also show that the optimal linear rule typically di¤ers from both the LP rule and

the UE rule. Furthermore, the optimal linear rule often can secure a substantial increase

in welfare relative to both the LP rule and the UE rule. In addition, when the maximum

feasible level of industry pro�t is su¢ciently large relative to innovation costs, the optimal

linear rule can ensure the �rst-best outcome, under which each �rm innovates if and only

if its innovation enhances welfare and industry output is allocated between the producers

so as to maximize welfare. When the optimal linear rule achieves the �rst-best outcome, it

resembles the LP rule more closely than the UE rule (so d1 > d2) when consumers value

the product of the initial innovator relatively highly, while it resembles the UE rule more

closely (so d2 > d1) when consumers value �rm 2�s product relatively highly.
11 We also show

how the optimal linear rule can limit the distortions in innovation incentives and output

allocation when the �rst-best outcome is not attainable.

10Linear rules also encompass pro�t sharing rules, which require a patent infringer to pay the patent holder
a portion of the pro�t the infringer secures in the marketplace.

11As we demonstrate below, the optimal linear rule serves to shift equilibrium industry output toward the
product that consumers value most highly. The linear rule a¤ects the equilibrium allocation of industry
output by inducing the �rms to partially internalize each other�s pro�t, which in�uences their pricing
strategies.
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The welfare-maximizing linear rule is optimal among balanced rules regardless of the

strength of protection for �rm 1�s patent (i.e., for any given � > 0).12 This �nding suggests

that although the appropriate strength and scope of patents can help to foster e¢cient

levels of sequential innovation, the design of damages for patent infringement may play a

particularly important role in this regard.

The ensuing analysis proceeds as follows. Section 2 presents the model. Section 3 records

equilibrium market outcomes. Section 4 characterizes and explains the key features of the

optimal linear rule. Section 5 demonstrates that the welfare-maximizing linear rule is optimal

among balanced damage rules. Section 5 also illustrates the (often substantial) welfare

gains that the optimal linear rule can secure relative to popular damage rules. Section 6

summarizes our �ndings, considers extensions of our analysis, and suggests directions for

further research. Appendix A presents the proofs of all formal conclusions. Appendix B

further illustrates the optimal linear rule and the welfare gains it can secure.

2 The Model

We consider the interaction between two �rms. Firm 1 has the potential to innovate �rst

and secure a patent on its product by incurring innovation cost k1. Firm 2 has the potential to

innovate subsequently by incurring k2, but only if �rm 1 has innovated successfully.
13 These

innovation costs are the realizations of independent random variables, with continuous and

strictly increasing distribution functions F (k1) and G(k2); respectively, on support
�
0; �ki

�
for

i = 1; 2. We assume that innovation costs are the only costs the �rms incur.14

12It follows that the optimal linear rule also dominates ex ante e¢cient patent licensing, as we demonstrate
in section 6.

13Thus, we follow Chang (1995) in abstracting from stochastic innovation and from the possibility of si-
multaneous research and development activity by multiple �rms. We extend Chang�s work in part by
considering product di¤erentiation and uncertainty about the applicability of existing patents. Bessen and
Maskin (2009) allow for stochastic, simultaneous research and development by multiple �rms. They show
that patent protection can reduce welfare in settings where the research activities of distinct �rms are
complementary.

14Thus, we adopt Green and Scotchmer (1995)�s �idea� approach to modeling innovation, assuming that
innovators naturally acquire ideas about new products and an innovator must incur a speci�ed cost to
implement the innovation.
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A mass of Q potential consumers are distributed uniformly on a line segment of length Q.

If �rm 1 innovates, it locates at point 0 on the line segment, and Q = 1 if �rm 1 is the only

innovator. If �rm 2 innovates, it locates at point Q = L � 1 on the line segment, where L

is an exogenous parameter that captures the extent to which �rm 2�s innovation expands the

market. The product supplied by �rm i delivers value vi to consumers for i = 1; 2. The net

utility a consumer derives from traveling distance s to purchase a unit of the product from

�rm i at price pi is vi�pi�s. Each consumer purchases at most one unit of the product, and

purchases from the supplier that o¤ers the highest nonnegative net utility. This formulation

admits both monopoly and duopoly industry structures. The duopoly structure extends the

standard Hotelling model by allowing the follow-on innovation of �rm 2 to bene�t consumers

not only through (standard) horizontal product di¤erentiation,15 but also through quality

improvement (when v2 > v1) and market expansion (when L > 1).
16

To capture relevant uncertainty about whether �rm 2�s product infringes �rm 1�s patent,

we let � 2 (0; 1 ] denote the probability that, after serving consumers, �rm 2 is ultimately

found to have infringed �rm 1�s patent.17 In this event, �rm 2 is obligated to pay �rm 1

the amount D � m + d1R1 + d2 �2, where R1 is the amount by which �rm 1�s pro�t is

reduced by �rm 2�s operation, �2 is �rm 2�s pro�t, and m is a lump sum monetary payment.

The policy instruments, m, d1 � 0, and d2 � 0, are chosen to maximize expected welfare

(the sum of consumer and producer surplus). We will call the damage rule associated with

damage payment D the linear rule.

The timing in the model is as follows. First, � is determined exogenously. Then d1, d2,

15Henry and Turner (2010) consider price competition in a standard Hotelling model. Anton and Yao (2007)
and Choi (2009) analyze (Cournot) quantity competition with a homogeneous product.

16As we explain in section 6, our primary �ndings persist in more general models of competition with product
di¤erentiation. We focus on this Hotelling model with potential market expansion because the closed-form
solutions it admits facilitate the demonstration of our �ndings.

17We take as given any actions �rm 2 might undertake to avoid patent infringement. Gallini (1992) demon-
strates that long patent durations can reduce welfare by encouraging �rms to �invent around� the patents
of early innovators. Zhang and Hylton (2015) analyze the optimal design of infringement penalties in a
setting where the potential infringer can undertake unobserved actions to limit the loss the patent holder
su¤ers in the event of infringement.
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and m are set to maximize expected welfare. Next, �rm 1 privately learns the realization

of k1 and decides whether to innovate. If �rm 1 decides not to innovate, the game ends.

If �rm 1 innovates by incurring cost k1, then �rm 2 privately learns the realization of k2

and decides whether to incur this cost in order to secure the follow-on innovation. If �rm 2

innovates, it subsequently competes against �rm 1 for the patronage of consumers on [ 0; L ].

If �rm 2 chooses not to innovate, then �rm 1 acts as a monopolist and serves consumers on

[ 0; 1 ]. When both �rms compete in the marketplace, they set their prices simultaneously

and non-cooperatively. After consumers have been served, it becomes known whether �rm

2 has infringed �rm 1�s patent. If �rm 2 is found to have infringed 1�s patent, �rm 2 makes

the requisite payment to �rm 1.

We assume throughout the ensuing analysis that consumer valuations of the two prod-

ucts are not too disparate, and are large relative to transportation costs. This assumption

helps to ensure that all consumers purchase a unit of the product and that, under duopoly

competition, both �rms serve customers in equilibrium.18

Assumption 1. min fv1; v2g > 2L and j� j < L, where � � v2 � v1.

3 Market Equilibrium

Having identi�ed the key elements of the model, we now characterize equilibrium out-

comes. To begin, consider the setting where only �rm 1 innovates and so operates as the

monopoly supplier of the product. Because v1 > 2 under Assumption 1, �rm 1 maximizes its

pro�t p1min fv1 � p1; 1g by selling one unit to all potential customers at price p1 = v1� 1.

Firm 1�s monopoly pro�t is thus

�M1 = v1 � 1 . (1)

Now suppose both �rms innovate. Let pi denote the price that �rm i 2 f1; 2g charges

for its product. Then the location of the consumer on (0; L) who is indi¤erent between

purchasing from �rm 1 and from �rm 2 is l = 1
2
[L+ v1 � v2 + p2 � p1 ]. Therefore, the

18This is the equilibrium on which we focus throughout the ensuing analysis of the optimal damage rule for
patent infringement. We explain below why this focus is without loss of generality, given Assumption 1.
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demand functions facing �rms 1 and 2 when they both serve customers and all consumers

purchase one unit of a product are, respectively:

q1(p1; p2) =
1

2
[L��+ p2 � p1 ] and q2(p2; p1) =

1

2
[L+�+ p1 � p2 ] . (2)

In the absence of patent infringement, the pro�ts (not counting innovation costs) of �rms

1 and 2 are, respectively:

�N1 = p1 q1(p1; p2) and �N2 = p2 q2(p2; p1). (3)

Firm 2�s operation reduces �rm 1�s equilibrium pro�t by R1 = �M1 � �N1 . Therefore,

because �rm 2 is required to pay D = m + d1R1 + d2 �
N
2 to �rm 1 if �rm 2 is found to

have infringed �rm 1�s patent, the pro�ts of �rm 1 and �rm 2 in the event of infringement

(excluding m) are, respectively:

�I1 = �N1 + d1
�
�M1 � �

N
1

�
+ d2 �

N
2 and �I2 = �N2 � d1

�
�M1 � �

N
1

�
� d2 �

N
2 . (4)

The �rms� ex ante expected pro�ts (not counting innovation costs and m) when they

both innovate are, respectively:

�e1 = [ 1� � ] �N1 + ��
I
1 and �e2 = [ 1� � ] �N2 + ��

I
2 . (5)

In equilibrium, �rm i 2 f1; 2g chooses pi to maximize �
e
i , taking its rival�s price as given.

Letting ��s denote equilibrium outcomes, standard calculations reveal that equilibrium prices

and quantities are as speci�ed in Lemma 1.

