Money, Asset Prices and the Liquidity Premium

Seungduck Lee

University of California, Davis

August 2016

Online at https://mpra.ub.uni-muenchen.de/73533/
MPRA Paper No. 73533, posted 7 September 2016 08:22 UTC
Money, Asset Prices and the Liquidity Premium

Seungduck Lee

University of California - Davis

This Version: August, 2016

PRELIMINARY AND INCOMPLETE – PLEASE DO NOT CIRCULATE

ABSTRACT ————————————————————————————————————

This paper examines the effect of monetary policy on the liquidity premium, i.e., the market value of the liquidity services that financial assets provide. To guide the empirical analysis, I set up a monetary search model in which bonds provide liquidity services in addition to money. The theory predicts that money supply and the nominal interest rate are positively correlated with the liquidity premium, but the latter is negatively correlated with the bond supply. The empirical analysis over the period from 1946 and 2008 confirms the theoretical findings. This indicates that liquid bonds are substantive substitutes for money and the opportunity cost of holding money plays a key role in asset price determination. The model can rationalize the existence of negative nominal yields, when the nominal interest rate is low and liquid bond supply decreases.

———

JEL Classification: E31, E41, E50, E52, G12

Keywords: asset price, money search model, liquidity, liquidity premium, money supply

Email: sddlee@ucdavis.edu.

I am grateful to Athanasios Geromichalos, Jaerim Choi, Andres Carvajal, Espen Henriksen, Oscar Jorda, Jiwon Lee, Ina Simonovska, Yujung Suh, Inmo Sung, and Alan Taylor for useful comments and suggestions. We would also like to thank participants at talks at University of California, Davis, and Inha University. All errors are mine.
1 Introduction

Investors value financial assets not only for their intrinsic value, i.e., their expected dividend or payment stream, but also for their liquidity: their ability to help agents facilitate transactions. For instance, U.S Treasuries are often used as collateral in a secured credit market through repurchase agreements, they are easily sold for cash in secondary asset markets, and, often-times, they are used directly as means of payment. Accordingly, many liquid financial assets are priced above their respective fundamental value, and their prices are higher than those of illiquid assets with comparable safety and maturity characteristics. Also, the liquidity premia account for a large part of the variation in the liquid asset prices observed in financial markets.

The objective of this paper is to examine the determinants of such liquidity premia. First, I set up a monetary search model and use it as a guide to my empirical exercise. My model builds upon Lagos and Wright (2005), but I extend the baseline framework in order to include a risk-free government bond in addition to fiat money. The government bond is liquid in the sense that it is useful in the exchange process, which is explicitly incorporated into the model. Due to its liquidity, its equilibrium price exceeds the fundamental value, and its supply affects the price (or the yield) through changing the liquidity premium. The ability of the bond to facilitate trade in a goods market characterized by frictions (such as anonymity and limited commitment) makes it a substitute for money to some degree, so that money supply, and not only bond supply, affects the liquidity premium and, consequently, the bond’s price. The key mechanism that links money supply and the liquidity premium is the opportunity cost of holding money. An increase in money supply raises the inflation rate and, hence, the cost of holding money, implying a higher nominal interest rate through the Fisher effect. As a result, agents substitute the more costly fiat money with the liquid bond, which, in turn, leads to a higher liquidity premium and, ultimately, a higher bond price. In the extreme case in which the nominal interest rate (on an illiquid bond) is close to zero, and the supply of liquid assets is scarce, the model predicts the existence of a very high liquidity premium, and a potentially negative nominal yield on the liquid asset. Hence, my model can help us understand the emergence of negative yields could in several developed countries, such as Switzerland, the United States, and Germany, since 2008.

Next, I move on to the empirical exercise that tests the primary results of the theoretical model. In particular, I test whether money supply is positively correlated with the liquidity premium on liquid bonds, and whether the latter is negatively correlated with bond supply. In addition, I examine empirically whether the existence of liquidity premia can be an important factor in explaining the aforementioned negative yields on liquid bonds. In my empirical exercise, I use US Treasuries to capture the liquid bonds introduced in the model. To guarantee robustness of the empirical analysis, I employ various measures of the liquidity premia for these bonds: the spread of AAA-rated corporate bonds against the long term Treasury bonds,
the TED spread, and the spreads of AA-rated Commercial Papers and Federal Deposit Insurance Corporation (FDIC) insured Certificates of deposits against Treasury bills. The choice of these financial assets is justified by the fact that they are comparably safe but not as liquid as Treasury bonds of similar maturities; therefore one can reasonably argue that any spread between the yield on these assets and Treasury bonds (of similar maturities) reflects differences in liquidity premia. Next, I use a monetary aggregate, Narrow Money, as a proxy of money because it only includes components which can be used as a direct medium of exchange implied by the theory unlike other broader monetary aggregates such as M1 and M2. Furthermore, its demand is stable against its holding cost, or nominal interest rates in that it displays a downward sloping curve over the sample period as the theory presents later.

The theoretical and empirical analysis can explain the emergence of negative nominal yields. According to the theory, a reduction in bond supply can drive down its yield into the negative territory, in situations where the monetary authority is setting a low (slightly above or around zero) nominal interest rate, as has been the case recently in Switzerland and in the United States. The empirical exercise confirms that a reduction in the bond supply increases the liquidity premium, and decreases the yield. In fact, a big drop in the supply of liquid government bonds was markedly observed in Switzerland during the financial crisis, starting in the last quarter of 2008. It should be pointed out that the existence of negative nominal yields is often considered anomalous, because it is hard to reconcile through the lens of traditional monetary models. However, my model of asset liquidity can help rationalize this observation.

From the theoretic point of view, a large money search literature presents that the liquidity premium is a primary factor of variation in the prices of liquid financial assets, and that its supply is negatively correlated with the liquidity premium, whereas money supply is positively. Similarly, the key mechanism in the literature is the opportunity cost of holding money. As a pioneer theoretical paper, Geromichalos, Licari, and Suarez-Lledo (2007) set up a Lagos-Wright type of money search framework with a real asset, and theoretically present that the money growth rate increases the liquidity premium in the economy where neither money nor assets are plentiful. They derive this result from the model where assets are a perfect substitute to money in transactions in a decentralized market, and money supply leads to an increase in the opportunity cost of holding money. Similarly, several papers with this substitution relationship between money and financial assets in the literature deliver the more or less similar results. Examples include Rocheteau and Wright (2005a), Lagos (2010b), Lester, Postlewaite, and Wright (2012), Jacquet and Tan (2012), Williamson (2012), Carapella and Williamson (2015), Geromichalos.

1 I choose the measures which Krishnamurthy and Vissing-Jorgensen (2012) use in their paper for comparison as well as an additional measure such as the TED spread. Also, the quarterly data are used here, unlike the yearly data are used in Krishnamurthy and Vissing-Jorgensen (2012) to increase the sample size of the measures.

2 One of the important lessons we’ve learned from asset liquidity is that it can shed light on existing asset-related puzzles from a new perspective and provide a liquidity-based theory of asset pricing. Examples include Lagos (2010a), Geromichalos, Herrenbrueck, and Salyer (2013), Geromichalos and Simonovska (2011), and Jung and Lee (2015).
los and Herrenbrueck (2016), Rocheteau, Wright, and Xiao (2016), and Geromichalos, Lee, Lee, and Oikawa (2016). Also, Aruoba, Waller, and Wright (2011) calibrate money search models to examine how money supply affect capital formation. However, the literature has not tested empirically its aforementioned results, and not investigated much how liquidity premia cause the negative yields on liquid assets, either. Of course, it is worth noticing that this type of money search model is well fitted into the study mentioned above because it can delivers sharp predictions for the effects of money and bond supply on the liquidity premium. For example, one time injection of money does not affect the liquidity premium, but its growth does. Hence, money is neutral but not superneutral. Unlike money, one time injection of bonds has a substantial impact.\(^3\) A model without money, or without explicit exchange processes would not deliver these results precisely.

To my best knowledge, while the results about the effects of money and bond supply on the liquidity premium has not been tested empirically yet in the money search literature, there are a few papers in the finance literature which study the supply effect on the liquidity premium so as to present that bond supply has a negative impacts on the liquidity premium, or the convenience yield.\(^4\) For example, Krishnamurthy and Vissing-Jorgensen (2012) show a strong negative relationship between the U.S. Treasury supply and its convenience yield. Greenwood, Hanson, and Stein (2015) show that the T-bill supply has a negative impact on its liquidity premium. Longstaff (2004), Vayanos (2004), Brunnermeier (2009) and Krishnamurthy (2010) investigate liquidity premia, but focus on the short time period such as financial crises. They all set up the models without money; therefore, money supply does not affect liquidity premia at all even if liquid bonds play a role as substitutes with money in reality, and the opportunity cost of holding money does not work to account for it, either.