Lemma 1. Suppose all consumers purchase a unit of the product and each �rm supplies a

strictly positive level of output. Then, given d1 and d2, equilibrium prices and quantities are,

for i; j = 1; 2 (j 6= i):

p�i = [ 1� � dj ]
L [ 3� � (3 di � dj) ] + [ vi � vj ] [ 1� � (d1 + d2) ]

[ 1� � (d1 + d2) ] [ 3� � (d1 + d2) ]
, and (6)

q�i =
L [ 3� 2� dj ] + vi � vj
2 [ 3� � (d1 + d2) ]

2 (0; L) , (7)

where � [ d1 + d2 ] < 1. Furthermore, p�2 � p
�
1 R 0 as � R L� [ d2� d1 ]

2�� [ d1+ d2 ]
, and all consumers
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will indeed purchase a unit of the product in equilibrium if d1 � 0 and d2 � 0 are su¢ciently

small. Additionally, any prices p�1 and p
�
2 in (6) can be induced by some d1 and d2:

Lemma 1 speci�es how d1 and d2 a¤ect equilibrium prices and outputs. The lemma

implies that if d1 = d2; then �rm i will charge a higher price than �rm j in equilibrium

(p�i > p�j) if consumers value �rm i�s product more highly than �rm j�s product (i.e., if

vi > vj).

Proposition 1 examines the impact of changes in d1 and d2 on equilibrium outcomes,

including ��i , the equilibrium expected pro�t of �rm i 2 f1; 2g.19

Proposition 1. Following innovation by both �rms: (i) p�1 and p
�
2 both increase in d1

and in d2; (ii) p
�
2 � p

�
1 and q

�
1 increase in d1; while p

�
1 � p

�
2 and q

�
2 increase in d2; (iii)

�� � ��1 + �
�
2 increases in d1 if � � L� [ d2� d1 ]

2�� [ d1+ d2 ]
(so p�1 � p�2), while �

� increases in d2 if

� � L� [ d2� d1 ]
2�� [ d1+ d2 ]

(so p�2 � p�1).

Proposition 1 re�ects the following considerations. As d1 increases, �rm 2 is penalized

a larger portion of �rm 1�s lost pro�t (�M1 � �N1 ) if �rm 2 is ultimately found to have

infringed �rm 1�s patent. Firm 2 recognizes that it can reduce this penalty by competing

less aggressively, thereby allowing �rm 1�s duopoly pro�t (�N1 ) to increase. The reduced

aggression leads to higher equilibrium prices for both �rms. The increased congruence of

the �rms� preferences regarding higher pro�t for �rm 1 results in expanded output for �rm

1, secured by a reduction in �rm 1�s price relative to �rm 2�s price.

As d2 increases, �rm 2 forfeits a larger portion of its pro�t (�N2 ) if it is ultimately found

to have infringed �rm 1�s patent. Firm 1 recognizes that it can secure a larger expected

penalty payment from �rm 2 by competing less aggressively, thereby allowing �N2 to increase.

The reduced aggression leads to higher equilibrium prices for both �rms. The increased

congruence of the �rms� preferences regarding higher pro�t for �rm 2 results in expanded

19 ��
i
is obtained by substituting p�

i
and q�

i
from equations (6) and (7) into equation (5).
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output for �rm 2, secured by a reduction in �rm 2�s price relative to �rm 1�s price.20

The increase in �rm 1�s equilibrium output (q�1) and the corresponding reduction in �rm

2�s output (q�2) induced by an increase in d1 increase equilibrium industry pro�t (�� �

��1+ �
�
2) when �rm 1�s pro�t margin exceeds �rm 2�s margin (i.e., when p

�
1 > p�2). Similarly,

the increase in q�2 and the reduction in q
�
1 induced by an increase in d2 increase �

� when p�2

exceeds p�1.

Before proceeding to characterize the optimal linear damage rule, it is helpful to consider

the policy that maximizes welfare and the policy that maximizes industry pro�t following

innovation by both �rms. These policies are characterized in Lemmas 2 and 3, respectively.

Lemma 2 refers to equilibrium welfare in the duopoly setting:

fW12 = v1 q
�
1 �

Z q�
1

0

y dy + v2 q
�
2 �

Z q�
2

0

y dy = v1 q
�
1 �

1

2
q�21 + v2 q

�
2 �

1

2
q�22 . (8)

Lemma 2. Suppose:
d2 = dw2 (d1) � d1 +

2� [ 1� � d1 ]

� [L+� ]
. (9)

Then, when both �rms innovate, the maximum feasible level of welfare (excluding innovation

costs), v2 L�
1
4
[ 2L���2 + L2 ], is induced. Equilibrium prices and quantities under (9)

are:

p�1 = p�2 =
[ 1� � d1 ] [L

2 ��2 ]

L [ 1� 2� d1 ]��
, q�1 =

1

2
[L�� ] , and q�2 =

1

2
[L+� ] . (10)

Equilibrium industry pro�t is �� = p�1 L. This pro�t increases as d1 or d
w
2 (d1) increases,

and reaches its maximum, �w = pw L , at d1 = dw1 <
1
2�
; where

dw1 =

�
1��=L

2�

�
2 [ v1 � L ]� L��

2 [ v1 � L ] + � +
�2

L

, so p�1 = p�2 = pw � v1 �
1

2
[L�� ] . (11)

Lemma 3. The maximum feasible level of industry pro�t when both �rms innovate is

� =
L

2
[ v1 + v2 � L ] +

�2

8
= �w +

�2

8
; (12)

which arises when equilibrium prices are

20See Anton and Yao (2007), Choi (2009), and Henry and Turner (2010) for related observations.
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p1 � v1 �
1

2

�
L�

�

2

�
and p2 � v2 �

1

2

�
L+

�

2

�
; (13)

with corresponding equilibrium outputs q1 2 (0; L) and q2 = L � q1. These equilibrium

prices and outputs are induced by:

d1 =
[L� 2� ] [ 6L+ 7�� 4 v1 ]

4� [ 2L2 � 2Lv1 � 3�2 ]
and d2 =

[L+ 2� ] [ 6L� 7�� 4 v1 ]

4� [ 2L2 � 2Lv1 � 3�2 ]
. (14)

Lemmas 2 and 3 report that the welfare-maximizing duopoly prices typically di¤er from

the prices that maximize industry pro�t. (They coincide only when v1 = v2.) Duopoly

welfare is maximized when the two �rms charge identical prices. In this event, consumers

purchase from the �rm that o¤ers the largest di¤erence between product value and trans-

portation cost, which ensures that welfare is maximized. In contrast, industry pro�t is max-

imized when the �rm with the most highly-valued product charges a higher price than its

competitor. Relative to the identical welfare-maximizing prices, this price structure results

in greater extraction of consumer surplus.

Lemmas 2 and 3 also report that the values of d1 and d2 that induce welfare-maximizing

or pro�t-maximizing duopoly prices decline as � increases. Thus, less stringent damages are

required to secure key industry outcomes when stronger patent protection prevails.

4 Characterizing the Optimal Linear Rule

Lemma 2 identi�es the welfare-maximizing allocation of industry output following in-

novation by both �rms. To characterize the welfare-maximizing damage rule for patent

infringement, one must also consider the �rms� innovation incentives. To do so, observe �rst

that welfare when only �rm 1 innovates is:

W1 = fW1 � k1 where fW1 = v1 �

Z 1

0

y dy = v1 �
1

2
. (15)

Now let bki denote the realization of �rm i�s innovation cost (ki) for which the �rm will

innovate if and only if ki � bki. If bk1 � �k1 and bk2 � �k2; then

bk1 = G(bk2) [ ��1 + �m ] + [ 1�G(bk2) ]�M1 and bk2 = ��2 � �m . (16)
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Equations (8), (15), and (16) imply that ex ante expected welfare (i.e., the level of welfare

that is anticipated before innovation costs are realized) is

W = F (bk1 )G(bk2 )fW12 + F (bk1 ) [ 1�G(bk2 ) ]fW1

� F (bk1 )
bk2Z

0

k2 dG(k2)�

bk1Z

0

k1 dF (k1) . (17)

To examine �rm 2�s innovation incentives, let kw2 denote the increase in welfare secured

by �rm 2�s innovation (not counting innovation costs). From equations (8) and (15):

kw2 � fW12 �fW1 = v1 q
�
1 �

1

2
q�21 + v2 q

�
2 �

1

2
q�22 � ( v1 �

1

2
) . (18)

Incremental welfare is maximized when �rm 2 innovates if and only if its innovation cost (k2)

does not exceed kw2 . In the ensuing analysis, k
w�
2 will denote the increase in welfare secured

by �rm 2�s innovation when d2 is set (given d1) to ensure the welfare-maximizing allocation

of industry output.

To assess whether �rm 1�s innovation increases expected welfare, one must account for

�rm 2�s subsequent innovation activity. Let kw1 (
bk2) denote the increase in expected welfare

secured by �rm 1�s innovation, given that �rm 2 innovates if and only if k2 � bk2. Formally:

kw1 (
bk2) � G(bk2)fW12 + [ 1�G(bk2) ]fW1 �

bk2Z

0

k2 dG(k2). (19)

Given �rm 2�s innovation activity, incremental welfare is maximized when �rm 1 innovates

if and only if its innovation cost (k1) does not exceed k
w
1 (
bk2).

These observations imply that the optimal linear rule is the solution to problem [P],

which is de�ned to be: Maximize
d1; d2;m

W; where W is speci�ed in equation (17), prices and

quantities are speci�ed in Lemma 1, and bki is speci�ed in equation (16) for i = 1; 2.

The ensuing discussion will refer to the �rst-best outcome in which each �rm innovates if

and only if the associated increase in expected welfare exceeds the realized innovation cost,

and industry output is allocated among the active producers to maximize welfare. Formally,

in the �rst-best outcome: (i) �rm 2 innovates if and only if k2 � ko2 � minfkw�2 ; k2g;

11



(ii) �rm 1 innovates if and only if k1 � ko1 � minfkw1 (k
o
2); k1g; and (from Lemma 2) (iii)

q�1 =
1
2
[L�� ] and q�2 =

1
2
[L+� ] when both �rms innovate.

Observation 1 considers the setting where bk1 < k1, so �rm 1 does not always innovate

because its maximum innovation cost is relatively large. The Observation reports that if the

penalty for patent infringement cannot include a lump sum payment (so m is constrained to

be 0) in this setting, then �rm 1 innovates too seldom relative to the �rst-best outcome.

Observation 1. Suppose bk1 < k1 and m = 0. Then �rm 1�s innovation incentive is

ine¢ciently low (i.e., bk1 < kw1 (
bk2)).

When �rm 1 innovates, it creates consumer surplus that it does not fully capture, regard-

less of whether �rm 2 innovates. Therefore, fW1 > �M1 and fW12 > ��2 + �
�
1, so aggregate

welfare from �rm 1�s innovation always exceeds aggregate industry pro�t. From expression

(16), when m = 0; �rm 2 innovates if and only if k2 � ��2 =
bk2, and �rm 1 innovates if

and only if k1 � bk1 = G(bk2) ��1 + [ 1�G(bk2) ] �M1 : Therefore, �rm 1 has ine¢ciently limited

incentive to innovate when the penalty for patent infringement does not include a lump sum

payment between the �rms.

Although �rm 1�s innovation incentive is always ine¢ciently low when m = 0, �rm 2�s

incentive can be excessive. If �rm 2�s innovation does not expand the market (so L = 1), then

�rm 2�s innovation reduces �rm 1�s pro�t in the absence of patent infringement penalties.

Consequently, �rm 2�s private bene�t from innovation can exceed the corresponding social

bene�t (i.e., bk2 > kw2 ). In contrast, �rm 2�s innovation incentive can be ine¢ciently low (i.e.,
bk2 < kw2 ) if L is su¢ciently large.

Observation 2. Suppose v1 = v2 � v and d1 = d2 = m = 0. Then: (i) kw2 <
bk2 if

L = 1; and (ii) kw2 >
bk2 if L > 1 and v > 1

4

h
3L2� 2
L� 1

i
.

Despite the potential con�ict between the social and private incentives for innovation,

the optimal linear rule can sometimes fully align these incentives while inducing the welfare-

maximizing allocation of industry output. As Proposition 2 and Corollary 1 report, the
12



optimal linear rule secures the �rst-best outcome if innovation costs are su¢ciently small

relative to the maximum feasible level of industry pro�t, so inequality (20) holds.

�w �
ko1 � �

M
1

G(ko2)
+ �M1 + k

o
2 , G(ko2) [ �

w � ko2 ] + [ 1�G(k
o
2) ] �

M
1 � ko1 . (20)

Proposition 2. Suppose inequality (20) holds. Then ( d1; d2;m) can be chosen to induce

the �rst-best outcome, with d2 = dw2 (d1) and m = 1
�
[ ��2 � k

o
2 ]. Under this (optimal) linear

rule, d2 R d1 as � R 0.

Corollary 1. If v1, v2, and L are su¢ciently large to ensure k
o
2 = k2, then the optimal

linear rule secures the �rst-best outcome if k1 + k2 �
L
2
[ v1 + v2 � L ]. This inequality is

more likely to hold if k1 and k2 are small and if v1, v2, and L are large, ceteris paribus.

Proposition 2 and Corollary 1 consider settings where innovations are highly valued, �rm

2�s innovation expands the market considerably, and/or innovation costs are low. In such

settings, the substantial industry pro�t that is potentially available can be divided between

the suppliers to induce them both to always innovate even when damages are structured to

induce the �rms to set the same prices and thereby maximize duopoly welfare.

Proposition 2 reports that if v1 > v2, then the initial innovator�s lost pro�t receives

more weight than the second innovator�s pro�t in the optimal linear rule (i.e., d1 > d2). In

contrast, if v2 > v1, then the second innovator�s pro�t receives more weight than the �rst

innovator�s lost pro�t (i.e., d2 > d2). In this sense, the optimal linear rule resembles the lost

pro�t (LP) rule more than the unjust enrichment (UE) rule when the (vertical dimension of)

quality of the initial innovation is relatively pronounced. In contrast, the optimal linear rule

resembles the UE rule more than the LP rule when the quality of the follow-on innovation

is relatively pronounced.

To understand the rationale for this penalty structure, recall from Proposition 1 that

following innovation by both �rms, the relative price of �rm 1�s product declines and its

output increases as d1 increases, whereas the relative price of �rm 2�s product declines and
13



its output increases as d2 increases. Therefore, the identi�ed penalty structure helps to

reduce the relative price of, and thereby shift equilibrium consumption toward, the product

that consumers value most highly. Doing so ensures the welfare-maximizing allocation of

industry output between the two suppliers.

Corollary 2. If inequality (20) does not hold, then the optimal linear rule does not secure

the �rst-best outcome.

Corollary 2 reports that when inequality (20) does not hold, so the maximum feasible

industry pro�t (given the welfare-maximizing output allocation) is not su¢ciently large

relative to innovation costs, then the optimal linear rule cannot induce welfare-maximizing

innovation decisions while ensuring welfare-maximizing output allocations. The values of

d1 and d2 required to induce the welfare-maximizing allocation of duopoly output do not

generate the level of industry pro�t required to induce both �rms to innovate whenever the

social bene�t of innovation exceeds the private cost of innovation.21 In this case, the optimal

linear rule will increase industry pro�t by eliminating the surplus of the marginal consumer.

Formally, from equation (2):

v1 � p1 �
1

2
[L+ v1 � v2 + p2 � p1 ] = 0 ) p2 = v1 + v2 � p1 � L : (21)

If v1 = v2 = v; then the maximum level of industry pro�t that can be secured is

�w = � . From expression (14), the optimal linear rule sets d1 = d2 =
2 v� 3L
4� [ v�L ]

to induce

the welfare-maximizing prices p1 = p2 = p = v� L
2
, and m is set to distribute � between

the two �rms to maximize W . If v1 6= v2; then industry pro�t can be increased above �
w

by allowing p1 and p2 = v1 + v2 � p1 � L to diverge in order to ensure �� = �.

Now consider how the optimal linear rule is structured when it cannot secure the �rst-

best outcome. Initially, the values of p1 and bk2 that maximize expected welfare when p2 is

21When the optimal linear rule cannot secure the �rst-best outcome, the critical problem is to induce both
�rms to innovate more often. m can be adjusted to avoid settings where one �rm innovates too seldom
and one �rm innovates too often relative to the �rst-best outcome. Furthermore, the logic that underlies
Observation 1 explains why the critical problem is not to induce both �rms to innovate less often.

14



set to leave the marginal consumer with zero surplus in the duopoly setting are identi�ed

(see equations (22) and (23) below), and the values of d1 and d2 that induce these prices

are determined. m is then set to induce the identi�ed value of bk2. (From equation (16),

m = 1
�
[ �2 � bk2 ].) The properties of the optimal balanced rule then depend upon whether

the identi�ed rule generates more or less than the maximum feasible industry pro�t, as

Proposition 3 indicates. The proposition refers to �2, which is �rm 2�s expected pro�t (not

counting innovation costs) at the equilibrium identi�ed in Lemma 3, where duopoly industry

pro�t is maximized.

Proposition 3. Suppose inequality (20) does not hold. Also suppose ep2 = v1+ v2� ep1�L,

and ep1 and ek2 2
�
k2; k2

�
are the values of p1 and bk2 that solve

[ kw1 (
bk2)� bk1 ]

@F (bk1)
@p1

+ F (bk1 ) [ ko2 � bk2 ]
@G(bk2)
@p1

+ F (bk1 )G(bk2 )
@fW12

@p1
= 0 , and (22)

[ kw1 (
bk2)� bk1 ]

@F (bk1)
@bk2

+ F (bk1 ) [ ko2 � bk2 ]
@G(bk2)
@bk2

= 0 . (23)

(i) If e� = ep1 [ v1 � ep1 ]+ [ v1 + v2 � ep1 � L ] [L+ ep1 � v1 ] < �; then the optimal linear rule

is (ed1; ed2; em), where ed1 and ed2 are the values of d1 and d2 that induce ep1 and ep2,22 and

em = 1
�
[ e�2 � ek2 ], where e�2 = ~p2 q2(~p1; ~p2) is �rm 2�s equilibrium pro�t.

(ii) If e� � � for the identi�ed ep1 and ep2, then the optimal linear rule is (d1; d2;m ), where

d1 and d2 are as speci�ed in equation (14) (so equilibrium prices are p1 and p2, as speci�ed

in equation (13)), ek2 solves equation (23), and m = 1
�
[ �2 � ek2 ].

Proposition 3 re�ects the fundamental trade-o¤ that arises when the optimal linear rule

cannot secure the �rst-best outcome. When v1 6= v2; setting d1 and d2 to induce distinct

duopoly prices (p1 6= p2) can raise industry pro�t, which can be employed to enhance inno-

vation incentives. However, the distinct prices induce outputs that do not maximize welfare.

Proposition 3 reports that, in e¤ect, p1 is optimally set to balance these two considerations

22These values are identi�ed in the proof of Lemma 1 in Appendix A.
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(where, given p1, p2 ensures that the marginal consumer receives zero surplus) as long as the

resulting duopoly industry pro�t ( e� ) does not exceed the maximum feasible industry pro�t

(� ).23 When e� � �, pro�t cannot be increased further by altering equilibrium prices, so

the maximum industry pro�t constraint binds. The optimal prices maximize industry pro�t

in this case (i.e., p1 = p1 and p2 = p2).
24

kw1 �
bk1 > 0 can be viewed as a measure of the extent to which �rm 1 has insu¢cient

incentive to innovate. F (bk1) [ kw2 �bk2 ] can be viewed as a measure of the extent to which �rm

2 is expected to have insu¢cient incentive to innovate, where the expectation re�ects the

probability that �rm 2 will have an opportunity to innovate (because �rm 1 has innovated).

Equation (23) implies that the patent infringement penalty is optimally increased to the

point where the marginal reduction in �rm 1�s innovation de�ciency is equal to the increase

in �rm 2�s expected innovation de�ciency, taking into account the rate at which bk1 declines

and bk2 increases as the penalty increases.