Nagel (2014) shows how this substitution relationship between money and liquid bonds affect the liquidity premium through variation in the opportunity cost of holding money, which is represented by the federal funds rate. The paper shows that federal funds rate is positively correlated with the liquidity premium. Then, it concludes that bond supply does not have a ‘persistent’ effect on the liquidity premium unlike Krishnamurthy and Vissing-Jorgensen (2012) and Greenwood, Hanson, and Stein (2015). However, this result is derived from the fact that changes in the federal funds rate are involved with changes in supply in the Treasury supply, because the open market operation by the Federal Reserve is associated with the buying of selling of the Treasuries in the open market, even though it does not account for all the changes in the Treasury supply. Also, it does not allow to distinguish the effect of bond supply from that of money supply, to the effect of changes in money growth from changes in money level, or to study specific reasons why the negative yields have been observed in the situation where the

\(^3\)Rocheteau, Wright, and Xiao (2016) argue, for the first time in the literature, that this is why the open market operations by the fed have effects on the interest rates in the market.

\(^4\)The convenience yield counts for the premia from both safety and liquidity attributes of a financial assets such as the U.S. Treasuries.
nominal interest rate is hovering around zero. Importantly, the money search model I set up allows me to separate these effects theoretically, and to provide a guidance to analyze why the negative yields on liquid bonds can emerge in the aforementioned situation.

The rest of the paper is organized as follows. Section 2 lays out a theoretic model to be tested in Section 3. In Section 3, I provide a description of the data which are used in the empirical work and test the results from the theory. In Section 4, I discuss negative yields on liquid bonds with the theoretical and empirical results from the previous sections. Section 5 concludes.

2 Model

2.1 Physical Environment

Time is discrete and continues forever. There is a discount factor between periods $\beta \in (0, 1)$. Each period is divided into two sub-periods. A perfectly competitive or centralized market (henceforth CM) opens in the first sub-period, and a decentralized market (henceforth DM) with frictions follows. The frictions are characterized by anonymity among agents and bilateral bargaining trade. As a result, unsecured credit is not allowed in transactions, and exchange must be *quid pro quo* or need secured credit. There are two divisible and nonstorable consumption goods: goods produced and consumed in the CM (henceforth CMgoods) and special goods in the DM (henceforth DMgoods). There are two types of agents; buyers and sellers, whose measures are normalized to the unit, respectively. They live forever. Their identities are determined by the roles which they play in the decentralized market and permanent. While sellers produce and sell DM goods and do not consume, buyers consume and do not produce. Their preferences in period t are given by

Buyers: $U(x_t, h_t, q_t) = u(q_t) + U(X_t) - h_t$

Sellers: $V(x_t, h_t, q_t) = -c(q_t) + U(X_t) - h_t$

where x_t is consumption of CM goods, q_t consumption of DM goods, h_t hours worked to produce CM goods, and $c(q_t)$ a cost of production of q_t. As usual, U and u are twice continuously differentiable with with $U' > 0, u' > 0, U'' < 0, u'' < 0, u(0) = 0, u'(0) = \infty, u'(\infty) = 0$. Also, I assume that $c(q_t) = q_t$. Let $q^* \equiv \{q : u'(q) = 1\}$, i.e., it denotes the optimal consumption level in the DM. Also, assume that there exists $x^* \in (0, \infty)$ such that $U'(x^*) = 1$ and $U(x^*) > x^*$.

There are two assets; fiat money and 1-period real government bond. They are perfectly divisible and storable. Agents can purchase any amount of money and government bonds at the ongoing price ϕ_t and ψ_t in the CM, respectively. Money grows at the rate of μ: $M_{t+1} = (1 + \mu)M_t$. I assume that $\mu > \beta - 1$, but also consider the limit case where $\mu \to \beta - 1$, i.e., the case where
the money growth rate approaches closely the Friedman rule. If μ is positive, it implies that new money is injected, but if μ negative, withdrawn through lump-sum transfers to buyers in the CM. A government bond issued in period t delivers one unit of CM good in period $t+1$, and its supply in period t is A_t. Since we focus on stationarity equilibria, A_t is fixed at A. The government (a consolidate authority) budget constraint is

$$G_t + T_t - \phi_t \mu M_t + A(1 - \psi_t) = 0,$$

where G_t is government expenditure, T_t is a lump-sum transfer or tax, $\phi_t \mu M_t$ is seigniorage of new money injection, and $A(1 - \psi_t)$ is government debt service.

Now, I describe more details about the activities which occur in each sub-period. First, I start with the description of the second sub-period, where a CM opens. Both buyers and sellers consume and produce a CM good. They work or use their assets, money (m) and government bonds (a), which they are holding from the previous period in order to consume, to pay back the credit made in the previous period, or to adjust their portfolios. They have access to technology that turns one unit of labor into one unit of general goods. Also, they trade money, and bonds among all agents to re-balance their portfolio they will bring to the next period.

Next, the DM follows. All of the buyers are matched with a seller in a bilateral fashion and vice versa. Buyers make a take-it–or-leave-it (henceforth TIOLI) offer to a seller to determine the terms of trade.\footnote{I could assume that they negotiate the terms of trade through a Kalai bargaining protocol, where the buyers’ bargaining power is less than one. However, since the bargaining protocol is not critical to derive most of interesting results of the paper, I use the simplest setup here by assuming that buyers make a TIOLI offer to their trading partnert.} Since buyers are anonymous and so have limited commitment, a medium of exchange (henceforth MOE) is required in their transactions. Both money and government bonds can serve as media of exchange. However, the DM is divided into two sub-markets, DM1 and DM2, depending on what type of medium of exchange can be used. In the DM1, sellers accept only a direct medium of exchange. Both assets are used as a direct medium of exchange, but, unlike money, only a fraction $g \in (0, 1)$ of bonds can serve as a direct medium of exchange. g is an illiquidity parameter, and reflects the fact that a government bond is not as liquid as money as a direct medium of exchange. Intuitively speaking, it can take time and cost in playing a role as money do in exchange in the DM. On the other hand, in the DM2, sellers accept only collateralized credit (or loans), i.e., secured credit as a MOE, and bonds are used as collateral for credit. The credit is repaid back in general goods in the forthcoming CM. Also, a portion $h \in (0, 1)$ of bonds can be used as collateral; therefore, buyers always have the incentive to pay back their credits. This is so-called the Loan to Value (henceforth LTV) ratio, and also is related to the haircut since it is defined by 1 minus the LTV, following the standard approach in finance. The model will focus on cases of incentive compatible contracts. All buyers and sellers visit DM1 and DM2 with probabilities θ and $1 - \theta$, respectively. Figure 1 summarizes
the events within each period.

![Figure 1: Market Timing](image)

2.2 Value Functions

First, I describe the value function of a representative buyer who enters the CM with money (m), bonds (a) and the collateralized credit (ℓ) made last period, since it is the buyer that makes the key decisions for most of interesting results from the model. The value function of the buyer is

$$W_B(w_t, \ell_t) = \max_{x_t, h_t, w_{t+1}} \left\{ U(x_t) - h_t + \beta \mathbb{E} [V_B(w_{t+1})] \right\}$$

s.t. $x_t + \phi_t' w_{t+1} = h_t + \phi_t w_t - \ell_t + T$

where $w_t = (m_t, a_t)$ and $\phi_t' = (\phi_t, \psi_t)$, $\phi_t = (\phi_t, 1)$. ℓ_t stands for the collateralized loan which is made last period, and so must be paid back in the form of general goods. T_t is a lump-sum transfer to the buyer. V_B represents the buyer’s value function in the DM. It can be easily verified that $x_t = x^*$ at the optimum. Substituting h_t in the budget constraint into the value function W_B yields

$$W^B(w_t, \ell_t) = \phi_t w_t - \ell_t + \Lambda^B_t$$

where $\Lambda^B_t \equiv U(x^*) - x^* + T_t + \max_{x_t, w_{t+1}} \{-\phi_t' w_{t+1} + \beta \mathbb{E} [V_B(w_{t+1})]\}$. Notice that the value function in the CM is linear in the choice variables due to the quasi-linearity of U, as in the models which are based on Lagos and Wright (2005), so that the optimal choices of the buyer do not depend on the current state variables.

Next, a representative seller with money, bonds, and the collateralized loan enters the CM.
The loan is paid back by the counterpart buyer who she met in the previous DM.

\[
W^S(w_t, \ell_t) = \max_{x_t, h_t} \left\{ U(x_t) - h_t + \beta \mathbb{E} [V^S(0)] \right\} \\
\text{s.t. } x_t = h_t + \phi_t w_t + \ell_t
\]

where \(V^S \) denotes the seller’s value function in the DM. Notice that \(w_{t+1} = 0 \) for the seller. Since the seller does not consume any good in the DM, there is no incentive to bring money and bonds to the next period, because the money holding cost is strictly positive due to \(\mu_t > \beta - 1 \).\(^6\) It also easily verified that \(x_t = x^* \) at the optimum as in the case of the buyer. Replacing \(h_t \) into the value function yields

\[
W^S(w_t, \ell_t) = \phi_t w_t + \ell_t + \Lambda_t^S
\]

where \(\Lambda_t^S \equiv U(x^*) - x^* + \beta \mathbb{E}[V^S(0)] \).