5 The Optimality of the Linear Rule

We now demonstrate that the optimal linear rule achieves the highest expected welfare

among all balanced patent infringement damage rules. A balanced damage rule can specify

the prices the �rms set, a transfer payment from �rm 2 to �rm 1 following innovation by

both �rms, the probability that �rm 1 innovates, and the probability that �rm 2 innovates,

following innovation by �rm 1.25 By the revelation principle (e.g., Myerson, 1979), it is

without loss of generality to consider truthful direct mechanisms, where �rms are induced

to truthfully report their privately-observed innovation costs.

23Notice that if v1 = v2; then ep1 = ep2 = pw and e� = � = �W , so only equation (23) is relevant.
24Assumption 1 ensures that all consumers purchase a unit of the product and each �rm serves some cus-
tomers in both the welfare-maximizing and pro�t-maximizing outcomes. Consequently, Proposition 3
implies that when characterizing the optimal linear rule, there is no loss of generality in focusing on the
duopoly equilibrium in which all consumers purchase a unit of the product and both �rms serve some
customers.

25The balanced damage rules that we analyze permit the speci�cation of prices, not quantities. However,
the speci�cation of a su¢ciently high price for �rm 2�s product can e¤ectively preclude the sale of the
product, thereby functioning like an injunction (e.g., Shapiro, 2016).
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Let �1(k
0
1) 2 [ 0; 1 ] denote the probability that �rm 1 is required to innovate when it

reports its innovation cost to be k01. Also let �2(k
0
1; k

0
2) 2 [ 0; 1 ] denote the probability that

�rm 2 is required to innovate following innovation by �rm 1 when �rm i reports its innovation

cost to be k0i, for i = 1; 2. pi(k
0
1; k

0
2) will denote the corresponding price that �rm i 2 f1; 2g

must set and T (k02; k
0
2) will denote the corresponding payment that �rm 2 must make to �rm

1 when both �rms innovate. pM1 (k
0
1; k

0
2) will denote the corresponding price that �rm 1 must

set when it is the sole innovator. Denote this vector of policy instruments by:

Z(k01; k
0
2) �

�
�1(k

0
1); �2(k

0
1; k

0
2); p1(k

0
1; k

0
2); p2(k

0
1; k

0
2); p

M
1 (k

0
1; k

0
2); T (k

0
1; k

0
2)
�
.

In addition, let qzi (k
0
1; k

0
2) denote the demand for �rm i�s product following innovation

by both �rms, given that �rm i 2 f1; 2g sets price pi(k
0
1; k

0
2). Furthermore, let �

z
i (k

0
1; k

0
2) =

pi(k
0
1; k

0
2) q

z
i (k

0
1; k

0
2) denote the corresponding pro�t of �rm i (not counting innovation costs).

qMz
1 (k01; k

0
2) will denote the demand for �rm 1�s product when it is the monopoly supplier

and it sets price pM1 (k
0
1; k

0
2). �

Mz
1 (k01; k

0
2) = pM1 (k

0
1; k

0
2) q

Mz
1 (k01; k

0
2) will denote �rm 1�s corre-

sponding monopoly pro�t (not counting innovation costs).

Total welfare in this setting when innovation costs (k1; k2) are reported truthfully is:

WZ =

Z k1

0

�1(k1) f

Z k2

0

f�2(k1; k2) [fW z
12(k1; k2)� k2 ]

+ [ 1� �2(k1; k2) ]fW z
1 (k1; k2) g dG(k2)� k1 g dF (k1)

where fW z
1 (k1; k2) = v1 q

Mz
1 (k1; k2)�

1

2

�
qMz
1 (k1; k2)

�2
and

fW z
12(k1; k2) = v1 q

z
1(k1; k2)�

1

2
[ qz1(k1; k2) ]

2 + v2 q
z
2(k1; k2)�

1

2
[ qz2(k1; k2) ]

2 .

Firm 1�s expected payo¤ when its innovation cost is k1, it reports this cost to be k
0
1, and

it anticipates that �rm 2 will report its innovation cost truthfully is:

B1(k
0
1 j k1) � �1(k

0
1) [H(k

0
1)� k1 ] , where

H(k01) �

Z k2

0

f�2(k
0
1; k2) [ �

z
1(k

0
1; k2) + T (k

0
1; k2) ]

+ [ 1� �2(k
0
1; k2) ] �

Mz
1 (k01; k2) g dG(k2) . (24)
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Following report k01 by �rm 1, �rm 2�s expected payo¤ when its innovation cost is k2 and it

reports this cost to be k02 is:

B2(k
0
2 j k2; k

0
1) � �2(k

0
1; k

0
2) [ �

z
2(k

0
1; k

0
2)� T (k

0
1; k

0
2)� k2 ] . (25)

The welfare-maximizing damage policy in this setting is the solution to the following

problem, denoted [P-Z]:

Maximize
Z(k1;k2)

WZ ; subject to, for all ki; k
0
i 2 [ 0;

�ki ] (i 2 f1; 2g):

B1(k1 j k1) � maximumf 0 ,B1(k
0
1 j k1) g , and (26)

B2(k2 j k2; k1) � maximumf 0 ,B2(k
0
2 j k2; k1) g . (27)

Inequality (26) ensures that �rm 1 truthfully reports its realized innovation cost and secures a

nonnegative expected payo¤ by doing so. Inequality (27) ensures the corresponding outcomes

for �rm 2, for any cost report by �rm 1.

To characterize the solution to [P-Z], it is helpful to consider problem [P-Z]0, which is

[P-Z] except that constraints (26) and (27) are replaced by:

B1(k1 j k1) � 0 and B2(k2 j k2; k1) � 0 . (28)

Observe that if constraints (26) and (27) are satis�ed at a solution to [P-Z]0, then the

identi�ed solution to [P-Z]0 is a solution to [P-Z].

Lemma 4. pM1 (k1; k2) = pM1 = v � 1 for all k1 2 [ 0; k1 ] and k2 2 [ 0; k2 ] for which

�1(k1) > 0 and �2(k1; k2) = 0 at a solution to [P-Z] 0. Moreover, qzi (k1; k2) = qi(p1(k1; k2);

p2(k1; k2)) as speci�ed in equation (2) for i = 1; 2, for all k1 2 [ 0; k1 ] and k2 2 [ 0; k2 ] for

which �1(k1) > 0 and �2(k1; k2) > 0 at a solution to [P-Z] 0.

Lemma 4, which re�ects Assumption 1, indicates that full market coverage is induced in

both the monopoly and duopoly settings at the solution to [P-Z]0.

Lemma 5. At a solution to [P-Z] 0, there exist ~k1 2 [ 0; k1 ] and ~k2 2 [ 0; k2 ] such that:

(i) �1(k1) = 1 for all k1 2 [ 0; ~k1 ] and �1(k1) = 0 for all k1 2 (~k1; k1 ]; (ii) for each
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k1 2 [ 0; ~k1 ]: �2(k1; k2) = 1 for all k2 2 [ 0; ~k2 ] and �2(k1; k2) = 0 for all k2 2 (~k2; k2 ];

and (iii) pi(k
0
1; k

0
2) = pi(k

00
1 ; k

00
2) and T (k

0
1; k

0
2) = T (k01; k

00
2) for all k

0
2; k

00
2 2 [ 0;

~k2 ] for each

k01 2 [ 0;
~k1 ].

Lemma 5 indicates that if innovation is induced, it is induced for the smaller realizations

of the �rms� innovation costs. Furthermore, stochastic innovation (�i(�) 2 (0; 1) ) serves no

useful purpose in the present setting. In addition, because the �rms� production costs do not

vary with their innovation costs, there is no gain from inducing duopoly prices and output

levels (and thus transfer payments, T (�) ) that vary with reported innovation costs.

Lemmas 4 and 5 imply that each �rm e¤ectively faces the simple choice of innovating

or not innovating at the identi�ed solution to [P-Z]0. The choices are structured so that

innovation is pro�table for a �rm if and only if its realized innovation cost is su¢ciently

small, i.e., if ki � ~ki. Therefore, the �rms have no incentive to misrepresent their realized

innovation costs, so constraints (26) and (27) are satis�ed at the identi�ed solution to [P-Z] 0.

Consequently, a solution to [P-Z] 0 that satis�es the properties identi�ed in Lemmas 4 and 5

is a solution to [P-Z].

It follows that expected welfare in the present setting can be written as:

fWZ = F (~k1)G(~k2)fW12 + F (~k1) [ 1�G(~k2) ]fW1

� F (~k1)

~k2Z

0

k2 dG(k2)�

~k1Z

0

k1 dF (k1) . (29)

Furthermore, when ~ki � ki for i = 1; 2:

[ ��1 + T ]G(
~k2) + �

M
1 [ 1�G(

~k2) ] = ~k1 and ��2 � T = ~k2 , (30)

where T is a constant and ��i = pi qi(p1; p2) does not vary with k1 or k2, for i 2 f1; 2g.

Because the corresponding industry pro�t is �� = ��1 + T + (�
�
2 � T ) = ��1 + T +

~k2,

expression (30) can be written as:

[ �� � ~k2 ]G(~k2) + �
M
1 [ 1�G(

~k2) ] = ~k1 and ��2 � T = ~k2 . (31)
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Therefore, problem [P-Z]0 can be written as problem [P-Z]00: Maximize
p1; p2; T

fWZ , where fWZ is

speci�ed in equation (29), the �rms� outputs are speci�ed in expression (2), and ~ki is speci�ed

in expression (31) when ~ki � ki, for i = 1; 2. Consequently, problem [P-Z]00 is identical to

Problem [P], which ensures the following conclusion holds.

Proposition 4. The optimal linear rule achieves the highest welfare among all balanced

damage policies.

Proposition 4 re�ects the fact that linear rules can link damage payments to the pro�ts

of both �rms and can specify lump-sum transfer payments between the �rms. Consequently,

linear rules provide widespread latitude to induce desired allocations of industry output

while implementing desired con�gurations of industry pro�t and corresponding innovation

incentives.

Before concluding, we illustrate the welfare gains that the optimal linear rule can secure

relative to the LP rule and the UE rule. We do so in the following baseline setting, where

consumers value the two �rms� products symmetrically, the innovation costs for the two �rms

have the same uniform distribution, and �rm 2�s innovation increases the size of the market

by eighty percent.

Baseline Setting. v1 = v2 = 7:5, L = 1:8, � = 0:50, and F (k1) and G(k2) are uniform

distributions with ki = 0 and ki = 5, for i = 1; 2.

Table 1 identi�es the optimal linear rule for patent infringement (d�1; d
�
2;m

�) in the baseline

setting and as product valuations change.26 The table also reports the level of expected

welfare that arises under the optimal linear rule (W �), under the UE rule (WUE), under the

LP rule (WLP ), and in the �rst-best outcome (W FB).

26As the product valuations, v1 and v2, change in Table 1, the values of all other parameters remain at their
values in the baseline setting.
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v1 v2 d�1 d�2 m� W � WUE WLP W FB

5 5 0:72 0:72 0:21 3:03 2:49 2:58 3:36

7 8 0:25 1:5 5:56 7:94 6:96 5:35 7:94

7:5 7:5 0:81 0:81 0 7:69 5:98 6:22 7:69

8 7 1:5 0:25 �5:56 7:94 6:37 6:16 7:94

10 10 0:81 0:81 0 12:19 10:03 9:45 12:19

Table 1. The E¤ects of Changing Product Valuations.

Four elements of Table 1 warrant emphasis. First, there are many settings where the

optimal linear rule ensures the �rst-best outcome. Second, the optimal linear rule often

secures a substantial increase in welfare above the levels generated by the LP and UE rules.

This is the case both when the optimal linear rule achieves the �rst-best outcome and when

it does not do so. To illustrate, W � exceeds max fWUE;WLPg by more than 21% when

v1 = v2 = 10, and by more than 17% when v1 = v2 = 5. Also observe that W � exceeds

WLP by more than 48% when v1 = 7 and v2 = 8.

Third, the lump-sum payment from �rm 2 to �rm 1 under the optimal linear rule (m�)

can be positive, negative, or zero. For the settings in Table 1 where v1 + v2 = 15, m� is

positive (negative) when consumers value �rm 2�s (�rm 1�s) product relatively highly and is

zero when v1 = v2.
27

Fourth, the optimal linear rule does not always resemble the UE rule more than the LP

rule (in the sense that d�2 > d
�
1) when the UE rule generates a higher level of welfare than

the LP rule.28 This is the case because d�1 and d
�
2 a¤ect multiple determinants of welfare �

both output allocations and innovation decisions � in nonlinear fashion. Consequently, even

though welfare might be higher when, say, d2 = 1 and d1 = m = 0 than when d1 = 1 and

d2 = m = 0, it does not follow that d2 will exceed d1 under the optimal linear rule.

27Observe that when v1 + v2 = 15, W � is higher in Table 1 when v1 6= v2 than when v1 = v2. Welfare
is higher in the presence of asymmetric product valuations here because consumers purchase more of the
product they value most highly and less of the product they value less highly.

28See the fourth row of data in Table 1 where v1 = 8 and v2 = 7.
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Appendix B illustrates how the optimal linear rule and its performance vary as other

model parameters (k1; k2; L, and �) change. The numerical solutions reported in Appendix

B indicate, for example, that the relative performance of the optimal linear rule (W �=WLP

and W �=WUE) tends to increase as L (the extent to which �rm 2�s innovation expands the

market) increases.

6 Conclusion

We have introduced and characterized the optimal linear rule for patent infringement

damages under sequential innovation. We have demonstrated that this rule often secures

substantially higher welfare than common rules like the LP rule and the UE rule. We have

also identi�ed conditions under which a linear rule can induce both e¢cient incentives for

sequential innovation and the e¢cient allocation of industry output. Moreover, we have

shown that the linear rule is optimal among all balanced patent infringement damage rules.

We have emphasized the welfare gains that the optimal linear rule can secure relative to

the LP rule and the UE rule. However, the optimal linear rule can also secure substantially

higher levels of welfare than other popular damage rules, including the reasonable royalty

(RR) rule. Under the RR rule, when �rm 2 is found to have infringed �rm 1�s patent, �rm 2 is

required to deliver to �rm 1 the royalty payments that �rm 1 would have collected if the two

�rms had negotiated a licensing/royalty agreement, knowing that �rm 2�s product infringes

�rm 1�s patent (e.g., Henry and Turner, 2010).29 Absent contracting frictions, the �rms

would negotiate an agreement that maximizes industry pro�t in this setting. Therefore,

under the RR rule, duopoly industry pro�t will be �. Furthermore, following �rm 1�s

innovation, �rm 2 will innovate if and only if the follow-on innovation increases industry

pro�t (so k2 � �� �M1 � kR2 ). Industry pro�t can di¤er from � under the optimal linear

rule, and kR2 often di¤ers from the values of ko2 and
~k2 speci�ed in Proposition 3. Therefore,

29As noted above, U.S. patent law stipulates that the damage penalty for patent infringement must be
�adequate to compensate for the infringement, but in no event less than a reasonable royalty for the use
made of the invention by the infringer, together with interest and costs as �xed by the court� (Frank and
DeFranco, 2000-2001, p. 281).
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the optimal linear rule often secures a strictly higher level of welfare than the RR rule (and

always secures at least as high a level of welfare).

The expanded Hotelling model that we analyzed facilitates the characterization of the

optimal linear rule. The optimality of the linear rule and the substantial welfare gains it

can secure relative to the LP, UE, and RR rules seem likely to persist more generally. To

illustrate, suppose the duopoly demand for the di¤erentiated product of �rm i 2 f1; 2g is

qi(p1; p2;L), where L is a parameter that measures the extent to which �rm 2�s innovation

expands the market (so @qi(�)
@L

> 0). In this setting, the values of d1 and d2 in the optimal

linear rule will continue to induce each �rm to partially internalize its rival�s pro�t. Therefore,

higher values of d1 and d2 will continue to induce higher equilibrium prices and pro�t, and

m can be employed to allocate realized pro�t to secure desired innovation incentives. One

di¤erence that will arise in this more general setting is that deadweight loss typically will

arise when prices diverge from marginal cost. Consequently, although the optimal linear rule

is likely to continue to outperform other damage rules (including the LP, UE, and RR rules),

it typically will not secure the �rst-best outcome, as it often does in the expanded Hotelling

model.

For simplicity, we have considered settings where key parameters are assumed to be

known to all parties from the outset of their interaction. More generally, uncertainty about

key parameters (e.g., v1; v2; and L) or the ultimate success of innovation activity may prevail

when innovation decisions are made. In such settings, the optimal linear rule may not ensure

that welfare is maximized ex post. However, it seems likely to continue to secure higher levels

of expected welfare than popular damage rules in light of its expanded capacity to in�uence

aggregate industry pro�t, and to allocate both industry pro�t and industry output between

sequential innovators.

The probability of patent infringement, �; was taken to be an exogenous parameter in

our model. In practice, this probability can vary with L; v1; and v2: The foregoing analysis

could readily incorporate this dependence, since our key �ndings hold for any speci�ed value

23



of �. More generally, � might be an element of a patent protection policy that is chosen

optimally, along with d1, d2, and m.
30 As noted at the outset, the economics literature has

devoted considerable attention to the design of patent protection policy. We have shown

that for any level of patent protection � > 0, the optimal linear rule ensures the �rst-best

outcome when innovation costs are not too large. In contrast, common damage rules (e.g.,

the LP, UE, and RR rules) typically cannot induce the ideal outcome for any level of patent

protection. These observations suggest the importance of devoting additional attention to

patent infringement damage rules in the optimal design and enforcement of patent policy.

Future research might extend our analysis to allow for more than two �rms, more than

two rounds of innovation, and limited innovator wealth. These extensions may limit the

circumstances under which e¢cient innovation decisions and e¢cient output allocations can

be ensured simultaneously.31 However, the extensions seem unlikely to alter our �ndings

regarding the superiority of an optimally designed linear rule, given its ability to secure

desired levels of industry pro�t, distribute the pro�t to foster innovation by multiple �rms,

and ensure welfare-maximizing allocations of industry output.

30A complete analysis of the optimal value of � would need to consider, among other things, the social costs
of detecting patent infringement and the costs associated with �rms� e¤orts to �invent around� patents
(e.g., Gallini, 1992).

31For instance, the welfare-maximizing values of m and d1 may not be feasible when �rm 2�s �nancial
resources are limited. In this case, d2 may optimally be increased to help o¤set the reductions in m and
d1. In settings where � is a policy instrument, relatively large values of � may optimally accompany the
small values of m and d1 dictated by �rm 2�s limited �nancial resources.
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Appendix A

This Appendix presents the proofs of the formal conclusions in the text.

Proof of Lemma 1

From equations (2) � (5), the expected pro�t of �rm 1 and �rm 2 are, respectively

�e1 = [ 1� � d1 ]
p1
2
[L��+ p2 � p1 ] + �

�
d1 �

M
1 + d2 p2

1

2
(L+�+ p1 � p2)

�
,

�e2 = [ 1� � d2 ]
p2
2
[L+�+ p1 � p2 ]� � d1

�
�M1 � p1

1

2
(L��+ p2 � p1)

�
.

In an equilibrium where all consumers purchase a unit of the product and both �rms sell
positive levels of output, the �rst-order conditions for p1 and p2 are:

@�e1
@p1

=
1

2
[ 1� � d1 ] [ p2 � 2 p1 + v1 � v2 + L ] +

�

2
d2 p2 = 0 , (32)

@�e2
@p2

=
1

2
[ 1� � d2 ] [ p1 � 2 p2 + v2 � v1 + L ] +

�

2
d1 p1 = 0 . (33)

The corresponding second-order conditions are � d1 < 1 and � d2 < 1. Solving (32) and
(33) provides the equilibrium prices p�1 and p

�
2 speci�ed in (6). The equilibrium outputs q�1

and q�2 in (7) then follow from (2).