Next, the DM opens. Buyers visits the DM1 with the probability \(\theta \) and the DM2 with the probability \(1 - \theta \). Also, all agents match in each DM. Hence, the expected value function of a buyer with portfolio \(w_{t+1} \) in the DM is given by

\[
V^B(w_t) = \theta \left[u(q_{1t}^1) + W^B(w_t - p_t, 0) \right] + (1 - \theta) \left[u(q_{2t}^2) + W^B(w_t, \ell_t) \right]
\]

where \(p_t = (p_t^m, p_t^b) \) is a portfolio exchanged for DM goods in a meeting with a seller in DM1, and \(\ell_t \) is the collateralized loan made in DM2. \(q_{1t}^1 (q_{2t}^2) \) represents the quantity that are traded in the DM1 (DM2). The terms of trades in each market are determined by bargaining in pairwise meetings in Section 2.3.

The value function of a seller is similar except for the fact that the seller does not bring any money and bonds to the DM for transactions.

\[
V^S(0) = \theta \left[-q_{1t}^1 + W^S(p_t, 0) \right] + (1 - \theta) \left[-q_{2t}^2 + W^S(0, \ell_t) \right]
\]

2.3 Bargaining Problems in the DM

There are two sub-markets in the DM: DM1 and DM2, depending on what type of means of payment can be used in transactions. First, consider a meeting in the DM1 where a buyer with portfolio \(w_t \) meets with a seller. Sellers accept both money and bonds as a medium of exchange. However, a fraction \(g \) of bonds can be accepted. The terms of trade is determined by the proportional bargaining over the quantity of the DM goods, and a total payment of money and bonds exchanged between them. A buyer makes a take-it-or-leave-it offer to the seller.

\(^6\)See Rocheteau and Wright (2005b) for the precise and careful proof.
to maximize her surplus under the seller’s participation constraint and the budget constraint. Then, the bargaining problem is

$$\max_{q_t^1, p_t} \left\{ u(q_t^1) + W^B(w_t - p_t, 0) - W^B(w_t, 0) \right\} \quad (5)$$

subject to

$$- q_t^1 + W^S(p_t, 0) - W^S(0, 0) = 0,$$

and the effective budget constraint $p_t \leq \tilde{w}_t, \tilde{w}_t = (m_t, g \cdot a_t)$. Notice that since bonds are not as liquid as money in the DM1, the effective budget is less than the total budget. Only a fraction $g \in (0, 1)$ of bonds can be used as a MOE here. Of course, I will consider the extreme case where $g \to 1$ later to discuss how negative interest yields emerge. Substituting (2) and (3) into (5) simplifies the above problem as follows.

$$\max_{q_t^1, p_t} \left\{ u(q_t^1) - \phi_t p_t \right\} \quad (6)$$

subject to

$$- q_t^1 + \phi_t p_t = 0,$$

and $p_t \leq \tilde{w}_t, \tilde{w}_t = (m_t, g \cdot a_t)$. The following lemma summarizes the terms of trade which are determined by the solutions to bargaining problem.

Lemma 1. The real balances of a representative buyer are denoted as $z(w_t) \equiv \phi_t w_t$. Define $q^* = \{ q : u'(q_t) = 1 \}$, and z^* as the real balances of the portfolio (m_t, a_t) such that $\phi_t m_t + g a_t = q^*$. Also, p^* is the pairs of (m_t, a_t) in z^*. Then, the terms of trade are given by

$$q_t^1(w_t) = \begin{cases} q^*, & \text{if } z(w_t) \geq z^*, \\ z(\tilde{w}_t), & \text{if } z(w_t) < z^*. \end{cases} \quad \text{and} \quad p_t(w_t) = \begin{cases} p^*, & \text{if } z(w_t) \geq z^*, \\ w_t, & \text{if } z(w_t) < z^*. \end{cases} \quad (7)$$

Proof. See the appendix

Similarly, in the DM2, a buyer makes a take-it-or-leave-it offer to a seller as in the DM1. However, she maximize her surplus subject to a different constraint, which is the credit limit constraint, unlike the effective budget constraint in DM1. Then, the bargaining problem is described as follows.

$$\max_{q_t^2, \ell_t} \left\{ u(q_t^2) + W^B(w_t, \ell_t) - W^B(w_t, 0) \right\} \quad (8)$$

subject to

$$- q_t^2 + W^S(0, \ell_t) - W^S(0, 0) = 0,$$

and the credit limit constraint $\ell_t \leq ha_t$. Substituting (2) and (3) into (8) yields the following
expression.

\[
\begin{align*}
\max_{q_t^2, \ell_t} \{ u(q_t^2) - \ell_t \} & \quad (9) \\
-q_t^2 + \ell_t = 0, & \quad (10)
\end{align*}
\]

and \(\ell_t \leq h a_t \). The solution to the bargaining problem is described by the following lemma.

Lemma 2. Define the total real value of a buyer’s bond holdings as \(z^a(w_t) \equiv h a_t \). Also, define \(z^{a*} \equiv q^* \).

The terms of trade are given by

\[
q_t^2(w_t) = \begin{cases}
q^*, & \text{if } z^a(w_t) \geq z^{a*}, \\
\ell^a(w_t), & \text{if } z^a(w_t) < z^{a*},
\end{cases} \\
\ell(w) = \begin{cases}
z^{a*}, & \text{if } z^a(w_t) \geq z^{a*}, \\
z^a(w_t), & \text{if } z^a(w_t) < z^{a*}.
\end{cases} (11)
\]

Proof. See the appendix

Since buyers make a TIOLI offer, i.e., they take all the bargaining power, the solution is straightforward. The main variables to determine the level of DM goods produced are the real balances, or the bond holdings of buyers in each transaction. For example, if the real balances are enough to get the optimal consumption level \(q^* \), i.e., if \(z(w_t) \geq z^* \), then the optimal level will be exchanged with the corresponding payment, \(z^* \), which can be less than \(z(w_t) \). On the other hand, if the real balances are not enough in the same sense, then the buyers will hand over all of their real balances to the seller to purchase as many DM goods as possible. The seller will produce the quantity that her participation constraint implies. The similar interpretation can be applied to the DM2.

2.4 Buyers’ Optimal Choices

Now, I describe the objective function which a buyer maximize by choosing money and bonds \((m_{t+1}, a_{t+1})\) in the DM. Substituting (4) into the inside of the maximization operator in (1) and using linearity of the value functions yield the following objective function \(J \).

\[
J = -\phi_t w_{t+1} + \beta \left\{ \theta \left[u(q_{t+1}^1) + \phi_{t+1} (w_{t+1} - p_{t+1}) \right] + (1 - \theta) \left[u(q_{t+1}^2) + \phi_{t+1} w_{t+1} - \ell_{t+1} \right] \right\} (12)
\]

The first term stands for the cost of choosing money \((m_{t+1})\) and bonds \((m_{t+1})\) which buyers bring to the forthcoming DM, and the terms in the curly bracket presents the benefits they can obtain from transactions in the DM subject to their portfolios. Then, the Euler equations are
given by
\[\phi_t = \beta \left[(1 - \theta) + \theta u' \left(\min \{ \phi_{t+1} \bar{w}_{t+1}, q^* \} \right) \right] \phi_{t+1}, \quad (13) \]
\[\psi_t = \beta \left\{ \theta [(1 - g) + gu' \left(\min \{ \phi_{t+1} \bar{w}_{t+1}, q^* \} \right)] + (1 - \theta) [(1 - h) + hu' \left(\min \{ ha_{t+1}, q^* \} \right)] \right\}, \quad (14) \]

Figure 4 presents the continuous and decreasing money demand against the cost of holding money captured by \(\phi_t / (\phi_{t+1} \beta) \), which comes from equation (13). Similarly, inserting equation (13) into (14) shows the inverse bond demand curve against its price and it is flat in the region where \(ha_t > q^* \). Their inverse relationship makes sense because the bond price implies the cost of holding the bonds, given the fixed dividend in the forthcoming CM. Also, the bond demand curve depends on the cost of holding money, and it is easily found that the curve shifts out (in) as the money holding cost increases (decreases) as in Figure 3. This relationship is intuitively straightforward to understand. If the money holding cost increases, agents become less willing to hold money, i.e., the money demand will decrease. However, since the government bonds can also play a role in relaxing the liquidity constraint in the DM to some extent as money does, even if not 100%, the demand on the government bonds will increase.

2.5 Equilibrium and Characterization

I focus on stationarity equilibria, in which both real money and bond balances are constant over time. It implies that \(\phi_t M_t = \phi_{t+1} M_{t+1} \), so that the money growth rate is equal to the inflation.
rate in the CM, i.e., \(1 + \mu = \phi_t / \phi_{t+1} = 1 + \pi \).