To ensure p�1 and p
�
2 are non-negative and �nite when all consumers purchase a unit

of the product, it must be the case that � [ d1 + d2 ] < 1. Suppose, to the contrary, that
� [ d1 + d2 ] � 1. Observe that 3 � � [ d1 + d2 ] > 0 because �d1 < 1 and �d2 < 1.
Therefore, when � [ d1 + d2 ] � 1, the denominator in (6) is

[ 1� � (d1 + d2) ] [ 3� � (d1 + d2) ] � 0 . (34)

If � � 0; then

L [ 3� � (3 d1 � d2) ]�� [ 1� � (d1 + d2) ] � L [ 3� � (3 d1 � d2) ] > 0 .

Consequently, (6) and (34) imply that p�1 < 0 or p�1 = 1, which is a contradiction. If
� < 0; then

L [ 3� � (3 d2 � d1) ] + � [ 1� � (d1 + d2) ] � L [ 3� � (3 d2 � d1) ] > 0 .

Therefore, (6) and (34) imply that p�2 < 0 or p
�
2 =1, which is a contradiction.

From (7):
q�1 =

3L��� 2L�d2
2 [ 3� � (d1 + d2) ]

.

q�1 > 0 because 3L � � � 2L�d2 = L [ 3� 2� d2 ] � � > 0; since � d2 < 1 and � < L
from Assumption 1. q�1 < L because

3L��� 2L�d2 � 2 [ 3� � (d1 + d2) ]L = �L [ 3� 2� d2 ] + � < 0 .
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Therefore, q�1 2 (0; L) ; and so q
�
2 = L� q�1 2 (0; L).

Furthermore, from (6),

p�2 � p
�
1 =

L� [ d2 � d1 ] [� ( d1 + d2 )� 1 ] + � f 2 + � (d1 + d2) [� ( d1 + d2 )� 3 ] g

[ 1� � (d1 + d2) ] [ 3� � (d1 + d2) ]
:

s
= L� (d2 � d1) [� ( d1 + d2 )� 1 ] + � f 2 + � (d1 + d2) [� ( d1 + d2 )� 3 ] g

= [ 1� � (d1 + d2) ] [L� (d1 � d2) + � ( 2� � [ d1 + d2 ] ) ]

R 0 , � R
L� [ d2 � d1 ]

2� � [ d1 + d2 ]
. (35)

Observe from (6) that when d1 = d2 = 0

v2 � p2 � q
�
2 = v2 � 2L+

1

2
[L�� ] > 0

because min fv1; v2g > 2L and L�� > 0, from Assumption 1. By continuity, if d1 � 0
and d2 � 0 are su¢ciently small, then consumers will continue to secure strictly positive
surplus from purchasing a unit of the product.

Finally, consider

d1 (p1; p2) =
[L+�+ p1 � 2 p2 ] [L��� 2 p1 + 2 p2 ]

� [L2 � Lp1 � Lp2 + 3� p2 � 3� p1 + 4 p1 p2 � 2 p21 � 2 p
2
2 ��

2 ]
, and

d2 (p1; p2) =
[L+�+ 2 p1 � 2 p2 ] [L��� 2 p1 + p2 ]

� [L2 � Lp1 � Lp2 + 3� p2 � 3� p1 + 4 p1 p2 � 2 p21 � 2 p
2
2 ��

2 ]
. (36)

It can be veri�ed that if these values of d1 and d2 are substituted into the expressions for p1
and p2 in (6), the resulting expressions are indeed p1 and p2. Therefore, these values of d1
and d2 induce the equilibrium prices speci�ed in (6). �

Proof of Proposition 1

From (7):

@q�1
@d1

=
� q�1

3� � d1 � � d2
> 0 and

@q�1
@d2

=
�� q�2

3� � d1 � � d2
< 0 : (37)

The inequalities in (37) hold because � [ d1 + d2 ] < 1 from Lemma 1. (37) implies that
@q�
2

@d1
< 0 and

@q�
2

@d2
> 0 because q�2 = L� q�1. From (2):

@q�1
@di

=
1

2

@ (p�2 � p
�
1)

@di
;

@q�2
@di

=
1

2

@ (p�1 � p
�
2)

@di
for i = 1; 2 . (38)

Therefore
@(p�2 � p�1)

@di

s
=

@q�
1

@di
and

@(p�1 � p�2)
@di

s
=

@q�
2

@di
.
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Consider the case where d1 � d2. Observe that:

� [ 2� � (d1 + d2) ] min f 5 d2 � 3 d1; 5 d1 � 3 d2g+ 3

� � [ 2� � (d1 + d2) ] [� 3 d1] + 3 = 3 [ 1� � d1 ( 2� � [ d1 + d2 ] ) ] : (39)

j� j
L
� 1; from Assumption 1. Therefore, (39) implies:

� [ 2� � (d1 + d2) ] min f 5 d2 � 3 d1; 5 d1 � 3 d2 g+ 3 >
j� j

L
[ 1� � (d1 + d2) ]

2 (40)

if 3 [ 1� � d1 (2� � [ d1 + d2 ]) ] > [ 1� � (d1 + d2) ]
2

, � �2d22 + 2� d2 + �
2 d1 d2 + 2

�
1� 2� d1 + �

2d21
�
> 0 . (41)

The inequality in (41) holds because d1 � d2 by assumption and 1 � 2� d1 + �
2d21 =

[ 1� � d1 ]
2 > 0 .

From (6) and (40):

@p�1
@d1

= [ 1� � d2 ]�
L ( [ 2� � (d1 + d2)] [ 5 d2 � 3 d1 ] + 3 )�� [ 1� � (d1 + d2) ]

2

[ 1� � (d1 + d2) ]
2 [ 3� � (d1 + d2) ]

2 > 0 ;

@p�2
@d2

= [ 1� � d1 ]�
L ( [ 2� � (d1 + d2) ] [ 5 d1 � 3 d2 ] + 3) + � [ 1� � (d1 + d2) ]

2

[ 1� � (d1 + d2) ]
2 [ 3� � (d1 + d2) ]

2 > 0 .

Moreover,
@p�

2

@d1
> 0 and

@p�
1

@d2
> 0 because

@(p�2 � p�1)
@d1

> 0 and
@(p�1 � p�2)

@d2
> 0 .

From Lemma 1:

�� = ��1 + �
�
2 = p�1 q

�
1 + p

�
2 [L� q

�
1 ] = [ p�1 � p

�
2 ] q

�
1 + p

�
2 L . (42)

Because
@q�
2

@d1
< 0 , (35) and (42) imply that if � [ 2� � ( d1 + d2 ) ] � L� [ d2 � d1 ], then:

@��

@d1
=
@ (p�2 � p

�
1)

@d1
q�2 + [ p

�
2 � p

�
1 ]
@q�2
@d1

+
@p�1
@d1

L > 0 :

Finally, if � [ 2� � (d1 + d2) ] � L� [ d2 � d1 ] ; then p
�
2 � p

�
1 � 0 from (35) and

@q�
1

@d2
<

0 from (37). Therefore:

@��

@d2
=
@ (p�1 � p

�
2)

@d2
q�1 + [ p

�
1 � p

�
2 ]
@q�1
@d2

+
@p�2
@d2

L > 0 .

The proof for the case where d1 < d2 is analogous. �
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Proof of Lemma 2

Substituting d1 and d
w
2 (d1) into (6) and (7) provides:

p�1 = p�2 =
[ 1� � d1 ] [L

2 ��2 ]

L [ 1� 2� d1 ]��
, q�1 =

1

2
[L�� ] , and q�2 =

1

2
[L+� ] .

Equilibrium industry pro�t is

�� = p�1 q
�
1 + p

�
2 q

�
2 = p�1 L =

[ 1� � d1 ] [L
2 ��2 ]

1� 2� d1 ��=L
,

which increases as d1 (or d
w
2 ) increases.

The highest industry pro�t is attained when the marginal consumer has zero surplus
which, from (10), occurs when

v2 � p
�
2 � q

�
2 = v2 � p

�
2 �

L+�

2
= 0 , p�2 = p�1 = v2 �

1

2
[L+� ] � pw . (43)

(43) implies that equilibrium industry pro�t in this case is �w = pw L.

Because p�i increases with d1 and d2 for i 2 f1; 2g (from Proposition 1) and p�i ! 1 as
d1 !

1
2�
from (10), there exists a unique d1 <

1
2�
that ensures equilibrium prices are those

identical prices that leave the marginal consumer with zero surplus. From (10) and (43),
this value of d1 is determined by:

p�i =
[ 1� � d1 ] [L�� ] [L+� ]

L [ 1� 2� d1 ]��
= v1 �

1

2
[L�� ]

, d1 = dw1 =

"
1� �

L

2�

#
2 [ v1 � L ]� L��

2 [ v1 � L ] + � +
�2

L

<
1

2�
.