Definition 1. A steady state equilibrium is a list of real balances of buyers, \(\tilde{z}_t = \phi_t M_t + gA \), and bond holdings \(\tilde{z}^a = hA \), money and bond prices \(\phi' \), bilateral terms of trade in DM1: \(q(w_t) \) and \(p(w_t) \) which are given by Lemma 1, and bilateral terms of trade in DM2: \(q(w_t) \) and \(\ell(w_t) \) which are given by Lemma 2 such that:

(i) the decision rule of a representative buyer solves the individual optimization problem (1), taking prices \(\phi' \) and \(\phi_t / \phi_{t+1} = 1 + \mu \) as given;

(ii) the terms of trade in the DM satisfy (7) and (11);

(iii) prices are such that the CM clears, i.e., \(\hat{w}_{t+1} = [\mu M_t, A] \) for buyers.

Then, the following lemma summarize the equilibrium objects.

Lemma 3. There exists a unique steady state equilibrium with four different cases. (i) If \(\tilde{z}_t \geq z^* \) and \(\tilde{z}^a \geq z^* \), then, \(q^*_1 = q^*_2 = q^* \), \(\phi_t = (z^* - gA)/M_t \), and \(\psi_t = \beta \{ \theta + (1 - \theta) [1 - (1 - h) + hu' (q^*_1)] \} \); (ii) If \(\tilde{z}_t \geq z^* \) and \(\tilde{z}^a < z^* \), then, \(q^*_1 = q^*_2 = \tilde{z}^a \), \(\phi_t = (z^* - gA)/M_t \), and \(\psi_t = \beta \{ \theta [1 - (1 - g) + gu' (q^*_1)] + (1 - \theta) \} \); (iii) If \(\tilde{z}_t < z^* \) and \(\tilde{z}^a \geq z^* \), then, \(q^*_1 = \tilde{z}_t, q^*_2 = q^* \), \(\phi_t = (q^*_1 - gA)/M_t \), and \(\psi_t = \beta \{ \theta [1 - (1 - g) + gu' (q^*_1)] + (1 - \theta) \} \); (iv) If \(\tilde{z}_t < z^* \) and \(\tilde{z}^a < z^* \), then, \(q^*_1 = \tilde{z}_t, q^*_2 = \tilde{z}^a \), \(\phi_t = (q^*_1 - gA)/M_t \), and \(\psi_t = \beta \{ \theta [1 - (1 - g) + gu' (q^*_1)] + (1 - \theta) \} \).

Proof. See the appendix.

It is straightforward to understand the definition of equilibrium. Since the real money balances and the supply of bond are constant over time in the steady state, it is obvious that both \(\tilde{z}_t \) and \(\tilde{z}^a \) are also constant. Then, given the market clearing condition, \(\tilde{z}_t \) and \(\tilde{z}^a \) determine the quantities and real money and bond balances exchanged in the DM, following Lemma 1 and 2.

Now, the Euler equations, (13) and (14), for money and bond holdings with the above definition can be reexpressed as follows.

\[
\phi_t = \beta \left\{ 1 + \theta [u' (\min \{ \tilde{z}_{t+1}, q^* \}) - 1] \right\} \phi_{t+1} \tag{15}
\]

\[
\psi_t = \beta \left\{ 1 + \theta \cdot g [u' (\min \{ \tilde{z}_{t+1}, q^* \}) - 1] + (1 - \theta) h [u' (\min \{ \tilde{z}^a, q^* \}) - 1] \right\} \tag{16}
\]

In order to examine how the equilibrium bond price respond to changes in money and bond supply, let’s plug (15) into (16), then the price is as follows.

\[
\psi = \beta \left\{ 1 + g \left[\frac{1 + \mu}{\beta} - 1 \right] + (1 - \theta) h [u' (\tilde{z}^o) - 1] \right\} \tag{17}
\]

\[
= \beta \left\{ 1 + gi + (1 - \theta) h [u' (\tilde{z}^o) - 1] \right\} \tag{18}
\]
where $i \equiv (1 + \mu)/\beta - 1$. The last equation is obtained by the Fisher equation, because $\mu = \pi$ in the stationary equilibrium and $1/\beta = 1 + r$ when r stands for the yield on a real bond which is not useful in the DM exchange, i.e., not liquid in the sense that it is not accepted by sellers. Hence, i represents a nominal interest rate of a totally illiquid real bond. To distinguish nominal yields between an illiquid bond and an liquid bond, let ρ denote the latter. Notice that Its real price (β), which is the inverse of the real interest rate $1/\beta$, is exactly equal to asset prices which are defined in the traditional asset pricing models: the asset prices equal the present discount value of their future stream of consumption dividends. Moreover, the price of a liquid bond (ψ) is always higher than that of a illiquid bond (β) only if the asset supply is not high enough in the sense that $hA < q^*$, i.e., $u'(\tilde{z}^a) > 1$. Or, the rate of return on a liquid bond (ρ) is lower than that on an illiquid (i). Hence, the difference between them can be used to measure the price of the liquidity service that the liquid bond provides. Lastly, the zero net nominal interest rate ($i = 0$) implies that the money growth equals the Friedman rule, i.e., $\mu = \beta - 1$.

The equations, (17) and (18), present that not only bond supply, but also money supply determine the equilibrium bond price together with the bond demand only if $0 < g < 1$, i.e., only if they are substitutes to some extent in the sense that bonds help to relax the liquidity constraint in the DM1. In other words, the demands on money and bonds are interconnected because both of them are useful in exchange process, to a greater and lesser extent, as in the papers in a money search literature such that Geromichalos, Licari, and Suarez-Lledo (2007), in which money and real assets are perfect substitutes, and Lester, Postlewaite, and Wright (2012), in which the illiquid parameter g is endogenized. Also, notice that (17) and (18) provide good guidance for the empirical analysis for the liquidity premium in the next subsection, because variation in the real bond price which is affected by money or bond supply, in fact, means changes in the liquidity premium. Notice that the fundamental value is β, which is fixed over time. Hence, the two words can be used interchangeably when the bond price exceed the fundamental value.

It is worth noticing that not all $\mu \in (\beta - 1, \infty)$ are consistent with a monetary equilibrium. In fact, a monetary equilibrium is supported for the range of $(\beta - 1, \bar{\mu})$, where $\bar{\mu} \equiv \{\mu : \mu = \beta [1 + \theta [u' (\tilde{z}^a) - 1]]\}$. If we allow for the case where $\mu = \beta - 1$, which implies $\tilde{z} \geq q^*$, it will be the lower bound for a monetary equilibrium and also the marginal change in money supply never affect the liquidity premium of bonds. Also, the upper bound $\bar{\mu}$ decreases in bond supply A. It implies that agents are less patient with high inflation, so that less willing to hold money given the supply of money, as the supply of bond increases.

The following proposition describes how the real equilibrium bond price, or the liquidity premium, is associated with money and bond supply. As mentioned in the introduction, we focus on the monetary equilibria, where $\mu \in (\beta - 1, \bar{\mu})$.

Proposition 1. The real bond price exceeds the fundamental value, i.e., $\psi > \beta$, and is increasing in μ.

12
Also,

(i) if $\tilde{z}^a \geq q^*$, $\psi = \psi(\mu)$, i.e., the bond price is only affected by the money supply.

(ii) if $\tilde{z}^a < q^*$, $\psi = \psi(\mu, A)$, i.e., the bond price is affected by both money and bond supply. In addition, it is decreasing in A, i.e., $\psi'(A) < 0$.

The proof is straightforward. Notice in Proposition 1 that μ is also replaced with i because they are linear by the definition as in equation (18). The reason why the real bond price exceeds its fundamental value is because they play a role to facilitate transactions in the DM; otherwise would not occur. Hence, bonds bear a liquidity premium. If $\tilde{z}^a > q^*$, i.e., the bond supply is plentiful in the sense that it allows agents to purchase the optimal quantity, q^*, in the DM2. The marginal increase in the bond supply does not allow buyers to purchase goods in the DM anymore. In other words, changing the bond supply does not affect transactions in the DM2; therefore does not affect the liquidity premium. However, money supply changes the liquidity premium. For example, increasing μ raises up the opportunity cost of holding money, so that it increases the demand on bonds and lowers the rate of return on bonds. On the other hand, If $\tilde{z}^a < q^*$, i.e., the bond supply is scarce, not only money supply but also bond supply affect the liquidity premium. This is because the marginal change in the bond supply has an impact on relaxing the liquidity constraint in the DM exchange.