Finally, from (8), if both �rms innovate, then welfare (not counting innovation costs) is

fW12 = v1 q
�
1 �

1

2
q�21 + v2 q

�
2 �

1

2
q�22 = v1 q

�
1 �

1

2
q�21 + v2 [L� q

�
1 ]�

1

2
[L� q�1 ]

2

= �� q�1 �
1

2
q�21 + v2 L�

1

2
[L� q�1 ]

2 . (44)

The maximum feasible value of fW12 is

fW12 = v2 L�
1

4

�
2L���2 + L2

�
, achieved via q�1 =

1

2
[L�� ]

because, from (44):

@fW12

@q�1
= ��� q�1 + L� q

�
1 = 0 ) q�1 =

1

2
[L�� ]

and

fW12

���
q�
1
= L��

2

= ��
1

2
[L�� ]�

1

8
[L�� ]2 + v2 L�

1

2

�
1

2
[L+� ]

�2
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= v2 L�
1

4

�
2L���2 + L2

�
. �

Proof of Lemma 3

(2) and (3) imply that industry pro�t is:

� =
p1
2
[L+ v1 � v2 + p2 � p1 ] +

p2
2
[L+ v2 � v1 + p1 � p2 ] . (45)

Since v1 > 2L and v2 > 2L from Assumption 1, � is highest when both �rms produce
positive output and all consumers purchase a unit of the product. Therefore, from (21) and
(45), the value of p1 that maximizes � is determined by:

d�

dp1
=

@�

@p1
+
@�

@p2

@p2
@p1

=
@�

@p1
�
@�

@p2
= 0

, L+ v1 � v2 + 2 p2 � 2 p1 � (L+ v2 � v1 + 2 p1 � 2 p2) = 0

, p1 =
3 v1 + v2 � 2L

4
= v1 �

1

2

�
L�

�

2

�
. (46)

(21) and (46) imply:

p2 = v1 + v2 �
3 v1 + v2 � 2L

4
� L = v2 �

1

2

�
L+

�

2

�
: (47)

From (2), the corresponding equilibrium outputs are:

q1 =
1

2
[L+ v1 � v2 + p2 � p1 ] and q2 =

1

2
[L+ v2 � v1 + p1 � p2 ] . (48)

These outputs are positive and sum to L. Substituting �p1 and �p2 into (45) and simplifying
provides

� = L

�
v1 �

1

2
(L��)

�
+
�2

8
= �w +

�2

8
.

Substituting p1 and p2 into (36) and simplifying provides the values of �d1 and �d2 speci�ed
in (14). �

Proof of Observation 1.

From (10) and (18), if d2 = dw2 (d1), then:

kw2 =
v1
2
[L�� ]�

�
1
2
(L��)

�2

2
+
v2
2
[L+� ]�

�
1
2
(L+�)

�2

2
� v1 +

1

2

=
L

2
[ v1 + v2 ] +

1

4

�
�2 � L2

�
� v1 +

1

2
= kw�2 . (49)

If m = 0; then bk2 = min
�
��2;
�k2
	
from (16). Furthermore, (16), (19), and integration

by parts provide:
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kw1 (
bk2)� k̂1 = G(bk2 ) fW12 +

h
1�G(bk2 )

i
fW1 �

bk2Z

0

k2 dG(k2)

� G(bk2) ��1 �
h
1�G(bk2)

i
�M1

= G(bk2 )fW12 �G(bk2 )
h
k̂2 + �

�
1

i
+

bk2Z

0

G(k2) dk2 +
h
1�G(bk2 )

i h
fW1 � �

M
1

i

� G(bk2 )
h
fW12 � (�

�
2 + �

�
1)
i
+

bk2Z

0

G(k2) dk2 > 0. �

Proof of Observation 2.

If v1 = v2 � v and d1 = d2 = m = 0; then q�1 = q
�
2 = L=2 from (10), and bk2 = ��2 =

p�2 q
�
2 from (16). Therefore, from (18):

kw2 � k̂2 =
fW12 �fW1 � k̂2 = v q�1 �

q�21
2
+ v q�2 �

q�22
2
� v +

1

2
� p�2 q

�
2

= v [L� 1 ]�
L2

4
+
1

2
� p�2

L

2
: (50)

Furthermore, from (6):

p�2 =
1

3
[ 3L+� ] ) p�2 = L when v1 = v2 . (51)

(50) and (51) imply:

kw2 � k̂2 = v [L� 1 ]�
L2

4
+
1

2
�
L2

2
= v [L� 1 ] +

1

4

�
2� 3L2

�
: (52)

(52) implies: (i) kw2 � k̂2 = � 1=4 < 0 if L = 1; and (ii) kw2 � k̂2 > 0 if L > 1 and

v > 1
4

h
3L2� 2
L� 1

i
. �

Proof of Proposition 2.

If (20) holds, then from Lemma 2, there exist a d1 and d2 = dw2 (d1) such that

ko1 � �
M
1

G(ko2)
+ �M1 + k

o
2 = ��1 + �

�
2 . (53)

Let �m = ��2 � k
o
2 ) ��2 � �m = ko2 . (54)

(53) and (54) imply:

��1 + �m =
ko1 � �

M
1

G(ko2)
+ �M1 ) G(ko2) [ �

�
1 + �

�
2 � k

o
2 ] + [ 1�G (k

o
2) ] �

M
1 = ko1 . (55)
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(16) and (53) � (55) imply k̂2 = ko2 and

k̂1 = G(k̂2) [ �
�
1 + �m ] +

h
1�G(k̂2)

i
�M1

= G(ko2) [ �
�
1 + �

�
2 � k

o
2 ] + [ 1�G (k

o
2) ] �

M
1 = ko1 : (56)

Thus, the identi�ed values of d1, d
w
2 (d1), and m induce the �rst-best outcome.

Finally, since � d1 < 1, it is apparent from (9) that d2 R d1 as � R 0. �

Proof of Corollary 1.

G(ko2) = 1 when k
o
2 =

�k2. Therefore, since k
o
1 �

�k1; (20) holds if �k1 + �k2 � �w. From
Lemma 2, this inequality holds if:

�k1 + �k2 � v1 L�
L2

2
+
L

2
[ v2 � v1 ] =

L

2
[ v1 + v2 � L ] .

The conclusions regarding �k1, �k2, v1, and v2 are apparent. The conclusion regarding L holds

because
@(L2 [ v1+ v2�L ])

@L
= v1 + v2 � 2L > 0, from Assumption 1. �

Proof of Corollary 2.

Suppose, to the contrary, there is a policy with d2 = dw2 (d1) ; k̂1 = ko1; and k̂2 = ko2:
Then, since (20) does not hold:

ko1 + k
o
2G (k

o
2)� [ 1�G (k

o
2) ] �

M
1 > [ ��1 + �

�
2 ]G (k

o
2)

, ko1 > [ ��1 + �m
� ]G (ko2) + [ 1�G (k

o
2) ] �

M
1 = k̂1 ;

contradicting k̂1 = ko1. �

Proof of Proposition 3.

(i) From (21), prices that leave the marginal consumer with zero surplus (and so maximize
industry pro�t) are determined by

p2 = v1 + v2 � p1 � L ,
1

2
[L��+ p2 � p1 ] = v1 � p1 . (57)

(2) and (57) imply:

q1 = v1 � p1 ; q2 = L+ p1 � v1 ; and

� = p1 [ v1 � p1 ] + [ v1 + v2 � p1 � L ] [L+ p1 � v1 ] : (58)

Because k̂2 = �2 � �m from (16):

�1 + �m = �1 + �2 � k̂2 = �� k̂2 : (59)

(58) and (59) imply that the optimal policy can be identi�ed by choosing p1 and k̂2 to

maximize W . (8) implies @
fW12

@k̂2
= 0. Therefore, from (17), the optimal p1 and k̂2 satisfy:
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@W

@p1
=

2
64G(k̂2 )fW12 +

h
1�G(k̂2 )

i
fW1 �

k̂2Z

0

k2 dG(k2)� k̂1

3
75
@F (k̂1)

@p1

+ F ( k̂1 )
h
fW12 �fW1 � k̂2

i @G(k̂2)
@p1

+ F ( k̂1 )G(k̂2 )
@fW12

@p1

=
h
kw1 (k̂2)� k̂1

i @F (k̂1)
@p1

+ F ( k̂1 )
h
kw2 � k̂2

i @G(k̂2)
@p1

+ F ( k̂1 )G(k̂2 )
@fW12

@p1
= 0 , and (60)

@W

@k̂2
= F ( k̂1 )

h
fW12 �fW1 � k̂2

i @G(k̂2)
@k̂2

+

2
64G(k̂2 )fW12 +

�
1�G(k̂2 )

�
fW1 �

k̂2Z

0

k2 dG(k2)� k̂1

3
75
@F (k̂1)

@k̂2

=
h
kw1 (k̂2)� k̂1

i @F (k̂1)
@k̂2

+ F ( k̂1 )
h
kw2 � k̂2

i @G(k̂2)
@k̂2

= 0 . (61)

The last equalities in (60) and (61) re�ect (18) and (19).

(60) and (61) imply that if ep1 and ek2 solve (22) and (23) with ep2 = v1 + v2 � ep1 � L ,
and if e� < �; then the optimal policy is (ed1; ed2; em).

(ii) If e� > � at the values of p1 and k̂2 that solve (22) and (23), then the candidate
solution is not feasible because the identi�ed level of industry pro�t exceeds the maximum
feasible level. Formally, an omitted maximum industry pro�t constraint ( e� � � ) is vio-

lated. Therefore, if e� � � , the optimal prices are those that maximize industry pro�t, as
speci�ed in (13). These prices are induced via the values of di identi�ed in (14). Thus, the
optimal policy is

�
d1; d2;m

�
, where k̂2 solves (23). �

Proof of Lemma 4.

First, Assumption 1 ensures thatfW z
1 (k1; k2) and �

Mz
1 (k1; k2) are maximized when p

M
1 (k1; k2)

= pM1 = v � 1. Furthermore, W z is increasing in fW z
1 (�), and B1(k1 j k1) and B2(k2 j k2; k1)

are both non-decreasing in �Mz
1 (k1; k2).

Therefore, if pM1 (k1; k2) di¤ered from pM1 for some k1 2 [ 0; k1 ] and k2 2 [ 0; k2 ] for
which �1(k1) > 0 and �2(k1; k2) = 0, W z could be increased without violating (28) by
setting pM1 (k1; k2) = pM1 for all k1 2 [ 0; k1 ] and k2 2 [ 0; k2 ] for which �1(k1) > 0 and
�2(k1; k2) = 0.

Next, suppose that qzi (k1; k2) 6= qi(p1(k1; k2); p2(k1; k2)) as speci�ed in equation (2) for
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some i 2 f1; 2g and for some k1 2 [ 0; k1 ] and k2 2 [ 0; k2 ] for which �1(k1) > 0 and
�2(k1; k2) > 0 at a solution to [P-Z]

0. Call this solution �Solution A1.�

Now consider a candidate solution to [P-Z]0 (�Solution B1�) that is identical to Solution
A1 except that for i = 1; 2 and for all k1 2 [ 0; k1 ] and k2 2 [ 0; k2 ] for which �1(k1) > 0
and �2(k1; k2) > 0: (i) q

z
i (k1; k2) = qi(p1(k1; k2); p2(k1; k2)); and (ii) T (k1; k2) is set to ensure

B1(k1 j k1) and B2(k2 j k2; k1) are both weakly higher under Solution B1 than under Solution
A1. Assumption 1 ensures that the identi�ed increases in B1(k1 j k1) and B2(k2 j k2; k1) are
feasible.

Next, Assumption 1 also ensures that fW z
12(k1; k2) is weakly higher under Solution B1

than under Solution A1 for all k1 2 [ 0; k1 ] and k2 2 [ 0; k2 ], and strictly higher for some
k1 2 [ 0; k1 ] and k2 2 [ 0; k2 ].

Therefore, because WZ is increasing in fW z
12(�), W

Z is strictly higher under Solution B1
than under Solution A1. Consequently, Solution A1 cannot be a solution to [P-Z]0, so the
proof is complete by contradiction. �

Proof of Lemma 5.

Because L � 1, Lemma 4 implies that at a solution to [P-Z]0, for all k1, k2 for which
�1(k1) > 0 and �2(k1; k2) > 0:

fW z
12(k1; k2)�fW z

1 (k1; k2)� k2 � 0 . (62)

If this were not the case, then WZ could be increased without violating (28) by setting
�2(k1; k2) = 0.

(62) implies that if �1(k1) > 0 and �2(k1; k2) 2 (0; 1) for some k1 2 [ 0; k1 ] and k2 2
[ 0; k2 ], thenW

z could be (weakly) increased without violating (28) by setting �2(k1; k2) = 1
for the identi�ed (k1; k2).

Now suppose there exists a solution to [P-Z]0 (�Solution A2�) under which condition
(iii) of the lemma does not hold for some (k1; k2) for which �1(k1) > 0 and �2(k1; k2) > 0.
Among all (p1(k1; k2); p2(k1; k2); T (k1; k2) ) triples for which �1(k1) > 0 and �2(k1; k2) > 0
under Solution A2, let (pw1 (k1; k2); p

w
2 (k1; k2); T

w(k1; k2) ) denote the triple that secures the
highest level of welfare. Consider a candidate solution to [P-Z]0 (�Solution B2�) that is
identical to Solution A2 except that for all k1, k2 for which �1(k1) > 0 and �2(k1; k2) > 0:

pi(k1; k2) = pwi (k1; k2) for i = 1; 2 and T (k1; k2) = Tw(k1; k2) .

Solution B2 is a feasible solution to [P-Z]0 because Solution A2 is a feasible solution to [P-Z]0.
Furthermore, expected welfare is at least as high under Solution B2 as under Solution A2.
Therefore, Solution B2 is a solution to [P-Z]0.

Observe that for any k1 2 [ 0; k1 ] for which �1(k1) > 0 at a solution to [P-Z]
0:

Z k2

0

f�2(k1; k2) [fW z
12(k1; k2)� k2 ] + [ 1� �2(k1; k2) ] fW z

1 (k1; k2) g dG(k2) � k1 . (63)

33



Otherwise,WZ could be increased without violating (28) by setting �1(k1) = 0. If (63) holds
as a strict inequality and �1(k1) 2 (0; 1) for some k1 at a feasible solution to [P-Z]

0, then
WZ could be strictly increased without violating (28) by setting �1(k1) = 1. If (63) holds as
an equality and �1(k1) 2 (0; 1) for some k1 at a feasible solution to [P-Z]

0, then WZ would
not be reduced and (28) would not be violated if �1(k1) were set equal to 1. Therefore,
�1(k1) = 0 or �1(k1) = 1 at a solution to [P-Z]

0.

Suppose �1(k
0
1) = 0 and �1(k

00
1) > 0 for some 0 � k

0
1 < k

00
1 � k1 at a solution to [P-Z]

0.
Then (63) implies:

Z k2

0

f�2(k
00
1 ; k2) [fW z

12(k
00
1 ; k2)�k2 ]+[ 1� �2(k

00
1 ; k2) ] fW z

1 (k
00
1 ; k2) g dG(k2) � k001 > k01 . (64)

(64) implies that WZ would increase (and (28) would not be violated) if Z(k01; k2) were
replaced by Z(k001 ; k2) for all k2 2 [ 0; k2 ]. Therefore, by contradiction, �1(k1) must be
nondecreasing in k1 at a solution to [P-Z]

0.

Suppose that for some k1 2 [ 0; ~k1 ], �2(k1; k
0
2) = 0 and �2(k1; k

00
2) > 0 for some 0 � k

0
2 <

k002 � k2 at a solution to [P-Z]
0. Then (62) implies:

fW z
12(k1; k

00
2)�

fW z
1 (k1; k

00
2) > k002 > k02 . (65)

(65) implies that WZ would increase (and (28) would not be violated) if Z(k1; k
0
2) were

replaced by Z(k1; k
00
2). Therefore, by contradiction, �2(k1; k2) must be nondecreasing in k2

for all k1 2 [ 0; ~k1 ] at a solution to [P-Z]
0. �

Proof of Proposition 4.

Lemmas 4 � 5 imply that if ~k2 2 ( 0; k2 ), then for all k1 2 [ 0; ~k1 ] and k2 2 [ 0; ~k2 ]:

��2(p1(k1; k2); p2(k1; k2) )� T (k1; k2)�
~k2 = 0 . (66)

(66) implies that for all k1 2 [ 0; ~k1 ] and k2 2 [ 0; ~k2):

��2(p1(k1; k2); p2(k1; k2) )� T (k1; k2)� k2 > 0 . (67)

Similarly, if ~k1 2 ( 0; k1 ), then for all k1 2 [ 0; ~k1 ] and k2 2 [ 0; ~k2 ]:

[ ��1(p1(k1; k2); p2(k1; k2) ) + T (k1; k2) ] G(
~k2) + �

M
1 [ 1�G(

~k2) ] = ~k1 . (68)

(68) implies that for all k1 2 [ 0; ~k1) and k2 2 [ 0; ~k2 ]:

[ ��1(p1(k1; k2); p2(k1; k2) ) + T (k1; k2) ] G(
~k2) + �

M
1 [ 1�G(

~k2) ]� k1 > 0 . (69)

(67) and (69) imply that (26) and (27) are satis�ed at a solution to [P-Z]0. Therefore, a
solution to [P-Z]0 is a solution to [P-Z].

The remainder of the proof follows from the discussion in the text. �
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Appendix B

This Appendix presents additional numerical solutions that illustrate the nature and the

relative performance of the optimal linear rule.

Table B1 illustrates how outcomes change under the optimal linear rule as the �rms�

expected innovation costs change in the baseline setting. The table re�ects the conclusion in

Proposition 2 and Corollary 1 that the optimal linear rule becomes more likely to ensure the

�rst-best outcome as the maximum possible innovation costs decline, ceteris paribus. Table

B1 also illustrates that the optimal linear rule can secure the �rst-best outcome whether the

distributions of the �rms� innovation costs are identical or distinct. In addition, the table

indicates that the lump sum component of the optimal payment from �rm 2 to �rm 1 (m�)

tends to increase as �rm 1�s expected innovation cost increases relative to �rm 2�s expected

innovation cost, ceteris paribus.

k1 k2 d�1 d�2 m� W � WUE WLP W FB

3 3 0:63 0:63 0 9:69 8:63 7:56 9:69

3 5 0:75 0:75 �2 8:69 7:6 7:22 8:69

5 3 0:75 0:75 2 8:69 5:18 6:28 8:69

5 5 0:81 0:81 0 7:69 6:59 6:22 7:69

5 8 0:81 0:81 �1:3 6:52 5:81 5:58 6:52

8 5 0:84 0:84 1:88 5:81 3:74 3:89 6:19

8 8 0:84 0:84 0:69 4:60 3:69 3:68 5:02

Table B1. The E¤ects of Changing Innovation Costs

Table B2 illustrates how the optimal linear rule and welfare change as the breadth of

the market (L) changes following �rm 2�s innovation in the baseline setting. As L increases,

welfare increases due to the increased consumer demand for the �rms� products. In addition,

W �=WUE and W �=WLP , measures of the relative performance of the optimal linear rule,

increase due to the increase in the maximum feasible level of welfare as the market expands.
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L d�1 d�2 m� W � WUE WLP W FB

1:0 0 0 0:50 4:51 4:48 4:50 4:51

1:6 0:84 0:84 0:42 6:40 5:51 5:54 6:4

1:8 0:81 0:81 0 7:69 6:59 6:22 7:69

2:0 0:81 0:81 0 9:0 6:6 7:0 9:0

Table B2. The E¤ects of Changing Market Breadth.

Table B3 illustrates the e¤ects of changing the probability that �rm 2 ultimately will

be found to have infringed �rm 1�s patent in the baseline setting. As this probability (�)

increases, the optimal values of d�1 and d
�
2 decline because the increased likelihood of a damage

payment implies that desired incentives can be secured with a smaller payment. Observe that

the optimal values of d�1 and d
�
2 in Table B3 exceed 1 when � is su¢ciently small. Therefore,

a requirement that d�1 � 1 or d
�
2 � 1 (perhaps re�ecting limited liability considerations) can

preclude the optimal (restricted) linear rule from securing the �rst-best outcome when � is

small.

� d�1 d�2 m� W � WUE WLP W FB

0:30 1:35 1:35 0 7:69 6:05 6:13 7:69

0:50 0:81 0:81 0 7:69 6:59 6:22 7:69

0:70 0:58 0:58 0 7:69 5:78 6:21 7:69

Table B3. The E¤ects of Changing the Likelihood of Patent Infringement.
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