Next, consider now some extreme cases where money and bonds are perfect substitutes or not substitutes at all so as to understand intuitively how the parameters, g and $1 - \theta$, can affect bond prices, or the liquidity premium. Moreover, I will empirically test them in Section 3 by using the U.S. data. As mentioned in subsection 2.1, g is an illiquid parameter, and implies how liquid bonds are, comparing with money in DM transactions. This parameter can be interpreted as a development stage of the secondary market or as a secondary market liquidity, where bonds are exchanged for money. Less friction in the secondary market implies higher g because less friction means that bonds are more easily converted to money, vice versa. For example, if there are more investors or buyers for bonds due to the developed institution, including high-quality trading platform technology, in the secondary market, assets are more likely to be liquidated easily, and so to provide liquidity services easily. On the other hand, the parameter $1 - \theta$ can be interpreted as how well the collateralized credit market functions. More collateralized transactions in the financial market implies higher $1 - \theta$.

Now, consider the four cases as follows, depending on the different combinations of g and θ (or $1-\theta$). All the results come out of equations (17) and (18).

Case 1: Perfectly illiquid bonds Bonds are totally illiquid in the sense that the bonds are useless in the DM exchange, i.e., $g \to 0$ and $\theta \to 1$. This is the case where the bonds only function as a store of value. Hence, the real bond price ψ is equal to the fundamental value, β, i.e., the present value of the dividend that the bonds deliver next period, and so they do not carry the liquidity
premium at all. Obviously, it is not affected by money and bond supply at all.

Case 2: Perfect substitutes to money Bonds are perfect substitutes to money, i.e., $g \to 1$ and $\theta \to 1$. The bond prices are equal to $1 + \mu$. Then its nominal yield ρ is given by

$$1 + \rho = (1 + \pi) \frac{1}{\psi} = \phi_t / \phi_{t+1} \times \phi_{t+1} / \phi_t = 1.$$ \hspace{1cm} (19)

The gross nominal interest rate $1 + \rho$ equals 1 and the net nominal interest rate equals zero all the times. In this case, since the bonds are identical with money in terms of ability of facilitating transactions in the DM. Moreover, they deliver dividends unlike money, their price is higher than the fundamental value β. Also, an increase in money supply raises the bond price, or the liquidity premium, vice versa.

Case 3: Liquid bonds but not substitutes to money Bonds are liquid in the DM, but not substitutes to money at all, i.e., $g \rightarrow 0$ and $0 < \theta < 1$. This is the case where the bonds are perfectly illiquid in the DM1, and so the two decentralized markets are totally separated. Hence, the supply of each does not affect each other, so that the liquidity premium which the bonds carry is only affected by the bond supply.

Case 4: Liquid bonds and perfect substitutes Bonds are liquid in the DM2 and also perfect substitutes to money in the DM1, i.e., $g \to 1$ and $0 < \theta < 1$. They hold extra values in exchange process. Then, equation (17) yield the net nominal interest rate as follows.

$$\rho = \frac{-\beta(1 - \theta)h [u'(hA)] - 1]}{(1 + \mu) + \beta(1 - \theta)h [u'(hA)] - 1]} \hspace{1cm} (20)$$

$$= \frac{(1 - \theta)h [u'(hA)] - 1]}{i + (1 - \theta)h [u'(hA)] - 1]} < 0 \hspace{1cm} (21)$$

In this case, the numerator is always negative only if $u'(hA) > 1$, i.e., only if bond supply is scarce. Also, the liquidity premium is affected by both money and asset supply. The nominal rate of return on a liquid bond is negative, irrespective of money and bond supply, or the nominal rate of return on a illiquid bond i. It implies that lenders are willing to pay interests even though they lend money, because bonds provide extra liquidity services in transactions. The interests are its corresponding price. I will discuss more details about under what conditions negative interest rates emerge in a generic case in Section 4.

3 Data and Empirical Results

The theory in the previous section delivers that the real rate of return on a liquid bond is affected by both the rate of money supply and bond supply in a general case where $0 < g, \theta, h < 1$, whereas the rate of real return on a illiquid bond is unaffected. What I will primarily test here
with the data is whether the liquidity premium is positively associated with the rate of money supply, but negatively with bond supply, as summarized in Proposition 1. Basically, Equations (22) and (23) are used as a guide for the empirical analysis.

3.1 Data

Before we move on to the empirical results, it is necessary to discuss how to measure all of the variables mentioned above such as the liquidity premium, money supply (or, the nominal interest rate of an illiquid bond), and bond supply from the data. As well known, the real rates of return are not observed in reality. Moreover, there exist various types of monetary aggregates such as Monetary Base, Narrow Money, M1, and M2, which we can use to measure money supply.

First, I describe how to measure the liquidity premium. Except for some extreme cases, from the theoretical point of view, a change in the rate of return on a real bond is equal to a change in the liquidity premium, only if the bond is default free, i.e., safe. However, it is not observable. Only the nominal yield are observable. Here, as in the literature, I use the yield spread between a liquid bond and an illiquid bond as a proxy the liquidity premium. This way is not only feasible, but also consistent with the theory. The theory presents the nominal yields of an illiquid real bond, a liquid real bond, and the spread between them as follows.

\[1 + i = (1 + \pi)(1 + r) = (1 + \pi) \frac{1}{\beta} \]
\[1 + \rho = (1 + \pi) \frac{1}{\psi} \]
\[s = i - \rho_t \approx \psi - \beta = \left[1 + g \left(\frac{1 + \mu}{\beta} - 1 \right) \right] + (1 - \theta) h \left[u'(\tilde{z}^a) - 1 \right] \] \hspace{1cm} (22)
\[= 1 + gi + (1 - \theta) h \left[u'(\tilde{z}^a) - 1 \right] \] \hspace{1cm} (23)

As we used in deriving Equation (17), the first two equations present the nominal yields of an totally illiquid bond and a liquid bond by the Fisher equation. Then, subtracting the former and the latter delivers the approximate yield spread between them, which is given by Equations (22) and (23). This subtraction eliminate the effect of the inflation rate on the nominal yields of both bonds at the same time and, therefore, leave the liquidity premium alone from other components in bond prices. As a result, this spread exactly measure the liquidity premium which is presented in the theory, and also can be observable in the data only if we find two different bonds in terms of liquidity. They should have same, at least or similar maturities and default risks.

As seen in Equations (22) and (23), the spread can be affected by the opportunity cost of holding money, and the money holding cost can be represented by either money or a nominal
interest rate in the regression. However, the question to be asked here is which variable is more appropriate, because they stand for the same economic notion. The empirical result can show the answer to it. In other words, we can test which variable is more suitable to explain changes in the liquidity premium in the next section.

Next, what should liquid and illiquid bonds be in reality? First, when it comes to a liquid bond, we define a liquid bond in the model as a bond which is useful in exchange process. In reality, it implies that the liquid bond should be easy to sell for cash in the secondary market, to accept directly as a medium of exchange, or to be used for credit (or loans) in the credit market such as the Repurchase Agreement market (or REPO in short) and the federal funds market. Moreover, it should be safe in the sense that it is sure to deliver its dividend at maturity, i.e., there is no probability to default until maturity. For this reason, here, I use the yields of all types of Treasuries such as Treasury bonds, notes and bills, as the nominal yields of the liquid bond in the model.

On the other hand, an illiquid bond in the model implies a bond which cannot be used in exchange, and its holder should hold it until maturity for cash because he does not like to accept a huge discount for the secondary trade. It is inferior to the liquid bond only in terms of liquidity. Hence, they should be exactly or similarly as safe as the liquid bond to avoid the case where the yield difference reflects the risk premium. Of course, in the case where there is a little difference in terms of the default risk, it can be controlled in regressions by adding variables to explain it. Moreover, the maturities should be the same for both bonds. In reality, however, since there exists the secondary market for almost all of bonds only if sellers of bonds accept more or less, or even considerable losses, there would not exist a perfectly illiquid. In other words, it is hard to find totally illiquid bonds, even if they are almost as safe as Treasuries and have the same or similar maturities. Taking this into account, I use the yields of Aaa-rated corporate bonds, 3-month Commercial Papers, Federal Deposit Insurance Corporation (FDIC) insured Certificates of deposits (henceforth FDIC CDs) as in Krishnamurthy and Vissing-Jorgensen (2012). I will match each of those yields with Treasuries, with consideration for maturity to compute the liquidity premium on each maturity.

Lastly, I also use TED spreads, which is used frequently as a measure for the liquidity premium in the literature. The TED spread is the spread between 3-month LIBOR based on US dollars and 3-month Treasury Bill. Even though 3-month LIBOR based on US dollars bears the risk premium because the contracts between banks are not default free, it can be controlled and absorbed by a variable to represent default risk in the regression.

Next, consider which of monetary aggregates should be used to measure money supply in the data. As mentioned above, there are a number of monetary aggregates which are released by the Fed: Monetary Base, Narrow Money, M1, M2, and M3. There are two criteria to think

7I updated the yields of Aaa-rated corporate bonds and 3-month Commercial Papers in their dataset by using the data FRED Economic Data (https://fred.stlouisfed.org/) provides because some values are revised.
about which one is appropriate. First, what the theory regards as money is perfectly liquid in a exchange process, or it is a perfect medium of exchange, comparing to bonds. Hence, money should not include any type of illiquid financial assets such as savings deposits including money market deposit accounts and small-denomination time deposits, which is time deposits in amounts of less than $100,000.\(^8\) Then, this criterion excludes M2 or more broader Monetary Aggregates such as M3. Secondly, its demand against the opportunity cost of holding it, i.e., the nominal interest rate (or the inflation rate) should be stable. If it is not, the mechanism through which the theory functions does not work. When the opportunity cost of holding money rises up, the demand should be declined. Only if this mechanism works, it leads to an increase in the demand on liquid bonds as a substitute, so that the liquidity premium the bonds bear rises up in the end. However, the demand on M1 against the nominal interest rate is not stable, so that M1 is excluded as a explanatory variable in the regression.\(^9\)

Based on the aforementioned criteria, I use Narrow Money as a measure of money. Narrow Money is well suited to the theory in the sense that it is easily used as a medium of exchange in transactions.\(^10\) Also, it presents a stable demand curve over the sample period, i.e., an unambiguously negative relationship with the nominal interest rate over the period from 1946 to 2008. Notice that I use the Federal Funds rate as a proxy of the nominal interest rate on illiquid financial bonds. I could use other interest rates such as 3 month commercial paper rate, but they deliver the same relationship because they have strong co-movement historically. Figure 4 displays the ratio of Narrow Money to nominal GDP against its holding cost \(i\), which implies \(L = M/PY\) in order to look at the real demand on money or real money balances proportional to Y implied by Equation 15. In the case where bond supply is not plentiful, it can be reexpressed to present the money demand as follows.

\[
\frac{\phi_t}{\phi_{t+1}^\beta} = 1 + \theta \left[u'(\tilde{z}) - 1\right]
\]

\[\Leftrightarrow 1 + i = 1 + \theta \left[u'(\tilde{z}) - 1\right],\]

where \(\frac{\phi_t}{\phi_{t+1}^\beta} = 1 + i.\(^{11}\)

Also, notice that money growth rate has a one to one relationship with the nominal yield of a totally illiquid bond in the stationary equilibrium, which is implied by the Fisher equation, i.e., \(1 + i = (1 + \pi)(1 + r) = (1 + \mu)/\beta\). The nominal interest rate as an index of the opportunity cost of money holding has a positive impact on the liquidity premium through the similar

\(^8\)Source: http://www.federalreserve.gov/releases/h6/current/default.htm
\(^10\)Narrow Money includes nonbank public currency used as a medium of exchange, deposits held at Federal Reserves Banks, and reserve adjustment magnitude, which is “adjustments made to the monetary base due to changes in the statutory reserve requirements”. See http://research.stlouisfed.org/publications/review/03/09/0309ra.xls for details.
\(^11\)Since \(\tilde{z}_t = \tilde{z}_{t+1}\) in stationary equilibria, the time subscript is omitted.
mechanism in which money growth works. The problem can be that there are a variety of interest rates in the financial market, and it is also difficult to find the yields of totally illiquid bonds. However, as well-known, they have strong co-movement relationship among them. Here, I use the Federal Funds rate as a proxy of the nominal interest rate which the model presents. The Federal Funds rate can reflect the money holding cost better than any other, because it is highly correlated with other short term interest rates which agents in an economy can consider as substitutes for cash, even if it is not perfectly substitutes. Moreover, since it is the policy interest rate which the Fed has been using, it is comparable to money supply.

Last but not least, I use the ratio of the outstanding stock of the public debt to the nominal GDP as a proxy of liquid bond supply as in Krishnamurthy and Vissing-Jorgensen (2012). The ratio of Debt to GDP is measured as the market value of the public debt at the end of a fiscal year divided by the GDP of the same year. Using the same data allows for comparison of my empirical results with the results which Krishnamurthy and Vissing-Jorgensen (2012) and Nagel (2014) deliver.

Figure 5 looks at the bond demand against the yield spread between the Aaa-rated corporate bond and the long term Treasury bond. Notice that, as Krishnamurthy and Vissing-Jorgensen (2012) points out, it is the bond demand for not only liquidity but also safety, but it is mainly driven by the demand for the liquidity services Treasuries provide. It had been stable up until 2008 in the sense that it is an unambiguous downward sloping curve, but after 2009, the demand seems to shift out after the recent financial crisis. This is similar to the money demand. For this reason, I only use the data over the period from 1945 up to 2008.

12See Henning Bohn’s website for more details: http://econ.ucsb.edu/bohn/data.html
3.2 Empirical Results

Now, I describe the details about the empirical test of the theoretic results. The liquidity premium can be measured by the nominal yield spread between two bonds, which are different only in terms of liquidity, but similar in terms of maturities and default risks. Since the bonds or the financial assets which are regarded as illiquid bonds in section 3.1 bear low default risk, or similarly as safe as Treasuries, we can compute several different yield spreads between them and Treasuries, depending on maturities. Here, I use the yield spread between Aaa-rated corporate bonds and the long term Treasuries, which are long-term bonds. Also the yield spreads between Aa-rated commercial papers and 3-month Treasury bills, and between 6-month FDIC insured Certificates of Deposit (henceforth CD) and 6-month Treasury bills, which are short-term bonds because their maturities are shorter than one year.\(^\text{13}\)

It is worth noticing that all of those spreads reflect the market values for the liquidity services the Treasuries provide, but different in the sense that the former is the liquidity premium on the long term Treasuries and the latter on the short term Treasuries. Hence, the factors which affect each of the spreads can differ, even though they have theoretically equivalent meanings. For example, the opportunity costs of holding money in the theory can be represented by either money growth or a nominal interest rate. If money growth increases, then the nominal interest rate will also increase by the Fisher effect, i.e., through an increase in the inflation. Hence, this money holding cost can be measured by either money growth or nominal interest rates, because they have the same economic sense. Here, I will verify which of these factors is more suitable to explain changes in the liquidity premia, which are measure by several measures, through the empirical test. In fact, Nagel (2014) presents that the Federal Funds rate has a positive effect on the liquidity premia, which are measured monthly only by some short term bonds. However, here I show the liquidity premia are also affected by money growth or supply, and also how it is robust to the liquidity premium of the long term bond such as the long term Treasuries.

Notice that I use the log difference form only for money supply in the regressions. As seen in Equation (15), it is the rate of money supply (or the money growth rate) that affects the liquidity premia, not the absolute level of money supply. One time change in money supply does not affect real variables in the model, but its growth rate does. (Money is not super-neutral but neutral.) Under flexible prices, a one time increase in money supply is ineffective because its relative price is adjusted to keep the real value unchanged. On the other hand, I use the level of the debt to the nominal GDP ratio in the regression, because it is not neutral unlike money. Even one time change in bond supply affect the real variables such as real balances, quantities traded in the DM.

When it comes to default risks or premium which can be included in the yield spreads,

\(^{13}\)I use the spreads which are used in Krishnamurthy and Vissing-Jorgensen (2012) but slightly different because they are updated from the original source.
although the Aaa-rated corporate bond and commercial paper are not exactly as safe as the Treasuries, those spreads are primarily driven by liquidity given the low default rate on Aaa bonds and Aa commercial papers.14 In order to control default risk in the regressions, the stock market volatility will be used as a default control variable, which is used in Krishnamurthy and Vissing-Jorgensen (2012).15 Including this measure in the regressions makes sure that changes in the yield spreads can be driven mainly by changes in the liquidity premia. Lastly, FDIC insured CDs are as safe as Treasuries, given FDIC insurance, so that its spread against the same maturities of Treasuries can be used as a good proxy of the liquidity premium.

Figures 6 and 7 illustrate how money growth rate had evolved with the different measures of the liquidity premium over the sample period. The figures shows that the movement of money growth is closely related to the liquidity premium, and their variations are also similar in terms of frequency and width.

Table 1 presents the impacts of money growth, bond supply, and the Federal Funds rate on the liquidity premium, which is measured by the yield spread between Aaa-rated corporate bond and the long term Treasury bond. Regressions (1) to (3) look at the impact of money supply with bond supply on the liquidity premium which the long-term Treasuries carry. In particular, Regression (2) and (3) test whether Treasury bonds are substitutes with money or not. The theory predicts that if they are not substitutes, money growth does not affect the liquidity premium of Treasuries at all, because the money market are totally separate from the bond market. However, the regression results display that money growth has a significant and

14See Krishnamurthy and Vissing-Jorgensen (2012) for details. According to them, “there have never been a default on high-grade CP.” Also, they use the spread of Aaa-rated bonds against Treasuries to estimate the market value of the liquidity convenience, assuming that the default risk of the Aaa-rated bonds is low.

15See Krishnamurthy and Vissing-Jorgensen (2012) for the details about why this measure can be a proxy for default risk. In short, they argues that this measure have a high correlation with another default risk measure such as the median expected default frequency credit measure from Moody’s Analytics.
positive impact on the liquidity premium. Also, bond supply is negatively correlated with the liquidity premium. An increase in bond supply reduces its market price for the liquidity services which the bonds provide. It implies that Treasury bonds are substantive substitutes with money to some degree. The negative effect of bond supply is consistent with Krishnamurthy and Vissing-Jorgensen (2012) even without the log specification16, and also is robust to default risk. Since a control variable for default risk is included as an explanatory variable in Regression (3), changes in the spread can be regarded as being primarily driven by the liquidity premium even if it is not perfect. On the other hand, Regression (4) to (6) show the impact of the Federal Funds rate on the liquidity premium. Unlike money supply, its impact on the liquidity premium is not significant in the regressions with bond supply.

Table 1: Impact of money growth on Aaa Cor. - Treasury Bond Spread

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NM Growth</td>
<td>1.648***</td>
<td>0.917***</td>
<td>0.557***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.735)</td>
<td>(0.244)</td>
<td>(0.160)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debt to GDP</td>
<td>-1.496***</td>
<td>-1.326***</td>
<td>-3.795***</td>
<td>-3.188***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.421)</td>
<td>(0.295)</td>
<td>(0.710)</td>
<td>(0.745)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatility</td>
<td>4.495***</td>
<td></td>
<td>3.484***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.893)</td>
<td></td>
<td>(0.903)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Federal funds rate</td>
<td>0.0564***</td>
<td>0.000219</td>
<td>-0.00253</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0147)</td>
<td>(0.0162)</td>
<td>(0.0152)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.654***</td>
<td>1.348***</td>
<td>0.690***</td>
<td>2.258***</td>
<td>1.567***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0833)</td>
<td>(0.205)</td>
<td>(0.211)</td>
<td>(0.366)</td>
<td>(0.434)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>63</td>
<td>63</td>
<td>63</td>
<td>54</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.092</td>
<td>0.417</td>
<td>0.610</td>
<td>0.166</td>
<td>0.542</td>
<td>0.661</td>
</tr>
</tbody>
</table>

Notes: Coefficients are estimated by Newey-West estimators with lag(1) and its standard errors are presented in parenthesis. The dependent variables are the yield spreads between private and Treasury bonds, which are measured in a percentage unit. Explanatory variables are the growth rate of Narrow Money and the ratio of the market value of Treasury debt outstanding to nominal GDP. A control variable for the default risk on private assets is Volatility, which is measured by annualized standard deviation of weekly log stock returns on the S&P 500 index (Source: Krishnamurthy and Vissing-Jorgensen (2012)). *** p<0.01, ** p<0.05, * p<0.1.

Next, Table 2 use different measures of the liquidity premium: the yield spread of AA-rated Commercial Papers, and FDIC CDs against Treasury Bills, and the TED spread. All the regressions present that the impact of money growth is significantly positive and is robust with bond supply and default risk controls. This results strongly support the idea that Treasury Bills are substitutes with money like Treasury bonds. Notice that Regressions (5) to (7) do not include a control variable for default risk because the FDIC CDs as a totally illiquid financial asset are as safe as Treasuries, and so its spread with Treasuries only reflects the difference between liquid-

16They use the log specification in their regressions because it provides a good fit and there is only one parameter they are interested in.
ity services which they provides.17

Regressions (4), (7), and (11) present how the Federal Funds rate affects the liquidity premium in the case where bonds are substitutes with money as in Regressions (3), (6) and (10). The Federal Funds rate as a proxy of the nominal interest rate is equivalent theoretically to the money growth, because both of them stand for the opportunity cost of holding money. In Regression (4) and (11), the Federal Funds rate has a positive impact on the liquidity premium, which is measured by the yield spread between AA CPs and Treasury Bills, and the TED spread, whereas it does not in Regression (7). Also, bond supply still has a significant and strong negative effect on the liquidity premium. This is different from the results which Nagel (2014) delivers. The paper argues that there is no impact of the bond supply on the liquidity premium. However, the paper does not look at the measures of the liquidity premium which are used here: the AAA cor. - Treasury bond spread, and the 6-month FDIC CDs - Treasury Bill spread. even though they also reflect the liquidity premium.

Lastly, it seems that money growth has a significant and positive impact on the liquidity premium, and also the nominal interest rate has a positive effect on it in some cases. Even if money growth and the nominal interest rate are equivalent because both money growth and the nominal interest rate mean the opportunity cost of holding money, but not in the data. This result may come from the fact that short and long term bonds are traded for different reasons or in different institutions, even though they are similar in terms of liquidity, so that short and long term spreads may have different liquidity attributes in reality. However, this result does not change the economic mechanism of how money and liquid bond interact in the financial market. It still provides strong support for the results above: bond prices bear the liquidity premium, bonds are substantive substitutes with money even if not perfect, and the money holding cost is a key factor in the mechanism which deliver the aforementioned results.

17The regressions with the quarterly data over the same period present the similar result. See Appendix B for details.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NM Growth</td>
<td>1.681***</td>
<td>1.256***</td>
<td>1.168***</td>
<td>2.378***</td>
<td>2.535***</td>
<td>1.341***</td>
<td>1.343***</td>
<td>1.209***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.543)</td>
<td>(0.247)</td>
<td>(0.298)</td>
<td>(0.249)</td>
<td>(0.231)</td>
<td>(0.194)</td>
<td>(0.187)</td>
<td>(0.224)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debt to GDP</td>
<td>-0.871*</td>
<td>-0.829*</td>
<td>-0.564</td>
<td>-5.471***</td>
<td>-5.074***</td>
<td>-0.0543</td>
<td>0.980</td>
<td>0.212</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.471)</td>
<td>(0.430)</td>
<td>(1.037)</td>
<td>(1.584)</td>
<td>(1.777)</td>
<td>(1.535)</td>
<td>(1.665)</td>
<td>(1.127)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatility</td>
<td>1.097</td>
<td>0.271</td>
<td>1.721</td>
<td>2.010</td>
<td>2.151</td>
<td>0.0923*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.722)</td>
<td>(1.344)</td>
<td></td>
<td>(1.464)</td>
<td>(1.521)</td>
<td>(0.468)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Federal Funds Rate</td>
<td>0.0947***</td>
<td></td>
<td></td>
<td>0.0366</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0923*</td>
</tr>
<tr>
<td></td>
<td>(0.0323)</td>
<td></td>
<td></td>
<td>(0.0463)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.0468)</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.586***</td>
<td>0.990***</td>
<td>0.829***</td>
<td>-0.0569</td>
<td>2.151***</td>
<td>0.565***</td>
<td>0.588</td>
<td>-0.120</td>
<td>-0.0824</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0784)</td>
<td>(0.272)</td>
<td>(0.254)</td>
<td>(0.134)</td>
<td>(0.633)</td>
<td>(0.107)</td>
<td>(0.668)</td>
<td>(0.808)</td>
<td>(0.447)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>63</td>
<td>63</td>
<td>63</td>
<td>54</td>
<td>25</td>
<td>25</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.037</td>
<td>0.076</td>
<td>0.066</td>
<td>0.210</td>
<td>0.272</td>
<td>0.551</td>
<td>0.206</td>
<td>0.180</td>
<td>0.139</td>
<td>0.147</td>
<td>0.233</td>
</tr>
</tbody>
</table>

Notes: Coefficients are estimated by Newey-West estimators with lag(1) and its standard errors are presented in parenthesis. The dependent variables are the yield spreads between private and Treasury bonds, which are measured in a percentage unit. Explanatory variables are the growth rate of Narrow Money and the ratio of the market value of Treasury debt outstanding to nominal GDP. A control variable for the default risk on private assets is *Volatility*, which is measured by annualized standard deviation of weekly log stock returns on the *S&P 500* index (Source: Krishnamurthy and Vissing-Jorgensen (2012)). *** p<0.01, ** p<0.05, * p<0.1.
4 Discussion on Negative Interest Rates

Negative interest rates have been observed in some countries such as the United States, Switzerland, Japan and Germany, in particular, for the recent years after 2008. For example, in Switzerland, the yields of almost all the government bonds have been negative after 2008. In addition, the yield of 3 month Treasury Bills in the United States had been negative during several days in September, 2015, even if the federal fund rates were slightly positive.

The negative yields, or interest rates imply that lenders pay borrowers interests on their borrowings. It wouldn’t make sense if interest rates were considered as the risk premium which is compensated for borrowers’ default risk, because it is the lenders that take the default risk of the loans. Since cash is unambiguously as safe as any other government bonds, the lenders could hoard physical cash in their safes, whose interest rate is 0%, i.e., can never be negative. Then, why have we observed the negative interest rates in reality? Or, why do not investors in the financial market choose to hold cash, instead of the government bonds?

First, consider a financial market where investors are always willing to pay for the liquidity service the governments bonds provide. For example, in some financial markets such as Repurchase Agreement markets and the collateralized federal funds market, liquid bonds such as the government bonds are necessary as collateral in transactions. Theoretically, this can be regarded as the case where the value of $1 - \theta$ in the model is not small. As shown before, the yield of a liquid bond from the model is given by

$$\rho = \frac{(1 - g) \left[\frac{1+\mu}{\beta} - 1 \right] - (1 - \theta) h [u'(z^a) - 1]}{(1 - g) + g \frac{1+\mu}{\beta} + (1 - \theta) h [u'(z^a) - 1]}$$

(24)

$$\rho = \frac{(1 - g)i - (1 - \theta)h [u'(z^a) - 1]}{1 + gi + (1 - \theta)h [u'(z^a) - 1]}.$$

(25)

The theory predicts that there is a high chance that the negative yield would emerge, in particular, when bond supply decreases, and the nominal interest rate is low: money is not in short. This is because the liquidity services which liquid bonds provide are valued high relatively when the money holding cost is low. It implies that the bond buyers would be willing to accept the negative yields of the bonds to hold them in their portfolios for transactions. In fact, it is supported by the comments from the market participants during the periods of the low nominal interest rate. For example, according to Bloomberg (September 25, 2015), Kenneth Silliman, head of U.S. short-term rates trading in New York at TD Securities unit, one of 22 primary dealers that trade with the Fed said,

“Yields on U.S. Treasury bills fell below zero as an influx of cash and pent-up appetite for safe assets led investors to accept negative returns after the Federal Reserve decided not to raise its short-term interest rate. Investors will have additional funds totaling about $100 billion returned to them in
the next month as the government cuts bill supply heading into negotiations with Congress about the statutory debt limit”, 18 19

To summarize in brief, this article says that the main factors which drove down the negative interest rate below zero were ‘an influx of cash and a cut in bill supply.’ Also, remember that the policy rate of the Fed, has been hovering around zero for more than 7 years since 2008. In other words, when the negative interest rate occurred, the money holding cost was low, and also the bill supply was expected to decrease. However, there have existed strong demand on the government bonds. Both factors were at work together in the direction to raise up the liquidity premium of liquid bonds such as Treasury bills, so that the interest rate seemed to fall down to the negative territory.

Interestingly, this negative yield can also be explained by ‘an influx of cash’ in addition to ‘a cut in bill supply’. As shown theoretically and empirically in the previous sections, money supply (or growth) increases the liquidity premium, whereas bond supply decreases it. Hence, with a slight abuse of the theory, this fall of the yield to the negative territory can be interpreted as an increase in the liquidity premium which the government bonds bear.

Moreover, we can find another example which the theory can be applied to in Switzerland. As shown in Figure 8, the negative yields on government bonds have been observed for a substantial period of time since 2008. Also, it looks at how money and the government bond supply have been evolving. The ratio of the government bond supply relative to GDP shrank from around 50% to around 30%, whereas the money supply, measured by M1 20, relatively increased more than twice during the same period. If we apply the empirical result to this example, it is highly likely that the relative scarcity of the liquid government bonds against money in the market have led to an increase in the high liquidity premia on the government bonds. Moreover, the interest target range of the Swiss National Bank was 0-1.00% at then end of 2008 21, and, after then, continued to decrease, and fell into the negative target. Accordingly, it can be inferred that the main factor for the negative interest rates is the high liquidity premia on the liquid government bonds due to their short supply. 22

19 See the following comment in The Wall Street Journal (Sept 23, 2014) for another example: “Short-term debt trading at negative yields was essentially unheard of before the 2008 financial crisis. But since then, the condition has cropped up at times of market stress, reflecting extraordinarily expansive central-bank policy and anemic growth in much of the world. Yields on some U.S. bills traded below zero at the end of each of the past three years amid strong demand for liquid assets, according to analysts.” Source: http://www.wsj.com/articles/treasury-bill-yield-tips-into-negative-territory-1411516748
20 It includes currency in circulation, sight deposits and deposits in transaction accounts.
21 It is fixed at 0 - 1.00% on 12/11/2008, 0 - 0.75% on 3/12/2009, 0 - 0.25% on 8/3/2011, -0.75 - 0.25% on 12/18/2014, and -1.25 - -0.25% on 1/15/2015.
22 Also, according to Aleks Berentsen, Swiss government bonds can be used as collateral in some markets outside of Switzerland but where the Swiss franc cannot. It implies Swiss government bonds have higher (1 − θ), so that there are higher possibility that their yields would be negative in the case where liquid bonds are scarce.
5 Conclusion

This paper explores the effects of money and bond supply on the liquidity premia in the prices of liquid financial assets such as government bonds. The theory delivers elaborate predictions about under which conditions money supply can affect the liquidity premia. For example, it has a positive impact on them by changing the opportunity cost of holding money and so affecting the demand on liquid bonds only when liquid bonds are substitutes with money, even if partial. Moreover, in the case where they are perfectly substitutes, the negative yields on liquid bonds can appear in the equilibrium. On the other hand, the bond supply also directly affects the liquidity premia by changing relative scarcity of bonds in the market. Lastly, the empirical analysis presents a strong support for the theoretical findings. The US data display that money supply or the nominal interest rate as a proxy of the money holding cost has a positive impact on the liquidity premium, whereas bond supply has a negative impact. Also, it describes how the liquidity premia are associated with negative nominal yield on liquid bonds which were observed in the US and Switzerland.
References

A Appendix

Proof. Proof of Lemmas 1 and 2.

First, consider Lemma 1. Substituting \(\phi, p \) into the objective function in Equation 6 re-express the bargaining problem as

\[
\max_q \{ u(q) - q \}
\]

subject to \(q = \phi p \), and \(p \leq \tilde{w} \). If \(\phi \tilde{w} \geq q^* \), the optimal choice of \(q \) will be the first best quantity \(q^* \), i.e., \(q = q^* \). Then, \(p = (p^m, p^a) \) such that \(\phi p^m + gp^a = q^* \). However, if \(\phi \tilde{w} < q^* \), the effective budget constraint is binding. Accordingly, the buyer will give up all her real balances in order to purchase as many as possible. Then, the optimal choice of \(q \) will be the same as her real balances \(\phi \tilde{w} \). Also, \(p = (m, a) \). When it comes to Lemma 2, the same steps above can be taken for proof. Since it is straightforward, it is omitted.

\[\square\]

Proof. Proof of Lemma 3

First, consider whether the real balances are as a direct medium of exchange or as collateral to borrow credit enough to obtain the optimal quantity \(q^* \) in each of the two DM markets. If \(\tilde{z} \geq q^* \) or \(\tilde{z}^a \geq q^* \), \(q^1 = q^* \) or \(q^2 = q^* \); otherwise, \(q^1 = \tilde{z} \) or \(q^2 = \tilde{z}^a \) by lemmas 1 or 2. Then, plugging these result into the first order conditions \((??)\) and \((??)\) for the maximum of the objective function will yield the equilibrium prices \(\phi \) and \(\psi \). Also, the marginal utility function \(u' \) is monotonically decreasing in its argument, so that the equilibrium is uniquely determined.

\[\square\]
B Impact of money growth on the liquidity premium: Quarterly Data

Table 3: Impact of money growth on the liquidity premium (Quarterly, 1946Q1-2008Q4)

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>AAA Cor. - Treasury Bond</th>
<th>AA CP - T-Bills</th>
<th>TED Spread</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>NM Growth</td>
<td>3.060***</td>
<td>2.353***</td>
<td>1.144***</td>
</tr>
<tr>
<td></td>
<td>(0.999)</td>
<td>(0.222)</td>
<td>(0.170)</td>
</tr>
<tr>
<td>Dept to GDP</td>
<td>-1.708***</td>
<td>-1.969***</td>
<td>-1.742***</td>
</tr>
<tr>
<td></td>
<td>(0.250)</td>
<td>(0.367)</td>
<td>(0.418)</td>
</tr>
<tr>
<td>Federal Funds Rate</td>
<td>-0.0235*</td>
<td>0.0926***</td>
<td>0.0914***</td>
</tr>
<tr>
<td></td>
<td>(0.0136)</td>
<td>(0.0122)</td>
<td>(0.0193)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.709***</td>
<td>1.716***</td>
<td>2.038***</td>
</tr>
<tr>
<td></td>
<td>(0.0406)</td>
<td>(0.135)</td>
<td>(0.254)</td>
</tr>
</tbody>
</table>

Notes: Coefficients are estimated by Newey-West estimators with lag(1) and its standard errors are presented in parenthesis. The dependent variables are the yield spreads between private financial assets and Treasuries. They are measured in a percentage unit. Explanatory variables are the growth rate of Narrow Money and the ratio of the market value of Treasury debt outstanding to nominal GDP. *** p<0.01, ** p<0.05, * p<0.1.